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Inference of transcription factor binding from cell-
free DNA enables tumor subtype prediction and
early detection
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Albert Wölfler2, Armin Zebisch 2, Armin Gerger3, Gunda Pristauz4, Edgar Petru4, Brandon White5,

Charles E.S. Roberts5, John St. John5, Michael G. Schimek6, Jochen B. Geigl 1, Thomas Bauernhofer3,

Heinz Sill2, Christoph Bock 7,8,9, Ellen Heitzer 1,10,11* & Michael R. Speicher 1,10*

Deregulation of transcription factors (TFs) is an important driver of tumorigenesis, but non-

invasive assays for assessing transcription factor activity are lacking. Here we develop and

validate a minimally invasive method for assessing TF activity based on cell-free DNA

sequencing and nucleosome footprint analysis. We analyze whole genome sequencing data

for >1,000 cell-free DNA samples from cancer patients and healthy controls using a bioin-

formatics pipeline developed by us that infers accessibility of TF binding sites from cell-free

DNA fragmentation patterns. We observe patient-specific as well as tumor-specific patterns,

including accurate prediction of tumor subtypes in prostate cancer, with important clinical

implications for the management of patients. Furthermore, we show that cell-free DNA TF

profiling is capable of detection of early-stage colorectal carcinomas. Our approach for

mapping tumor-specific transcription factor binding in vivo based on blood samples makes a

key part of the noncoding genome amenable to clinical analysis.
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Transcription factors (TFs) modulate the expression of their
target genes and often play a key role in development and
differentiation1. TF binding is often correlated with

nucleosome occupancy1–4. It has recently been shown that
nucleosome positioning can be inferred from cell-free DNA
(cfDNA) in plasma5, suggesting that it may be possible to infer
not only gene expression6 but also TF binding in tumor samples
from circulating tumor DNA. Accurate inference of TF binding
from cfDNA would have substantial diagnostic potential in
cancer and potentially other diseases, but to date TFs cannot be
evaluated noninvasively.

We thus develop an approach capable of providing insights
into single TFs directly from nucleosome footprints to objectively
assess and compare TF-binding site (TFBS) accessibility in dif-
ferent plasma samples. To validate our method, we produce deep
whole-genome sequencing (WGS) data for 24 plasma samples
from healthy donors, i.e., subjects without known current disease,
and for 15 plasma samples of patients with metastasized prostate,
colon or breast cancer, where cfDNA also comprises circulating
tumor DNA (ctDNA)7–10. Moreover, we generate shallow WGS
data for 229 plasma samples from patients with the aforemen-
tioned tumor entities (>18.5 billion mapped plasma sequence
reads in total) and we furthermore use 769 plasma samples from
patients with colon cancer (n= 592) and healthy controls (n=
177) (~238 billion mapped plasma sequence reads in addition).

Our approach allows identification of lineage-specific TFs and
profiling of individual TFs from cfDNA. We demonstrate two
relevant clinical applications: first, our TF-based cfDNA assays
are capable of distinguishing between prostate adenocarcinoma
and small-cell neuroendocrine prostate cancer, a distinction that
has important therapeutic implications. Second, the large colon
cancer cohort enabled us to accurately establish resolution limits
and to explore the use of TF-based plasma analyses for detection
of early cancer stages.

Results
Bioinformatic cfDNA fragment analysis to infer TF activity.
We employed stringent criteria and restricted our analyses to
high-confidence 504 TFs where 1000 TFBSs per TF were sup-
ported by the majority of tissue samples in the Gene Transcrip-
tion Regulation Database (GTRD; Version 18.01; http://gtrd.
biouml.org)11 (Methods; Supplementary Data 1).

We then extracted tissue and cancer type-specific peak sets
from ATAC-seq-based chromatin accessibility data sets12,13 for
hematopoietic lineages, prostate adenocarcinoma (PRAD),
breast cancer (BRCA), and colon adenocarcinoma (COAD)
and calculated individual TF accessibilities (see the Methods
section). As expected, we observed different tissue-dependent
TF accessibility patterns (Fig. 1a). For example, accessibility of
GRHL2, a pioneer TF for epithelial cells14 was increased in
PRAD, BRCA, and COAD as compared with hematologic
lineages, whereas the hematopoietic lineage TF LYL1 (lympho-
blastic leukemia 1)15 showed a reverse pattern with an increased
accessibility in hematopoietic lineages (Fig. 1a). In contrast, the
well-established prostate lineage TFs AR and NKX3-116–19

showed preferential accessibility in PRAD (Fig. 1a). We then
compared hematopoietic and epithelial lineages with each other
and established a ranking order of TF accessibilities for
each epithelial tissue (Supplementary Data 2). For example,
the aforementioned TFs AR or NKX3-1 scored top ranks in the
PRAD list, whereas hematopoietic lineage TFs such as purine-
rich box 1 (PU.1)20, LYL1, and the lymphocyte lineage-
restricted transcription factor SPIB21 occupied low ranks in all
epithelial samples (Supplementary Data 2). As a result, we had a

comprehensive list of high-confidence TFs and their respective
accessibilities in three different epithelial lineages.

We started our plasma DNA analyses by establishing
nucleosome occupancy maps at TFBSs using high-coverage
cfDNA samples from 24 healthy controls (males and females,
12 each), where the vast majority (>90%) of cfDNA is derived
from apoptosis of white blood cells with minimal contribution
from other tissues22,23 and 11 plasma samples derived from seven
patients with three common tumor entities (Supplementary
Table 1). These included four cases with prostate cancer (P40,
P147, P148, and P190), one colorectal adenocarcinoma (C2), and
two breast cancers (B7 and B13) with ctDNA fractions ranging
from 18 to 78% (Supplementary Fig. 1; Supplementary Data 3).

We found evidence that nucleosome plasma footprints are
informative regarding TFBSs. For example, in healthy individuals,
binding sites of the hematopoietic TF LYL1 were surrounded by
arrays of strongly positioned nucleosomes yielding a high-
amplitude oscillating coverage pattern (Fig. 1b). However, the
ctDNA in the plasma from patients with cancer altered the
balance between DNA from hematopoietic versus epithelial cells
visible as decreased amplitudes for LYL1 (Fig. 1b). Conversely, the
amplitude of the epithelial TF GRHL2 was increased in samples
from cancer patients compared with those derived from healthy
controls (Fig. 1b). In addition to the correlation with the ATAC-
seq data, we confirmed the lineage specificity of these TFs with
data of publicly available DNase hypersensitivity assays (Fig. 1b).
For further confirmation, we also conducted comparisons with
ENCODE data, where mononucleosome-bound DNA fragments
were generated by micrococcal nuclease (MNase) digestion
(Supplementary Fig. 2a, b). Using high-molecular-weight DNA
as a negative control, we did not observe a nucleosome-associated
uneven coverage pattern at TFBSs (Supplementary Fig. 2c).

We next tested whether TF accessibilities as established from
ATAC-seq data can be inferred from the cfDNA nucleosome
occupancy patterns. However, currently no means of assessing TF
accessibility and changes thereof in cfDNA exist. To implement
such an approach, we first investigated TF-specific nucleosome
coverage profiles, which led us to conduct calculations separately
for TFBSs within and outside of TSSs (Supplementary Fig. 3).
These analyses suggested that average TFBS patterns comprise
two signals: a TSS-proximal (within 2 kb of TSS, resulting in a
low-frequency pattern) and a TSS-distal (>2 kb away from TSS
peak, generating a high-frequency pattern), corresponding to the
more evenly spaced peak signal (Fig. 1c). To suppress effects on
the coverage not contributed by preferential nucleosome
positioning and to remove local biases from the nucleosome
data, we used Savitzky–Golay filters for detrending (Methods)
(Fig. 1c). Subsequently, we recorded the data range (maximum
minus the minimum of the data values, corresponds to the
amplitude) of the high-frequency signals as a measure for the
accessibility of each TFBS. We refer to these rank values as
accessibility score.

To benchmark the performance of Savitzky–Golay filtering, we
used cfRNA data24 and observed significantly reduced accessi-
bility for unexpressed TFs (i.e., <0.1 FPKM [fragments per
kilobase exon per million reads]; n= 91) as compared with the
accessibility of expressed (i.e., >10 FPKM; n= 137) TFs (p=
1.254 × 10−11; two-tailed Mann–Whitney U test) (Fig. 1d). These
differences were also significant when we compared the
accessibility scores to mean DNase coverage (p < 2.2 × 10−16;
two-tailed Mann–Whitney U test) (Fig. 1e).

The accessibility score enables accurate inference of TFBSs. We
then used overall z-scores, i.e., the rank differences between a
tumor sample and the healthy controls, and defined detection
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thresholds for TFBS accessibility differences from the mean of
rank in normal samples by >5 standard deviations (i.e., a z-score
of 5 and −5, respectively). Histogram analysis and a QQ-plot
showed no relevant deviation from a normal distribution (Sup-
plementary Fig. 4), suggesting that z-scores are in general
applicable for our analyses.

Whereas samples from healthy donors showed no TFs
exceeding the ±5 z-score threshold (Fig. 2a), we observed very
different patterns in samples derived from patients with cancer.
For example, in prostate sample P40_1, TFs with accessibilities
above the +5 z-score threshold included, in addition to GRHL2,
FOXA1, which cooperates with nuclear hormone receptors in
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Fig. 1 Bioinformatic fragment analysis of cfDNA enables accurate inference of TF activity. a Relative accessibility for TFs GRHL2, LYL1, AR, and NKX3-1 for
hematopoietic, PRAD, BRCA, and COAD lineages generated from publicly available ATAC-seq data12,13. b Nucleosome position profiles from plasma DNA
for the hematopoietic lineage TF LYL1 and the epithelial TF GRHL2 (left panels; profiles of healthy controls are shown in gray, and patient-derived profiles
are displayed in the indicated colors). In plasma samples from patients with cancer, the amplitudes of LYL1 and GRHL2 are decreased and increased,
respectively, reflecting the different contributions of DNA from hematopoietic and epithelial cells to the blood. The lineage specificity was further
confirmed by DNA hypersensitivity assays (right panels). c To measure TF accessibility, the observed raw coverage signal (purple in left and black in right
panel) was split by Savitzky–Golay filtering into a high-frequency signal (blue) and a low-frequency signal (red) using different window sizes. The right
panel illustrates an overlay of these three signals. The high-frequency signal is used as a measure for accessibility. d TFs with increased expression (n=
137; >10 FPKM [fragments per kilobase exon per million reads]) in blood have a significantly higher accessibility as compared with TFs with no or low signs
of expression (n= 91; <0.1 FPKM). e Transcription factors with a mean DNase hypersensitivity coverage of >2 in GM12878 DNase data from the ENCODE
project (n= 213) have higher accessibilities than factors that have a mean coverage of <1 (n= 244). Boxplots are defined as follows: Centerline represents
the median, the box represents the interquartile range (IQR), and the whiskers denote the first quartile –1.5 IQR and the third quartile +1.5 IQR,
respectively. Notches in (a) represent the confidence interval around the median
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Fig. 2 Identification of TFs with altered accessibility in plasma samples from patients with cancer. a TFBS analysis of a plasma sample from a healthy donor
(NPH001). Each point represents a TF, the y-axis displays the accessibility values, and the x-axis illustrates the overall z-score, as a measure of deviation in
accessibility from normal control samples. In the samples from healthy donors (compared with every remaining healthy donor), only a few TFs exceeded a
z-score of ±3 (dotted gray lines) and none the ±5 z-score (red lines) threshold. b An overall z-score plot as in (a), but with a plasma sample derived from a
patient with prostate cancer (P40). c Overall z-score plot as in (a) for plasma sample C2_6. d Nucleosome position profiles from plasma DNA of healthy
controls (gray profiles) and two plasma samples derived from a patient C2 with colon cancer (blue and red) for TF EVX2. e Bar charts of overall z-score
plots for merged breast, prostate, and colon pools. The left panel displays TFs with increased accessibility in at least one tumor entity; the right panel
summarizes the accessibilities of hematopoietic-related TFs. Bars represent single data points
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endocrine-driven tumors of the prostate and breast25, as well as
the prostate lineage-specific TFs HOXB13, AR, and NKX3-116–19

(Fig. 2b). In contrast, hematopoietic TFs, such as LYL1, SPIB, and
EVI1 (transcriptional regulator ecotropic viral integration site 126

(Fig. 2b) had low accessibilities. These results were in excellent
agreement to our TF ranking based on the ATAC-seq data
(Supplementary Data 2; Supplementary Data 4).

In breast cancer samples B7 and B13, we detected in
concordance with the ATAC-seq data (Supplementary Data 2;
Supplementary Data 4) increased accessibility for GRHL2,
FOXA1, and ZNF121 (Supplementary Fig. 5), a zinc finger
protein, which was recently implicated in regulation of cell
proliferation and breast cancer development27.

In the samples from colon cancer patient C2, we made a
particularly interesting observation. Surprisingly, the ATAC-seq
data13 had ranked EVX2, a TF that has not been intensively
studied and has not yet been discussed within the context of
cancer28, as most accessible in COAD (Supplementary Data 2).
Indeed, EVX2 was ranked with the highest accessibility in our
analysis (Fig. 2c), and the nucleosome position map showed an
enormously increased accessibility of EVX2 (Fig. 2d). In
agreement with the ATAC-seq data (Supplementary Data 2),
we also observed increased accessibility for the TFs HNF4A,
GRHL2, DLX2, HNF4G, and HNF1A (Fig. 2d).

Furthermore and as predicted by our evaluation of the ATAC-
seq data (Supplementary Data 2), the accessibilities for
hematopoietic-related TFs, such as LYL1, TAL1 (SCL/TAL1
(stem cell leukemia/T-cell acute lymphoblastic leukemia (T-ALL)
1))29, EVI1, TBX21 (T-bet30), and PU.1 were reduced in all
tumor samples (Fig. 2b, c).

As a further confirmation for the robustness and reproduci-
bility of lineage-specific TFs in cfDNA, we reasoned that if we
analyze pools of multiple cfDNA samples generated by shallow-
coverage (<0.2×)31, that those TFs with increased accessibility in
the majority of samples should have an increased accessibility
score, whereas others will be averaged out. To this end, we pooled
cfDNA samples separately for prostate (n= 69), for colon (n=
100), and for breast (n= 60) cancer cases (Supplementary
Data 3). When we repeated the analyses, the epithelial TF
GRHL2 and hematopoietic TFs reiterated their increased and
decreased, respectively, accessibility patterns in the three
epithelial lineages (Fig. 2e; Supplementary Data 4). In the colon
cfDNA pool, TFs EVX2, DLX2, HNF1A, HNF4A, and HNF4G
and TFs AR and HOXB13 in the prostate cancer cfDNA pool had
increased accessibilities (Fig. 3e), whereas FOXA1 exceeded the
>5 z-score threshold in both the prostate and breast pool. This
confirmed that TF accessibility estimation derived from ATAC-
seq data (Supplementary Data 2) can be reliably inferred from
plasma DNA nucleosome mapping.

TF analysis predicts prostate cancer tumor subtypes. To
address the question whether TF accessibility remains stable over
time, we analyzed two samples each from 4 patients (P40, P147,
P148, C2; details on selection of these cases in the Methods
section) and found no changes in three of the four plasma sample
pairs (P40, P147, and C2) (Supplementary Fig. 6).

However, case P148 showed substantial TFBS accessibility
changes in the two analyzed plasma samples (P148_1 and
P148_3) (Fig. 3a). Within 12 months, the time interval between
collection of these samples, the prostate adenocarcinoma
transdifferentiated to a treatment-emergent small-cell neuroen-
docrine prostate cancer (t-SCNC)32, which was accompanied by a
decrease of PSA (prostate-specific antigen) and an increase of
NSE (neuron-specific enolase)33. The t-SCNC is no longer an
androgen-dependent stage of prostate cancer34 and, accordingly,

accessibility of AR binding sites was substantially reduced in
sample P148_3 (Fig. 3a, left panel). Furthermore, the change in
the cell-type identity became apparent as reduced accessibilities to
the binding sites of HOXB13, NKX3-1, and GRHL2 (Fig. 3a, left
panel). Neuroendocrine reprogramming is facilitated by down-
regulation of repressor element-1 (RE-1) silencing transcription
factor (REST)35 and we indeed observed decreased accessibility of
REST (Fig. 3a, b). To employ very stringent criteria for
assessment of changes in TFBS accessibility, we also calculated
z-scores in a pairwise comparison between P148_1 and P148_3.
Whereas accessibility of hematopoietic TFs remained unchanged,
GRHL2 and NKX3-1 exceeded the −3 z-score and AR, HOXB13,
and REST exceeded the −5 z-score (Fig. 3a, right panel). These
observations suggested that cancer disease stages with high TFBS
plasticity affecting pathways exist.

This case prompted us to assess—as proof of concept—to what
extent TFs are suitable for molecular prostate cancer subtyping.
The transdifferentiation of an adenocarcinoma to a t-SCNC is a
frequent (~20%) mechanism in the development of treatment
resistance and has clinically significant implications because it
requires a change in therapy32. Furthermore, the involvement of
TFs in this transdifferentiation process has been extensively
studied34,36,37 (Fig. 3c).

Therefore, we added plasma samples from four further
clinically proven t-SCNCs cases (P170_2, P179_4, P198_5, and
P240_1) (Supplementary Table 1). For these cases, we addition-
ally tested whether our approach is also applicable to cfDNA
sequenced with lower coverage by downsampling plasma samples
P148_1 (819,607,690 reads) and P148_3 (768,763,081 reads) to
~50 million reads. The reduction of reads resulted in an increase
in noise levels, but this was dependent on the number of TFBSs
and therefore negligible for the 504 TFs used in our study, as they
had more than 1000 TFBSs (Supplementary Fig. 7). We then
repeated the analyses for the aforementioned four samples, each
sequenced with ~50 million reads. When we compared these t-
SCNC cases with the prostate adenocarcinoma cases, we observed
different accessibilities for the TFs AR, HOXB13, NKX3-1, and
GRHL2 (Fig. 3d). Interestingly, we noted decreased accessibility
of REST in two of these four cases (P170_2 and P198_5; Fig. 3d),
which is consistent with reports that REST downregulation is
usually observed in 50% of neuroendocrine prostate cancers34.
These proof-of-concept analyses suggest that inference of
transcription factor binding from cfDNA may enable tumor
subtype prediction.

Resolution limits and TF-based early cancer detection. To
quantify the sensitivity of our method, we applied it to 592
plasma samples from individuals with colon cancer, where 82.1%
of patients had stage I (n= 197) or stage II (n= 280) disease
(Supplementary Table 2) and compared those to 177 plasma
samples from subjects with no current cancer diagnosis (mean
read count per sample ~299.2 million, standard deviation 100.4
million reads; mean coverage: ~14.96× with SD 5.02×). Impor-
tantly, stage I and II colon cancer represent stages where the
tumor is still localized, and most patients can be cured by surgery
alone38.

We employed the ichorCNA algorithm39 to estimate the tumor
content of each sample and found that the vast majority of
samples had a tumor content well below ichorCNA’s detection
limit of 3% (Supplementary Fig. 8). Next, we compared
accessibilities in subsamples with different tumor fractions for
TFs selected based on our previous ATAC-seq and nucleosome
plasma mapping, i.e., GRHL2, EVX2, DLX2, HNF4A, LYL1, and
PU.1 (Fig. 3c, e). We observed already statistically significant
different accessibilities between healthy controls and COAD
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Fig. 3 Prostate lineage-specific TFs, their plasticity and suitability for tumor classification. a Left panel: z-score plots of P148_1 and P148_3 showing drastic
accessibility reductions for TFs GRHL2, HOXB13, AR, NKX3-1, and REST whereas the accessibility of hematopoietic TFs PU.1, SPIB, and LYL1 remained
unchanged. The right panel displays the z-scores for the pairwise comparison between P148_3 and P148_1. In this pairwise comparison, the hematopoietic
TFs had a z-score around 0, whereas GRHL2 and NKX3-1 exceeded −3 and AR, HOXB13, and REST exceeded −5 thresholds. b Nucleosome position
profiles for TF REST illustrating compared with normal samples a similar accessibility of REST in P148_1 (blue), but a drastic reduction of accessibility in
plasma sample P148_3 (red). c Prostate adenocarcinomas are AR-dependent and accordingly have frequently increased PSA (prostate-specific antigen)
levels and normal NSE (neuron-specific enolase) values. In contrast, t-SCNC are no longer dependent on AR and usually have low PSA and increased NSE
levels. Several TFs involved in the transdifferentiation process from an adenocarcinoma to a t-SCNC have been identified and are indicated in the arrows.
d Bar charts of overall z-score plots for TFs AR, HOXB13, NKX3-1, GRHL2, and REST for prostate adenocarcinomas (left) and prostate neuroendocrine
cancer (right). Bars represent single data points
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samples for TFs HNF4A and DLX2 (Fig. 4a) and the other TFs,
GRHL2, EVX2, LYL1, and PU.1 showed statistically significant
differences at a 1% tumor level (Fig. 4a).

We then used logistic regression with all 504 TFs to classify
healthy controls from cancer samples. To this end, in 100
permutations, we split the samples into two separate sets and
trained the model on one set (90% of samples), while
performance metrics were calculated on the withheld samples
(10%). We applied this approach to all available samples and to
those samples derived from patients with stage I and stage II
disease combined (Supplementary Fig. 9; Supplementary Table 3).
To test the capability of this approach for detection of early-stage
cancer more precisely, we then repeated the logistic regression
separately for plasma samples each derived from patients with
stage I (n= 197) and stage II (n= 280). Using our cross-validated
test-set values, we found that this approach is capable of
identifying ctDNA in patients with stage I colon cancer with a
74% precision (95% CI: 0.53–0.90), 71% sensitivity (recall) (95%

CI: 0.54–0.87), and 72% specificity (0.48–0.90, 95% CI)) (Fig. 4b,
left panel), and in patients with stage II colon cancer with a 84%
precision (95% CI: 0.69–1.0), 74% sensitivity (recall) (95% CI:
0.58–0.88), and 77% specificity (0.56–1.0, 95% CI)) (Fig. 4b, right
panel).

Discussion
We developed an approach and bioinformatics software pipeline
to establish a metric, i.e., the accessibility score, for inferring TF
binding from cfDNA in the blood, with relevance for clinical
diagnostics and noninvasive tumor classification. While most
studies have adopted a gene-centric focus when evaluating
somatically acquired alterations10, we evaluated an important
part of the noncoding genome, focusing on TFBSs. As many TFs
bind preferentially within open chromatin and have to therefore
interact with nucleosomes1,13, we utilized the largely mono-
nucleosomal cfDNA, which allows the mapping of nucleosome
positions5,6. Our data correlated strongly with ATAC-seq
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data12,13 and DNase I hypersensitivity data for cell lines
GM12878, LNCaP, or HCT116, suggesting the reliability of our
approach.

Compared with a previous publication by Snyder et al.5, our
study has several distinct differences. First, Snyder et al. profiled a
small number of ubiquitous TFs (n= 8)5, whereas we utilized
recently generated ATAC-seq data12,13 and profiled numerous
individual TFs, which enabled us to establish lineage-specific TFs
for clinical applications. Second, we introduce a metric, the acces-
sibility score, which, by enabling the objective comparison of TF
binding events in various plasma samples, paves the way for entirely
new diagnostic procedures. In fact, the accessibility score represents
a measure of the strength of nucleosome phasing at the binding
sites of a TF and reflects the strength of TF binding. Third, we were
able to use cfDNA to show TFBS plasticity during a disease course,
such as reprogramming to a different cell lineage in prostate cancer.
Such a dynamic view of TF activity (vis-à-vis the static view
obtained from tissue13) is a unique feature of cfDNA analyses.
Fourth, we demonstrate that our cfDNA TFBS bioinformatics
pipeline allows subclassification of tumor entities, and hence may
address an important diagnostic dilemma in the managing of
patients with prostate cancer32. Fifth, whereas Snyder et al. required
1.5 billion reads per plasma sample5, which is prohibitive for rou-
tine clinical use from a cost-perspective, we were able to conduct in-
depth TF analysis with ~50 million reads, making our approach
more amenable to clinical applications. Finally, we used a large
cohort of patients with colon cancer to establish the resolution
limits and provide evidence that our approach is suitable for
detection of early-stage cancer. As such, our approach may enable
the detection of cancer at stages when the disease is most treatable/
curable and thereby help to reduce cancer mortality rates40.

At the same time, cancer tests should have a high specificity to
avoid potentially unsettling healthy individuals with a false
positive test result, who would then be subjected to unnecessary
follow-up procedures. At present, early cancer detection using
liquid biopsies is in its infancy41 and comparisons with other
studies are limited by differences in methodology and study
design. The recent CancerSEEK study assessed levels of circu-
lating proteins and mutations in plasma and included 388
patients with colorectal cancer, with a lower percentage of stage I
and stage II patients than our study (CancerSEEK: 69%; our
study: 82%)42. Whereas we achieved a better sensitivity (Can-
cerSEEK: 65%; our cohort: 71 and 74%), the CancerSEEK study
reported a high specificity for the entire study cohort of 99%42.
Another study, which employed size profiling of ctDNA mole-
cules and machine learning, described a lesser specificity than
ours of 65% in samples from low-ctDNA cancers (pancreatic,
renal, and glioma)43. In future applications, it will be interesting
to test whether multiparameter strategies, combining different,
orthogonal approaches, will result in an improved sensitivity and
specificity of plasma-based early cancer detection10.

Another limitation is that our TF nucleosome interaction maps
are inevitably heterogeneous, comprising signals of all cell types
that give rise to cfDNA. Furthermore, using all 504 TFs in our
logistic regression model does not make our strategy specific for
colon cancer. Further work will be required to identify distinct
TFs subsets that are specific for different tumor types.

Nevertheless, tumor studies lack dynamic models, and, in
particular, dynamic profiling of clinical samples, for exploring
transitions and interplays between pathways. Because of the
potential of TFs regulating gene transcription throughout the
genome and their often exquisite lineage specificity, their detailed
noninvasive analyses based on cfDNA offer a unique opportunity
to improve clinical diagnostics. Our data also provide the foun-
dation for further dissection of the noncoding genome through
means of transcription regulation profiling.

Methods
Patients. The study was approved by the Ethics Committee of the Medical Uni-
versity of Graz (approval numbers 21-227 ex 09/10 [breast cancer], 21-228 ex 09/10
[prostate cancer], 21-229 ex 09/10 [colorectal cancer], and 29-272 ex 16/17 [high-
resolution analysis of plasma DNA]), conducted according to the Declaration of
Helsinki and written informed consent was obtained from all patients and healthy
probands, respectively.

Retrospective human plasma samples from patients with colon cancer
(Freenome cohort) were acquired from five biobanks for patients diagnosed with
COAD and healthy controls. All plasma samples used in this analysis were de-
identified prior to receipt, with no key available to re-identify.

Blood sampling and library preparation. Peripheral blood was collected from
patients with metastatic prostate, breast, and colon cancer at the Department of
Oncology and from anonymous healthy donors without known chronic or malignant
disease at the Department of Hematology at the Medical University of Graz. CfDNA
was isolated from plasma using the QIAamp Circulating Nucleic Acids kit (QIAGEN,
Hilden, Germany) in accordance with the manufacturer’s protocol. Regarding library
preparation for WGS, we generated shotgun libraries using the TruSeq DNA Sample
preparation Kit (Illumina, San Diego, CA, USA) according to the manufacturer’s
protocol with the following modifications: (i) we used 5–10 ng of input DNA; (ii) due
to the length of ctDNA we omitted, the fragmentation step; (iii) for selective
amplification of the library fragments, we used 20–25 PCR cycles. Libraries were
quality checked on a Bioanalyzer (Agilent) and quantified using qPCR31.

For the Freenome cohort, cfDNA was extracted from 250 μl plasma using the
MagMAX cfDNA Isolation Kit (Applied Biosystems) and converted into libraries
using the NEBNext Ultra II DNA Library Prep Kit (New England Biolabs).

Tumor fraction was estimated in each sample using ichorCNA39 from read
counts in 50-kilobase (Kb) bins across the entire genome. In addition 50 kb-bin
counts were GC-normalized and normalized by a panel of normal samples using
tangent normalization.

Sequencing. Control and high-coverage tumor samples were sequenced on the
Illumina NovaSeq S4 flowcell at 2 × 150 bp by the Biomedical Sequencing Facility
at CeMM, Vienna, Austria. For the control samples, an average of 435,135,450
(range: 352,904,231–556,303,420) paired-end reads were obtained. For the tumor
samples (P40_1, P40_2, P147_1, P147_3, P148_1, P148_3, C2_6, C2_7), an average
of 688,482,253 reads (range: 541,216,395–870,285,698) were sequenced. Additional
samples were sequenced using the Illumina NextSeq platform (B7_1, B13_1,
P190_3, P170_2, P179_4, P198_5, P240_1; average sequencing yield: 195,425,394
reads; range: 115,802,787–379,733,061).

Low-coverage tumor samples which were used to create single-entity pools were
sequenced on either the Illumina Next-Seq or MiSeq platform. This resulted in
382,306,130 reads from 69 prostate cancer samples; 254,490,128 reads from 60
breast cancer samples and 604,080,473 reads from 100 colon cancer samples.

Samples from the Freenome cohort were paired-end sequenced on the Illumina
NovaSeq platform.

Characterization of plasma samples. Some plasma samples, i.e., of patients B7
and B136 and P40, P147, and P14833 were previously analyzed within other studies.
From these analyses, we had information regarding mutations, specific SCNAs, and
tumor content of the plasma samples based on the algorithm ichorCNA39.

P40: Mutations: BRCA1: NM_007294: Q975R; specific SCNAs: TMPRSS2-ERG
fusion; AR amplification in sample 2; chr12 amplification (containing ARID2,
HDAC7); tumor content: P40_1: 30%; P40_2: 24%;

P147: Mutations: BRCA2: T298fs; TP53: F338I; specific SCNAs: RET
amplification in sample 3; AR amplification; BRAF amplification (7q34); PTEN
loss; tumor content: P147_1: 52%; P147_3: 73%;

P148: Mutations: TP53: R213X; specific SCNAs: MYC amplification; PTEN loss;
FOXP1, RYBP, SHQ1 loss; TMPRSS2-ERG fusion; AR amplification (lost in
P148_3); tumor content: P148_1: 38%; 148_3: 49%.

C2: specific SCNAs: high-level amplification on chromosome 12 (KRAS) in
C2_6, not visible in C2_7; tumor content: C2_6: 18%; C2_7: 28%.

Selection of TFs. To select TFs with high-confidence information, we used the 676
TFs contained in the Gene Transcription Regulation Database (GTRD; Version
18.01; http://gtrd.biouml.org)11, which provides detailed TFBS information based
on ChIP-seq data for a variety of tissue samples. We annotated these TFs with an
up-to-date curated list of 1639 known or likely human TFs (http://humantfs.ccbr.
utoronto.ca/; version 1.01)1. Because of the potentially high number of TFBSs per
TF, we employed stringent criteria and restricted our analyses to TFs with 1000
TFBSs which were supported by the majority of tissue samples in the GTRD. In
total, 172 TFs had fewer than 1000 defined sites in the GTRD and were thus
omitted, resulting in 504 TFs amenable to analysis (Supplementary Data 1).

Transcription factor binding site definitions. The data from the GTRD database
were downloaded (http://gtrd.biouml.org/downloads/18.01/human_meta_clusters.
interval.gz), and individual BED files per TF were extracted. The position was
recalculated by focusing on the reported point where the meta-cluster has the
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highest ChIP-seq signal. The top 1000 sites that were supported by most of the
analyzed samples were extracted (1000-msTFBSs). All BED files were then con-
verted to hg19 (from original hg38) using the liftOver tool provided by UCSC.

For the Freenome cohort, BED files were left in hg38 coordinates and regions
spanning the ENCODE blacklist were removed.

Transcription factor binding site overlaps. In order to check whether binding
sites of TFs overlap, regions of the binding sites from GTRD were increased by 25,
50, and 100 bp, respectively, on either side using bedtools slop. Subsequently, the
extent of overlap was calculated by using bedtools intersect via pybedtools for every
transcription factor with every other transcription factor.

ATAC-seq data analyses hematological samples. Raw ATAC-seq data were
downloaded from hematological cells from the Gene Expression Omnibus
(Accession: GSE74912). The full count matrix was divided by sample. Next, all
reads of bins that overlap defined binding sites of a respective transcription factor
were summed and divided by the number of total reads within this sample.

ATAC-seq data analyses cancer samples. Raw ATAC-seq data matrices of
TCGA samples were downloaded for colon adenocarcinoma, prostate carcinoma
and breast carcinoma samples (https://api.gdc.cancer.gov/data/f0094e76-4a80-
4ee1-9ad0-8ffb94aff5f7). Again, data were divided by sample and bins that overlap
a specific transcription factor are summed up and divided by the total amount of
reads for a specific sample.

Analysis of entity-specific TFs. Since raw ATAC-seq counts were only available
for bins where at least one peak was identified, the total number of bins available
for analyses diverged between hematological samples and cancer samples. Hence,
transcription factor accessibilities from the former analyses were again normalized
by the mean accessibility values for that class to correct for that. Finally, for every
tumor entity (colon, prostate, and breast carcinoma), transcription factor accessi-
bilities were compared with hematological samples by two-tailed Mann–Whitney
U tests, mean ratios, and effect sizes (by Cohen’s D).

Sequencing data preparation. In order to enhance the nucleosome signal, reads
were trimmed to remove parts of the sequencing read that are associated with the
linker region. Hence, forward reads were trimmed to only contain base 53–113
(this would correspond to the central 60 bp of a 166 bp fragment). Reads were then
aligned to the human hg19 genome using bwa and PCR duplicates were removed
using samtools rmdup. Average coverage is calculated by bedtools genomecov.

For the Freenome cohort, reads were aligned to the human hg38 genome using
BWA-MEM 0.7.15. Midpoints of paired-end reads were extracted and average
midpoint counts at transcription factor binding sites (+/−1250 bp) were calculated
per transcription factor. In order to better compare the data to the aforementioned
samples, a running median (window size= 30) was applied to the data using the
numpy.convolve function in a single dimension.

MNase-seq data preparation. BAM files of MNase-seq experiments of GM12878
were downloaded from the ENCODE portal. Reads in BAM files were trimmed
directly from the BAM file using pysam. In brief, left-most alignment positions in
the BAM file were shifted 53 bp in the respective direction, and the sequence length
was adjusted to 60 bp. The coverage patterns were then calculated in the same way
as the trimmed cfDNA sequencing data.

Coverage patterns at transcription factor binding sites. For every transcription
factor in the GTRD, coverage patterns were calculated. To this end, coverage data
were extracted for every region using pysam count_coverage in a region ±1000 bp
around the defined binding sites. Coverage data at every site were normalized by
regional copy-number variation and by mean coverage. For every position around
the TFBS, coverage was averaged, and 95% confidence intervals were calculated.

Measurement of transcription factor accessibility using Savitzky–Golay fil-
ters. As we hypothesized that two distinct signals make up the coverage pattern,
two signals of different frequencies were extracted. The lower range frequency data
were extracted by a Savitzky–Golay filter (third-order polynomial and window size
of 1001). A high-frequency signal was extracted by a different Savitzky–Golay filter
(third-order polynomial and window size of 51). The high-frequency signal was
then normalized by division by the results of the low-frequency signal. Subse-
quently, the data range of the high-frequency signal was recorded. Since coverage
profiles from TFs with few described binding sites are inherently noisier, a LOESS
smoothing was performed over the signal range and the amount of described
binding sites. The range values were corrected by the smoothed LOESS, and ranks
of the adjusted range were calculated.

Comparing tumor and control samples. In order to compare tumor and control
samples, the ranks of the respective TFs in the adjusted range values were compared.
Rank differences were calculated between a tumor sample and every control sample,

and mean rank differences were recorded. Moreover, z-scores were calculated for
every transcription factor from the accessibility ranks by taking the respective rank
and subtracting the mean rank of the control samples and dividing by the standard
deviation of the transcription factor ranks of the control samples (RankDiff z-scores).
In another round, z-scores were calculated for the overall deviation of transcription
factor accessibility in two samples. To this end, accessibility values of each of the 24
healthy samples were compared with the remaining 23, and the rank difference was
recorded. The rank differences were used to estimate a normal distribution, and z-
scores for the rank differences over all TFs were calculated (overall z-scores).

Analysis of paired samples. In order to compare subsequent samples from the
same patient, we performed pairwise comparisons of every combination of the 24
healthy samples in order to estimate the variability of paired comparisons. The
mean and standard deviation of these differences were then used to calculate z-
scores of accessibilities of paired samples. Briefly, rank differences between the
paired samples were calculated and z-scores of this difference were calculated.

DNase hypersensitivity data analysis. BAM_files from DNase hypersensitivity
experiments were downloaded from the ENCODE database for GM12878, LNCaP,
and HCT116 cell lines. Binding site regions of a transcription factor were increased
by 25 bp on either side using bedtools slop. Coverage at the respective binding sites
was extracted using mosdepth and normalized by million mapped reads per sample.

Analysis of somatic copy-number alterations (SCNAs). For control data,
paired-end alignments were subsampled using samtools view to only include 2% of
the initial alignments and converted to FastQ using samtools fastq. For the cancer
samples, separate low-coverage WGS was performed. Plasma-Seq31 was applied to
the subsampled FastQ files and the low-coverage data of the cancer samples,
respectively. In brief, reads were aligned to the human hg19 genome, and reads
were counted within pre-specified bins. The bin size was determined by the amount
of theoretically mappable positions to account for differences in mappability
throughout the genome. Read counts were normalized for total amount of reads,
and GC content of bins were corrected for by LOESS smoothing over the GC
spectrum. Moreover, corrected read counts were normalized by the mean read
counts of noncancer controls per bin to control for additional positional variation.

Allele faction threshold estimation. Accessibilities in colon cancer samples were
compared with healthy samples for TFs where evidence of tumor-specific increases
and decreases in accessibility was observed in former analyses. Two-tailed
Mann–Whitney U tests were performed to compare healthy and cancer samples, as
well as subsamples of the cancer data set, based on the respective tumor fraction, as
estimated by ichorCNA39.

Logistic regression. In order to classify samples, logistic regression was applied to
the accessibility values of all 504 TFs in 971 samples (373 control samples and
598 samples of cancer patients). To this end, the LogisticRegressionCV from the
scikit-learn package was applied using fivefold cross-validation and balanced class
weights to correct for the slightly unbalanced sample set. In 100 permutations,
samples were split into training and test sets. Training samples were used to
establish the model whereas (held-out) test sets were used to estimate the actual
performance of the model. Mean performance metrics, as well as ROC curves
(based on the prediction probabilities of the LogisticRegression) of the models were
calculated from the 100 permutations.

Pairwise comparison of plasma samples. To address the question whether TF
accessibility remains stable over time, we also analyzed two samples each from
patients P40, P147, and C2. However, with our very stringent criteria, we did not
observe significant differences in these plasma sample pairs (Supplementary Fig. 6).

Between P147_1 and P147_3, a novel, high-amplitude amplification including
the RET gene evolved, whereas C2_7 had lost an amplification including KRAS,
which we had observed in the previous sample C2_6. RET in prostate cancer and
KRAS in CRC may affect the PI3K/AKT/mTOR pathway44, and we therefore
investigated downstream targets such as the TF CREB. However, the accessibility
was not different from the control plasma samples, and furthermore remained
unchanged. Between P40_1 and P40_2, resistance against androgen deprivation
therapy (ADT) had evolved, which was reflected in a high-level amplification of the
AR gene45. However, if AR expanded its repertoire of transcriptional targets, it did
not become apparent (Supplementary Fig. 6). Our very conservative approach
limiting the analyses to TFs with 1000 TFBSs may explain why we may not have
observed differences between these samples.

Determination of NSE and PSA. Neurospecific enolase was measured by a
commercially available automated sandwich-based ELISA test (Elecsys 2010,
Roche, Germany) with a range from LLD of 0.050 to ULD of 370 ng/ml and a
reference range from 15.7–17 ng/ml. Inter- and intraassay variances were described
with 3.9 and 2.5%, respectively.

PSA was determined by the commercial ARCHITECT Total PSA Assay (Abbot
G47859R06), according to the manufacturer’s instructions.
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Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
ATAC-sequencing count matrices of tumors are available from the Genomics Data
Commons database [https://api.gdc.cancer.gov/data/47ae33ac-e7ed-488e-88c6-
335deccd8712] and ATAC-seq data of hematological cells can be found at the Gene
Expression Omnibus with the following accession: GSE74912. Shotgun sequencing data
of cfDNA samples pertaining to individual (late-stage) cancer samples, cfDNA pools and
24 controls are available from the European genome-phenome archive database under
the accession codes EGAS00001003206. BAM files from DNase hypersensitivity
experiments were downloaded from the ENCODE database for GM12878 under the
following accessions: ENCFF775ZJX, ENCFF783ZLL, LNCaP under the following
accessions: ENCFF002PZG, ENCFF016VTV and HCT116 cell lines under the following
accessions: ENCFF081DDV, ENCFF291HHS [https://www.encodeproject.org/search/?
type=Experiment&assay_title=DNase-seq]. Sequencing data from control and patient-
derived cfDNA from the Freenome cohort are available in Zenodo under the https://doi.
org/10.5281/zenodo.2557515. Use of this data is restricted to academic users. All the
other data supporting the findings of this study are available within the article and its
supplementary information files and from the corresponding author upon reasonable
request. A reporting summary for this article is available as a Supplementary
Information file.

Code availability
Code is available in GitHub at https://github.com/PeterUlz/TranscriptionFactorProfiling.
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