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SUCCESSIVE MINIMA OF LINE BUNDLES

FLORIN AMBRO AND ATSUSHI ITO

Abstract. We introduce and study the successive minima of line bundles on proper algebraic
varieties. The first (resp. last) minima are the width (resp. Seshadri constant) of the line bundle
at very general points. The volume of the line bundle is equivalent to the product of the successive
minima. For line bundles on toric varieties, the successive minima are equivalent to the (reciprocal
of) usual successive minima of the difference of the moment polytope.

Introduction

The motivation for this paper is the classical problem in Algebraic Geometry of finding numerical
criteria for a linear system on an algebraic variety to be non-empty, or to define a birational
embedding. The equivalent problem in Geometry of Numbers is finding numerical criteria for a
convex body to contain sufficiently many lattice points.

For a complex projective manifold X , Demailly [5] introduced the Seshadri constant ǫ(L, x) of
an ample line bundle L at a point x of X . This invariant is constant if x is very general, denoted
ǫ(L) and called maximal Seshadri constant, and one can show that if ǫ(L) is sufficiently large, then
the linear system |KX + L| is non-empty, and even defines a birational embedding (see [5, 7], or
Theorem 5.1).

For a convex body � ⊂ Rd, the flatness theorem of Khinchin states that if the lattice width w of
� is sufficiently large, then � contains a lattice point (see [12]). The starting point of this paper is
to observe that the flatness theorem is just a special (toric) case of Demailly’s generation for adjoint
line bundles in terms of maximal Seshadri constants. The key point is that on toric varieties, the
maximal Seshadri constant is equivalent to the lattice width of the moment polytope:

Theorem 0.1. Let X = TN emb(∆) be a proper toric variety, of dimension d. Let L be an invariant
Cartier divisor on X, with Seshadri constant ǫ at a general point of X. Let �L ⊂ MR be the moment
polytope, let w be the lattice width of �L. Then

w

d
≤ ǫ ≤ w.

The equivalence between w and ǫ not only reproves the flatness theorem, but generalizes it as
follows:

Theorem 0.2. Let � ⊂ Rd be a compact convex set, of lattice width w. If w > d2 + d, there exist
m0, . . . , md ∈ Zd ∩ int(�) such that m1 −m0, . . . , md −m0 form a basis of Rd.

The proof of the equivalence involves the transference theorem of Mahler, and the fact that w is
the first minimum of Minkowski for the polar body (�L−�L)

∗ ⊂ NR. Since ǫ is proportional to the
first minimum of Minkowski, we may think of 1/ǫ as a d-th successive minimum of�L−�L ⊂ MR via
the transference theorem. The question arises if the other successive minima of this 0-symmetric
body have a meaning on algebraic varieties which are not necessarily toric, and if they have a
connection with Seshadri constants. The answer turns out to be positive! We introduce in this
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2 FLORIN AMBRO AND ATSUSHI ITO

paper a sequence of successive minima for a line bundle on an algebraic variety, such that the
last minimum coincides with the classical Seshadri constant, and in the toric case, these minima
are equivalent to the (reciprocal of) successive minima of the 0-symmetric body associated to the
moment polytope.

Let X be a proper complex variety, let L be a Cartier divisor on X . Let x ∈ X be a point. For a
real number t ≥ 0, we define Bs |It+

x L|Q to be the common zero locus of sections s ∈ Γ(nL) (n ≥ 1)
such that s vanishes at x of order strictly larger than nt. Then Bs |It+

x L|Q is a closed subset of X ,
increasing with respect to t, and equal to X for t sufficiently large. For integers i ≥ 1, the i-th
successive minimum of L at x is defined as

ǫi(L, x) = inf{t ≥ 0; codimx Bs |It+
x L|Q < i}.

We obtain a sequence ǫ1(L, x) ≥ ǫ2(L, x) ≥ · · · ≥ ǫd(L, x) ≥ 0 = ǫd+1(L, x), where d = dimX . As
we will see, the invariant ǫi(L, x) does not depend on a very general point x, is denoted ǫi(L), and
called the i-th minimum of L at a very general point. If κ(L) ≤ 0, then ǫ1(L) = 0. If L has Iitaka
dimension κ ≥ 1, it turns outs that ǫκ(L) > 0 = ǫκ+1(L). We can show that ǫi(L) are numerical
invariants in case L is big.

If L is semiample and x ∈ X is a smooth point, ǫd(L, x) coincides with the Seshadri constant
ǫ(L, x) introduced by Demailly [5]. In particular, if L is semiample, ǫd(L) coincides with the maximal
Seshadri constant of L, usually denoted ǫ(L).

The invariant ǫ1(L, x) is the largest asymptotic multiplicity that can be imposed at x on sections
of multiplies of L. It appears in the work of Nakamaye [17]. If x ∈ X is a smooth point, it coincides
with the width of L at the geometric valuation induced by the exceptional divisor on the blow-up
at x (see [1]). Due to this property, we call ǫ1(L, x) the width of L at x. We also relate the volume
of L with the successive minima. By a classical argument for counting jets, we have inequalities

ǫd(L, x) ≤ d

√

vol(L)

multx(X)
≤ ǫ1(L, x).

The second main result of the paper is the analogue of Minkowski’s second main theorem, namely
the volume of L is equivalent to the product of successive minima of L at very general points:

Theorem 0.3. Let X be a proper complex variety of dimension d, let L be a Cartier divisor on X.
Let vol(L) be the volume of L, let ǫi(L) be the successive minima of L at very general points. Then

d
∏

i=1

ǫi(L) ≤ vol(L) ≤ d! ·
d
∏

i=1

ǫi(L).

In particular, for a big divisor L on X we have inequalities

1 ≤ vol(L)

ǫd(L)d
≤ d! · (ǫ1(L)

ǫd(L)
)d.

Understanding when the ratio ǫ1(L)/ǫd(L) is too large is an interesting problem (see Naka-
maye [17]). Finally, we show that for line bundles on toric varieties, our successive minima are
equivalent to the reciprocal of usual ones:

Theorem 0.4. Let X = TN emb(∆) be a proper toric variety, of dimension d. Let L be a big
invariant Cartier divisor on X, with successive minima ǫi at a very general point. Let �L ⊂ MR

be the moment polytope, let λ1, . . . , λd be the successive minima of the 0-symmetric convex body
�L −�L ⊂ MR, let λ

∗
1, . . . , λ

∗
d be the successive minima of the polar body (�L −�L)

∗ ⊂ NR. Then
ǫi, λ

−1
i , λ∗

d−i+1 are all equivalent. More precisely,

1 ≤ ǫi · λi ≤ d · ǫi
λ∗
d−i+1

≤ d(d− i+ 1).
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Our definition of successive minima is inspired by the equivalent definition of Seshadri constants
due to Eckl [6, Theorem 1.1], and by the methods developed by Ein, Küchle, Lazarsfeld [7] and
Nakamaye [16, 17, 18], while studying effective lower bounds for maximal Seshadri constants. The-
orem 0.3, in the toric case, is just a restatement of Minkowski’s second main theorem. It is implicit
in the work of Nakamaye when X is a surface [17, Proof of Corollary 3], and our proof is similar to
his, except that we introduce certain convex polytopes in his method of counting of jets. Eventually,
Theorem 0.3 reduces to a simple postulation problem in the projective space (Proposition 1.7).

A technical improvement in the study of Seshadri constants is that we no longer require positivity
of the line bundles, or that the ambient space is normal. On the other hand, our invariants may
not be numerical if the line bundle is not big. We hope that successive minima, and other tools
from the Geometry of Numbers, may be useful in the study of adjoint linear systems.

We outline the content of this paper. In Section 1 we setup the notation, and recall basic facts
about multiplicities, and linear systems. We also prove an inequality for symbolic powers of ideals in
the projective space, which is elementary, but new to us. In Section 2, we define successive minima
for a line bundle, study some basic properties, and compare it with Seshadri constants. In Section
3 we prove that the volume is equivalent to the product of the successive minima. In Section 4,
we estimate the successive minima for line bundles on toric varieties. In Section 5, we generalize
the flatness theorem of Khinchin, as an application of known results on adjoint linear systems, plus
the estimates in Section 4. In Section 6 we recall the statements of the second main theorem of
Minkowski, and the transference theorem of Mahler. We also present a proof of the transference
theorem in dimension two, with sharp bounds.

Acknowledgments . The first author is grateful to Max Planck Institut für Mathematik in Bonn
for its hospitality and financial support. The second author was supported by Grant-in-Aid for Sci-
entific Research 17K14162. We would like to thank the referee for useful comments and suggestions.

1. Preliminary

Throughout this paper, an algebraic variety X is a scheme of finite type, reduced and irreducible,
defined over an algebraically closed field k, of characteristic zero (the assumption char k = 0 is used
in Lemma 2.18 and its consequences in Section 3, and in Theorem 5.1).

Vanishing orders. Let X be an algebraic variety, L an invertible OX -module, and s ∈ Γ(X,L)
a global section. The order of s at a closed point x ∈ X , denoted ordx(s), is the supremum after
all integers n ≥ 0 such that sx ∈ In

x · Lx. The order is +∞ if s = 0, and a non-negative integer if
s 6= 0.

If f : X ′ → X is a morphism of algebraic varieties and f(x′) = x, then f ∗s ∈ Γ(X ′, f ∗L) and
ordx′(f ∗s) ≥ ordx(s). In particular, if x ∈ X ′ ⊆ X is a closed subset, then ordx(s) ≤ ordx(s|X′).

Suppose X is smooth at the general point of a subvariety Z ⊆ X . The order of s at Z is defined
as the order of s at a general point of Z.

Order bounds. For an effective Cartier divisor D on X , the order of D at x, denoted ordx(D), is
defined as the order at x of a local equation of D.

Lemma 1.1. Let X be a projective algebraic variety, of dimension d, let A be a very ample divisor,
and D an effective Cartier divisor on X. Then ordx(D) ≤ (D ·Ad−1) for every closed point x ∈ X.

Proof. Since A is very ample, there exist H1, . . . , Hd−1 ∈ |A| such that C = ∩d−1
i=1Hi is an effective

cycle passing through x, none of its components being contained in D. Then

(D · Ad−1) = (D · C) ≥ ordx(D|C) ·multx(C) ≥ ordx(D) ·multx(C) ≥ ordx(D).

We note that the first inequality follows from [10, page 233] even if X is singular. �
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Volume. Let X be a proper algebraic variety, of dimension d. Let L be a Cartier divisor on X , let
R(L) = ⊕n≥0Γ(X,OX(nL)) be the induced N-graded ring. Let R = ⊕n≥0Rn ⊆ R(L) be a graded
subalgebra. The volume of R is defined as

vol(R) = lim sup
n→∞

dimk Rn

nd/d!
.

The lim sup is in fact a limit over sufficiently divisible n. The volume of L, denoted vol(L), is
defined as the volume of R(L).

We usually denote Γ(X,OX(nL)) by Γ(nL).

Iitaka map. One may define the Iitaka dimension and Iitaka map for divisors on a variety which
may not be normal. These are birational invariants if the ambient space is normal.

Let X be a proper variety, let L be a Cartier divisor on X . For n ≥ 1 such that Γ(nL) 6= 0,
let |nL| be the induced linear system on X . A basis s0, . . . , sN of Γ(nL) induces a rational map
φ|nL| : X 99K |nL|, with image Xn. Define the Iitaka dimension κ(L) of L to be the maximum of
dimXn after all such n, and −∞ if Γ(nL) = 0 for all n ≥ 1.

Suppose κ(L) ≥ 0. For each n ≥ 1 such that Γ(nL) 6= 0, let Qn ⊆ k(X) be the field over
k generated by { s′

s
; s′, s ∈ Γ(nL) \ 0}. The dominant rational map φ|nL| : X 99K Xn induces an

isomorphism k(Xn)
∼→Qn. The union ∪|nL|6=∅Qn is a subfield Q of k(X), since Qn ∪ Qn′ ⊆ Qn+n′ if

|nL| and |n′L| are non-empty. Since Q is finitely generated over k, there exists an integer m such
that Qm = Q. For every n ≥ 1, we have Qm = Qnm, that is the rational maps φ|mL| : X 99K Xm and
φ|nmL| : X 99K Xnm differ by a birational map Xnm 99K Xm. We call φ|mL| : X 99K Xm the Iitaka
map of L. The dimension of Xm is κ(L).

- Suppose κ(L) ≥ 0 and X is normal. The normalization of the graph of the Iitaka map
φ|mL| : X 99K Xm induces a diagram

X ′

µ

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥ f

!!❈
❈❈

❈❈
❈❈

❈

X // Xm

such that X ′ is proper and normal, OX = µ∗OX′ , and κ(µ∗L|X′
y
) = 0 for a very general point

y ∈ Xm. Note that X ′
y is connected.

- Suppose L is semiample, that is the linear system |nL| has no base points for some n ≥ 1. Then
the Iitaka map φ : X → Y is regular, OY = φ∗OX , and nL ∼ φ∗A for some integer n ≥ 1 and a
very ample divisor A on Y .

- Suppose µ : X ′ → X is a proper birational morphism. If X and X ′ are normal, it follows
that OX = µ∗OX′ . In particular, Γ(nL) = Γ(nµ∗L) for every n ≥ 1. Therefore the rational maps
induced by non-empty linear systems |nL| and |nµ∗L| differ by µ. It follows that κ(L) = κ(µ∗L).

A morphism of algebraic varieties f : X → Y is called a contraction if OY = f∗OX .

Isolated base points of linear systems. Let X be a proper algebraic variety, let L be a Cartier
divisor on X such that Γ(L) 6= 0. A basis s0, . . . , sN of Γ(L) induces a rational map φ : X 99K PN =
|L|. Let U = X \ Bs |L|, so that φ is regular on U . Then Bs |Ix(L)| ∩ U = φ−1φ(x) ∩ U for every
x ∈ U .

Lemma 1.2. Let f : X → Y be a proper contraction of algebraic varieties, let x ∈ X be a closed
point such that dimxXf(x) = 0, where Xf(x) = f−1f(x). Then f is an isomorphism over a neigh-
borhood of f(x).

Proof. By the semicontinuity of the local dimension of the fibers of f , there exists an open subset
U ′ ∋ x such that dimx′ Xf(x′) = 0 for all x′ ∈ U ′. Let V = Y \f(X \U ′). Since Xf(x) is 0-dimensional
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and connected, it coincides with {x}. Therefore f(x) ∈ V . Let U = f−1(V ). Then x ∈ U ⊆ U ′.
Therefore f |U : U → V is a proper contraction with finite fibers, hence a finite contraction, hence
an isomorphism. �

Lemma 1.3 (Lemma 5.2.24 [13]). Let X be an algebraic variety. Let I ⊆ OX be an ideal sheaf,
let f : Y → X be the blow-up of X along I. Let E be the exceptional divisor on Y , defined by
I · OY = OY (−E). Then the natural homomorphism In → f∗OY (−nE) is an isomorphism for
every n ≥ c(I), where c(I) ≥ 0 is a constant depending only on I. Moreover, c(I) = 0 if I is the
ideal of a smooth point of X.

Proof. The statement is local, so we may suppose X = SpecR and Y = ProjS, where S is the

R-graded ring ⊕n≥0I
n, for some ideal I ⊆ R. Then OY (−nE) = OY (n) = ˜S(n). The natural

homomorphism S → ⊕n≥0Γ(Y, ˜S(n)) is an isomorphism in degrees n ≥ c(I). This gives the claim.
If I is the ideal of a smooth point of X , then I is generated by a regular sequence. One checks

then that c(I) = 0. �

Lemma 1.4 (Proposition 1.1 [8]). Let X be a proper algebraic variety, let L be a Cartier divisor
on X and x ∈ X a closed point such that Bs |L| ∩ U ⊆ {x} for some open neighborhood U of x in
X. Then x /∈ Bs |nL| for n ≫ 0.

Proof. Let Z be the base locus subscheme of |L| outside x (possibly empty). Let f : Y → X be the
blow-up of X along IZ . Let IZ · OY = OY (−E), so that E is the exceptional divisor. Since f is an
isomorphism over a neighborhood of x, we may identify x with a point of Y .

A basis of Γ(X, IZ(L)) = Γ(X,OX(L)) induces sections of Γ(Y,OY (f
∗L−E)) whose common zero

locus is away from E. Therefore Bs |f ∗L − E| ⊆ {x}. By [9, Theorem 1.10], x /∈ Bs |n(f ∗L − E)|
for n ≥ n0. By Lemma 1.3, we may identify Γ(X, In

Z(nL)) = Γ(Y,OY (nf
∗L − nE)) for every

n ≥ c(IZ). Therefore x /∈ Bs |In
Z(nL)| for n ≥ max(n0, c(IZ)). Since x /∈ Z, we obtain x /∈ Bs |nL|

for n ≫ 0. �

Lemma 1.5 (Ample reduction). Let X be proper, L a Cartier divisor and x ∈ X a closed point
such that Bs |Ix(L)| = {x} near x. Let Z be the base locus subscheme of |L|, away from x (possibly
empty). Let f : X ′ → X be the blow-up of X along IZ , with exceptional divisor E. Then there
exists a proper contraction g : X ′ → Y to a projective algebraic variety Y , such that the following
properties hold:

a) f ∗L− E ∼ g∗A for some ample Cartier divisor A on Y , and
b) f is an isomorphism over a neighborhood of x, and g is an isomorphism over a neighbor-

hood of g(x).

X ′

f

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤ g

  ❆
❆❆

❆❆
❆❆

❆

X // Y

We obtain natural homomorphisms R(L) ⊇ ⊕n≥0Γ(In
Z(nL))

α→ R(f ∗L − E) ≃ R(A), and α is an
isomorphism in sufficiently large degrees.

Proof. By construction, |f ∗L − E| is base point free near E. Therefore Bs |f ∗L − E| ⊆ {x}. By
the proof of Lemma 1.4, |n(f ∗L − E)| is base point free for n ≫ 0. The Iitaka map induces the
contraction g, with property a). For b), it is clear that f is an isomorphism over a neighborhood of x.
We identify x with a point of X ′. Since Bs |Ix(L)| = {x} near x, we obtain Bs |Ix(f

∗L−E)| = {x}
near x. Therefore Bs |Ix(nf

∗L − nE)| = {x} near x, for all n ≥ 1. Therefore g−1g(x) = {x} near
x. By Lemma 1.2, g is an isomorphism over a neighborhood of g(x). Finally, αn is an isomorphism
for n ≥ c(IZ). �
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Generation of jets. Let X be an algebraic variety, L a Cartier divisor on X , x ∈ X a closed
point, and p ≥ 0 an integer. We say that L generates p-jets at x if Γ(L) → Ox/Ip+1

x is surjective.
By induction and the snake lemma, this is equivalent to the following property: the OX -module
In
x (L) is generated by global sections at x, for every integer 0 ≤ n ≤ p.

Lemma 1.6. Let f : Y → X be the blow-up at x, with exceptional divisor E. Suppose Ip+1
x

∼→f∗(Ip+1
E )

and R1f∗(Ip+1
E ) = 0. If Γ(f ∗L) → Γ(O(p+1)E) is surjective, then L generates p-jets at x. The con-

verse holds if the natural homomorphism H1(L) → H1(f∗OY (L)) is injective.

Proof. Consider the commutative diagram

0 // f∗(Ip+1
E ) // f∗OY

// Γ(O(p+1)E) // 0

0 // Ip+1
x

//

OO

OX
//

OO

OX/Ip+1
x

//

OO

0

The bottom row is exact. The top is also exact, since R1f∗(Ip+1
E ) = 0. The first vertical arrow is

an isomorphism, by assumption. The second vertical arrow is injective. Therefore the third arrow
is injective as well. We deduce that the second and third vertical arrows have isomorphic cokernels,
denoted by C. Ignoring the first vertical arrow, tensoring with OX(L) and passing to global sections
on X , we obtain a commutative diagram

0 // Γ(L) //

a

��

Γ(f ∗L)
c //

b

��

Γ(C)
=

��
0 // OX/Ip+1

x
// Γ(O(p+1)E) // Γ(C)

with exact rows. If b is surjective, then a is surjective. The converse holds if c is surjective. From
the exact sequence

0 → Γ(L) → Γ(f∗OY (L))
c→ Γ(C) → H1(L) → H1(f∗OY (L)),

we see that c is surjective if and only if H1(L) → H1(f∗OY (L)) is injective. �

If x is a smooth point, then Ip+1
x

∼→f∗(Ip+1
E ) and R1f∗(Ip+1

x ) = 0 for all p ≥ 0, and OX = f∗OY .
Therefore L generates p-jets at x if and only if Γ(f ∗L) → Γ(O(p+1)E) is surjective.

Postulation. For an integer p ≥ 0, denote Nd(p) = {(α1, . . . , αd) ∈ Nd;
∑d

i=1 αi = p}. For a finite
set A, denote by |A| its cardinality. We will need the following property on the symbolic powers of
ideals in the projective space.

Proposition 1.7. Let Zi ⊂ Pd be an irreducible subvariety of codimension i, for 1 ≤ i ≤ d. Let
p1, . . . , pd, q ≥ 0 be integers. Then

h0(Pd,∩d
i=1I(pi)

Zi
⊗OPd(q)) ≤ | ∩d

i=1 {α ∈ Nd+1(q);αi + · · ·+ αd ≤ q − pi}|.

When Z1 ⊃ Z2 ⊃ · · · ⊃ Zd is a linear flag in Pd, the equality holds.

Proof. 1) Suppose Z1 ⊃ Z2 ⊃ · · · ⊃ Zd is a linear flag in Pd. Choose coordinates [z0 : · · · : zd] on
Pd such that IZi

= (z0, . . . , zi−1) for all i. Then Γ(Pd,∩d
i=1I(pi)

Zi
⊗OPd(q)) is the k-vector space with

monomial basis zα0
0 · · · zαd

d , where α ∈ Nd+1(q) such that α0 + · · ·+αi−1 ≥ pi for all i. Equivalently,
αi + · · ·+ αd ≤ q − pi for all i. Therefore the inequality becomes an equality if Z• is a linear flag.
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2) If d = 1, the equality holds from 1). Suppose d > 1, and assume by induction that the
inequality holds in smaller dimension. Let H : {λ = 0} be a general hyperplane with respect to Z•.
In particular, H does not contain the point Zd. The short exact sequence

0 → Γ(Pd,OPd(q − 1))
⊗λ→ Γ(Pd,OPd(q)) → Γ(H,OH(q)) → 0

induces an exact sequence

0 → Γ(Pd,∩d
i=1I(pi)

Zi
⊗OPd(q − 1))

⊗λ→ Γ(Pd,∩d
i=1I(pi)

Zi
⊗OPd(q)) → Γ(H,∩d−1

i=1 I(pi)
Zi∩H

⊗OH(q)).

Indeed, Γ(Pd,∩d
i=1I(pi)

Zi
⊗ OPd(q)) consists of homogenous polynomials F of degree q such that

ordx(F ) ≥ pi for every x ∈ Zi, for all i. Then ordx(F |H) ≥ pi for every x ∈ Zi ∩ H . If F |H = 0,
then F = λF ′ for some homogeneous polynomial F ′ of degree q − 1. For x ∈ Zi \ H we have
ordx(F ) = ordx(F

′). Then F ′ vanishes to order at least pi at a general point of Zi, hence everywhere
on Zi.

Moreover, the above exact sequence extends to a short exact sequence if Z• is a linear flag:

0 → Γ(Pd,∩d
i=1I(pi)

Zi
⊗OPd(q − 1))

⊗λ→ Γ(Pd,∩d
i=1I(pi)

Zi
⊗OPd(q)) → Γ(H,∩d−1

i=1 I(pi)
Zi∩H

⊗OH(q)) → 0.

Indeed, we may choose coordinates as in 1), and suppose λ = zd. The part αd ≥ 1 of the set

∩d
i=1{α ∈ Nd+1(q);αi + · · ·+ αd ≤ q − pi}

corresponds to a monomial basis of Γ(Pd,∩d
i=1I(pi)

Zi
⊗OPd(q − 1)), and the part αd = 0 corresponds

to a monomial basis of Γ(H,∩d−1
i=1 I

(pi)
Zi∩H

⊗ OH(q)). Since the dimensions add up, the sequence is
exact to the right as well.

Denote f(q) = h0(Pd,∩d
i=1I(pi)

Zi
⊗OPd(q)). For each 1 ≤ i ≤ d−1, choose an irreducible subvariety

Wi ⊆ Zi ∩H , of codimension i in H ≃ Pd−1. The exact sequence gives

f(q)− f(q − 1) ≤ h0(Pd−1,∩d−1
i=1 I

(pi)
Wi

(q)).

Denote g(q) = h0(Pd,∩d
i=1I(pi)

Li
⊗OPd(q)), where L• is a linear flag in Pd. The exact sequence gives

g(q)− g(q − 1) = h0(Pd−1,∩d−1
i=1I(pi)

Li∩H
(q)).

The inequality in dimension d− 1 gives

h0(Pd−1,∩d−1
i=1 I

(pi)
Wi

(q)) ≤ h0(Pd−1,∩d−1
i=1I

(pi)
Li∩H

(q)).

We deduce
f(q)− f(q − 1) ≤ g(q)− g(q − 1) ∀q.

We have Γ(Pd, I(pd)
Zd

(q)) = 0 for q < pd. Therefore f(q) = g(q) = 0 for q < pd. By increasing
induction on q ≥ pd, the above inequality gives f(q) ≤ g(q) for all q. �

For real numbers t1, . . . , td, define a compact convex set in Rd by

�(t1, . . . , td) = ∩d
i=1{x ∈ Rd

≥0; xi + · · ·+ xd ≤ ti}.
Note that �(t1, . . . , td) is not empty if and only if t1, . . . , td ≥ 0. If t1 ≥ · · · ≥ td ≥ 0, we may
compute vol�(t1) = t1, 2 vol�(t1, t2) = 2t1t2− t22, and 6 vol�(t1, t2, t3) = 6t1t2t3−3t23t1−3t3t

2
2+ t33.

Lemma 1.8. Suppose ti ≥ 0 for all i. Then vol�(t1, . . . , td) ≤
∏d

i=1 ti.

Proof. We have an inclusion �(t1, . . . , td) ⊂ [0, t1]×�(t2, . . . , td). Therefore

vol�(t1, . . . , td) ≤ t1 · vol�(t2, . . . , td).

By induction on d, the desired inequality holds. �
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Using this convex set, we may restate Proposition 1.7 as follows:

h0(Pd,∩d
i=1I(pi)

Zi
⊗OPd(q)) ≤ |Zd ∩�(q − p1, . . . , q − pd)|.

2. Successive minima of line bundles

Let X be a proper algebraic variety, of dimension d. Let L be a Cartier divisor, with induced
graded ring R = ⊕n≥0Γ(nL). Let x ∈ X be a closed point. For a real number t ≥ 0, denote

Bs |It+
x L|Q = ∩n≥1{Z(s); s ∈ Rn, ordx(s) > nt}.

It is a closed subset of X . If t ≤ t′, then Bs |It+
x L|Q ⊆ Bs |It′+

x L|Q. One can rewrite Bs |It+
x L|Q as

the intersection of the base locus Bs |Ip
x(qL)|, after all integers p, q ≥ 1 such that p > qt. Since

⊕n≥0{s ∈ Rn; ordx(s) > nt}
is a graded ring and X is Noetherian, there exists r ≥ 1 such that Bs |It+

x L|Q = Bs |I⌊rt⌋+1
x (rL)|.

Example 2.1. Suppose L is semiample. Let φ : X → Y be the Iitaka map of L. Then Bs |I0+
x L|Q =

φ−1φ(x). It is connected, since φ is a contraction.
We have rL ∼ f ∗A for some r ≥ 1 and A ample on Y . Then for every t ≥ 0, we have

Bs |It+
x L|Q ⊆ f−1(Bs |Irt+

f(x)A|Q), and equality holds if f is smooth at x.

Lemma 2.2. Given u ≥ 0, there exists ǫ(u) > 0 such that Bs |It+
x L|Q is constant for t ∈ [u, u+ǫ(u)).

Proof. Denote Bt = Bs |It+
x L|Q. We have Bu = ∩l≥1Bu+ 1

l
. By monotonicity, and since X is

Noetherian, there exists l ≥ 1 such that Bu = Bu+ 1
l
. �

Lemma 2.3. There exists a constant c, depending only on X and L, such that Bs |It+
x L|Q = X for

every x ∈ X and t ≥ c.

Proof. By Chow’s Lemma and Hironaka’s resolution of singularities, there exists a proper birational
morphism µ : X ′ → X such that X ′ is smooth and projective. Let A′ be very ample on X ′. Let
n ≥ 1 and 0 6= s ∈ Γ(X,OX(nL)). Choose a point x′ ∈ µ−1(x). Then 0 6= µ∗s ∈ Γ(X ′,OX′(nµ∗L))
and

ordx(s) ≤ ordx′(µ∗s) ≤ n(µ∗L · A′d−1),

where the last inequality follows from Lemma 1.1. Thus Bs |It+
x L|Q = X for t ≥ (µ∗L · A′d−1). �

Recall that the codimension at x of a closed subset x ∈ Y ⊆ X is the smallest codimension of an
irreducible component of Y passing through x. Since X is irreducible of dimension d, codimx(Y ⊆
X) = d− dimx(Y ). When the ambient space X is fixed, we will drop it from notation.

Definition 2.4. For i ≥ 1, the i-th successive minimum of L at x is defined by

ǫi(L, x) = inf{t ≥ 0; codimx Bs |It+
x L|Q < i}.

The definition makes sense, since codimxBs |It+
x L|Q = 0 for t ≫ 0. The infimum is a minimum,

by Lemma 2.2. Note that codimx Bs |It+
x L|Q is strictly less than i for t ≥ ǫi(L, x), and at least i for

0 ≤ t < ǫi(L, x). We obtain a chain of real numbers

ǫ1(L, x) ≥ · · · ≥ ǫd(L, x) ≥ ǫd+1(L, x) = 0.

Note that codimxBs |It+
x L|Q = 0 for t ≥ ǫ1(L, x), and codimxBs |It+

x L|Q = i if and only if ǫi(L, x) >
t ≥ ǫi+1(L, x).

Remark 2.5. One may similarly define successive minima ǫi(R, x) in points x ∈ X , associated to
a graded subalgebra R ⊆ R(L). For example, when R is the image of the restriction R(X ′, L) →
R(X,L′|X), where X ⊂ X ′ is a closed embedding and L′ is a Cartier divisor on X ′. The successive
minima of such subalgebras appear in Lemma 4.1, for example.
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Lemma 2.6. Let L, L′ be Cartier divisors on X, let x ∈ X be a closed point and 1 ≤ i ≤ d.

a) ǫi(qL, x) = qǫi(L, x) for every integer q ≥ 1.
b) If L ∼Q L′, then ǫi(L, x) = ǫi(L

′, x).
c) Suppose ǫi(L, x) > 0 and ǫi(L

′, x) > 0. Then ǫi(L+ L′, x) ≥ ǫi(L, x) + ǫi(L
′, x).

Proof. Property a) follows from Bs |It+
x (qL)|Q = Bs |I

t
q
+

x L|Q, and b) from Bs |It+
x L|Q = Bs |It+

x L′|Q
for all t ≥ 0.

c) Let 0 ≤ t < ǫi(L, x) and 0 ≤ t′ < ǫi(L
′, x). Then both Bs |It+

x L|Q and Bs |It′+
x L′|Q have

codimension at x at least i. Since

Bs |I(t+t′)+
x (L+ L′)|Q ⊆ Bs |It+

x L|Q ∪ Bs |It′+
x L′|Q,

the codimension at x of the left hand side is at least i. Therefore t + t′ < ǫi(L + L′, x). Letting t
and t′ approach ǫi(L, x) and ǫi(L

′, x), respectively, we obtain the claim. �

In particular, we may define the i-th successive minimum of a Q-Cartier divisor L at a point
x ∈ X to be ǫi(L, x) =

1
q
ǫi(qL, x), where q is a positive integer such that qL is Cartier.

Lemma 2.7. Let f : X ′ → X be a proper contraction of algebraic varieties, which is smooth at a
point x′ ∈ X ′. Let L be a Cartier divisor on X. Then ǫi(L, f(x

′)) = ǫi(f
∗L, x′) for all i.

Proof. Denote L′ = f ∗L and x = f(x′). Since f is a contraction, f ∗ induces isomorphisms

Γ(nL)
∼→Γ(nL′) (n ≥ 1). Since f ∗ maps Ip

x into Ip
x′, it induces injective homomorphisms

Γ(Ip
x(qL)) → Γ(Ip

x′(qL
′)) (p, q ≥ 1).

These are also surjective if f is smooth at x′, since in this case the order of a section s at x coincides
with the order of f ∗s at x′. We obtain isomorphisms

f ∗ : Γ(Ip
x(qL))

∼→Γ(Ip
x′(qL

′)) (p, q ≥ 1).

Therefore Bs |It+
x′ L′|Q = f−1(Bs |It+

x L|Q). Since f is smooth at x′, we obtain

codimx′ Bs |It+
x′ L

′|Q = codimx Bs |It+
x L|Q.

Therefore ǫi(L, x) = ǫi(f
∗L, x′) for all i. �

Lemma 2.8. ǫi(L, x) > 0 if and only if there exist integers p, q ≥ 1 such that codimxBs |Ip
x(qL)| ≥ i.

Moreover, in this case we have

ǫi(L, x) = sup{p
q
; p, q ≥ 1, codimx Bs |Ip

x(qL)| ≥ i}.

Proof. Denote ǫi = ǫi(L, x).
Step 1: codimx Bs |Ip

x(qL)| < i for every p, q ≥ 1 such that p > qǫi. Indeed, Bs |Ip
x(qL)| contains

Bs |Iǫi+
x L|Q, which has codimension at x strictly less than i.

Step 2: Let 0 ≤ t < ǫi. Then there exist p, q ≥ 1 with t < p

q
≤ ǫi(L, x) and codimx Bs |Ip

x(qL)| ≥ i.

Indeed, we have codimx Bs |It+
x L|Q ≥ i. There exists r ≥ 1 such that Bs |It+

x L|Q = Bs |I⌊rt⌋+1
x (rL)|.

Let q = r and p = ⌊rt⌋+ 1. By construction, t < p

q
. By the first step, p

q
≤ ǫi.

If ǫi > 0, there exist p, q ≥ 1 such that codimx Bs |Ip
x(qL)| ≥ i, by Step 2. Conversely, the latter

implies ǫi ≥ p

q
> 0, by Step 1. The two steps give that ǫi is the supremum after all such p

q
. �

Lemma 2.9. ǫ1(L, x) = 0 if and only if one of the following holds:

a) κ(L) = −∞, or
b) κ(L) = 0 and every 0 6= s ∈ Γ(X,OX(nL)) (n ≥ 1) is invertible at x.
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Proof. Suppose a) or b) holds, that is Γ(Ix(nL)) = 0 for n ≥ 1. Therefore Bs |I0+
x L|Q = X . We

obtain ǫ1(L, x) = 0.
Conversely, suppose ǫ1(L, x) = 0. We may assume we are not in case a), that is κ(L) ≥ 0. Let

n ≥ 1 such that Γ(nL) 6= 0. If dimk Γ(nL) ≥ 2, then Γ(Ix(nL)) 6= 0. This implies ǫ1(L, x) ≥ 1
n
,

a contradiction. Therefore dimk Γ(nL) = 1. Since again Γ(X, Ix(nL)) = 0, we have Γ(nL) = ksn
with sn(x) 6= 0. �

In particular, ǫ1(L, x) is zero if κ(L) < 0, and otherwise equals

sup{ordx(s)
n

; 0 6= s ∈ Γ(nL), n ≥ 1}.

We call ǫ1(L, x) the width of L at the point x, also denoted by widthx(L). If x ∈ X is a
smooth point, then ǫ1(L, x) coincides with the width of L at the geometric valuation induced by
the exceptional divisor of the blow-up of X at x (see [1, Section 2]).

By Lemma 2.8, ǫd(L, x) > 0 if and only if there exist integers p, q ≥ 1 such that Bs |Ip
x(qL)| = {x}

near x, and in this case, ǫd(L, x) is the supremum of p

q
after all such p, q. We call ǫd(L, x) the Seshadri

constant of L at x, since we will see later (Proposition 2.20) that in the classical setting, it coincides
with the Seshadri constant introduced by Demailly.

Lemma 2.10. ǫd(L, x) > 0 if and only if there exists n ≥ 1 such that x /∈ Bs |nL| and the induced
rational map φ = φ|nL| : X 99K Xn ⊆ |nL| satisfies φ−1φ(x) = {x} near x. In particular, L is big.

Proof. Suppose ǫd(L, x) > 0. Then there exists p, q ≥ 1 such that Bs |Ip
x(qL)| = {x} near x. By

Lemma 1.4, there exists l ≥ 1 such that Bs |qlL| is empty in a neighborhood of x. Denote n = ql.
Let φ = φ|nL| : X 99K Xn ⊆ |nL| be the induced rational map. It is regular on the open dense
subset U = X \ Bs |nL|, which contains x. Moreover, Bs |Ix(nL)| ∩ U = φ−1φ(x) ∩ U . Then

0 = dimxBs |Ix(nL)| = dimx φ
−1φ(x) ≥ dimX − dimXn.

Therefore φ−1φ(x) = {x} near x, and dimXn = d. In particular, L is big.
Conversely, suppose φ = φ|nL| : X 99K Xn ⊆ |nL| is regular near x and φ−1φ(x) = {x} near x.

Then Bs |Ix(nL)| equals {x} near x. Therefore ǫd(L, x) ≥ 1
n
> 0. �

The following lemma is a Successive minima version of [8, Proposition 6.4]

Lemma 2.11. Let X be normal. Let x /∈ Bs |L|Q. For n ≥ 1 such that x /∈ Bs |nL|, let φ|nL| : X 99K

Xn ⊆ |nL| be the induced rational map. Let µn : Yn → X be the normalization of the graph of φ|nL|.
In the mobile-fixed decomposition |µ∗

n(nL)| = |Mn|+Fn, the mobile part is base point free. Moreover,

µn is an isomorphism over a neighborhood of x. Then ǫi(L, x) is the supremum of ǫi(Mn,x)
n

, after all
such n.

Proof. Since x /∈ Fn ∈ |nµ∗
nL − Mn|, we have Bs |It+

x (nµ∗L)|Q ⊆ Bs |It+
x Mn|Q near x. Therefore

ǫi(Mn, x) ≤ ǫi(nµ
∗L, x) = nǫi(L, x).

Suppose now t < ǫi(L, x). There exist integers p, q ≥ 1 with p > qt and Bs |It+
x L|Q = Bs |Ip

x(qL)|.
The identifications Γ(Yq,OYq

(Mq)) = Γ(Yq,OYq
(µ∗

qqL)) = Γ(X,OX(qL)) induce an identification
Γ(Yq, Ip

x∈Yq
(Mq)) = Γ(X, Ip

x(qL)). Therefore codimx Bs |Ip
x(Mq)| ≥ i. We obtain p ≤ ǫi(Mq, x), that

is t < p

q
≤ ǫi(Mq,x)

q
.

The supremum is in fact a limit. �

Successive minima at a very general point. Contrary to the usual Seshadri constant, ǫi(L, x)
is not lower semicontinuous with respect to x ∈ X in general. For example, ǫ1(L, x) can be upper
semicontinuous. But one can show a weaker property, that is ǫi(L, x) is independent of the choice
of a very general point x.
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Definition-Proposition 2.12. There exists a countable intersection of open dense subsets V ⊆ X
such that the correspondence V ∋ x 7→ ǫi(L, x) is constant. The common value does not depend
on V , and is denoted by ǫi(L).

Proof. Let p1, p2 : X × X → X be the natural projections, let δ : X → X × X be the diagonal
embedding, let ∆ ⊂ X ×X be the diagonal. Let p, q ≥ 1 be integers. Let Bpq be the locus where
the composition p∗2p2∗Ip

∆(qp
∗
1L) → Ip

∆(qp
∗
1L) ⊂ O(qp∗1L) is not surjective. By the definition, Bpq

contains ∆. There exists an open dense subset Upq ⊆ X such that the following properties hold:

1) p2∗(Ip
∆(qp

∗
1L))⊗ k(x)

∼→Γ(Ip
x(qL)) for every x ∈ Upq.

2) If Y is an irreducible component of Bpq which contains ∆, then p2 : Y → X is flat over
Upq. In particular, Y ∩ p−1

2 (x) is equi-dimensional, of dimension dimY − d, for every
x ∈ Upq.

3) δ(Upq) intersects only the irreducible components of Bpq which contain ∆.

Indeed, conditions 1) and 2) are open dense in X . For 3), we remove from X the δ-preimage of
the trace on ∆ of the irreducible components of Bpq which do not contain ∆. By 1), the natural
inclusion Bs |Ip

x(qL)| ⊆ Bpq ∩ p−1
2 (x) is an equality for every x ∈ Upq. By 2) and 3), we have

dimδ(x) B
pq ∩ p−1

2 (x) = codim(∆ ⊆ Bpq) ∀x ∈ Upq.

Let V = ∩p,q≥1U
pq. It is dense in X , a countable intersection of open subsets of X . We claim that

ǫi(L, ·) is constant for x ∈ V . Suffices to show that if x ∈ V , t ≥ 0 and ǫi(L, x) > t, then ǫi(L, y) > t
for every y ∈ V . Indeed, ǫi(L, x) > t implies that there exists p

q
> t such that codimx Bs |Ip

x(qL)| ≥ i.

That is codimδ(x) B
pq ∩ p−1

2 (x) ≥ i. From above, this is equivalent to codim(∆ ⊆ Bpq) ≥ i. Arguing
backwards, we see that codimy Bs |Ip

y (qL)| ≥ i for every y ∈ V . Therefore ǫi(L, y) ≥ p

q
> t for every

y ∈ V . �

Lemma 2.13. Suppose |nL| 6= ∅ and dimφ|nL|(X) ≥ i. Then ǫi(L) ≥ 1
n
.

Proof. Let Un ⊆ X be the open dense subset on which φ = φ|nL| : X 99K Xn ⊆ |nL| is regular. We
have Bs |Ix(nL)| ∩ Un = φ−1φ(x) ∩ Un for every x ∈ Un. We have dimx φ

−1φ(x) ≥ dimX − dimXn

for all x ∈ Un, and equality holds for an open dense subset U ′
n ⊆ Un. Let x ∈ U ′

n. Then

codimxBs |Ix(nL)| = codimx φ
−1φ(x) = dimXn ≥ i.

By Lemma 2.8, ǫi(L, x) ≥ 1
n
. �

Lemma 2.14. ǫi(L) > 0 if and only if κ(L) ≥ i.

Proof. Suppose κ(L) ≥ i. There exists n ≥ 1 such that |nL| 6= ∅, and if X 99K Xn ⊆ |nL| is the
induced rational map, then dimXn = κ(L) ≥ i. By Lemma 2.13, ǫi(L) ≥ 1

n
.

Suppose κ(L) < i. Suppose Γ(nL) 6= 0, let φn : X 99K Xn ⊆ |nL| be the induced rational map.
For general x ∈ X we have

codimxBs |Ix(nL)| = codimx φ
−1
n φn(x) = dimXn < i.

Therefore ǫi(L, x) <
1
n
. Letting n approach infinity, we obtain ǫi(L) = 0. �

Let κ(L) = κ. If κ = 0, then ǫi(L) = 0 for all i. If κ ≥ 1, we obtain

ǫ1(L) ≥ · · · ≥ ǫκ(L) > 0 = ǫκ+1(L).

Lemma 2.15. Suppose κ(L′ − L) ≥ 0. Then ǫi(L) ≤ ǫi(L
′) for all i.

Proof. Wemay suppose |L′−L| is not empty. Choose C ∈ |L′−L|. Then Bs |Ip
x(qL

′)| ⊆ Bs |Ip
x(qL)|∪

SuppC. Therefore Bs |It+
x L′|Q ⊆ Bs |It+

x L|Q ∪ SuppC. For x ∈ X \ C, we obtain

codimx Bs |It+
x L′|Q ≥ codimxBs |It+

x L|Q.
By definition, ǫi(L, x) ≤ ǫi(L

′, x) for all i. �
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Lemma 2.16. Let ǫi(L) > 0, κ(L′) ≥ 0, and |lL− l′L′| 6= ∅ for some integers l, l′ ≥ 1. Then

lim
n→∞

ǫi(nL+ L′)

n
= ǫi(L).

Proof. Since κ(L′) ≥ 0, we have ǫi(nL+ L′) ≥ nǫi(L). Let C ∈ |lL− l′L′|. For n ≥ 1, we have

(l′n+ l)L ∼ l′(nL+ L′) + C.

Therefore (l′n + l)ǫi(L) ≥ l′ǫi(nL+ L′) by Lemma 2.15. We obtain

0 ≤ ǫi(nL+ L′)− nǫi(L) ≤
lǫi(L)

l′
.

Dividing by n and letting n approach +∞, we obtain the claim. �

Proposition 2.17. Suppose X is projective. Let L ≡ L′ be numerically equivalent big Cartier
divisors on X. Then ǫi(L) = ǫi(L

′) for every i.

Proof. Let A be an ample divisor on X . Since (nL+ A)− nL′ is ample, ǫi(nL+ A) ≥ nǫi(L
′). By

Lemma 2.16, we obtain ǫi(L) ≥ ǫi(L
′). The other inequality holds by the same argument. �

In particular, if X is projective and L is big, ǫ1(L) coincides with the invariant m(L) introduced
by Nakamaye [17, page 2].

We may rephrase [7, Proposition 2.3] and [18, Lemma 1.3] as follows:

Lemma 2.18. Let X be a proper algebraic variety, let L be a Cartier divisor, let t ≥ 0. Let
x ∈ X be a very general point and Z ⊆ Bs |It+

x L|Q an irreducible component containing x. Then
for integers p, q ≥ 1 and s ∈ Γ(Ip

x(qL)), we have ordZ(s) ≥ p− qt.

Proof. Let p1, p2 : X × X → X be the natural projections, let δ : X → X × X be the diagonal
embedding, let ∆ ⊂ X ×X be the diagonal.

Let p, q ≥ 1 be integers with p > qt. Let Bpq be the locus where the composition p∗2p2∗Ip
∆(qp

∗
1L) →

Ip
∆(qp

∗
1L) ⊂ O(qp∗1L) is not surjective. There exists an open dense subset Xpq ⊆ X such that

p2∗(Ip
∆(qp

∗
1L))⊗ k(x)

∼→Γ(X, Ip
x(qL)) ∀x ∈ Xpq.

We deduce that Bs |Ip
x(qL)| ⊆ Bpq ∩ p−1

2 (x) for all x ∈ X , and equality holds for x ∈ Xpq.
Define B = ∩p>qtB

pq, a closed subset of X×X . Denote X0 = ∩p>qtX
pq, a countable intersection

of open dense subsets of X . Then Bs |It+
x L|Q ⊆ B ∩ p−1

2 (x) for all x ∈ X , and equality holds for
x ∈ X0.

We have ∆ ⊆ B, so at least one irreducible component of B contains ∆. Let B′ be the union of
irreducible components of B which do not contain ∆. Then δ−1(∆ ∩ B′) is a proper closed subset
of X . Its complement U ⊆ X is an open dense subset. For every x ∈ U , an irreducible component
of B which contains δ(x) must also contain ∆. We may further shrink U , so that U is smooth.

Let x ∈ U ∩ X0. Let Z be an irreducible component of Bs |It+
x L|Q which contains x, let 0 6=

s ∈ Γ(Ip
x(qL)). There exists an irreducible component Z̃ of B, which contains δ(x), such that

Z ⊆ Z̃ ∩ p−1
2 (x). Since Z̃ contains δ(x) and x ∈ U , Z̃ contains ∆. Since x ∈ Xpq, there exists

s̃ ∈ Γ(X × T, Ip
∆(qp

∗
1L)) with s̃|p−1

2 (x) = s, where T is a neighborhood of x in U , which we may

suppose affine and smooth. Let m = ordZ̃ s̃. Since Z̃ contains ∆, p1 : Z̃ → X is dominant. Let Dm

be a general differential operator of order at most m on T . Then Dms̃ ∈ Γ(X×T, Ip−m
∆ (qp∗1L)) does

not vanish along Z̃∩X×T , by the argument of [7, Proposition 2.3] (the argument goes through even
if X is singular, since T is affine smooth and X × T is smooth at the general point of ∆ ∩X × T ).

Therefore Z̃ ∩X × T is not contained Bp−m,q. Therefore p−m ≤ qt.
We conclude ordZ(s) = ordZ(s̃|p−1

2 (x)) ≥ ordZ(s̃) ≥ ordZ̃(s̃) = m ≥ p− qt. �
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Seshadri constant as d-th minimum. Recall our notation: X is a proper algebraic variety of
dimension d, L is a Cartier divisor on X , and x ∈ X is a closed point.

Proposition 2.19 (Seshadri criterion). The divisor L is ample if and only if ǫd(L, x) > 0 for any
x ∈ X.

Proof. Suppose L is ample. There exists n ≥ 1 such that nL is very ample. That is, Ix(nL) is
generated by global sections, for every point x ∈ X . Then Bs |Ix(nL)| = {x}, hence ǫd(L, x) ≥ 1

n

for every x.
Conversely, suppose ǫd(L, x) > 0 for any x ∈ X . To show that L is ample, by Nakai-Moishezon’s

criterion, suffices to show that for every irreducible subvariety Y ⊆ X , of dimension r ≥ 1, we have
(L|Y )r > 0. Note that 0 < ǫd(L, x) ≤ ǫr(L|Y , x) for every x ∈ Y . If r < d = dimX , we conclude
by induction that L|Y is ample, hence (L|Y )r > 0. It remains to deal with the case Y = X . Since
ǫd(L, x) is positive at a very general point, L is big by Lemma 2.14. Since L is also nef by induction,
we deduce (Ld) > 0. �

Proposition 2.20. Suppose X is projective and L is nef. Then

ǫd(L, x) = inf
C∋x

(L · C)

multx(C)
= sup{0} ∪ {p

q
; p, q ≥ 1,Γ(qL) → Ox/Ip+1

x surjective}.

Denote by ǫs(L, x) the infimum after all integral curves passing through x, and by ǫj(L, x) the
supremum in the claim. First, we show the following lemma:

Lemma 2.21. For a Cartier divisor L on a proper X,

a) ǫd(L, x) ≥ ǫj(L, x),
b) if L is nef, ǫs(L, x) ≥ ǫd(L, x) ≥ ǫj(L, x).

Proof. a) Let p, q ≥ 1 such that Γ(qL) → Ox/Ip+1
x is surjective. Equivalently, Ii

x(qL) is globally
generated at x for every 0 ≤ i ≤ p. Then Bs |Ip

x(qL)| = {x} near x. Therefore p

q
≤ ǫd(L, x). Taking

the supremum after all p

q
, we obtain ǫd(L, x) ≥ ǫj(L, x).

b) Suppose L is nef. If ǫd(L, x) = 0, ǫs(L, x) ≥ ǫd(L, x) is clear. Assume ǫd(L, x) > 0 and let
0 < t < ǫd(L, x). Then Bs |It+

x L|Q = {x} near x. Let C ⊆ X be an integral curve passing through
x. Since C is not contained in Bs |It+

x L|Q, there exists n ≥ 1 and D ∈ |nL| such that ordx(D) > nt
and C is not contained in the support of D. Then

n(L · C) = (D · C) ≥ ordx(D) ·multx(C) > ntmultx(C).

Therefore t ≤ ǫs(L, x). Taking the supremum after all such t, we obtain ǫs(L, x) ≥ ǫd(L, x). �

To prove Proposition 2.20, it is enough to show ǫs(L, x) ≤ ǫj(L, x) by Lemma 2.21. In fact,
ǫs(L, x) = ǫj(L, x) is well known at least for ample L and smooth x ∈ X (see [13, Theorem 5.1.17]).

Proof of Proposition 2.20. Let f : Y → X be the blow-up of X at x, with exceptional divisor E.
Note that f ∗L− ǫs(L, x)E is nef, and ǫs(L, x) ≥ 0 is maximal with this property.

Let A be an ample divisor on X . The augmented base locus B+(L) of L is defined by

B+(L) =
⋂

l∈N

Bs |lL− A|Q,

which does not depend on the choice of A. By [15], [4],

B+(L) =
⋃

V

V

holds, where the union runs over the subvarieties V ⊆ X such that L|V is not big.
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First, assume x ∈ B+(L). Then there exists a subvariety V ⊆ X containing x such that L|V is
not big. Since L is nef, we have (LdimV .V ) = 0. Hence ǫs(L, x) = 0 follows from

0 ≤ ((f ∗L−ǫs(L, x)E)dimV ′

.V ′) = (LdimV .V )−ǫs(L, x)dimV ·multx(V ) = −ǫs(L, x)dimV ·multx(V ) ≤ 0,

where V ′ ⊆ Y is the strict transform of V . By Lemma 2.21 b), all three invariants equal to 0.
So we may assume x 6∈ B+(L). If we replace A with its suitable multiple, we can take l ≥ 1 and

an effective Cartier divisor D such that lL ∼ A+D and x 6∈ SuppD. Since A is ample and −E is
f -ample, there exists an integer a ≥ 1 such that af ∗A−E is ample.

By Lemma 2.21 b), it suffices to show ǫs(L, x) ≤ ǫj(L, x), which follows from the following claim:
if p, q ≥ 1 are integers such that p− 1 ≤ (q− la)ǫs(L, x), then Γ(nqL) → Ox/Inp+1

x is surjective for
n ≫ 0. Indeed, the divisor

f ∗(qL− aD)− pE = (af ∗A− E) + ((q − la)f ∗L− (p− 1)E)

is ample. By Serre vanishing, H1(Y, IE(f
∗(nqL−naD)−npE)) = 0 for n ≫ 0. We obtain an exact

sequence

Γ(Y, f ∗(nqL− naD)) → Γ((np+ 1)E,O(np+1)E) → H1(Y, nqf ∗L− naD − (np + 1)E) = 0.

Since n ≫ 0, the hypothesis of Lemma 1.6 are satisfied. Therefore Γ(nqL − naD) → Ox/Inp+1
x is

surjective for n ≫ 0. Since D is effective and away from x, we deduce that Γ(nqL) → Ox/Inp+1
x is

surjective. Therefore p

q
≤ ǫj(L, x). Since p

q
can be arbitrary close to ǫs(L, x), we obtain ǫs(L, x) ≤

ǫj(L, x). �

The equalities in Proposition 2.20 hold on proper X if L is semiample:

Lemma 2.22. Suppose X is proper and L is semiample. Then

ǫd(L, x) = inf
C∋x

(L · C)

multx(C)
= sup{0} ∪ {p

q
; p, q ≥ 1,Γ(qL) → Ox/Ip+1

x surjective}.

Proof. There exists a proper contraction f : X → Y , with Y projective, such that nL ∼ f ∗A for
some integer n ≥ 1 and some ample divisor A on Y . Let Exc(f) be the exceptional locus of f , that
is the locus of points x ∈ X such that dimx f

−1f(x) > 0.
If x ∈ Exc(f), we see that ǫs(L, x) = ǫd(L, x) = ǫj(L, x) = 0. Suppose x /∈ Exc(f). Then

dimx f
−1f(x) = 0. By Lemma 1.2, f is an isomorphism over a neighborhood of f(x). It follows

that ǫd(nL, x) = ǫd(A, f(x)) and ǫ∗(nL, x) = ǫ∗(A, f(x)) for ∗ = s, j. We are reduced to the ample
case, so we conclude from Proposition 2.20. �

Remark 2.23. By Lemma 2.22, the Seshadri constant of a semiample divisor L at a point x ∈
X defined by Demailly [5, Theorem 6.4] coincides with ǫd(L, x). Combining with Lemma 2.11,
we deduce that if X is normal, projective, L is big, and x is a point away from the augmented
base locus of L, then ǫd(L, x) coincides with the moving Seshadri constant ǫm(x, L) introduced by
Nakamaye [16, Definition 0.4] (see also [8, Section 6]).

The interpretation of the Seshadri constant in terms of jets generation can be sharpened as follows:
if ǫd(L, x) = ǫ > 0, there exist constants c1(x) ≥ 0 and c2(x) ≥ 0 such that Γ(qL) → Ox/Ip+1

x is
surjective for all integers p, q ≥ 1 such that p ≥ c1(x) and qǫ − p ≥ c2(x). This statement reduces
again to the ample case, which is the following Lemma.

Lemma 2.24. Suppose L is ample. Let ǫ = infC∋x
(L·C)

multx(C)
the Seshadri constant of L at x. Then

there exist constants c1, c2 ≥ 0 such that for every integers p, q ≥ 1 with p ≥ c1 and qǫ− p ≥ c2, the
jet map Γ(qL) → OX/Ip+1

x is surjective.
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Proof. Let f : Y → X be the blow-up of X at x, with exceptional divisor E. Since L is ample and
−E is f -ample, there exists an integer a ≥ 1 such that af ∗L − E is ample. By Nakai’s ampleness
criterion, qf ∗L− pE is ample if and only if qǫ > p > 0. We have

qf ∗L− pE = m(af ∗L− E) + (q −ma)f ∗L− (p−m)E.

For (q −ma)ǫ ≥ p −m ≥ 0, the divisor (q −ma)f ∗L − (p −m)E is nef. By Fujita’s extension of
Serre vanishing (see [13, Theorem 1.4.35]), there exists an integer m = m(OY , af

∗L−E) such that
H1(qf ∗L− pE) = 0 for (q −ma)ǫ ≥ p−m ≥ 0.

We have Ip+1
x = f∗(Ip+1

E ) and R1f∗(Ip+1
E ) = 0 for p ≥ c′(x). Set c1 = max(c′(x), m − 1) and

c2 = maǫ−m+ 1.
Let p, q ≥ 1 be integers with p ≥ c1 and qǫ−p ≥ c2. Then p ≥ c′(x) and (q−ma)ǫ ≥ p+1−m ≥ 0.

The latter inequality implies that we have a surjection

Γ(qf ∗L) → Γ(O(p+1)E) → 0.

From the former inequality and Lemma 1.6, we deduce that Γ(qL) → OX/Ip+1
x is surjective. �

Successive minima in terms of jets generation. Once again, X is a proper algebraic variety,
L is a Cartier divisor on X , and x ∈ X is a closed point.

The following proposition is proved in [8, Proposition 6.6] for the moving Seshadri constant on
smooth X :

Proposition 2.25. We have ǫd(L, x) > 0 if and only if there exist p, q ≥ 1 such that Γ(qL) →
Ox/Ip+1

x is surjective. Moreover, in this case we have

ǫd(L, x) = sup{p
q
; p, q ≥ 1,Γ(qL) → Ox/Ip+1

x surjective}.

Proof. Denote by ǫj(L, x) the supremum in the claim. We obtain ǫd(L, x) ≥ ǫj(L, x) by Lemma 2.21
a). For the converse, we show the following claim:

Claim 2.26. If Bs |Ir
x(L)| = {x} near x for some integer r > 0, then r ≤ ǫj(L, x).

Proof. We use the notation in Lemma 1.5. We identify x with the point g(f−1(x)) ∈ Y . Recall that
we have a natural homomorphism Γ(Iq

Z(qL)) → Γ(qA), which is an isomorphism for q ≥ c(IZ).
Since Bs |Ir

x(L)| = {x} near x, Bs |Ir
x(A)| = {x} near x ∈ Y and hence r ≤ ǫd(A, x) holds.

By applying Proposition 2.20 to the ample divisor A, ǫd(A, x) = ǫj(A, x) holds. Hence, for any
0 < t < r, we can take t < p

q
< r such that Γ(qA) → Ox,Y /Ip+1

x is surjective. We note that we can

take arbitrary large such p, q by Lemma 2.24. So we take such p, q with q ≥ c(IZ).

Since q ≥ c(IZ), we have an isomorphism Γ(Iq
Z(qL))

∼→ Γ(qA). Hence Γ(Iq
Z(qL)) → Ox,X/Ip+1

x is
surjective since so is Γ(qA) → Ox,Y /Ip+1

x . Then Γ(qL) → Ox,X/Ip+1
x is also surjective since x 6∈ Z,

and hence t < p

q
≤ ǫj(L, x). Letting t approach r, we obtain the claim. �

For any 0 ≤ t′ < ǫd(L, x), we can take t′ < r
s
< ǫd(L, x) such that Bs |Ir

x(sL)| = {x} near x.
Applying the above claim to sL, it holds that

r ≤ ǫj(sL, x) ≤ s · ǫj(L, x),
where the last inequality follows from the definition of ǫj . Hence t′ < r

s
≤ ǫj(L, x) and the proposi-

tion follows by letting t′ approach ǫd(L, x). �

Lemma 2.27. Suppose ǫ1(L, x) > 0. Then

ǫ1(L, x) = sup{p
q
; p, q ≥ 1,Γ(Ip

x(qL)) → Ip
x/Ip+1

x non-zero}.
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Proof. Note that Γ(Ip
x(qL)) → Ip

x/Ip+1
x is non-zero if and only if there exists s ∈ Γ(qL) such that

ordx(s) = p. In particular, ǫ1(L, x) ≥ p

q
. On the other hand, let p, q ≥ 1 such that Γ(Ip

x(qL)) 6= 0.

Let p′ ≥ p be maximal such that Γ(Ip′

x (qL)) 6= 0. There exists s ∈ Γ(qL) such that ordx(s) = p′.

Therefore p

q
≤ p′

q
≤ ǫ1(L, x). We conclude by Lemma 2.8. �

Lemma 2.28. Suppose ǫd(L, x) > 0. Then

ǫd(L, x) = sup{p
q
; p, q ≥ 1,Γ(Ip

x(qL)) → Ip
x/Ip+1

x surjective}.

Proof. The inequality ≤ follows from Proposition 2.25. For the opposite inequality, suppose that
Γ(Ip

x(qL)) → Ip
x/Ip+1

x is surjective. By Nakayama’s Lemma, Ip
x(qL) is generated by global sections

at x. Therefore Bs |Ip
x(qL)| = {x} near x. Therefore p/q ≤ ǫd(L, x). �

3. Volume versus the successive minima

The following well known statement may be considered as the analogue of Minkowski’s first main
theorem:

Proposition 3.1. Let X be proper of dimension d, let L be a Cartier divisor on X, let x ∈ X be
a closed point. Then vol(L) ≤ multx(X) · ǫ1(L, x)d.
Proof. Let t > ǫ1(L, x) be a real number. Let n ≥ 1. We have Γ(I⌊nt⌋+1

x (nL)) = 0, that is the jet
map

Γ(nL) → Ox/I⌊nt⌋+1
x

is injective. Therefore h0(nL) ≤ dimk(Ox/I⌊nt⌋+1
x ). For n ≫ 0, the right hand side equals P (⌊nt⌋),

where P (T ) is a polynomial with leading term e
d!
T d, where e = multx(X). Therefore

lim sup
n→∞

h0(nL)

nd/d!
≤ e · td.

Letting t approach ǫ1(L, x), we obtain the claim. �

Lemma 3.2. Let X be a proper variety of dimension d, let ǫi = ǫi(L, x) be the Seshadri successive
minima of a Cartier divisor L at a closed point x. Then

multx(X) ·
d
∏

i=1

ǫi(L, x) ≤ vol(L).

In particular, multx(X) · ǫd(L, x)d ≤ vol(L).

Proof. Suffices to show that for any real numbers 0 ≤ ti < ǫi, we have

multx(X) ·
d
∏

i=1

ti < vol(L).

To prove this inequality, note first that there exist D1, . . . , Dd ∈ |L|Q such that ordx(Di) > ti and
∩d
i=1Di = {x} near x. Indeed, there existsD1 ∈ |L|Q with ordx(D1) > t1. Since codimx Bs |It2+

x L|Q ≥
2, no irreducible component of D1 through x is contained in Bs |It2+

x L|Q. There exists D2 ∈ |L|Q
with ordx(D2) > t2 and codimx(D1 ∩D2) = 2. Since codimxBs |It3+

x L|Q ≥ 3, no irreducible com-
ponent of D1 ∩ D2 through x is contained in Bs |It3+

x L|Q. Therefore there exists D3 ∈ |L|Q with
ordx(D3) > t3 and codimx(D1 ∩ D2 ∩D3) = 3. Iterating the construction, we obtain the chain of
divisors in d steps.

There exists an integer q ≥ 1 such that qDi are the zero divisors of some non-zero global sections

si ∈ Γ(X, I⌊qti⌋+1
x (qL)). Let Z be the (possibly empty) subscheme ∩d

i=1qDi \ {x} ⊂ X . Let f : Y →
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X be the blow-up of X along IZ , let E be the exceptional divisor on Y . Then f ∗s1, . . . , f
∗sd become

global sections of OY (qf
∗L−E), having no common zeroes near E. Therefore Bs |qf ∗L−E| ⊆ {x}

(we identify x with a point of Y ). By Lemma 1.4, M = qf ∗L− E is semiample.
Set D′

i = f ∗qDi − E ∈ |M |. By construction, ∩d
i=1D

′
i = {x} ⊂ Y as sets. Hence we have

(Md) = (D′
1 ·D′

2 · · ·D′
d) = i(x,D′

1 ·D′
2 · · ·D′

d; Y ) ≥ multx(Y ) ·
d
∏

i=1

(⌊qti⌋ + 1) > multx(X) ·
d
∏

i=1

qti

by [10, page 233], where i(x,D′
1 · D′

2 · · ·D′
d; Y ) is the intersection multiplicity. For l ≥ c(IZ), the

natural homomorphism I l
Z → f∗OY (−lE) is an isomorphism, hence so is

Γ(X, I l
Z(lqL))

∼→ Γ(Y,OY (lM)).

Therefore qd vol(L) = vol(qL) ≥ vol(M) = (Md) > multx(X) · ∏d

i=1 qti. Dividing out by q and
letting ti approach ǫi, we obtain the claim. �

Corollary 3.3. Let X be an algebraic variety of dimension d, let x be a closed point and L a Cartier
divisor on X. Then

ǫd(L, x) ≤ d

√

vol(L)

multx(X)
≤ ǫ1(L, x).

Minkowski’s second main theorem for Seshadri successive minima.

Lemma 3.4. Let L be a Cartier divisor on a proper algebraic variety X. Let ǫi = ǫi(L) be the
Seshadri successive minima of L at a very general point. Then

h0(L) ≤ |Zd ∩�(ǫ1, . . . , ǫd)|.
Proof. Let x ∈ X be a very general point.

Step 1: Let p ≥ 0 be an integer. Then

h0(Ip
x(L))− h0(Ip+1

x (L)) ≤ | ∩d
i=2 {α ∈ Nd(p);αi + · · ·+ αd ≤ ǫi}|.

Indeed, we have an exact sequence

0 → Γ(Ip+1
x (L)) → Γ(Ip

x(L))
r→ Ip

x/Ip+1
x ≃ Γ(OPd−1(p)).

Therefore h0(Ip
x(L)) − h0(Ip+1

x (L)) = dimk Im(r). We may suppose Im(r) 6= 0. In particular,
h0(Ip

x(L)) > 0, hence p ≤ ǫ1. If p ≤ ǫd, the desired inequality becomes dim Im(r) ≤ |Nd(p)|, which
follows from the inclusion Im(r) ⊆ Γ(OPd−1(p)). Therefore we may suppose ǫd < p ≤ ǫ1.

Denote by J the set of indices 1 < i ≤ d such that ǫi < p and ǫi < ǫi−1. Fix i ∈ J . Since ǫi < ǫi−1,
Bs |Iǫi+

x L|Q has codimension i−1 at x. Choose an irreducible component Z i−1, of codimension i−1,
passing through x. On the blow-up of X at x, the proper transform of Z i−1 has in common with
the exceptional locus E ≃ Pd−1 at least one irreducible subvariety W i−1 ⊂ Pd−1, of codimension
i− 1. Let s ∈ Γ(Ip

x(L)). By Lemma 2.18, ordZi−1(s) ≥ p− ǫi. Therefore the image of r is contained
in {P ∈ Γ(OPd−1(p)); ordW i−1(P ) ≥ p− ǫi}. We conclude

Im(r) ⊆ ∩i∈J{P ∈ Γ(OPd−1(p)); ordW i−1(P ) ≥ p− ǫi}.
By Proposition 1.7, the right hand side has dimension at most

| ∩i∈J {α ∈ Nd(p);αi + · · ·+ αd ≤ ǫi}|.
From the definition of J , we see that

∩i∈J{α ∈ Nd(p);αi + · · ·+ αd ≤ ǫi} = ∩d
i=2{α ∈ Nd(p);αi + · · ·+ αd ≤ ǫi}.

Therefore dimk Im(r) ≤ | ∩d
i=2 {α ∈ Nd(p);αi + · · ·+ αd ≤ ǫi}|.
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Step 2: Let p ≥ 0 be an integer. Then

h0(L)− h0(Ip+1
x (L)) ≤ |Zd ∩�(p, ǫ2, . . . , ǫd)|.

Indeed, h0(L)− h0(Ip+1
x (L)) =

∑p

l=0 h
0(I l

x(L))− h0(I l+1
x (L)). Applying Step 1 to each term of the

sum, we obtain the desired inequality.
Step 3) Set p = ⌊ǫ1⌋ in Step 2. Then p+ 1 > ǫ1, so h0(Ip+1

x (L)) = 0. We obtain

h0(L) ≤ |Zd ∩�(⌊ǫ1⌋, ǫ2, . . . , ǫd)|.
Since Zd ∩�(⌊t1⌋, . . . , ⌊td⌋) = Zd ∩�(t1, . . . , td), we obtain

h0(L) ≤ |Zd ∩�(ǫ1, . . . , ǫd)|.
�

Proposition 3.5. Let L be a Cartier divisor on a proper algebraic variety X, with Iitaka dimension
κ(L) = κ ≥ 1. Let ǫi = ǫi(L) be the Seshadri successive minima of L at a very general point. Then

lim sup
n→∞

h0(nL)

nκ/κ!
≤ κ! · vol�(ǫ1, . . . , ǫκ).

In particular, if L is big, vol(L) ≤ d! · vol�(ǫ1, . . . , ǫd).

Proof. Suppose tκ+1 = · · · = td = 0. Then �(t1, . . . , td) = �(t1, . . . , tκ)× 0, where 0 is the origin in
Rd−κ. We have ǫ1 ≥ · · · ≥ ǫκ > 0 = ǫκ+1 = · · · = ǫd. Since ǫi(nL) = nǫi(L), we obtain

h0(nL) ≤ |Zκ ∩�(nǫ1, . . . , nǫκ)| ∀n ≥ 0

As n → ∞, the right hand side grows like vol�(ǫ1, . . . , ǫκ) · nκ + O(nκ−1). Therefore the claim
holds. �

Proposition 3.5 generalizes the following result of Nakamaye [17, Proof of Corollary 3]: if L is an
ample divisor on a smooth projective surface, then (L2) ≤ 2ǫ1(L)ǫ2(L)− ǫ2(L)

2.
Combining Lemma 1.8, Propositions 3.2 and 3.5, we obtain the following equivalent of Minkowski’s

second theorem for successive minima:

Theorem 3.6. Let L be a big Cartier divisor on a d-dimensional proper algebraic variety X. Then

1 ≤ vol(L)
∏d

i=1 ǫi(L)
≤ d!

So the volume of L is essentially the product of the successive Seshadri minima of L at a very
general point.

Remark 3.7. If (X,L) = (Pd,O(1)), ǫi(L) = 1 for any i. Hence vol(L)
∏d

i=1 ǫi(L)
= 1. On the other hand,

consider (X,L) = ((P1)d,O(w1, . . . , wd)), where w1 ≥ w2 ≥ · · · ≥ wd are positive integers. Then

ǫi(L) =
∑d

j=iwj and vol(L) = d!
∏d

i=1wi as we will see in Example 4.5. Hence

vol(L)
∏d

i=1 ǫi(L)
= d!

d
∏

i=1

wi
∑d

j=iwj

could be arbitrary close to d! if we take w1 ≫ w2 ≫ · · · ≫ wd.
Thus the lower and upper bounds in Theorem 3.6 are sharp. We also note that the upper

bound is not attained for d ≥ 2 since vol�(ǫ1(L), . . . , ǫd(L)) <
∏d

i=1 ǫi(L) by �(ǫ1(L), . . . , ǫd(L)) (
[0, ǫ1(L)]×�(ǫ2(L), . . . , ǫd(L)).
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4. Succesive minima on toric varieties

For standard terminology on toric varieties, the reader may consult [19]. Let X = TN emb(∆) be
a proper toric variety (normal), of dimension d. Let L be a Cartier divisor on X . Modulo linear
equivalence, we may suppose L is torus invariant. Due to the torus action, ǫi(L, ·) is constant on
TN ⊂ X . Therefore ǫi(L) = ǫi(L, 1), where 1 denotes the unit of the torus TN . We will estimate
ǫi(L, x) when either x is a closed invariant point, or x = 1.

At a closed invariant point. Let x ∈ X be a closed invariant point. It corresponds to a
top cone σ ∈ ∆(top), and we obtain an open affine neighborhood x ∈ Uσ = Spec k[M ∩ σ∨].
Denote by S the semigroup M ∩ σ∨ \ 0, so that I(x ∈ Uσ) = ⊕m∈Sk · χm. For p ≥ 1, denote
S(p) = {s1 + · · · + sp; s1, . . . , sp ∈ S}. Therefore I(x ∈ Uσ)

p = ⊕m∈S(p)k · χm. Since L is Cartier,
there exists u ∈ M such that (χu) + L|Uσ

= 0. We have �L − u ⊆ σ∨.
The subspace {s ∈ Γ(X,OX(qL)); ordx(s) ≥ p} ⊆ Γ(X,OX(qL)) is torus invariant. Therefore a

basis over k consists of monomials χm such that m ∈ M ∩ q�L and m− qu ∈ S(p).
Let P = Conv(S + σ∨) be the Newton polytope associated to S ⊂ σ∨. Let B be the closure of

the complement σ∨ \ P . Then B is compact and contains a relatively open neighborhood of the
origin in σ∨. In particular, σ∨ = ∪t≥0tB. Note that B may not be convex, but in case x is a smooth
point, B is a unit simplex. Moreover, d! · volM(B) = multx(X).

We claim that S(p) ⊆ M ∩ pP ⊆ S(p−d+1). Indeed, the first inclusion is clear. For the second, let
m ∈ M ∩ pP . Then m =

∑

i∈I tim
i +m′, where ti ≥ 0, mi ∈ S,

∑

i ti = p and m′ ∈ σ∨, and the
cardinality of I is at most d (use Carathéodory’s theorem). Then m =

∑

i⌊ti⌋mi+(m′+
∑

i{ti}mi),
and

∑

i⌊ti⌋ >
∑

i(ti − 1) = p− d. Therefore m ∈ S(p−d+1).
We obtain Γ(Ip

x(qL)) ⊆ ⊕m∈M∩q�L∩pP+quk · χm ⊆ Γ(Ip−d+1
x (qL)). Therefore the two algebras

⊕p>qtΓ(Ip
x(qL)) ⊆ ⊕p>qt ⊕m∈M∩q�L∩pP+qu k · χm

have the same stable base locus. Denote t+P = ∩ǫ>0(t+ ǫ)P . We deduce that near x, Bs |It+
x L|Q is

the intersection of Supp(χm), where m ∈ (�L − u) ∩ t+P ∩MQ and (χm) is the effective Q-divisor
defined by χm.

Lemma 4.1. Near x, Bs |It+
x L|Q is the union of invariant closed irreducible subvarieties x ∈ Y ⊆ X

such that widthx(R(L)|Y ) ≤ t. If L is ample, the latter inequality means widthx(L|Y ) ≤ t.

Proof. Bs |It+
x L|Q is the intersection of all Supp(χm), where χm ∈ Γ(OX(qL)) with ordx(χ

m) > qt.
In particular, Bs |It+

x L|Q is torus invariant.
Let x ∈ Y ⊆ X be a torus invariant subvariety. By definition, widthx(R(L)|Y ) > t if and only if

the subspace

{s|Y ; s ∈ Γ(X,OX(qL)), s|Y 6= 0, ordx(s|Y ) > qt} ⊆ Γ(Y,OY (qL|Y ))
contains a non-zero element for some q. This subspace is torus invariant, and hence has a basis
consists of monomials. Thus this subspace has a non-zero element if and only if there exists χm ∈
Γ(OX(qL)) with χm|Y 6= 0 and ordx(χ

m|Y ) > qt. For monomials, the restriction to Y does not
change the order, that is, ordx(χ

m|Y ) = ordx(χ
m) if χm|Y 6= 0. Hence widthx(R(L)|Y ) > t if

and only if there exists χm ∈ Γ(OX(qL)) with χm|Y 6= 0 and ordx(χ
m) > qt for some q, which is

equivalent to say that Y is not contained in Bs |It+
x L|Q.

If L is ample, the restriction map Γ(qL) → Γ(qL|Y ) is surjective for any q, and therefore
widthx(R(L)|Y ) = widthx(L|Y ). �

Lemma 4.2. Let x ∈ Y ⊆ X be an invariant closed subvariety corresponding to a face τ ≺ σ.
Then widthx(R(L)|Y ) = min{t ≥ 0; (�L − u) ∩ τ⊥ ⊆ tB ∩ τ⊥} ∈ Q. In particular, widthx(L) =
min{t ≥ 0;�L − u ⊆ tB} ∈ Q.
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Proof. By Lemma 4.1, widthx(R(L)|Y ) ≤ t if and only if Y ⊆ Bs |It+
x L|Q, if and only if (�L − u) ∩

t+P∩τ⊥∩MQ = ∅. Since �L, u, P are rational, this condition is equivalent to (�L−u)∩t+P∩τ⊥ = ∅,
which is equivalent to �L − u ∩ τ⊥ ⊆ tB ∩ τ⊥. �

We obtain the following proposition which generalizes [3, Corollary 4.2.2].

Proposition 4.3. ǫi(L, x) is the minimum of widthx(R(L)|Y ), after all closed irreducible invariant
subvarieties x ∈ Y ⊆ X of codimension i− 1. In particular, ǫi(L, x) ∈ Q.

Suppose L is ample. Then widthx(R(L)|Y ) = widthx(L|Y ), and therefore ǫi(L, x) is the minimum
of widthx(L|Y ), after all closed irreducible invariant subvarieties x ∈ Y ⊆ X of codimension i− 1.
In particular, ǫd(L, x) = min{(L · C); x ∈ C ⊆ X invariant curve}. Moreover, we have inclusions

ǫdB ⊆ �L − u ⊆ ǫ1B,

and ǫd, ǫ1 are maximal and minimal, respectively, with this property.

At a general point. Let � ⊂ MR be the moment polytope of L. Then � − � ⊂ MR is a
0-symmetric compact convex set, of dimension κ = κ(L). The Minkowski successive minima of
(M,�−�) are

λi = λi(M,�−�) = sup{t ≥ 0; dimM ∩ t(�−�) < i}.
We have 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λκ < λκ+1 = +∞. The polar convex set (� − �)∗ ⊂ NR coincides
with the set of linear functionals ϕ ∈ NR such that lengthϕ(�) ≤ 1. It is unbounded if and only if
κ < rankM . The Minkowski successive minima of (N, (�−�)∗) are

λ∗
i = λi(N, (�−�)∗) = sup{t ≥ 0; dimN ∩ t · (�−�)∗ < i}.

Example 4.4. Consider (X,L) = (Pd,O(w)), where w is a positive integer. Since the ambient is
homogeneous, ǫi(L, x) = ǫi(L) for all x ∈ X and i. Then

ǫ1(L) = · · · = ǫd(L) =
d
√

vol(L) = w.

Let e1, . . . , ed be the standard basis of Zd. The moment polytope of L is

� = {
d

∑

i=1

xiei; xi ≥ 0,

d
∑

i=1

xi ≤ w}.

The difference �− � is the convex hull of ±wei(1 ≤ i ≤ d),±w(ei − ej) (1 ≤ i < j ≤ d), which is

contained in {∑d
i=1 xiei; |xi| ≤ w, |xi + xj | ≤ w}. We compute

λi(Z
d,�−�) =

1

w
(1 ≤ i ≤ d).

Let e∗1, . . . , e
∗
d be the dual basis of Ž

d. The polar body (�−�)∗ is {∑d

i=1 x
∗
i e

∗
i ; |x∗

i | ≤ 1/w, |x∗
i −x∗

j | ≤
1/w}. We compute

λi(Ž
d, (�−�)∗) = w (1 ≤ i ≤ d).

Example 4.5. Consider (X,L) = ((P1)d,O(w1, . . . , wd)), where w1 ≥ w2 ≥ · · · ≥ wd are positive
integers. Since the ambient is homogeneous, ǫi(L, x) = ǫi(L) for all x and i. Let x = [1 : 0]d ∈ X .
Then Bs |It+

x L|Q consists of the invariant cycles Y through x (affine spaces with coordinates zi (i ∈
I)) such that

∑

i∈I wi ≤ t. Therefore ǫi(L) = min|I|=d−i+1

∑

j∈I wj. Since we ordered the weights,
we obtain

ǫi(L) =

d
∑

j=i

wj.
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The volume is

vol(L) = d!

d
∏

i=1

wi.

The moment polytope of L is � =
∏d

i=1[0, wi] ⊂ Rd. Then �−� =
∏d

i=1[−wi, wi], so

λi(Z
d,�−�) =

1

wi

.

The polar body (�−�)∗ is {x ∈ Řd;
∑d

i=1 |xi|wi ≤ 1}. Therefore
λi(Ž

d, (�−�)∗) = wd−i+1.

We obtain
ǫi(L)

λ∗
d−i+1

= ǫi(L) · λi =
wi + · · ·+ wd

wi

∈ [1, d− i+ 1].

Lemma 4.6. ǫj(L) · λj ≥ 1.

Proof. Denote µ = 1/λj(M,�−�). There exist u1, . . . , uj ∈ M , primitive and linearly independent,
such that µui = m′

i − mi for some mi, m
′
i ∈ �. The inclusion [mi, m

′
i] ⊂ � induces a dominant

rational map
ϕi : (X,L) 99K (P1,O(µ)), L ≥ OP1(µ).

Therefore there exists µFi +Di ∈ |L|Q, where Fi is the fiber of ϕi through 1, and Di is an effective
invariant divisor on X . We have Fi ∩ TN = TN∩u⊥

i
. Since ui are linearly independent, we have

codim1 ∩j
i=1Fi = j.

We obtain codim1 Bs |Iµ
1L|Q ≥ j. Therefore µ ≤ ǫj(L). �

Lemma 4.7. ǫd−j+1(L) ≤ j · λ∗
j .

Proof. Suppose λ∗
j = λ > 0. There exist ϕ1, . . . , ϕj ∈ N ∩ λ · (�− �)∗, linearly independent. The

property ϕi ∈ λ ·(�−�)∗ means that the interval ϕi(�) has length at most λ. Consider the induced
homomorphism of lattices

(ϕ1, . . . , ϕj) : M → Zj ,

whose image has rank j since ϕi are linearly independent. Then � is mapped onto a polytope
of dimension j, contained in

∏j

i=1[xi, xi + λ] for some x1, . . . , xj ∈ R. The lattice homomorphism
induces a dominant rational map X 99K Y d−j whose fiber (F, L|F ) through x = 1 has dimension j,
and is dominated by (P1,OP1(λ))j. Therefore

ǫ1(L|F , 1) ≤ jλ

by Example 4.5. Let D ∈ |Ijλ+
1 L|Q. Then D|F ∈ |Ijλ+

1 (L|F )|Q, which is empty since ǫ1(L|F , 1) ≤ jλ.
Therefore D|F = 0. We deduce

F ⊆ Bs |Ijλ+
1 L|Q.

Therefore codim1 Bs |Ijλ+
1 L|Q ≤ d− j < d− j + 1. Then ǫd−j+1(L) ≤ jλ. �

Remark 4.8. For ǫd(L), Lemmas 4.6, 4.7 state that λ−1
d ≤ ǫd(L) ≤ λ∗

1. These inequalities also
follow from [11, Theorem 3.6].

Theorem 4.9. The invariants ǫi(L), 1/λi, λ
∗
d−i+1 are all equivalent. More precisely,

1 ≤ ǫi(L) · λi ≤ d · ǫi(L)

λ∗
d−i+1

≤ d(d− i+ 1).

Proof. Use Banaszczyk’s bound [2] in Mahler’s transference theorem 1 ≤ λiλ
∗
d−i+1 ≤ d for the

second inequality, and the two lemmas above. �
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Theorem 4.10. The Seshadri constant of L at a very general point is proportional to the lattice
width of the moment polytope �L. More precisely,

width(�L)

d
≤ ǫ(L) ≤ width(�L).

Proof. If L is not big, both invariants are zero. Suppose L is big. Then ǫ(L) = ǫd(L) and
width(�L) = λ∗

1, and we can apply the above theorem. �

Remark 4.11. For toric varieties, we may establish the inequalities

1 ≤ vol(L)
∏d

i=1 ǫi(L)
≤ d!

of Theorem 3.6 as follows: the left hand side inequality is easy to see. For the right hand side, recall
the second main theorem of Minkowski, in the stronger form due to Davenport-Estermann:

1

d!
≤ volM(�) ·

d
∏

i=1

λi(M,�−�) ≤ 1.

We have vol(L) = d! volM(�). From ǫiλi ≥ 1, we obtain
∏

i ǫi ·
∏

i λi ≥ 1. Therefore vol(L) ≤
d!
∏

i ǫi.

5. Adjoint linear systems and the Flatness Theorem of Khinchin

Recall first results of Demailly [5] and Ein, Küchle, Lazarsfeld [7]:

Theorem 5.1. Let X be a smooth projective variety of dimension d, let L be a nef and big Q-Cartier
divisor on X whose fractional part has normal crossing support. Let ǫ be the Seshadri constant of
L at a very general point x ∈ X, which coincides with ǫd(L, x). The following properties hold:

1) The jet map Γ(⌈KX + L⌉) → Ox/I1+⌈ǫ−d−1⌉
x is surjective. In particular,

dimk Γ(⌈KX + L⌉) ≥
(⌈ǫ− 1⌉

d

)

=
1

d!

d
∏

i=1

⌈ǫ− i⌉.

2) If ǫ > d, then Γ(⌈KX + L⌉) 6= 0.
3) If ǫ > d+ 1, then |⌈KX + L⌉| maps X onto a variety of dimension d.
4) If ǫ > 2d, then |⌈KX + L⌉| maps X birationally onto a variety of dimension d.

Proof. 1) Let f : Y → X be the blow-up at x, with exceptional divisor E. Since L has integer
coefficients near x, ⌈KY + f ∗L⌉ = f ∗⌈KX + L⌉ + (d − 1)E. We may suppose p = ⌈ǫ − d − 1⌉ is
non-negative. Then ⌈KY + f ∗L− (p+ d)E⌉ = f ∗⌈KX + L⌉ − (p+ 1)E and

f∗OY (⌈KY + f ∗L− (p + d)E⌉) = Ip+1
x (⌈KX + L⌉).

By the Leray spectral sequence, the natural homomorphism

H1(X, Ip+1
x (⌈KX + L⌉)) → H1(Y, ⌈KY + f ∗L− (p+ d)E⌉)

is injective.
But f ∗L− (p+ d)E = f ∗L− (⌈ǫ⌉− 1)E is nef and big, since ⌈ǫ⌉− 1 < ǫ. By Kawamata-Viehweg

vanishing, H1(Y, ⌈KY + f ∗L − (p + d)E⌉) = 0. Therefore H1(X, Ip+1
x (⌈KX + L⌉)) = 0. Then

Γ(⌈KX +L⌉) → Ox/Ip+1
x is surjective. Since x is a smooth point, the right hand side has dimension

(

p+d

d

)

.
2) This follows from 1).
3) The 1-jet map Γ(⌈KX + L⌉) → Ox/I2

x is surjective. Therefore |⌈KX + L⌉| moves, and the
induced rational map is generically finite.
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4) Let x, y be two very general points, let f : Y → X be the blow-up at x, y. Then

f ∗L− dEx − dEy =
1

2
(f ∗L− 2dEx) +

1

2
(f ∗L− 2dEy)

is nef and big. By Kawamata-Viehweg vanishing, H1(Y, ⌈KY + f ∗L − dEx − dEy⌉) = 0. But
⌈KY + f ∗L− dEx − dEy⌉ = f ∗⌈KX +L⌉ −Ex −Ey. Therefore H1(X, Ix ⊗Iy(⌈KX +L⌉)) = 0. �

We generalize the flatness theorem of Khinchin. The original statement says that a convex
body which contains no lattice points must have lattice width bounded above by a constant which
depends only on the dimension (see [12] and part a) of the theorem below). We show that the same
conclusion holds if the lattice points of the convex body are degenerate (part b) of the theorem
below).

Theorem 5.2. Let M ≃ Zd be a lattice, let � ⊂ MR be a compact convex set, of dimension d. Let
w be the lattice width of � with respect to M .

a) If w > d2, then M ∩ int� 6= ∅.
b) If w > d(d+ 1), then dim(M ∩ int�) = d.
c) If w > 2d2, then M ∩ int� spans M .

d) d
√

d!|M ∩ int�| ≥ w
d
− d.

e) d
√

d! volM(�) ≥ w
d
.

Proof. The width is continuous with respect to the approximation limn→∞Conv( 1
n
M ∩ �) = �.

Therefore we may suppose � is the convex hull of finitely many points in MQ.
Let X be a toric desingularization of the projective model of the graded ring ⊕n≥0⊕m∈M∩n�k ·χm.

There exists a Q-Cartier divisor L on X , semiample and big, supported by the invariant prime
divisors of X , such that � is the moment polytope of L. We compute

Γ(⌈KX + L⌉) = ⊕m∈M∩int�k · χm.

Therefore the semi-invariant basis of Γ(⌈KX + L⌉) is in one-to-one correspondence to the interior
lattice points of �. Denote A = M ∩ int�. The linear system |⌈KX +L⌉| is non-empty if and only
if A is non-empty, it maps X onto a variety of the same dimension if and only if A−a generates the
R-vector space MR, for every a ∈ A, and maps X birationally onto a variety of the same dimension
if and only if A− a generates the lattice M , for every a ∈ A.

Let ǫ be the Seshadri constant of L at a very general point of X . We have ǫ = ǫd(L). By
Theorem 4.10, ǫ ≥ w

d
. Therefore the claims are just a restatement of Theorem 5.1 for (X,L). �

Part a) of the theorem was proved by Kannan, Lovász with d2 replaced by cd2, for some constant
c. It is expected that the optimal bound is linear in d (see [12]). Parts b) and c) are new statements,
while d) and e) improve similar bounds in [12].

6. Appendix on Geometry of Numbers

We recall the definitions and results from the Geometry of Numbers that we use. For proofs and
more, the reader may consult [14]. Let M ≃ Zd be a lattice of rank d. The dual lattice N = M̌ is
defined as HomZ(M,Z), and we have a duality pairing N ×M → Z, 〈ϕ,m〉 = ϕ(m).

A subset A ⊆ M spans the lattice M if the difference set A − A = {a′ − a; a′, a ∈ A} generates
the lattice M . The dimension of a subset A ⊆ MR, denoted dim(A), is the dimension of the R-
vector space generated by A− A. The Q-dimension of a subset A ⊆ MR, denoted dimQ(A), is the
dimension of the Q-vector space generated by A∩MQ −A∩MQ. We have dimQ(A) ≤ dim(A), and
equality holds if A ⊆ MQ. If � ⊆ MR is a convex set, then dimQ(�) = d if and only if dim(�) = d.
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For a convex set � ⊆ MR, the polar convex set �∗ ⊆ NR is defined as

�
∗ = {ϕ ∈ N∗

R; 〈ϕ,m〉 ≥ −1 ∀m ∈ �}.
To � we can associate the difference convex set �−� = {m′−m;m′, m ∈ �}, which is 0-symmetric.
The polar convex set (�−�)∗ consists of the linear functionals ϕ ∈ NR such that the interval ϕ(�)
has length at most 1.

The lattice width of a compact convex set � ⊂ MR is defined as the smallest length of any interval
ϕ(�), with all ϕ ∈ N \0. It coincides with the first minimum of Minkowski of (�−�)∗ with respect
to N .

Let � ⊆ MR be a closed convex set which contains the origin. For i ≥ 1, the i-th successive
minimum of (M,�) is defined by

λi(M,�) = sup{t ≥ 0; dim(M ∩ t�) < i}.
We obtain an increasing chain 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λd+1 = +∞. Note that λi is a finite real number
if and only if i ≤ dimQ(�), and λi(M, c�) = λi(M,�)/c for every c > 0. In case dim(�) = d, we
have the equivalent (Minkowski’s) definition

λi(M,�) = inf{t ≥ 0; dim(M ∩ t�) ≥ i}.
The second main theorem of Minkowski, in the generalized form due to Davenport-Estermann,

is

Theorem 6.1. Let � ⊂ MR be a convex set of dimension d. Then

1

d!
≤ volM(�) ·

d
∏

i=1

λi(M,�−�) ≤ 1.

The transference theorem of Mahler, with the improved upper bound due to Banaszczyck [2,
Theorem 2.1], is

Theorem 6.2. Let � ⊂ MR be a 0-symmetric compact convex set of dimension d. Let �∗ ⊂ NR be
the polar body. Then

1 ≤ λi(M,�) · λd−i+1(N,�∗) ≤ d (1 ≤ i ≤ d).

With the original upper bound of Mahler ((d!)2 instead of d), the transference theorem can be
deduced from the second main theorem of Minkowski. The upper bound d is sharp in dimension
one. In dimension two, Banaszczyck [2, Proof of Theorem 2.1] mentions the upper bound 2/

√
3.

We show next that the sharp upper bound in dimension two is in fact 3/2.

Sharp transference theorem in dimension two. Let � ⊂ R2 be a 0-symmetric polytope, of
dimension 2, with λ1(Z

2,�) = 1. This means that Z2 ∩ int� = {0} and Z2 ∩ ∂� 6= ∅.
We say that � is maximal if every top face of � contains a lattice point in its relative interior. We

bring � into maximal position, preserving the initial hypothesis, as follows. Since � is 0-symmetric,
the top faces come in pairs. Fix a pair F,−F . We slide out these top faces until they either a) hit a
lattice point in their relative interior, or b) these faces collapse to a point (they become redundant).
Apriori, it is also possible that we may slide out the faces to infinity, but one may easily check that
this is impossible. We repeat the argument for all pairs of top faces.

In finitely many steps, we enlarged � ⊂ �
′ such that �

′ ⊂ R2 is a 0-symmetric polytope, of
dimension 2, with λ1(Z

2,�′) = 1, and �
′ is maximal. It is enough to prove transference for �′.

From now on, we suppose � is maximal.

Lemma 6.3. On each top face F of � choose exactly one relative interior lattice point uF , in such
a way so that −uF is the choice for the opposite face −F . Let Q be the convex hull of these lattice
points. Then, after possibly changing the basis of Z2, Q is one of the following:
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1) The square with vertices (1, 0), (0, 1), (−1, 0), (0,−1).
2) The polytope with vertices (1, 0), (0, 1), (−1, 1), (−1, 0), (0,−1), (1,−1).

Proof. Let u1, u2 be two adjacent vertices of Q. Then Conv(0, u1, u2)\{u1, u2} is contained in int�.
Therefore Conv(0, u1, u2) contains no other lattice points besides its vertices. Therefore u1, u2 is a
basis of Z2. We may suppose u1 = (1, 0) and u2 = (0, 1). Thus u1u2 is a top face of Q. The opposite
is also a top face. The other top faces are contained in the second and fourth quadrant. Enough to
look inside the second quadrant.

If Q has 4 vertices, we obtain 1). Suppose Q has at least 6 vertices. Then there are at least
two top faces in the second quadrant. But (0, 1) and (−1, 0) are vertices of Q, and (−1, 1) is not
contained in the interior of Q. Therefore Q has exactly one vertex, namely (−1, 1), in the interior
of the second quadrant. We are in case 2). �

Case 1). Here � = ∩2
i=1{(x, y) ∈ R2; |〈ui, (x, y)〉| ≤ 1}, where u1 = (1, β1), u2 = (−β2, 1) and

β1, β2 ∈ [0, 1). Indeed, we may suppose (1, 1) is separated from � by the edge passing through
(1, 0). The exterior normal to this edge is u1 = (1, β1) for some β1 ≥ 0. Since 〈±u1, (0, 1)〉 < 1, we
deduce β1 < 1. The lattice point (−1, 1) must be separated from � by its edge through (0, 1). The
exterior normal to this edge is u2 = (−β2, 1) for some β2 ≥ 0. Since 〈±u1, (1, 0)〉 < 1, we deduce
β1 < 1. Conversely, any polytope � as above satisfies Z2 ∩ int� = {0}.

Since u1, u2 are linearly independent, we compute

�
∗ = {α1u1 + α2u2; |α1|+ |α2| ≤ 1} = Conv(±u1,±u2).

Let z = (z1, z2) ∈ Ž2. Then

z =
z1 + β2z2
1 + β1β2

u1 +
z2 − β1z1
1 + β1β2

u2

and z ∈ h(z) ·�∗, where

h(z) =
|z1 + β2z2|
1 + β1β2

+
|z2 − β1z1|
1 + β1β2

.

We compute

h(1, 0) =
1 + β1

1 + β1β2

, h(0, 1) =
1 + β2

1 + β1β2

, h(1, 1) =
2 + β2 − β1

1 + β1β2

, h(−1, 1) =
2 + β1 − β2

1 + β1β2

.

We claim that λ2(Ž
2,�∗) ≤ 3

2
. Indeed, suppose 0 ≤ β1 ≤ β2 < 1. Then

1 + β1 ≤ 1 + β2, 2 + β1 − β2 and 1 + β2, 2 + β1 − β2 ≤ 2− β1 + β2.

Therefore

λ2(Ž
2, K∗) ≤ min(

1 + β2

1 + β1β2

,
2 + β1 − β2

1 + β1β2

).

One may check that the right hand side is at most 3
2
, with equality only for β1 = 0, β2 =

1
2
.

Case 2). Here � = ∩3
i=1{(x, y) ∈ R2; |〈ui, (x, y)〉| ≤ 1}, where u1 = (1, β1), u2 = (β2, 1), u3 =

(−β3, 1− β3), and β1, β2, β3 ∈ (0, 1). Indeed, we may suppose (1, 1) is separated from � by its edge
through (1, 0). Let u1 = (1, β1) be the exterior normal, so that β1 ≥ 0. We have 〈u1, (0, 1)〉 < 1
and 〈u1, (1,−1)〉 < 1. That is 0 < β1 < 1. Let u2 and u3 be the normalized exterior normals to
Q through (0, 1) and (−1, 1), respectively. We have 〈u2, (1, 0)〉 < 1 and 〈u1, (−1, 1)〉 < 1, that is
0 < β2 < 1. Similarly, 〈u3, (0, 1)〉 < 1 and 〈u3, (−1, 0)〉 < 1, that is 0 < β3 < 1.

Conversely, any polytope � as above satisfies Z2 ∩ int� = {0}. Indeed, once u1 is chosen, it is
enough to consider the lattice points in the strip |〈u1, ·〉| ≤ 1. By symmetry, we may take y > 0.
The lattice points in the strip with x ≤ −1 must be separated from � by its top face through
(−1, 1). We are left with the lattice points (0, n) (n = 1, 2, 3, . . .). But these are separated from �

by its edge through (0, 1).
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Note that �
∗ is the 0-symmetric polytope with vertices ±u1,±u2,±u3, and is inscribed in the

polytope Q∗ = Conv(±(1, 0),±(1, 1),±(0, 1),±(−1, 1)). For e ∈ Ž2 \ 0, let h(e) = inf{t > 0; e ∈
t ·�∗}. Denote se = (1− h(e)−1)−1. We compute

s1,0 =
1

β2
+

1

β3
, s1,1 =

1

1− β1
+

1

1− β2
, s0,1 =

1

β1
+

1

1− β3
.

For t1, t2 > 0, we have 1
t1
+ 1

t2
≥ 4

t1+t2
. Thus

s1,0 + s1,1 =
1

β2
+

1

1− β2
+

1

1− β1
+

1

β3
≥ 4 +

1

1− β1
+

1

β3
> 6.

Similarly, s1,0 + s0,1 > 6 and s1,1 + s0,1 > 6. Therefore two of the s1,0, s1,1, s0,1 are strictly larger

than 3. Therefore λ2(Ž
2,�∗) < 3

2
. We obtained:

Theorem 6.4. Let � ⊂ R2 be a 0-symmetric convex body. Then

1 ≤ λ1(Z
2,�) · λ2(Ž

2,�∗) ≤ 3

2
.

Proof. The first inequality is trivial. For the second, suppose by contradiction that it fails. Then
we may approximate � with a polytope, and suppose � is a polytope. If � is a polytope, we may
scale so that λ1 = 1, and we are done by the two cases above. �

Example 6.5. The upper bound 3
2
is attained for � in Case 1) with β1 = 0, β2 =

1
2
. In this case,

� = Conv(±(1, 3
2
),±(1, 1

2
)), �∗ = Conv(±(1, 0),±(−1

2
, 1)) and λ1(Z

2,�) = 1, λ2(Ž
2,�∗) = 3

2
.
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