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We investigate a systematic approach to include curvature corrections to the isometry

algebra of flat space-time order-by-order in the curvature scale. The Poincaré algebra

is extended to a free Lie algebra, with generalised boosts and translations that no

longer commute. The additional generators satisfy a level-ordering and encode the

curvature corrections at that order. This eventually results in an infinite-dimensional

algebra that we refer to as Poincaré∞, and we show that it contains among others

an (A)dS quotient. We discuss a non-linear realisation of this infinite-dimensional

algebra, and construct a particle action based on it. The latter yields a geodesic

equation that includes (A)dS curvature corrections at every order.
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1 Introduction

The laws of elementary particle physics are relativistic to very high precision. This is described

by Minkowski geometry whose isometries span the Poincaré algebra that provides the underlying

kinematical structure for the vast majority of field theories. However, in a gravitational context,

Minkowski space is replaced by a curved space-time1 and a range of astronomical and cosmo-

logical observations indicate that we live in an expanding and accelerating space-time. To very

good accuracy (see e.g. [1], and modulo the currently emerging Hubble tension), its evolution

is described by Λ-CDM, whose dominant component is a very small and positive cosmological

constant (of the meV order). In the absence of matter (which will be redshifted in the future

and become more and more negligible), the resulting space-time would be de Sitter.

The smallness of the cosmological constant in Planck units implies that the de Sitter isome-

tries are a small perturbation of the Poincaré ones. In this paper, we aim to investigate such

corrections to Poincaré isometries: what structures do these give rise to, what are symmetries

of these structures and can we systematically describe these?

1Whether or not the mere notion of space-time remains appropriate at very high energies and curvatures is

open.
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The hallmark of a curved space-time is that covariant derivatives no longer commute. In the

case of de Sitter this is expressed in the global isometry algebra by

[Pa, Pb] =
σ

R2
Jab , (1.1)

where translations generate Lorentz transformations. In the above relation, we have introduced

a parameter σ = ±1 that allows us to treat the de Sitter (σ = −1) and Anti de Sitter case

(σ = +1) on the same footing.2

Our investigation parallels to some extent the inclusion of the speed of light corrections in

Galilean theories, see for example [2–11]. In this (non-)relativistic case we have two distinct

ways of understanding the symmetry algebra. Starting from the relativistic Poincaré algebra,

one can perform an algebra contraction to the non-relativistic Galilei algebra. Instead, starting

from the Galilei transformations one can include relativistic corrections at every order in 1/c.

With corrections up to a finite order, this system has neither Galilei nor Poincaré symmetry.

Only when including an infinite set of corrections, with specific coefficients, does one regain

the Poincaré symmetry. However, it has recently been argued that the finite-correction-case

has a symmetry algebra, but this requires enlarging the space on which the algebra acts. The

Galilei algebra appears as a simplest quotient of this algebra, while taking bigger quotients one

obtains the non-relativistic algebras studied in [6–10, 12, 13]. When including corrections at all

orders, this becomes an infinite-dimensional algebra [7,8,13,14]. The Poincaré algebra arises as

a finite-dimensional quotient of this.

We shall demonstrate that an analogous structure governs the (A)dS curvature corrections

to Poincaré. Starting from the commuting translations Pa we build up an algebra structure

where the most general commutators allowed by Lie algebra cohomology are included. The

resulting free Lie algebra, called Maxwell∞, is infinite-dimensional and has already appeared

in [15,16] in the context of electro-magnetism. We here show how to identify a quotient of this

algebra that corresponds to a small curvature expansion of (A)dS space. This quotient is also

infinite-dimensional.

The structure is similar to [10] in that we can describe the same quotient as a Lie algebra

expansion [17–19] of the (A)dS algebra, which can be thought of as systematically including

1/R-corrections where R is a generic length that characterises the scale of the curvature, as

shown in (1.1). In the non-relativistic case the same was achieved for 1/c-corrections. For the

de Sitter case, the scale R here is related to the Hubble parameter of the accelerating Universe.

Asymptotically in the expansion method, this results in an infinite-dimensional algebra that is

an extension of the original Poincaré starting point. It includes an infinite number of generalised

translations and Lorentz transformations. This situation is similar to the non-relativistic results

of [7, 14,20]. Appropriately identifying the generators at different levels gives rise to the (A)dS

algebra, which is therefore a quotient of the infinite-dimensional algebra.

Turning to dynamics, we use the method of non-linear realisation [21–30] to construct particle

actions governed by the extended Poincaré algebra Poincaré∞, and show how these include the

2In the main body of the paper we will use the convention that the translation generators are dimensionless

by absorbing the length scale into the generators. The algebra in this convention is given in appendix A.
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effect of curvature order-by-order. Independent of the choice of coefficients, this allows one

to construct the (Anti) de Sitter corrections. We show that the particle in this case includes

the geodesic equation of (Anti) de Sitter. This demonstrates how the subsequent inclusion of

curvature corrections interpolates from the Poincaré to (Anti) de Sitter case.

This paper is organised as follows. We first study the most general extension of the Poincaré

algebra when allowing for non-commuting translations and how they generate the infinite-

dimensional algebra Maxwell∞. We then consider a quotient to another infinite-dimensional

algebra Poincaré∞ and show that it agrees with the Lie algebra expansion method applied to

the (A)dS algebra, giving the first hint of connections to curved space-time. A certain non-linear

realisation of the Poincaré∞ symmetry is then studied in section 3, where we also relate the re-

sulting coset space M∞ to flat space and (A)dS. In section 4, we study particle dynamics on

M∞ and show how it can be understood as a systematic 1/R expansion of the (A)dS geodesic

before concluding. Some relevant standard results on (A)dS are collected in an appendix.

2 The Poincaré∞ algebra

In this section we consider the most general extension of the Poincaré algebra in order to capture

curvature corrections to the flat space-time case. This will lead to an infinite-dimensional algebra

with a close relation to the (A)dS algebra. For the benefit of the reader we summarise a number

of relevant points of the (A)dS algebra in appendix A.

2.1 Free Lie algebras and Maxwell∞

As mentioned in the introduction, one hallmark of both non-trivial gauge or geometric connec-

tions is that the corresponding covariant derivatives no longer commute. This is clear for the

case of (A)dS space where one still has global isometries but now the corresponding translations

are non-commuting, see (A.1). In contrast, the isometries of the flat space-time case are given

by the D-dimensional Poincaré algebra iso(D − 1, 1), with3

[Jab, Jcd] = 2ηc[bJa]d − 2ηd[bJa]c , [Jab, Pc] = 2ηc[bPa] , [Pa, Pb] = 0 , (2.1)

We will take this as our starting point, and in order to allow for non-commuting translations we

will introduce the most general extension of the Poincaré algebra.

Such extensions are classified by Lie algebra cohomology, and the most general possibility

for the Poincaré case is [15]

[Pa, Pb] = Zab , (2.2)

where the Lorentz tensor Zab is only constrained to be antisymmetric but is otherwise completely

arbitrary. Note that this is a non-central extension due to the non-trivial Lorentz character of

Zab. At this level we have also [Zab, Pc] = 0. This extension of the Poincaré algebra is known

3Lorentz vector indices are a = 0, . . . , D− 1 and we use the Minkowski metric ηab = diag(−++ . . .+) to raise

and lower indices.
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as the Maxwell algebra, and arises as the symmetry of a charged particle moving in a constant

electro-magnetic background Fab [31], see also [32,33].

The (A)dS algebra (A.1) also has non-commuting translations. Due to the similarity with (2.2)

one might be tempted to consider the identification of Zab = Jab as a quotient of Maxwell leading

to the AdS isometry (σ = +1).4 However, this kind of identification is inconsistent at this point:

the relation Zab − Jab that we wish to set to zero does not form an ideal of the algebra (as it

commutes with P into P ) and therefore forces additional relations and the quotient by these

relations is not the AdS algebra.

There is, however, an approximate sense in which this is true. When including the relevant

length scales, P has the dimension of inverse length, and Z therefore scales as 1/R2. The

aformentioned commutator between Zab−Jab and Pc therefore only generates AdS generators up

to order 1/R3 generators (as we will show in the next paragraph), and is therefore an approximate

quotient. This suggests that one can continue the extension process to asymptotically attain

(A)dS as a quotient.

Following this route and systematically including higher-order corrections to the Poincaré

algebra, one can relax the condition that [Zab, Pc] = 0 and include two further extensions here:

[Zab, Pc] = Yab,c + 2ηc[bYa] . (2.3)

We will use irreducible Lorentz representations throughout; hence Yab,c = Y[ab],c is traceless

(ηbcYab,c = 0) and has mixed symmetry (Y[ab,c] = 0).

A putative AdS quotient at this stage would be to identify Zab = Jab and Ya = Pa, and to set

Yab,c equal to zero. The commutator of translations with Zab−Jab now generates Ya−Pa, which

is also quotiented out. However, commuting translations with Ya−Pa itself gives rise to Zab, and

thus the three truncated generators do not form an ideal. In line with the previous discussion,

however, the problem now only arises at order 1/R4, while the previous 1/R3 problem was solved

by the introduction of the Y s. This suggests that continuation ad infinitum does allow for an

AdS quotient.

Indeed such a structure is algebraically possible at higher order, with more and more irre-

ducible representations of the Lorentz algebra added, triggering an infinite sequence of exten-

sions [15]. It was shown in [16] that repeating this process ad infinitum produces the semi-direct

product of the Lorentz algebra with the free Lie algebra generated by the translations Pa. We

shall refer to the resulting algebra as Maxwell∞ as in [16]. Moreover, the extension process nat-

urally suggests the notion of ‘level’ ℓ that counts how many Pa one has to commute in order to

produce the generator on the right-hand side. In this sense the generator Zab of (2.2) is ℓ = 2.

Higher levels can be generated using the techniques reviewed in [16]. We shall also use the

convention that ℓ = 0 contains the Lorentz generators Jab. The first few levels are summarised

in table 1. We shall denote the algebra obtained by retaining all generators on levels up to and

including ℓ by Maxwellℓ.

4As we will see in more detail below, the dS case is related to taking a different real slice of the complexified

Maxwell algebra. This slice corresponds to taking Pa → iPa which changes the sign in (2.2).

4



level ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4 · · ·

so(D − 1, 1) irreps

• · · ·

Table 1: The Young tableaux of irreducible Lorentz representations that appear at the lowest

levels 0 ≤ ℓ ≤ 4 of Maxwell∞. The • represents the trivial representation of the Lorentz algebra,

and the tableaux represent fully traceless representations.

The notion of level agrees with the scaling behaviour of generators that we have discussed

above. A generator at level ℓ scales as 1/Rℓ and therefore it is reasonable that, in order to have

an exact expression such as the full (A)dS algebra, one has to go to infinite level.

It was shown in [16], extending results of [15], that the resulting infinite-dimensional Lie

algebra Maxwell∞ admits a quotient to another infinite-dimensional Lie algebra that captures

the Taylor expansion of the Lorentz equation of a charged particle in an arbitrary, x-dependent

electro-magnetic background field that is not necessarily constant. This extends earlier work

on the further truncation to the algebra only involving ℓ ≤ 2, i.e. stopping with the commuta-

tor (2.2), that corresponds to restricting to constant electro-magnetic fields [31,33].

2.2 Quotient to Poincaré∞

Besides the electro-magnetic quotient, the algebra Maxwell∞ admits another quotient [14] that

amounts to keeping only a subset of the Lorentz irreducibles shown in table 1. These Lorentz

irreducibles consist of an infinite alternating sequence of vector and antisymmetric generators

that we shall denote by

J
(m)
ab (m ≥ 0) and P (m)

a (m ≥ 0) (2.4)

where the J
(m)
ab are the generators arising for even ℓ in table 1 while the P

(m)
a are the ones with

odd ℓ. Moreover, we have length dimensions

[

J
(m)
ab

]

= L−2m ,
[

P (m)
a

]

= L−2m−1 , (2.5)

for the different generators.

In order to cover both the dS and the AdS case, we complexify the Lie algebra spanned by

these generators and consider two different real forms of the complex algebra. Our convention

for AdS is such that J
(0)
ab = Jab and P

(0)
a = Pa. For the next levels this means J

(1)
ab = Zab and

P
(1)
a = Ya etc. For the dS case we rotate all the odd levels by the imaginary unit i relative to

the AdS case, i.e., we take P
(m)
a → iP

(m)
a , see also footnote 4. This turns out to yield a different

real form of the same complexified algebra based on the generators (2.4).
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The commutation relations in both cases can be determined because this quotient is also

related to an affine Kac–Moody algebra [14] and they read5

[

J
(m)
ab , J

(n)
cd

]

= 2ηc[bJ
(m+n)
a]d − 2ηd[bJ

(m+n)
a]c ,

[

J
(m)
ab , P (n)

c

]

= 2ηc[bP
(m+n)
a] , (2.6)

[

P (m)
a , P

(n)
b

]

= σJ
(m+n+1)
ab .

This algebra has appeared in [14] and in a non-relativistic split in [7, 20]. We shall call it the

Poincaré∞ algebra as it represents an infinite extension of the Poincaré algebra (2.1).

We shall group together all even levels g2m, consisting of the generators J
(m)
ab and call them

the generalised Lorentz algebra6

L∞ =

∞⊕

n=0

g2n , (2.7)

while the odd levels will be referred to as generalised translations

T∞ =
∞⊕

n=0

g2n+1 . (2.8)

As a vector space decomposition we therefore have

Poincaré∞ = L∞ ⊕ T∞ . (2.9)

However, this is not a direct sum of Lie algebras as is clear from (2.6): The generalised Lorentz

algebra L∞ is a closed Lie algebra that acts in a linear representation on the generalised trans-

lations T∞. The generalised translations T∞ do not commute and give back generalised Lorentz

transformations. The algebraic structure here is that of a symmetric space decomposition.

One can truncate this infinite-dimensional algebra at a finite level by considering suitable

quotients. The simplest quotient of Poincaré∞ is obtained by considering only the generators

J
(0)
ab and P

(0)
a while setting all generators with superscripts> 0 equal to zero. This then produces

an algebra isomorphic to the standard Poincaré algebra (2.1). The next level would be Maxwell2
with an additional J

(1)
ab generator, while at ℓ = 3 there is another translation etc.

Another quotient, that will be more relevant in this paper, was alluded to before and requires

the infinite-dimensional extension (2.6) of Poincaré; it fails to be a quotient when performed at

finite order. The algebra Poincaré∞ has an ideal that is generated by

P (0)
a − P (m)

a , J
(0)
ab − J

(m)
ab , ∀m > 0 . (2.10)

5We emphasise that the ‘mode numbers’ in (2.6) are only non-negative and so this represents more precisely a

parabolic subalgebra of a loop algebra. The central extension and the derivation operator (measuring the mode

number) of affine Kac–Moody algebras can be consistently quotiented out in this parabolic subalgebra and are

therefore not considered here.
6Using the same notion as here, the corresponding algebra in [10] would be called the generalised homogeneous

Galilei algebra.
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The resulting quotient is isomorphic to the (A)dS given in (A.1), with σ = +1 is related to AdS

and σ = −1 to dS.7

The commutation relations (2.6) can be written in dual form in terms of the Maurer–Cartan

one form Ω

Ω = g−1dg =

∞∑

m=0

(

ea(m)P
(m)
a +

1

2
ωab
(m)J

(m)
ab

)

. (2.11)

Here, g is a formal element of the the group obtained by exponentiating Poincaré∞. The

components of Ω satisfy the Maurer–Cartan equations

dea(m) +
∑

n,k≥0
n+k=m

ωa
(n)b ∧ eb(k) = 0 , (2.12)

dωab
(m) +

∑

n,k≥0
n+k=m

ωa
(n)c ∧ ωcb

(k) + σ
∑

n,k≥0
n+k+1=m

ea(n) ∧ eb(k) = 0 , (2.13)

which are a dual version of (2.6).

2.3 Expansion of (A)dS

As we will now demonstrate, the Poincaré∞ algebra (2.6) is isomorphic to the algebra obtained

by applying the Lie algebra expansion method [17–19] with an infinite semigroup [34] to the

(A)dS algebra. We shall consider the expansion method in the case when starting from a Lie

algebra g that possesses a Z2-grading. By this we mean a decomposition g = g0 ⊕ g1 such that

[gi, gj ] ⊂ gi+j , where the subscripts are taken modulo two.8 This is the case for the (A)dS

algebra (A.1) with g0 = 〈Jab〉 and g1 = 〈Pa〉. An infinite expansion can then be obtained by

considering a graded Lie algebra with9

g2m = g0 ⊗R−2m , g2m+1 = g1 ⊗R−2m−1 , (2.14)

where we have taken the tensor product with the ring of power series C[[R−1]]. The commutators

of the expanded algebra then act by the usual commutator on the first factor and by the abelian

product in the power series ring. The commutators in this graded algebra obey

[gi, gj] ⊂ gi+j (i, j ≥ 0). (2.15)

We shall denote the generators of the even and odd level spaces as follows

g2m : J
(m)
ab ≡ Jab ⊗R−2m and g2m+1 : P

(m)
a ≡ Pa ⊗R−2m−1 . (2.16)

7Alternatively, one can obtain AdS by quotienting out by the ideal P
(0)
a +(−)m+1P

(m)
a and J

(0)
ab +(−)m+1J

(m)
ab

of the σ = −1 case of Poincaré∞ (and similarly, a dS quotient from the σ = +1 case). However, these are related

to the identifications in the main text by redefinitions, and hence will not be separately considered.
8A given algebra g can admit several such gradings and more general situations with larger gradings can also

be considered [18,19].
9This is the infinite-dimensional generalisation of the Bn algebras introduced in [35] (see also [36,37]).
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The algebra that they satisfy agrees with the Poincaré∞ algebra in (2.6) that arises as a quotient

of Maxwell∞, which is why we have used the same notation. We thus find an equivalence between

the bottom-up extension of Poincaré and the top-down expansion of (A)dS10, and this is one of

the key points of this paper.

The above equivalence allows for a simple derivation of many properties of the Poincaré∞
algebra. An example is the classification of invariant tensors. Given the (A)dS invariant bilinear

form (A.4), the expansion method [19] can be used to the define an invariant tensor on Poincaré∞
as

〈J
(m)
ab , J

(n)
cd 〉 = 〈R−2m ⊗ Jab, R

−2n ⊗ Jcd〉 = µn+mR−2(m+n) (ηadηbc − ηacηbd) ,

〈P (m)
a , P

(n)
b 〉 = 〈R−2m−1 ⊗ Pa, R

−2n−1 ⊗ Pb〉 = σµn+m+1R
−2(m+n+1)ηab ,

(2.17)

where µm stands for an infinite set of real dimensionless constants. The free coefficients µm

correspond to the freedom of rescaling the P
(m)
a and J

(m)
ab for each m separately. That this

exhausts all choices of invariant bilinear forms on Poincaré∞ can be seen by making a general

ansatz 〈J
(m)
ab , J

(n)
cd 〉 = (ηadηbc − ηacηbd)αm,n and 〈P

(m)
a , P

(n)
b 〉 = ηabβm,n with symmetric αm,n

and βm,n. The Lorentz structure is determined by invariance under J
(0)
ab and evaluating invari-

ance under the remaining generators leads quickly to the form (2.17). We also note that the

most general tensor on the space of translations P
(m)
a that is invariant only under the generalised

Lorentz algebra agrees with the second line of (2.17) by a similar argument.

3 The Poincaré∞ coset

In this section we consider a certain coset of Poincaré∞ and its geometry in relation to Minkowski

and (A)dS space.

3.1 Non-linear realisation

The Poincaré∞ algebra represents an infinite generalisation of the Lorentz and translation gen-

erators. It is therefore natural to consider a non-linear realisation [21–30] of Poincaré∞ where

the local subgroup is generated by all J
(m)
ab , which corresponds to the maximal subalgebra in the

symmetric space decomposition (2.9). The corresponding coset space will be denoted by M∞

and is associated with the remaining generalised translation generators P
(m)
a for all m ≥ 0 and

a representative can be written locally as

g = exp

(
∞∑

m=0

xa(m)P
(m)
a

)

, (3.1)

by choosing a particular gauge for the local generalised Lorentz generators J
(m)
ab . In view of the

dimensions listed in (2.5), we see that the coordinates xa(m) on M∞ have dimensions [xa(m)] =

L2m+1 in order to make the argument of the exponential map dimensionless.

10It follows from the quotient (2.10) that the expansion of AdS has an AdS quotient; amusingly, footnote 7

implies that the expansion of AdS also has a dS quotient.
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The non-linear transformations of the individual coordinates under the generalised transla-

tions follow in the standard way from the coset construction. We do this by considering left multi-

plication by g0 and computing the effect infinitesimal transformation induced on the coordinates

via g0gh
−1 = exp

(∑∞
m=0(x

a
(m)+δxa(m))P

(m)
a

)
, where h−1 is a generalised Lorentz transformation

necessary to restore the gauge (3.1). For generalised translations g0 = exp
(∑∞

m=0 ǫ
a
(m)P

(m)
a

)

evaluating this leads to the following relation between ǫa(m) and δxa(m) for any m:

δxa(m) +
∑

k≥1

σk

(2k + 1)!

∑

m0,...,m2k≥0
m0+...m2k+k=m

[

(x(m2k) · x(m2k−1)) · · · (x(m2) · x(m1))δx
a
(m0)

− (δx(m2k) · x(m2k−1))(x(m2k−2) · x(m2k−3)) · · · (x(m2) · x(m1))x
a
(m0)

]

= ǫa(m) +
∑

k≥1

σk

(2k)!

∑

m0,...,m2k≥0
m0+...m2k+k=m

[

(x(m2k) · x(m2k−1)) · · · (x(m2) · x(m1))ǫ
a
(m0)

− (ǫ(m2k) · x(m2k−1))(x(m2k−2) · x(m2k−3)) · · · (x(m2) · x(m1))x
a
(m0)

]

. (3.2)

where x · y = xaηaby
b. Introducing the non-normalised quadratic projection operators

(mn)

Qa
b = x(m) · x(n)δ

a
b − xa(m)xb(n) , (3.3)

the solution to the (3.2) can be written as

δxa(m) = ǫa(m) +
∑

k≥1

(4σ)kB2k

(2k)!

∑

m0,...m2k≥0
m0+...+m2k+k=m

(m2km2k−1)

Qa
bk−1

Q
bk−1

bk−2
· · ·

(m2m1)

Qb1
b0

ǫb0(m0)
. (3.4)

in terms of the even Bernoulli numbers.11 This solution can be checked order-by-order. We shall

present an all-order argument in section 3.3 when we consider the connection to (A)dS space.

The calculation of the effect of an infinitesimal generalised Lorentz transformations is simpler

since they act linearly on the generalised coordinates with the explicit form

δxa(m) =
∑

m1,m2≥0
m1+m2=m

ǫab(m1)
ηbcx

c
(m2)

, (3.5)

with parameter ǫab(m). We shall see again that this transformation can be related to (A)dS space

in section 3.3.

11The Bernoulli numbers are given by the generating series t
et−1

=
∑

n≥0 Bn
tn

n!
. From this one can deduce the

formula Bn =
n
∑

k=0

k
∑

ℓ=0

(−1)ℓ
(

k

ℓ

)

ℓn

k+1
.
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3.2 Invariant metrics

In order to construct invariant metrics for the coset M∞, we turn to the Maurer–Cartan

forms (2.11) and evaluate them in the parametrisation (3.1). Evaluating the vielbein for M∞

leads to

ea(m) = dxa(m) +
∑

k≥1

σk

(2k + 1)!

∑

m0,...,m2k≥0
m0+...+m2k+k=m

(m2km2k−1)

Qa
bk−1

Q
bk−1

bk−2
· · ·

(m2m1)

Qb1
b0

dxb0
(m0)

(3.6)

using the non-normalised projectors (3.3). The second terms in (2.11) are the composite spin con-

nections arising from the generalised Lorentz symmetry; in complete analogy to the Poincaré case

these are not independent but can be expressed in terms of the coordinates of translations. Ex-

plicitly, one finds

ωab
(m) = −2

∑

k≥0

σk+1

(2k + 2)!

∑

m0,...,m2k+1≥0
m0+...+m2k+1+k+1=m

(
x(m2k+1) · x(m2k)

)
· · ·
(
x(m3) · x(m2)

)
x
[a
(m1)

dx
b]
(m0)

.

(3.7)

The Maurer–Cartan forms transform linearly under generalised Lorentz transformations ac-

cording to

δea(m) =
∑

n,k≥0
n+k=m

θab(n)ηbce
c
(k) . (3.8)

This formula is true in general and θab(n) is associated with the compensating generalised Lorentz

transformation of the non-linear realisation. For generalised translations this means that it

depends on the coordinates xa(m).

The Maurer–Cartan forms ea(m) can be used to construct an invariant metric for the coset

space M∞ = exp(Poincaré∞)/ exp(L∞) as12

ds2 = σR2
∞∑

m,n=0

ea(m)e
b
(n)〈P

(m)
a , P

(n)
b 〉 , (3.9)

where 〈 , 〉 us an invariant metric whose most general form was given in (2.17). It can be expanded

as

ds2 =
∞∑

m=0

µmR−2mds2(m) , ds2(m) =
∑

n,k≥0
n+k=m

e(n) · e(k) . (3.10)

12We have included the factor R2 in front of the invariant line element to obtain the Minkowski metric as the

leading term both in the dS and the AdS case.
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where the line elements ds2(m) can be worked out as

ds2(0) = e2(0) = ηabdx
a
(0)dx

b
(0) ,

ds2(1) = 2e(0) · e(1) = 2ηabdx
a
(0)dx

b
(1) +

σ

3

(

x2(0)ηab − xa(0)xb(0)

)

dxa(0)dx
b
(0) ,

ds2(2) = e2(1) + 2e(0) · e(2)

= ηab

(

2dxa(0)dx
b
(2) + dxa(1)dx

b
(1)

)

+
2σ

3

(

x2(0)ηab − xa(0)xb(0)

)

dxa(0)dx
b
(1)

+
2σ

3

(
x(0) · x(1)ηab − xa(0)xb(1)

)
dxa(0)dx

b
(0) +

2x2(0)

45

(

x2(0)ηab − xa(0)xb(0)

)

dxa(0)dx
b
(0) .

...

(3.11)

It is useful to note that every line element can be written as

ds2(m) = g
(m)
AB dXA

(m)dX
B
(m) , (3.12)

where g
(m)
AB is a

(
(m+ 1)D

)
-dimensional metric tensor with coordinates XA

(m) = {xa(0) . . . , x
a
(m)}

The metrics g
(m)
AB are non-degenerate and define geometries with vanishing Ricci scalar, with

non-vanshing Riemann and Ricci tensors. Given a finite truncation of Poincaré∞ spanned by

generators P
(0)
a , . . . , P

(N−1)
a , and J

(0)
ab , . . . , J

(N)
ab , an invariant metric 〈P

(m)
a , P

(n)
b 〉 for the trans-

lation generators can be obtained from (2.17) by setting µm>N = 0, and it is non-degenerate for

µN 6= 0.

3.3 Relation to Minkowski and (A)dS space

We now discuss how the infinite-dimensional generalised space M∞ with coordinates xa(m) given

in (3.1) relates to known D-dimensional space-times, in a spirit similar to [10]. The basic idea

is to define a family of hypersurfaces of co-dimension D by imposing D linear relations on

the coordinates xa(m). A point of the D-dimensional space-time is then identified with a full

hypersurface and the symmetries of the D-dimensional space-time relate different hypersurfaces

to each other. In particular, this means that motion within the hypersurface is invisible to an

observer who has only access to the D-dimensional space-time which is a quotient space of the

infinite-dimensional space M∞ by the hypersurface.

The first, somewhat trivial, example of such a family of hypersurfaces we consider is

za = xa(0) , (3.13)

so that the hypersurfaces are labelled only by the coordinate xa(0) and the values of the xa(m)

with m > 0 can take any value and are unconstrained. Note that za has dimension of length

according to dimensions of the xa(m) discussed below (3.1).

Let us consider how the symmetries (3.4) act on the za. Due to (3.13) we only need to

consider what happens to xa(0), the motion within the hypersurface corresponding to the other

11



coordinates xa(m) for m > 0 is irrelevant. Clearly, (3.4) reduces to

δza = ǫa(0) + ǫab(0)zb , (3.14)

exactly the usual Poincaré transformations, telling us that (3.13) corresponds to identifying

Minkowski space as a quotient of the infinite-dimensional M∞. Since none of the higher gener-

ators of Poincaré∞ have an effect on za, we can also consider the quotient algebra of Poincaré∞
by all generators P

(m)
a and J

(m)
ab for m > 0. This quotient is isomorphic to the usual Poincaré

algebra.

The second example of a family of hypersurfaces that we consider is defined by the relation13

xa =

∞∑

m=0

R−2m−1xa(m) . (3.15)

Note that this xa is dimensionless. We can again consider the effect of a transformation (3.4)

on xa, leading to

δxa =
[
δab + (r coth r − 1)Pa

b

]
ǫb + ǫabxb , (3.16)

where r2 = σxaηabx
b and

ǫa =
∑

m≥0

R−2m−1ǫa(m) , ǫab =
∑

m≥0

R−2mǫab(m) (3.17)

are collective parameters formed out of the individual parameters appearing in (3.4). We em-

phasise that the transformation (3.16) is valid for any choice of individual parameters ǫa(m) when

they are combined into the collective expressions (3.17). Here, we have also introduced the

projector

Pa
b = δab −

xaxb
x2

, Pa
cP

c
b = Pa

b . (3.18)

The transformation agrees precisely with the transformation (A.9) of the coordinates of (A)dS

space in the coordinates introduced in appendix A. As shown there, the translation part of the

transformation (3.16) is determined by the condition (A.11)

[
δab + (cosh r − 1)Pa

b

]
ǫb =

[

δab +

(
sinh r − r

r

)

Pa
b

]

δxb . (3.19)

Expanding this condition using (3.15) and (3.17) as well as

r2k = σk





∞∑

m,n=0

R−2(m+n)x(m)·x(n)





k

= σk
∞∑

m1,...,m2k=0

R−2
∑2k

i=1 mi(x(m1)·x(m2)) · · · (x(m2k−1)·x(m2k)) ,

(3.20)

13This expansion is similar to what was done in [5,7,10,11] in a 1/c expansion for non-relativistic systems.
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one recovers from this condition the equation (3.2). As (3.19) determines (3.16), the solution

to the expanded version (3.2) of (3.19) can be determined by expanding (3.16). Doing this and

using

r coth r =
∞∑

k=0

4kB2k

(2k)!
r2k , (3.21)

we deduce (3.4). This shows that the non-linear realisation of Poincaré∞ is linked to the sym-

metries of (A)dS space if one makes the formal expansion (3.15) and (3.17). This situation is

similar to the one in [10] where the 1/c-expansion was considered except for the fact that now

the translations are non-commuting and the transformation laws are thus non-linear.

As the collective parameter (3.17) still has many individual parameters ǫa(m) it appears as if

the symmetry of (A)dS space is enlarged from the usual (A)dS algebra to an infinite-dimensional

algebra. However, the effective symmetry group acting on the quotient space is not bigger than

the (A)dS algebra since the effective transformation (3.16) on the collective coordinate is exactly

that of (A)dS space.

Similarly, by applying (3.15) in the (A)dS metric (A.7)

ds2(A)dS = gabdx
adxb , gab = ηab +

(
sinh2 r

r2
− 1

)

Pab , (3.22)

leads to the Poincaré∞ invariant metric (3.10).

Equations (3.13) and (3.15) represent only two possible choices of hypersurfaces for which we

have an immediate physical interpretation. Clearly, the space M∞ admits many other choices

in the same way that the algebra Poincaré∞ also has many other possible quotients. It would

be interesting to find other meaningful examples.

4 The Poincaré∞ particle

In order to construct a particle action that is invariant under the Poincaré∞ algebra using the

method of non-linear realisation [21–30], we will consider the most general quadratic expression

involving bilinear invariant tensors14; in other words, we base our particle action on the line

element (3.9):

S =
σR2m

2

∫

dτ
∞∑

m,n=0

ea(m)e
b
(n)〈P

(m)
a , P

(n)
b 〉 , (4.1)

where 〈 , 〉 stands for an invariant bilinear form (2.17) on the Poincaré∞ algebra. Here, the

pullback of the Maurer–Cartan forms for the generalised translations to the particle worldline is

understood and therefore we implement dxµ(m) → ẋµ(m) in the Maurer–Cartan forms ea(m). If we

restrict our analysis to Lagrangians that are quadratic in the Maurer–Cartan forms, the result

(4.1) is the most general action that is invariant under the generalised Lorentz algebra (2.7).

14One could construct more general actions using higher-order invariant tensors, but we expect these to be

subleading in an effective field theory expansion.
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An expansion of this action leads to the following expressions at lowest order:

S =

∞∑

m=0

µmR−2mSm , Sm =
m

2

∫

dτ
∑

n,k≥0
n+k=m

e(n) · e(k) , (4.2)

where

S0 =
m

2

∫

dτ ẋ2(0) ,

S1 = m

∫

dτ
[

ẋ(0) · ẋ(1) +
σ

3!

(

x2(0)ẋ
2
(0) −

(
ẋ(0) · x(0)

)2
)]

,

S2 = m

∫

dτ

[

1

2
ẋ2(1) + ẋ(0) · ẋ(2) −

σ

3
ẋ(0) · x(0)

(
ẋ(1) · x(0) + ẋ(0) · x(1)

)

+
σ

3

(

x2(0)ẋ(1) · ẋ(0) + x(0) · x(1)ẋ
2
(0)

)

+
x2(0)

45

(

x2(0)ẋ
2
(0) −

(
x(0) · ẋ(0)

)2
)
]

...

(4.3)

Note that the expression at each order is fully fixed by generalised Lorentz invariance. There

are however free overall coefficients µm at every order.

When turning to the equations of motion following from the full action, it turns out that the

values of these coefficients are completely irrelevant when we consider the summed action up to

some finite order N . The reason is that there is a telescopic (or Matryoshka) structure to the

equations of motion following from (4.2). Referring back to (3.6) we see that xa(N) only occurs

in ea(m) for m ≥ N and therefore only via ea(N) when the sum in (4.2) is truncated at N . In SN

it occurs only in the form SN ∝
∫
ẋ(N) · ẋ(0) + . . . and therefore

δSN

δxa(N)

∝ ẍa(0) (4.4)

enforces the equation of motion ẍa(0) = 0 irrespective of the value of µN (as long as it is non-zero

which we assume without loss of generality). When next computing the variation with respect

to xa(N−1) there are contributions from both SN−1 and SN :

δS

δxa(N−1)

= µNR−2N δSN

δxa(N−1)

+ µN−1R
−2(N−1) δSN−1

δxa(N−1)
︸ ︷︷ ︸

∝ ẍa
(0)

=0

≈ µNR−2N δSN

δxa(N−1)

(4.5)

and therefore the contribution from the next lower equation of motion vanishes on-shell, such

that the last equality only holds on-shell. Therefore the value µN−1 is irrelevant on-shell and

this implies that one can compute the full equations of motion simply from the highest action

SN occurring in a given truncation.
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Due to the above structure, the field equations take a universal form (independent of the

coefficients µm):

δxa(N) : ẍa(0) = 0 ,

δxa(N−1) : ẍa(1) =
2σ

3

(

ẋ2(0)x
a
(0) − ẋ(0) · x(0)ẋ

a
(0)

)

δxa(N−2) : ẍa(2) =
2σ

3

(

ẋ2(0)x
a
(1) + 2ẋ(1) · ẋ(0)x

a
(0) − x(0) · ẋ(0)ẋ

a
(1) −

d

dτ

(
x(0) · x(1)

)
ẋa(0)

)

+
2

45

(

x2(0)ẋ(0) · x(0)ẋ
a
(0) + 3x2(0)ẋ

2
(0)x

a
(0) − 4

(
ẋ(0) · x(0)

)2
xa(0)

)

. (4.6)

...

Since we are considering one-dimensional world-lines to explore the geometry of M∞ and

the same geometry is encoded in the Maurer–Cartan equations (2.12), we can also summarise

the equations of motion in these terms. Pulling back the Maurer–Cartan forms for ea(m) and ωab
(m)

to the world-line by replacing dxµ(m) → ẋµ(m) everywhere, the Maurer–Cartan equation implies

ėa(m) +
∑

n,k≥0
n+k=m

ωa
(n)be

b
(k) = 0 . (4.7)

This equation is completely equivalent to (4.6) when truncated at level N .

The above equation should be seen as the geodesic motion through the higher-dimensional

space-time spanned by all generalised coordinates. As we pointed out in section 3.3, there is

a linear combination of these (consisting of their weighted sum (3.15)) that transforms as AdS

coordinates under Poincaré∞ transformations. What dynamics is implied by the Poincaré∞
particle for this particular set of coordinates? The equations (4.6) can be put together into one

single equation for xa that reads

ẍa =
2σ

3R2

(
ẋ2xa − x · ẋẋa

)
+

2

45R4

(

x2x · ẋẋa + 3x2ẋ2xa − 4 (x · ẋ)2 xa
)

+ . . . (4.8)

As shown in appendix A.3 this is precisely the expansion of a particle moving in AdS space. This

underlines our perspective on the role of the higher-order generators: including these (and their

associated coordinates) allows one to iteratively build up the AdS geodesic equation, including

more and more curvature corrections as one goes further up in level.

At the first non-trivial level, one can see the known effect that AdS space acts like a confining

box by studying (4.8) up to order R−2. The first term on the right-hand side is transverse to

ẋa as can be checked easily. The leading order of the resulting motion can be written as

T a
bẍ

b =
2σẋ2

3R2
T a

bx
b +O(R−4) ,

(
δab − T a

b

)
ẍb = 0 +O(R−4) , (4.9)

where T a
b = δab− ẋ−2ẋaẋb is the projector transverse to the velocity. For affine parametrisation

ẋ2 is a negative constant and in AdS space (σ = +1) this means that the transverse motion is
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that of a harmonic oscillator. The longitudinal motion is free for both AdS and dS to this order

since ẍ · ẋ = 0. For the case of dS we have an inverted harmonic oscillator and the symmetries

of the transverse motion are the Newton–Hooke symmetries [32]. One can continue and include

the R−4 order, which can be put in the form

ẍa =
2σẋ2

3R2
T a

bx
b +

2

45R4
ẋ2x2 (3T a

b − 4Pa
cT

c
b) x

b +O(R−6) , (4.10)

and also includes non-trivial longitudinal motion.

Note that one can also consider alternatives to the quadratic action introduced above; using

linearly the pullback of the MC form as in e.g. [16], one could also consider a reparametrisation

invariant particle action of the form

S̃ = −mR2

∫

dτ

[

− σ

∞∑

m,n=0

ea(m)e
b
(n)〈P

(m)
a , P

(n)
b 〉

]1/2

, (4.11)

which corresponds to the usual action of degree one in the derivatives for a relativistic particle
∫
ds. In this case, using the invariant bilinear form (3.9) tensor allows one to Taylor expand

the square root in powers of R−2 for R > 1. With a suitably defined notion of proper time, we

expect that this action in proper time gauge leads to equivalent dynamics as the quadratic one

that we have studied above.

5 Conclusions and Outlook

In this paper we have shown how the (A)dS corrections to the Poincaré algebra can be natu-

rally and perturbatively described within the free Maxwell algebra (Maxwell∞) approach. This

algebra was introduced in [16] in order to describe the most general coupling of particles to

an electromagnetic general background that in general could depend on multipoles. A quo-

tient of this algebra gives the unfolded description of the Maxwell field [38, 39] and captures

the Taylor expansion of the Lorentz equation of a charged particle in an x-dependent arbitrary

electro-magnetic background field that is not necessarily constant.

Instead, in this paper we have discussed a different quotient of Maxwell∞ that contains only

vectors and two-forms. It represents an infinite extension of the Poincaré algebra, termed the

Poincaré∞ algebra (2.6), with the vector space decomposition

Poincaré∞ = L∞ ⊕ T∞ , (5.1)

that is an indecomposable representation of the generalised Lorentz algebra L∞. By considering

a non-linear realisation of Poincaré∞ with respect to L∞ we end up with an infinite-dimensional

space M∞ with generalised coordinates xa(m) (m ≥ 0). The transformations of Poincaré∞ on

these generalised coordinates can be computed from the non-linear realisation. Defining a set

of hypersurfaces of M∞ by

xa =

∞∑

m=0

R−2m−1xa(m) , (5.2)
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we showed that Poincaré∞ transformations on xa are the (A)dS transformations. We have also

constructed the most general particle action that is quadratic in derivatives (4.2), which was

shown to generate the expansion in 1/R of the geodesic equation in an (A)dS background (A.12)

(when projected onto the hypersurface (5.2)). It follows from our results that the same algebraic

structure Maxwell∞ allows for quotients and non-linear realisations that play a role in different

physical contexts, ranging from the Lorentz force in flat space-time to geodesic motion in curved

space-times like (A)dS.

One of the mathematical properties that allows one to identify Poincaré∞ with (A)dS curva-

ture corrections is the isomophism between the bottom-up free Lie algebra extension of Poincaré

and the isometry algebra expansion of AdS. Starting from the Poincaré algebra in the Levi de-

composition, this implies that it is equivalent to extend the non-semi-simple algebra or to first

deform the algebra into the simple AdS algebra and then to expand this algebra.

It appears to us that the equivalence between these two operations transcends the particu-

lar case of this paper. For instance, the same perspective holds for the non-relativistic Galilei

algebra [14]. In this case, the free Lie algebra has a quotient that can be called Galilei∞. Simi-

larly, one can deform the Galilei algebra into the Poincaré algebra and subsequently expand this

algebra. This should result in the same Galilei∞ algebra and amounts to including relativistic

1/c corrections in two different but equivalent ways. It would be interesting to consider other

contexts where these algebraic procedures can also shed light on physical theories and limits

thereof. An example might be the Carrollian limit of relativistic theories, corresponding to

c → 0.

A useful tool for writing the full algebra (2.6) was that it coincides with a parabolic subalgebra

of an affine Kac–Moody algebra [14] which is clear from the equivalence to the expansion method.

At the level of the free Lie algebra Maxwell∞ this means that the ideal that is quotiented out

corresponds to certain Serre relations. It would be interesting to consider other similar quotients,

leading potentially to non-affine but more general Kac–Moody algebras and see what their

corresponding physics is. Moreover, it is intriguing that only the parabolic half of a Kac–Moody

algebra appears since all mode numbers are positive and may wonder whether the negative levels

can be included in a meaningful way.

Acknowledgments

We are grateful to Sander Andela, Andrea Barducci, Roberto Casalbuoni, Dijs de Neeling, Tomás

Ort́ın, Patricio Salgado, Tonnis ter Veldhuis and Jelmar de Vries for stimulating discussions. JG

thanks the Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,

for its hospitality and creative atmosphere. DR also thanks the Universitat de Barcelona for its

hospitality and stimulating atmosphere.

JG has been supported in part by MINECO FPA2016-76005-C2-1-P and Consolider CPAN,

and by the Spanish government (MINECO/FEDER) under project MDM-2014-0369 of ICCUB

(Unidad de Excelencia Mara de Maeztu). PS-R acknowledges the School of Physics and Astron-

omy of the University of Leeds for hospitality and support as invited researcher.

17



A The (Anti) de Sitter case

In this appendix, we collect a number of relevant known aspects of the (Anti) de Sitter case,

including its algebra, non-linear realisation and particle action.

A.1 The algebra

The AdS algebra so(D−1, 2) for σ = +1 and the dS algebra so(D, 1) for σ = −1 in D space-time

dimensions are given by

[Jab, Jcd] = 2ηc[bJa]d − 2ηd[bJa]c , [Jab, Pc] = 2ηc[bPa] , [Pa, Pb] = σJab . (A.1)

Here, we have absorbed the length scale R of (A)dS space into the translation generators which

are therefore dimensionless. Here, Jab are the so(D − 1, 1) Lorentz generators and Pa are the

dimensionless (A)dS translations that do not commute.

The (A)dS algebra can also be written in dual form using the Maurer–Cartan form

Ω = g−1dg = EaPa +
1

2
ΩabJab , (A.2)

where g is an element of the (A)dS group, via the Maurer–Cartan equations

dEa +Ωa
bE

b = 0 , dΩab +Ωa
cΩ

cb + σEaEb = 0 . (A.3)

The invariant bilinear form for this algebra is given by

〈Jab, Jcd〉 = ηadηbc − ηacηbd , 〈Pa, Pb〉 = σηab . (A.4)

A.2 The (A)dS coset

We consider the non-linear realisation of the (A)dS algebra (A.1) with respect to the Lorentz

algebra, leading to (A)dS space-time. The coset representative is given by

g = exp
(
xaPa

)
, (A.5)

and the coordinates are also dimensionless. The (A)dS scale R can be introduced later by

rescaling both the generators and the coordinates.

The left-invariant Maurer–Cartan form in this parametrisation of the coset can be calculated

as

Ea = dxa +

(
sinh r

r
− 1

)

Pa
bdx

b , Ωab = −2(cosh r − 1)
x[adxb]

x2
, (A.6)

where r2 = σxaηabx
b = σx2. From (A.3) evaluated for the coset (A.5) we see that (A)dS

space-time has a constant curvature.

The (A)dS metric in these coordinates takes the form

ds2 = EaηabE
b = dxaηabdx

b +

(
sinh2 r

r2
− 1

)

dxaPabdx
b . (A.7)
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Depending on the sign of σ the hyperbolic trigonometric functions can become ordinary trigono-

metric functions for the dS case.15

In this coordinate system, the algebra (A.1) is realised by the dimensionless vector fields

Jab = xa∂b − xb∂a , Pa =
[

δba + (r coth r − 1)P b
a

]

∂b , (A.8)

that generate the infinitesimal transformations

δxa = [δab + (r coth r − 1)Pa
b] ǫ

b + ǫabxb (A.9)

on the coordinates xa. Here, we have given Pa the parameter ǫa and Jab the parameter 1
2ǫ

ab.

This transformation is the same we have deduced from M∞ in (3.16) above.

We note that the length scale R of (A)dS space can be reintroduced by letting the coordinates

xa → R−1xa and parameter ǫa → R−1ǫa so that the new coordinates and parameters become

dimensionful with [xa] = L1 and [ǫa] = L1. The transformation (A.9) then reads

δxa =
[

δab +
( r

R
coth(r/R)− 1

)

Pa
b

]

ǫb + ǫabxb , (A.10)

where r2 = σx2 is now also dimensionful, so that the combination r/R is dimensionless. Taking

the limit r/R → 0 reduces the symmetries to the Poincaré symmetries of flat space.

The condition that determines the translation part of the transformation (A.9) in the non-

linear realisation is

[δab + (cosh r − 1)Pa
b] ǫ

b =

[

δab +

(
sinh r

r
− 1

)

Pa
b

]

δxb (A.11)

and this condition is used in section 3.3 to connect to the non-linear realisation of Poincaré∞.

A.3 The particle

The action of a massive particle moving on (A)dS space reads

S =
m

2

∫

dτ gabẋ
aẋb , (A.12)

where the metric gab is given in (A.7). The corresponding geodesic equation is

ẍa + Γa
bcẋ

bẋc = 0 , (A.13)

15 This coordinate system is not global as can be seen by embedding these coordinates into an ambient space

according to

ua =
xa

r
sinh r , u♯ = cosh r ,

where the (A)dS space is defined as the following hypersurface in the ambient space

ηabu
aub − σ(u♯)2 = −σ ,

This coordinate system is not global in AdS since |u♯| ≥ 1 for σ = +1.
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where Γa
bc are the torsion free Christoffel symbols Γa

bc =
1
2g

ad (∂bgdc + ∂cgdb − ∂dgbc). Using the

parametrisation (A.5) and reinserting the (A)dS radius according to section A.2, the (A)dS

metric (A.7) and its inverse take the form

gab = ηab +

(
R2

r2
sinh2

( r

R

)

− 1

)

Pab , gab = ηab +

(
r2

R2
csch2

( r

R

)

− 1

)

Pab . (A.14)

Replacing this back in (A.13) leads to

ẍa = −2
( r

R
coth

r

R
− 1
) x · ẋ

r2
ẋa −

(

1−
R

r
sinh

r

R
cosh

r

R

)
ẋ2

r2
xa (A.15)

−

(

1 +
R

r
sinh

r

R
cosh

r

R
−

2r

R
coth

r

R

)
(x · ẋ)2

r4
xa

=
2σ

3R2

(
ẋ2xa − x · ẋẋa

)
+

2

45R4

(

x2x · ẋẋa + 3x2ẋ2xa − 4 (x · ẋ)2 xa
)

+ . . . . (A.16)

The expansion in powers of 1/R agrees precisely with (4.8).
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