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Big data is on everyone’s lips and often raises emotions. On the one hand, the notion is a basis for much technological

optimism, mostly directed towards new business models, or simplifications and optimizations in professional and private

life. On the other hand, it is a basis for dystopic perspectives, which are targeted, e.g., at profiling of the individual and

their privacy space, overarching optimization in daily life and intransparency of decision making. In this article, after a

short historical prolog, it is discussed what distinguishes big data from traditional data analysis. The underlying mathe-

matical methods are introduced and scientific successes are reported. Additionally, the risks and limits – especially regard-

ing the derivation of causal relationships – of data analysis are discussed.
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1 History of Data Analysis

We have been learning from data for a long time. The general
process is always the same: The first step is to collect data as
systematically as possible. This can happen just by observing
the system to be investigated, or also in a controlled experi-
ment, which systematically creates boundary conditions for
the observations and carries out targeted interventions. In a
second step, we then search for meaningful patterns in the
data collected. This process is called data analysis. The uncov-
ered patterns are then interpreted; this is how regularities are
derived that are often called rules or laws. Often the knowl-
edge generation process ends at this point. In the best of all
cases, however, once the regularities have been discovered, a
third step searches for causal relationships that explain
them by reducing them to more fundamental principles.

References to systematic collection and analysis already
date back to the Babylonians [1]. At this point let us consid-
er an example that is often referred to as the first systematic
data analysis of modern times: gaining insight into the laws
governing the orbits of the planets in the solar system and
their scientific basis. The process began with a meticulous
measurement and collection of the coordinates of planetary
trajectories over several decades by the Danish astronomer
Tycho Brahe (1546–1601). Johannes Kepler (1571–1630),
who assisted Tycho Brahe during the last year of his life, has
since then continued to work on his data collection, and in
1627 he published it as the Tabulae Rudolphinae [2, 3]. He
analyzed the data, resulting in Kepler’s three laws, which
have been posed in the early 17th century (see [4]) and
which formulate mathematically the geometry of a planet’s
orbit and the relationships between its orbital velocity and
the distance from its central star. It is important to stress
that Kepler’s three laws do not provide an explanation for

the formulas found. Therefore, in the context of this article
it is prefered to speak of ‘‘rules’’ rather than laws. The planet
moves in an elliptical orbit around the central star, which is
located at one of the two foci of the ellipse. The orbital
velocity is faster when the planet is closer to the central star.
Kepler’s laws are precise mathematical formulas for the
shape of the ellipse and the orbital velocity of the planet.
Kepler’s reasoning was based on Renaissance ideas about
forces and soul but presented an attempt to physicalize the
planetary theory (see [5], p. 216). As we see in the following
the discovery of such patterns in data is extremely useful,
per se, and in many cases can form the basis for subsequent
decisions and strategies. In the case of planetary orbits, the
process of gaining knowledge did not end there – fortu-
nately and characteristically of how science proceeds.
Rather, on the basis of Kepler’s laws and other observations,
Isaac Newton (1642–1727) derived his law of gravitation
and published it in 1687 in his work Philosophae Naturalis
Principia Mathematica (see [6], p. 8, 381, 383, 400 – 510), or
Principia for short. The law of gravitation provides a funda-
mentally new explanation of Kepler’s laws. More specifical-
ly, Kepler’s laws can be derived mathematically from New-
ton’s law. From then on Newton’s law of gravitation
provided the axiomatic basis for celestial mechanics, i.e., it
was assumed to be a given from Newton’s perspective and
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not in need of further explanation. This situation has only
changed with the development of the more comprehensive
general theory of relativity in 1915 put forth by Albert Ein-
stein (1879–1955) [7, 8], which reproduces Newton’s law of
gravitation (in the limit for slow speed compared with the
speed of light and weak gravity).

A characteristic of the data analysis just discussed is that
the examined system, here the solar system, is only
observed. There is no intervention into the system – this is
also not possible with the solar system. This kind of data
analysis will be discussed first. If one intervenes in the sys-
tem, e.g., in a controlled experiment, data analysis takes on
a different character, which will be discussed later.

2 What is Different with Big Data?

The process described in Sect. 1 is a prime example of
meticulously performed data analysis, but as a table with a
total of a little over 250 pages certainly not for big data.
More significant than the scope of the data collection is the
fact that the relevant patterns, mathematically formulated
in Kepler’s laws, where extracted manually by Johannes
Kepler by reviewing the data collection. The data collections
that form the basis of today’s big data analyses are much
more voluminous. Furthermore, the relevant patterns are
often very complex. For these two reasons, finding relevant
patterns in such data sets without the aid of sophisticated
algorithms and the use of computers is no longer possible.

In partial deviation from the criteria commonly used for
big data1), I would like to state the following preconditions
for big data collections and analyses.
1) The data volume must be very large. I am not asking for

the size of petabytes or more, which is put forth often
for the term big data. For the purpose of this paper, it is
sufficient to assume a quantity that requires data analy-
sis using complex computer algorithms.

2) Data analysis, not data generation, must be the bottle-
neck in knowledge generation. It is a characteristic of
big data analysis that we have access to large amounts of
data with comparatively little effort. This is a reversal of
the traditional situation where, as a rule, data generation
is much more complex and expensive than data analy-
sis. This was definitely the case with Tycho Brahe. In
contrast, today we generate data with high-throughput
experiments in science and via the internet in everyday
life to an extent that is no less than avalanche-like.
Thus, data analysis becomes the bottleneck in the pro-
cess of knowledge generation.

3) Data analysis is no longer possible by hand. This does
not apply to the above example of the derivation of cel-
estial mechanics. The difficulty of manual data analysis
is usually not only due to the high volume of data, but
also to another characteristic of today’s data collections,
namely the high dimensionality of the data. What this
means is explained in the next section.

4) Powerful statistical methods, often referred to as data
mining or machine learning, enable the computer to
detect even complex patterns in the data. This makes
the application of statistical methods the essential step
in generating knowledge with big data.

Today we encounter big data in all areas of life and sci-
ence. In daily life, since the emergence of the internet and
due to the increasing interconnectedness of technologies,
massive data collection is happening in a wide variety of
areas. Data are collected whenever we browse the internet,
whenever we watch television, when we drive, when we use
our mobile phones, when we do banking or shopping. In
public life our traces are captured by webcams. Domestic
appliances increasingly exhibit networked intelligence, and
networking and data collection is also gaining ground in
energy supply.

Similarly, big data is increasingly becoming an essential
part of practically all scientific disciplines. Elementary parti-
cle physics is a prime example. The Higgs particle was
found only by collecting and analyzing vast amounts of data
[9, 10]. In astronomy, detailed three-dimensional (some-
times four-dimensional) models of the entire universe and
the stars and galaxies it contains are being developed [11].
The earth sciences and environmental sciences [12–14] col-
lect a wide range of data on various aspects of the state of
our planet and project this data into the future and into the
past. In chemistry, comprehensive data sets are collected on
both chemical compounds and their properties, and com-
prehensive data sets resulting from quantum mechanical
calculations are made available worldwide [15–17]. The
economic and social sciences are basing their research on
extensive and diverse data collections [18, 19]. And access
to complete genomic information was an essential prerequi-
site for the transformation of biology and medicine into a
quantitative science highly driven by molecular data
[20, 21].

A lot has been said and written about big data. Here, the
focus is on a special scientifically relevant aspect of big data
analyses, namely the difference between the discovery of
regularities (associations), which describe patterns, and of
laws (causal relations) that explain patterns.

3 Statistical Data Analysis

This section provides a brief introduction into the basics of
statistical data analysis. A particular variant of data analysis,
called supervised learning, will be presented. This form of
data analysis aims at predicting unknown values from a set
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generation, according to our criterion (2)), Variety (heterogeneity of
data, i.e., different origins; this criterion is in in the foreground in our

discourse), Veracity (reliability of data; see Sect. 5), and Value (an
economic criterion, which we will not consider here).
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of known values about an object or process. The encoding
of the input usually results in a point in a Euclidean space
which is high-dimensional, in general. For illustration an
example data set2) is used providing information on the fuel
consumption of motor vehicles as well as their year of con-
struction and their weight. All three values together form a
data point that provides information on a vehicle. The latter
two values are regarded as inputs and the first value as out-
put. These roles are assigned to the values for the purposes
of data analysis and are not anchored in the data set. This
assignment is done to analyze the dependence of fuel con-
sumption on the weight and year of manufacture of the
vehicle. Since the data are from the United States, fuel con-
sumption is measured in miles per gallon (mpg) and the
weight in British pounds (lbs). Thus, we have two inputs
(weight and year) – the data space on which the analysis is
based is, thus, two-dimensional – and one output (fuel con-
sumption). In real cases, the dimensionality of the data
space can be much higher. This will be commented on later.

There are basically two forms of supervised learning
(see Fig. 1):
1) Regression: Here a number (label) is assigned to each

data point that functions as output. In the example data
set, this number is an estimate of the fuel consumption
in miles per gallon. The two input variables (weight,
year) span a plane over which a vertical axis extends,
marked as fuel consumption. The fuel consumption val-
ues estimated by a mathematical model are represented
by surfaces in Fig. 1 (a, b). The actual (measured) values
engulf this surface as a point cloud. Fig. 1a shows a line-
ar model, represented by a planar surface. Fig. 1b shows
a more complex nonlinear model, represented by a
(slightly) curved plane. The vertical lines that extend
from the data points onto the surfaces represent the
errors that the model makes in estimating the fuel
consumption of individual vehicles. In both cases the
surfaces are positioned such that the sum of the
square errors over all data points is minimized. The
error of the linear model is greater than that of the
nonlinear model, since the linear model must fulfil the
additional boundary condition that the plane must not
be curved.

2) Classification: Instead of estimating a continuous output
value, here one of finitely many classes is assigned to
each data point. The number of classes is usually small.
In the example of Fig. 1 (c–e) we have two classes: low
fuel consumption (mpg ‡ 20, blue) and, high fuel con-
sumption (mpg < 20, orange). Fig. 1c shows this situa-
tion in the same fashion as Fig. 1a and 1b does for
regression. Figs. 1d and 1e show views onto the input
plane from the top. The direction of view is given by the
arrow in Fig. 1c. The goal of the data analysis is to

subdivide the input data space – here the plane – into
areas that are assigned to the two classes. The classifica-
tion of a new data point is then performed by assigning
the class to the point that is represented by the color of
the location of the point. Fig. 1d again shows a linear
model that is characterized by a straight dividing line
between the areas representing the two classes. This line
is called the decision boundary. The model makes a
number of errors (30 out of 392) on our data set, which
are given by points whose color – that is, their actual
class – is different from that of their background – i.e.,
their class estimate. The decision boundary is chosen
such that the number of such false classifications is as
small as possible. Fig. 1e shows a nonlinear model with
a complex curved decision boundary. Similar to regres-
sion, its predictions are better on our data set than those
of the linear model. In regression they are closer to the
true values, on average, in classification this model
makes much fewer errors (misclassifications) on the
data set (2 out of 392).

In general, the art of adequate data analysis comprises 1.)
the appropriate coding of the input, 2.) the correct selection
of the error function (in our case the square error in the
regression and the number of incorrect classifications (mis-
classification error) in classification), and 3.) the appropriate
selection of the model, e.g., the correct choice between a lin-
ear (simple) and a nonlinear (complex) model. The deficit of
simple models is that the accuracy of their estimates may be
limited by constraints such as the linearity constraint, which
may not be fully reflected in the data. If a model is too com-
plex, however, there is a risk that, although it can reproduce
the given data very accurately, it may not be able to general-
ize accurately to unseen data. Such a model is called over-
trained. Fig. 1e is an example of an overtrained model of the
example data set. The fact that this model is overtrained is
easily recognized by the complex decision boundary, which
is obviously adapted to the specific data set and does not re-
flect the real relationship between high or low fuel consump-
tion and year of manufacture and weight. Therefore, the
model makes only few errors on the given data. However, it
is not to be expected that the model makes accurate esti-
mates on future data. After all, the fuel consumption of a
motor vehicle also depends on variables other than its
weight and year of manufacture. However, we do not have
such data at our disposal. Therefore, it is safe to assume that
the nonlinear classification model in Fig. 1e makes signifi-
cant errors on new data. However, a linear model for the re-
lationship between weight and year of construction on the
one hand and fuel consumption on the other hand appears
to be too simple. As can be shown, the nonlinear regression
model in Fig. 1b predicts fuel consumption on future data
more accurately (with smaller error and higher predictive
power) than the linear model in Fig. 1a. And compared to
the nonlinear classification model, the nonlinear regression
model is considerably smoother and offers a plausible func-
tional dependence of fuel consumption on weight and year
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of manufacture. Thus, models can be too simple, but also
too complex. The appropriate choice of model complexity is
a central problem in data analysis.

Another major problem in data analysis is the frequently
occurring high dimensionality of the data. The dimension-
ality of the data is the number of features that exist for each
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Figure 1. Statistical methods for data analysis. a) Regression, linear model, b) regression, nonlinear model. The data points are colored
red. The gray surfaces represent the estimated fuel consumption values. The vertical red lines indicate the deviations of the actual from
the estimated values. c) Class definition for binary classification into high and low fuel consumption. d) Classification, linear model,
e) classification, nonlinear model. The data points are colored blue (low fuel consumption) and orange (high fuel consumption). The
black lines show the decision boundaries obtained with a linear and a nonlinear model, respectively. The direction of view of the top
onto the input plane in parts d) and e) is indicated by the vertical arrow in part c).
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data point. In our example we have two features: weight
and year of manufacture; thus, the data set is two-dimen-
sional. We also have 392 data points. The number of data
points, thus, clearly exceeds the dimensionality of the data
space. Consequently, the data space is also well filled with
data points, as can be seen in Fig. 1d and 1e. Only in the
upper right corner data points are missing. This is often
quite different with today’s data sets. For example, if we
want to analyze the influence of genes on diseases, we often
have to deal with comparatively few data points. Each data
point represents one patient, and the cohort sizes usually
range from a few dozen to hundreds. (Some very large stud-
ies, however, already include more than 100 000 patients
[22–24].) In contrast, the human has about 20 000 genes, all
of which can be measured using modern molecular biologi-
cal methods. The dimensionality of the data set is, therefore,
also in this range. This means that the dimensionality of the
data space far exceeds the number of observations. This
happens in many cases from all areas of data collection.

For a high-dimensional data set there are two problems,
which are illustrated in Fig. 2. With increasing dimensional-
ity, the number of data points required to fill the data space
to a certain density increases exponentially. For data spaces
with hundreds or thousands of dimensions, there are usu-
ally not nearly enough data available to adequately sample
the complete data space. Furthermore, with increasing
dimensionality, an ever greater fraction of data points are
located near the margin of the space, i.e., in an unfavorable
position for all procedures that infer the output of the
examined data point from the outputs of points in its vicini-
ty. High-dimensional data spaces consist practically only of
margin. If the number of dimensions exceeds the number of
data points, we usually have a serious problem, and a signif-
icant portion of today’s research aims at being able to still
make useful predictions in such cases.

After a description of the methods of data analysis a case
study is presented, which shows that the analysis of large
data sets can supply information that would not be available
otherwise.

4 Medicine: Big Data for the Benefit of the
Patient

Medicine as a science is concerned with the differences
between healthy and sick people. Diseases usually have a
specific molecular basis. They manifest themselves in dysre-
gulations of highly complex molecular interaction networks
inside or between cells of our body. All of these interactions
are subject to the natural laws of physics and chemistry,
which are well known.

Thus, we know the mathematical foundations of the
functions and malfunctions of the human body, in princi-
ple. However, a physicochemical analysis of the molecular
processes based on the application of the known laws of
nature is not possible, in general. This is because the sys-
tems involved (molecules, cells, organs, organ systems) are
far too complex for exact calculation. Therefore, we have to
proceed in a data-driven fashion. This in itself is nothing
new. Medicine has always been data driven. The doctor has
based the diagnosis and therapy on information about the
patient’s medical history, laboratory values and medical
experience. In a sense, based on the information available, a
model of the patient was derived, on which the diagnostic
and therapeutic decisions are based. However, neither the
model nor the process of its derivation are generally of a
consistently systematic nature. In the age of big data, this
procedure is submitted to a high degree of mathematization
and systematization. In its course, the measured laboratory
values, especially those of genomic character, and their
mathematical interpretation with the help of computers is
becoming increasingly important.

This is illustrated using the example of HIV therapy. The
human immunodeficiency virus (HIV) evolves extremely
rapidly in the body of the infected patient. Here the same
type of process can be observed that is known from the
development of antibiotic resistance in bacteria. Only in the
case of HIV, it is not only observed in the infected popula-
tion as a whole, but also in the individual patient and over
very short periods of time – months, weeks or even days.

An HIV patient can simultaneously har-
bor a wide variety of similar but different
HI viruses, and these viruses are con-
stantly changing in order to escape the
attacks by the patient’s immune system
and administered drug therapy. For this
reason, today there are over two dozen
different drugs against HIV, which are
administered to patients in combinations
of about three drugs, affording over a
thousand therapy options.

Whether a virus is resistant to a cer-
tain drug is encoded in the viral genome,
but in a way that is not readily apparent
to humans and which is also difficult to
measure in the laboratory. So, this is a
typical data analysis problem [25]. The
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Figure 2. a) One-dimensional data space. Five evenly distributed data points fill the
space to a certain density. Two of these points, i.e., 40 %, lie at the margin of the data
space. b) Two-dimensional data space. To fill it with data points to the same density,
you need 25 points. Of these points 16 points, or 64 %, lie at the margin. c) Three-
dimensional data space. Now, already 125 data points are needed. Of these, 98 points
(or 78.4 %) lie at the margin. This figure is a modified version of a figure at
www.freecodecamp.org/news/the-curse-of-dimensionality-how-we-can-save-big-data-
from-itself-d9fa0f872335.
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input for the problem consists of an appropriate
coding of the genome sequence of the virus that
is found dominantly in the patient. (Recently it
has also become possible to determine with high
accuracy the variety of different viruses present
in the patient [26, 27].) The corresponding data
space has several thousand dimensions. The out-
put is a list of the estimated resistances of the
virus to the range of HIV drugs available (see
Fig. 3). In this case, the database (the big-data
aspect of the problem) comprises more than
230 000 therapy change episodes of HIV patients
collected by an international consortium [28]3).
On these data, statistical learning was applied,
as described in Sect. 3, to derive mathematical
models that estimate the level of resistance of
the virus to the available drugs based on the viral
genome sequence. At www.geno2pheno.org such
a decision-support system for HIV therapy is provided free
of charge via the internet [29, 30]. The system is used in
Germany and beyond to treat HIV patients.

Fig. 4 shows an analysis report returned by the system.
This report is from 2003 for an HIV patient who has a virus
with so many resistance mutations that no promising ther-
apy could be found using conventional methods. The table
has one row per drug. The first column (from the left) gives
the drug name. The second column contains the model’s
estimate of the resistance factor to the corresponding drug,
a numerical laboratory value that represents the strength of
resistance of the virus. To render these values comparable
between different drugs, the third column contains a nor-
malized form of the resistance factor (z-score). If this value
is greater than 4, there is a considerable degree of resistance
of the virus to the drug, which renders the use of the drug
problematic. For the patient in question, no effective medi-
cal treatment was available according to this rule. Thus, it is
plausible that conventional methods that only provide a
classification of a drug into effective and not effective were
not able to suggest a therapy.

However, our data analysis provides numerical values, on
whose basis a therapy can be suggested consisting of the
drugs with the lowest z-scores, e.g., even if they are a little
above 4. However, there is still room for improvement.

The data analysis was extended to include an interpretation
of the prediction. This goes beyond the methods presented in
Sect. 3. In the right part of the table the mutations in the viral
genome are listed that confer resistance to the virus (resis-
tance mutations, red) and those which increase the efficacy of
the drug (resensitizing mutations, green). Each mutation is
coded by a number (the position of the mutation in the corre-
sponding protein sequence of the virus), followed by a letter
(the amino acid, into which the viral protein is mutated at
this position). This information puts the resistance value of

the virus into context with characteristics of the viral genome.
And this increases the expressiveness of the prediction signifi-
cantly. On the basis of this report, the physicians treating the
patient selected the two encircled drugs. The drug SQV was
administered due to its low resistance level, with the hope that
it will still be effective. LPV cannot be expected to be effective
due to its high resistance level. But this high value can be par-
tially attributed to the resistance mutation 76V (colored red
for LPV) which, at the same time, is indicated to reduce the
resistance level of the virus to SQV, since there it is colored
green. The doctors hoped that the virus would be striving to
maintain its resistance to LPV, thus fixing the 76V mutation,
which hopefully maintains the effectiveness of SQV. It turned
out that this therapy has was effective for years.

We can see from this example that the task of data analy-
sis goes beyond the mere estimation of the output value.
Rather, one also wants to weigh the input values according
to how informative they are for the output value.

In the development of our HIV models, all problems
described in Sect. 3 were addressed. Due to the high
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Figure 3. Using data mining in large databases on HIV drug resistance, from a
set of over two dozen HIV drugs (right), drug combinations (right, background
shaded gray to black) that are effective against the predominant population of
HI viruses in the patient (left, blue background) are proposed.
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Figure 4. Analysis report for an HIV patient.
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dimensionality of the data space there is a danger of over-
training. We usually use linear models because they limit
the danger of overtraining, on the one hand, and because
they facilitate the kind of interpretation of the estimate just
described, on the other hand.

It is important to point out that the kind of explanation
given here is associative and not causal. This is analogous to
the way we as humans interpret facial expressions of our
fellow humans. Whether they are happy or sad, aggressive
or friendly – we do not infer this from a causal analysis of
their psychological and neurological state. The relevant
information for this purpose is usually missing. Rather,
inferences are drawn on the basis of associations that we
have learned through our extensive experience with inter-
preting facial expressions in the course of our lives.

Of course, our HIV resistance models make mistakes.
That is why for some analyses we offer we also provide reli-
ability estimates. Specifically, in addition to the prediction
we also return a value that informs the treating physician
about how much the prediction can be trusted. We have
assessed the predictive accuracy of the models and a num-
ber of models have proven to be clinically useful. Especially
for highly therapy-experienced patients, who are already
highly resistant to HIV, statistical data analysis is much bet-
ter at identifying promising treatment options than manual
approaches to therapy selection.

5 Risks and Limitations of Statistical Data
Analysis

In the previous section, the possibilities afforded by the
analysis of large data sets were exemplified. In this section
we want to take a critical turn in the discussion of data

analysis. After all, data analysis is also fraught with risks
and has its limits.

To start with the risks: For this purpose, an example from
modern genome-based medicine is inspected, which was
already touched upon briefly in Sect. 3. Here one aims at
identifying associations between disease patterns and
genomic variants of the patient. In short, we are looking for
disease genes. The term disease gene is quite misleading,
because usually everyone has the gene in question. How-
ever, the variants of the gene can differ between different
people. Only some variants are associated with diseases.
What we are looking for are gene variants that occur fre-
quently together with the disease pattern under investiga-
tion. Such statistical correlations are investigated with
so-called genome-wide association studies (GWAS) (Fig. 5).
Here, a large cohort of usually thousands or tens of thou-
sands of subjects is studied, some of whom are healthy and
some are sick. We read their genomes or those parts of the
genome that are considered to be relevant to the disease.
And then, using suitable statistical methods, it is investi-
gated whether genomic variants at certain locations in the
genome (gene loci) are found predominantly among
patients with a certain disease pattern.

Using GWAS, one has already found numerous associa-
tions of gene loci with disease patterns [32]4). The study
results are shown in diagrams such as Fig. 5. Here the
22 chromosomes of the human genome are arranged along
the horizontal axis (the sex chromosomes are not consid-
ered). Along the vertical axis a measure of the conspicuous-
ness of the gene locus is plotted. Conspicuousness here
means the increased occurrence of a variant of the gene in
people with the disease in question [33]. Larger numbers
mean higher conspicuousness. It can be seen from the point
cloud that only a few dozen gene loci lie above the cloud.
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Figure 5. Results of a genome-wide association study for the detection of genome loci that are associated with
the intensity of HIV infection. After correct adjustment of the results taking into account the phenomenon of
multiple testing, only the gene locus marked with the arrow is significantly associated with the disease pattern.
For this gene locus, which codes for a protein of the immune system, the biological basis of this association has
been known. Figure adapted from [31], under Creative Commons License CC BY 4.0.
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This specific study considered here analyzes the severity of
the HIV infection as measured by the virus concentration in
the blood of the patient [31]. Fig. 5 would suggest that about
two dozen gene loci have a possible association with the dis-
ease, namely those that stand out above the ocean of dots in
the figure. But this is not the case. According to a more
stringent significance analysis, only one gene locus, namely
the one marked with the arrow, actually exhibits a statisti-
cally significant association with the disease. If we are not
stringent enough then, for many genes, we falsely assume
an association with the disease. Why is this so? The reason
is that we study a great many gene loci. It is possible, but
very unlikely, that a single gene locus looks conspicuous
purely by chance, i.e., without a biological basis – just as
drawing a jackpot in the lottery is possible but very unlikely.
However, if thousands of gene loci are examined, such con-
spicuous outcomes can also occur purely by chance. If
many people play the lottery, there is a high probability that
there will be a winner. All gene loci that appear conspicuous
in Fig. 5, except the one marked with the arrow, are such
lottery winners – they are conspicuous without any basis in
the data. Such a false call is called a false positive. The risk
of false positives is particularly high if the analysis includes
many similar tests (multiple testing [33]). False positives are
a great nuisance in data analysis. They also occur in every-
day life, for example in a medical test that suggests a risk of
illness that is not confirmed by a follow-up examination, or
in a wrongly assumed low creditworthiness that results
from an automated analysis of credit standing.

In today’s world, in which a great many hypotheses are
based on data analyses false positives turn from a risk to a
real danger. If the data analysis is performed improperly or
conclusions are drawn imprudently, this can lead to errone-
ous inferences, overinterpretations and eventually to the
formation of prejudice, exclusion and stigmatization.

The second problem with data analysis is its high sugges-
tiveness. Today’s data analyses in general and the discussed
methods in particular are often based only on observations
of the system under investigation. There is no controlled
intervention into the system. Furthermore, the analyses are
associative. They determine patterns of associated occur-
rence of various features. Two features are associated if they
occur simultaneously (correlation), or if the occurrence of
one feature is observed more frequently in the absence of
the other feature (anti-correlation), in each case in compari-
son with the individual occurrence of the two features.
Associative analyses can afford amazing predictive power.
Recently, corresponding case studies received a lot of atten-
tion. For example, on the basis of a few dozen likes from
Facebook, data analysis can be used to characterize the per-
sonality of the user more precisely than can be done by a
close friend or partner [34]. Or intimate aspects of the per-
sonality structure can be derived from facial images by
means of data analysis [35]. Even though the accuracy of
such predictions is high, it is not possible to provide a causal
justification for the individual predictions. And of course,

there are always false predictions that can have far-reaching
negative consequences in certain contexts. To the user, they
often suggest causal relationships for which they do not ac-
tually provide evidence, and which often are not even true.
This is where today’s data analysis meets serious limitations.

Let us consider the following examples:
1) A genome-wide association study uncovers the associa-

tion of a gene (variant) with a disease pattern. Does this
prove that the gene (variant) is the cause of the disease?

2) A statistical study shows that a certain cancer is more
common among people who live near a nuclear power
plant. Does this prove that the nuclear power plant
emits radiation, which is the cause of the increased inci-
dence of the cancer?

3) A study shows that Parkinson’s disease is less common
among smokers. What about causal relationships here?

Let us call the two associated quantities X and Y. In general,
associations between X and Y suggest a causal relationship
between the two quantities. However, what is cause and what
is effect here remains unclear [36]. Fig. 6 shows three possibili-
ties of a causal relationship between X and Y. In Case A is X
the cause of Y. In case B it is the opposite. In the most complex
case C the association between X and Y is due to a third quan-
tity Z, which is causally related to X and Y. In many cases there
are such so-called confounding factors. These are variables
that were not measured in the statistical study but affect sever-
al measured variables. In a concrete instance of case 2), an
actual study has shown that the radioactive radiation emitted
by nuclear power plant is so low that it cannot be the cause of
the increased frequency of cancer. However, there are other
variables, such as the demographic composition of the popula-
tion in the vicinity of a nuclear power plant, which may well
have an influence on the cancer rate. Striking examples such
as the fact that the number of pairs of storks in a region is as-
sociated with the regional birth rate [37], show how much care
must be taken when interpreting the results of data analysis.

However, there are also correlations for which not even
such a confounding factor can be found. This is again due to
the phenomenon discussed at the beginning of this section,
which occurs during multiple testing: If you only have enough
data sets available, you will find some that show high correla-
tions, but which are occurring purely by chance. A collection
of such fake spurious correlations can be found in [38]5).
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Figure 6. Three possibilities for causal dependencies between
associated variables.

–
5) www.tylervigen.com/spurious-correlations
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Recently, the emergence of big data in statistics has initi-
ated a dynamic development, among other activities, with
the aim of deriving causal relationships from statistical
associations. However, such associations cannot be revealed
by simply observing the system under investigation. Rather
we must intervene in the system in a controlled manner,
i.e., by experiment. Prospective clinical studies to investigate
the effectiveness of drugs and therapies are an example of
such an approach. The resulting data are analyzed statisti-
cally in order to reveal causal relationships, for example that
the administration of the drug is responsible for the
patient’s improvement. In recent years, this approach has
been increasingly supplied with a theoretical foundation
and, today, is also applied outside of medicine. An introduc-
tion to this field accessible to the general reader is provided
by Pearl and Mackenzie [39]. Introductory textbooks are
also available [40, 41]. Applications include data analyses in
genomics [42] and astronomy [43]. However, the develop-
ment of these methods has not yet matured to the point
where they can be applied to high-dimensional data. And
even such methods usually afford no understanding of the
mechanistic basis of the uncovered cause-effect relationship.
In a clinical trial, e.g., it is proven that a drug works, but not
elucidated how or why it works. This deeper understanding
must still be achieved by theory formation and experimen-
tal confirmation of the theory.

However, the most common type of data analysis used
today, namely associative data analysis based on observa-
tions, can help to formulate hypotheses about causal rela-
tionships or to select a subset of promising hypotheses from
an initially overwhelming variety of possible hypotheses. An
example is the reduction of the set of hypotheses for the
causal relationship between variants in the genome of a
patient and his or her disease pattern using a genome-
wide association analysis. Here, from the diversity of all
genome variants, those are selected that are highly associ-
ated with the disease pattern and can, thus, provide an
indication of causal relationships. Such clues can then be
investigated further using other methods of molecular biol-
ogy.

6 Data Analysis and Theory Formation:
A Strong Alliance

So, what is the conclusion? Is big data the motor of innova-
tion in our present age that many people perceive it to be?
According to this viewpoint, the data and especially the pat-
terns contained in them contain all of the useful informa-
tion. It is quite sufficient that the data afford the derivation
of models with high prediction accuracy. It is not necessary
that the models also provide causal understanding. Anyway,
causality has entered the universe only via the cognitive
abilities of humans (and maybe rudimentarily of some other
highly developed animals). Previously, nature did fine
without this concept and fared well with only the mecha-

nisms of adaptation and learning, which also underlie asso-
ciative data analysis. So is big data the beginning of a devel-
opment in society towards increasingly relying more on
associations than on the understanding resulting from care-
ful deduction of causal relationships – with all the accompa-
nying symptoms mentioned, such as suspicions and preju-
dices resulting from data analysis errors, and with the
illusion of suggested causal connections that have not been
checked?

I think that in the age of big data, associative data analysis
is a powerful tool that needs to be used with great care. An
associative data model with high predictive power has a
high applicability, as we have seen in the HIV example. For
administering a therapy to a patient, it is desirable, but not
absolutely necessary, to understand the causal relationships.
This would require a separate controlled trial for each possi-
ble drug combination, which is not feasible. The same
applies to many areas of life, wherever an understanding of
the causal relationships is out of reach, e.g., in finance or in
the analysis of psychological or social processes. However, it
is also important to critically examine the results of data
analysis and of the process by which the data were gener-
ated. In particular, one must always be aware that such
analyses do not reveal any causal links. In this way one
can guard against the suggestiveness of the results of data
analysis. In the future, this statistical competence will
become an increasingly important aspect of citizens’ digital
literacy.

In science, data analysis can serve as an effective initial fil-
ter for investigations that uncover causal relationships. In
the past, the mind of the researcher alone served as a tool
for establishing a plausible hypothesis, which could then be
systematically validated or falsified by experiments. Today
we can use the instrument of data analysis to systematically
select – from an initially unmanageable variety of hypothe-
ses – a limited number of promising hypotheses, which are
then validated using methods that have been used in science
for centuries. In such a scenario, data analysis is supple-
mented with a causal analysis and theory building to
explain the mechanistic basis for the observed data when-
ever possible. Especially in science this has been happening
comprehensively already for a long time. Here, the predic-
tions resulting from the data analysis are scrutinized with
great care. As an instrument for limiting the variety of
hypotheses, data analysis in such a scenario is of enormous
benefit and often indispensable, indeed.

I would like to thank Christian Lengauer, Jörg Rahnen-
führer and Nico Pfeifer for a critical review of the manu-
script. The case studies in Fig. 1 and 5 were contributed
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