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IRREDUCIBLE REPRESENTATIONS OF THE GROUP OF
UNIPOTENT MATRICES OF ORDER 4 OVER INTEGERS

IULIYA BELOSHAPKA

Abstract. We study a coarse moduli space of irreducible representations
of the group of unipotent matrices of order 4 over the ring of integers which
have finite weight. All such representations are known to be monomial
(see [2]). To describe a coarse moduli space of such representations, we
need to study pairs of subgroups and their characters, which induce non-
isomorphic irreducible representations. We obtain a full classification of
such pairs and, respectively, a coarse moduli space.

1. Introduction

Moduli spaces of irreducible representations of finitely generated nilpotent
groups are supposed to be used in questions related to L-functions of varieties
over finite fields (see [10]). It does not seem reasonable to study such moduli
spaces in full generality, so one should restrict the class of all irreducible ob-
jects. Brown in [6] introduced the notion of a finite weight representation. A
representation π of a group G has finite weight if there is a subgroup H ⊂ G
and a character χ of H such that the vector space HomH(χ, π|H) is non-zero
and finite-dimensional. A representation π is called monomial, if there exist
a subgroup H ⊂ G and a character χ : H → C∗ such that π ' indGH(χ).
In the plenary lecture at ICM 2010, Parshin conjectured that irreducible rep-
resentations of finitely generated nilpotent groups are monomial if and only
if they have finite weight (see [10, § 5.4(i)] for details). The conjecture was
proven in a joint work with Gorchinskiy [2]. This allows us to approach the
moduli problem of irreducible representations π which have finite weight, since
they always correspond to certain pairs (H, χ) such that π ' indGH(χ).

Parshin and Arnal have studied in detail the case of the Heisenberg group
over the integers [1]. For this group, they constructed a parameter space
(i.e., a coarse moduli space) of complex irreducible representations which have
finite weight. It turns out that the parameter space consists of two parts,
corresponding to finite-dimensional irreducible representations and infinite-
dimensional ones. The first one is a countable disjoint union of copies of
C∗ × C∗. The second one, in turn, is a countable disjoint union of elliptic
fibrations over C∗ \ S1 and components which do not have a complex variety
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structure (see [10], [9] for details). The question was also studied in the case
of mixed real and integer coefficients, which was motivated by the theory of
two-dimensional local fields [3].

The construction looks similar to Kirillov’s orbit method [8] for connected
real or complex nilpotent Lie groups. Attempts to extend Kirillov’s method
to p-adic nilpotent groups were made in [7]. Also, there exists an analogue of
Kirillov’s character formula for the discrete Heisenberg group.

Our main result is the construction of a coarse moduli space of irreducible
representations of the group of unipotent 4 × 4 matrices over integers which
have finite weight (see Theorem 10.1 and Table 1). We denote this group
by G. In other words, we provide a full classification of pairs (H,χ) such that
corresponding representations indGH(χ) are irreducible.

Theorem. There is a one-to-one correspondence between the following
spaces:

1. The union of the total spaces of the following bundles: X1,1 → Ξ1,1,
X2,0 → Ξ2,0, X2,1 → Ξ2,1, X1,2 → Ξ1,2, X2,2 → Ξ2,2, and X3,2 → Ξ3,2.

2. A coarse moduli space of irreducible representations for the group
of unipotent matrices of order 4 with integer entries which have finite
weight.

A map from Xr1,r2 → Ξr1,r2 to the set of irreducible monomial rep-
resentations is defined as follows:

(H,χ) 7−→ indGH(χ).

First steps towards the moduli space problem were made in [4]. The coarse
moduli space has a natural iterated structure of a bundle over the set of cer-
tain subgroups H ⊂ G (see Theorem 10.1). It turns out that the number
of isomorphism classes of irreducible finite weight representations of discrete
nilpotent groups increases very rapidly, while a nilpotency class increments
only by one. Namely, for the Heisenberg group over the integers, there are
only two substantially different cases of weight pairs (H,χ) which correspond
to irreducible monomial representations. In turn, there are over 50 differ-
ent cases for the group G, which makes our classification quite technical and
lengthy. The developed techniques may be used for further generalizations to
finitely generated nilpotent groups of higher nilpotency classes.

The paper is organized as follows. In Section 2, we provide results which
concern an arbitrary finitely generated nilpotent group, some of which are
well known. In Subsection 2.1 we collect well-known formulas for endomor-
phisms of finitely induced representations, based on Frobenius reciprocity and
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Mackey’s formula. Also, we introduce a notion of an irreducible weight pair.
In Subsection 2.2 we recall a result from [2] which relates ireducibility and
Schur irreducibility of finitely induced representations. In Subsection 2.3 we
prove a result which concerns irreducible weight pairs with abelian subgroups
of finitely generated torsion-free nilpotent groups. In Subsection 2.4 we recall
a criterion from [2] for irreducible weight pairs to be equivalent. We also prove
there a result which concerns equivalent weight pairs with subgroups which
have the same radical subgroup. In Subsection 2.5 we recall a definition of
ranks of finitely generated nilpotent groups.

All the other sections concern the group of unipotent matrices of order 4
over the ring of integers.

In Section 3 we list the ranks of subgroups which may appear for this group
and which provide irreducible monomial representations. The next six sections
are organised in a similar way as we are dealing with six possible cases of ranks
of subgroups. In each of those sections first we describe generators of subgroups
of given ranks, and then we obtain the conditions on a character of a subgroup
that the weight pair is irreducible. After that, we study equivalent irreducible
weight pairs such that a subgroup is the same, but characters are different.
Then we find all irreducible weight pairs which are equivalent to a given one
such that subgroups in those pairs are different.

Section 10 sums up all the possible cases of ranks of subgroups in a classifi-
cation theorem, which is the main result of the paper.

2. Preliminaries

We recall some well-known facts. Let G be an arbitrary group, and H be a
subgroup of a group G. We use notation from [2].

2.1. Endomorphisms of finitely induced representations.

Definition 2.1. Let S(H) ⊂ G be the set of all elements g ∈ G such that the
index of Hg ∩H in H is finite.

Let χ : H → C∗ be a character of a subgroup H.

Proposition 2.2. There is a canonical isomorphism of vector spaces

EndG
(

indGH(χ)
)
'

⊕
ḡ∈H\S(H)/H

HomHg∩H
(
χ|Hg∩H , χ

g|Hg∩H
)
.

Proposition 2.2 motivates the following definition.

Definition 2.3. Let S(H,χ) ⊂ G be the set of all elements g ∈ S(H) such
that

HomHg∩H
(
χ|Hg∩H , χ

g|Hg∩H
)
6= 0 ,
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or, equivalently,

χ|Hg∩H = χg|Hg∩H .

As an immediate corollary from the Proposition 2.2, we obtain a canonical
isomorphism of vector spaces

EndG
(

indGH(χ)
)
'

⊕
H\S(H,χ)/H

C .

Definition 2.4. An irreducible weight pair is a pair (H,χ) such that H ⊂ G is
a subgroup, χ is a character of H, and indGH(χ) is an irreducible representation.

Remark 2.5. Unfortunately, this definition is in a way an abuse of notation. In
the paper [2] an irreducible pair was defined as a pair (H, ρ), where H ⊂ G is
a subgroup and ρ is a (non-zero) finite-dimensional irreducible representation
of H.

2.2. Irreducibility vs. Schur irreducibility. We recall that a representa-
tion π is called Schur-irreducible if EndG(π) = C.

We also recall that a generalization of Schur’s lemma to countable groups
holds true. Namely, any countably dimensional irreducible representation over
C of an arbitrary group is Schur-irreducible (see, e.g., [5, Claim 2.11]).

Remark 2.6. For an irreducible weight pair (H,χ), the centralizer CG(H) =
{g ∈ G | [g, h] = 1 for any h ∈ H} is a subgroup of H, and, in particular,
the center Z(G) is contained in H.

Proof. Clearly, CG(H) ⊂ S(H,χ). For an irreducible weight pair (H,χ), it
follows from Schur’s lemma that EndG(π) = C, and then S(H,χ) = H. �

Now let G be a finitely generated nilpotent group.

We will essentially use the following theorem. It allows us to replace irre-
ducibility of representations with Schur-irreducibility, which is much easier to
check.

Theorem 2.7. [2, Theorem 3.14] Let H be a subgroup of a finitely generated
nilpotent group G. Let ρ be an irreducible complex representation of H such
that the finitely induced representation indGH(ρ) satisfies EndG

(
indGH(ρ)

)
= C.

Then the representation indGH(ρ) is irreducible.

We will use this theorem for ρ = χ, a one-dimensional representation of H.

Remark 2.8. Under the conditions of Theorem 2.7, a representation indGH(ρ)
is irreducible if and only if S(H,χ) = H.
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2.3. Irreducible weight pairs with abelian subgroups. Let us denote by
γ1(G) = [G,G], γk(G) = [G, γk−1(G)].

Definition 2.9. Let H∗ be the smallest subgroup of G with the following
properties: H∗ contains H and if an element g ∈ G satisfies gi ∈ H∗ for some
positive integer i, then g ∈ H∗.

A subgroup H is called isolated if H = H∗.

For elements g, h ∈ G we will denote a conjugated element hgh−1 by gh.

Proposition 2.10. Let G be a finitely generated torsion-free nilpotent group,
such that torsion of (G/γk(G)) is trivial for every k. Let H ⊂ G be an abelian
subgroup of G. If H form an irreducible weight pair (H,χ) for some character
χ : H → C∗, then H is isolated.

To prove the proposition, we need the following simple lemma:

Lemma 2.11. Let g, h be elements of G such that k is the maximal number
that [h, g] ∈ γk(G). Then there is a homomorphism ψ :

〈
g
〉
→ G/γk+1(G),

which maps gi to [h, gi].

Proof. Follows directly from the formula

[h, gigj] = [h, gi][h, gj]g
i

= [h, gi][h, gj][gi, [h, gj]],

since [gi, [h, gj]] is in γk+1(G). �

Now we can prove the Proposition 2.10.

Proof. Assume the opposite, then there exists an element g ∈ H∗ \ H. That
is gn ∈ H for some integer n. Since CG(H) = H, there exists an element
h ∈ H such that g does not commute with h. Since G is nilpotent, there
exists k such that [h, g] ∈ γk(G), and [h, g] /∈ γk+1(G). Note that k ≥ 1. By
Lemma 2.11 there is a homomorphism ψ :

〈
g
〉
→ γk(G)/γk+1(G), but since

the torsion of γk(G)/γk+1(G) is trivial, ψ is injective. Since gn ∈ H, it follows
that [h, gn] = ψ(gn) = 1. But gn 6= 1, because g 6= 1, and G is torsion-free. It
contradicts injectivity of ψ.

�

2.4. Isomorphic finitely induced representations. We have the following
criterion of isomorphism of irreducible monomial representations.

Definition 2.12. We say that pairs (H1, χ1) and (H2, χ2) are equivalent
if indGH1

(χ1) ' indGH2
(χ2). We denote it as follows: (H1, χ1) ∼ (H2, χ2).

Proposition 2.13. [2, Proposition 4.10] Let (H1, χ1) and (H2, χ2) be two
irreducible weight pairs. Then they are equivalent if and only if there exists an
element g ∈ G such that (H∗2 )g = H∗1 and χ1|Hg

2∩H1
= χg2|Hg

2∩H1
.
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Let Y be the set of irreducible weight pairs. Let Σ be the set of all subgroups
H ⊂ G for which there exists a character χ : H → C∗ such that a pair (H,χ)
belongs to Y . One has a natural surjective map Y → Σ.

Let us denote by ∼f the equivalence 2.12, restricted on fibers of the map
Y → Σ. We denote the quotient by this equivalence by ZH = YH/ ∼f , where
YH is a fiber of Y over a subgroup H ∈ Σ. We denote by Z the bundle over Σ
with fibres ZH over a subgroup H ∈ Σ.

Let us denote by W the set of equivalence classes of irreducible weight pairs
such that (H1, χ1) and (H2, χ2) belong to the same class if the pairs are equiv-
alent, and H∗1 = H∗2 . Let us denote this equivalence by ∼∗. This equivalence
relation on Y naturally descends to the set of subgroups Σ. Subgroups H1,
H2 ∈ Σ belong to the same equivalence class if H∗1 = H∗2 . Let us denote the
quotient og Σ by this equivalence by Θ. There is a natural surjective map
W → Θ.

Corollary 2.14. We have the following commutative diagram:

Y Z W

Σ Σ Θ

ϕ

∼

Definition 2.15. A weight pair (H ′, χ′) extends a weight pair (H,χ) if H is
a subgroup of H ′ and χ′|H = χ.

Proposition 2.16. Let G be a finitely generated nilpotent group. Then for ev-
ery representative of equivalent weight pairs (H,χ) ∈ W the set of equivalence
classes of weight pairs ϕ−1

(
(H,χ)

)
in Z is finite.

Proof. Let (H,χ) be an element ofW . Let us prove that there are finitely many
equivalence classes of weight pairs (H ′, χ′) ∈ Z such that (H ′, χ′) ∼ (H,χ) and
H ′∗ = H∗.

Since G is finitely generated nilpotent group, G is Noetherian. Then every
subgroup H ⊂ G is finitely generated. Let H =

〈
h1, . . . , hk

〉
. Since H ′∗ = H∗,

there exist certain ni ∈ N, mi ∈ Z such that H ′ =
〈
h

n1
m1
1 , . . . , h

nk
mk
k

〉
. For any

element h ∈ H there are finitely many g ∈ G such that gr = h for some integer
r, since for any subgroup H its index in H∗ is finite. Thus, for hi, 1 ≤ i ≤ k,

there are finitely many integer valued tuples (mj
1, . . . ,m

j
k) such that h

1

m
j
1

i ∈ G
for all indices i, j. Let us fix a tuple (mj

1, . . . ,m
j
k) from this finite set. Let

us assume that there exist infinitely many natural valued tuples (nj1, . . . , n
j
k)
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such that a subgroup H ′ =
〈
h

n1
m1
1 , . . . , h

nk
mk
k

〉
belongs to Σ, and there exists a

character χ′ of H ′ that (H ′, χ′) ∈ Z and (H ′, χ′) ∼ (H,χ).
We call two tuples (ni1, . . . , n

i
k) and (nj1, . . . , n

j
k) comparable if nil ≤ njl for

all indices 1 ≤ l ≤ k, or nil ≥ njl for all indices 1 ≤ l ≤ k. We claim that in an
infinite set of natural valued tuples there always exist two comparable tuples.
Indeed, for any given tuple (n1

1, . . . , n
1
k) let us find a tuple (n2

1, . . . , n
2
k) which is

incomparable with (n1
1, . . . , n

1
k). It means that there exists at least one (but not

all) index 1 ≤ l ≤ k such that n2
l < n1

l and other indices 1 ≤ r ≤ k that n2
r ≥

n1
r. Let us construct the next tuple which is incomparable with the first one

and the second one. Then there exists an index 1 ≤ s ≤ k which correspond to
the value of the third tuple which is strictly smaller than corresponding value
of the second tuple. This index s either coincides with l or does not. The
set of different natural numbers n1, . . . , nk such that n1 ≤ n1

1, . . . , nk ≤ n1
k is

finite. If l 6= s then there exists an index with strictly smaller value than of
the first tuple, and we choose it from the finite set of values. If l = s and the
corresponding value of the third tuple (n3

1, . . . , n
3
k) coincide in l = s with the

value of the second tuple, that is n1
l < n3

l = nl2, then we proceed by induction
on k. Since for this case the value in l = s is fixed, we are now dealing with
tuples of (k−1) size. It is easy to check that for k = 2 the claim is true : there
is no infinite set of incomparable natural valued tuples of the form (nj1, n

j
2),

hence the base of induction is valid.
Thus, in our infinite set of tuples (nj1, . . . , n

j
k) which correspond to sub-

groups
〈
h

n
j
1

m1
1 , . . . , h

n
j
k

mk
k

〉
, there exist two comparable tuples (nj1, . . . , n

j
k) and

(ni1, . . . , n
i
k). Let us denote them by Hi =

〈
h

ni
1

m1
1 , . . . , h

ni
k

mk
k

〉
and Hj =〈

h
n
j
1

m1
1 , . . . , h

n
j
k

mk
k

〉
. Then there exist characters χi of Hi and χj of Hj such that

weight pairs (Hi, χi) and (Hj, χj) are in Z, and (Hi, χi) ∼ (Hj, χj). Without

loss of generality let (ni1, . . . , n
i
k) < (nj1, . . . , n

j
k), then the weight pair (Hj, χj)

extends the weight pair (Hi, χi). It contradicts the fact that both of them are
irreducible weight pairs. Then the set of tuples is finite, and correspondingly,
the set of weight pairs (H ′, χ′) ∈ Z such that (H ′, χ′) ∼ (H,χ) and H ′∗ = H∗

is also finite.
�

For a given weight pair (H,χ) ∈ Y , if the quotient G/NG(H∗) is non-trivial,
then it is infinite. For any element g ∈ G \NG(H∗) the weight pair (Hg, χg) is
irreducible and equivalent to the pair (H,χ). Since conjugation on irreducible
weight pairs by elements of G commutes with the mapping to a ∼∗-equivalent
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weight pair, we can take the consequent quotients of Y by these equivalences.
We denote by X the quotient of Y by this equivalences.

The latter equivalence relation naturally descends to the set of subgroups Σ.
Subgroups H1, H2 ∈ Σ belong to the same equivalence class if there exists an
element g ∈ G such that (H∗1 )g = H∗2 . We denote by Ξ the quotient by this
equivalence of Θ. There is a natural surjective map X → Ξ.

Thus, we have the following commutative diagram:

Y Z W X

Σ Σ Θ Ξ

ϕ

∼

2.5. Ranks of finitely generated nilpotent groups.

Definition 2.17. Let G be a finitely generated nilpotent group. For a
given subgroup H ⊂ G we inductively define rk1(G) := rk(H/H ∩ [G,G]),
rki+1(H) := rk((H ∩ γi(G))/(H ∩ γi+1(G))).

Remark 2.18. If (H1, χ1) and (H2, χ2) are equivalent irreducible weight pairs,
then rki(H1) = rki(H2) for all i.

Proof. If H∗1 = H∗2 then the ranks are clearly equal since ranks do not change
if one restricts to a subgroup of a finite index.

Let (H∗1 )g = H∗2 for some non-trivial g ∈ G. Let h1, . . . , hn generate the
quotient (H1 ∩ γi(G))/(H1 ∩ γi+1(G)). Since (

〈
hg1, . . . , h

g
n

〉
∩ γi(G))/(H1 ∩

γi+1(G)) coincides with the quotient (
〈
h1, . . . , hn

〉
∩γi(G))/(H1∩γi+1(G)), we

have rki(H1) = rki(H2) for all i.
�

3. Classification of irreducible weight pairs

Let G be the group of upper triangular matrices of the fourth order with
integer entries. We will classify all irreducible weight pairs (H,χ) such that
H ⊂ G.

Proposition 3.1. [(i)] The ranks of subgroups of the group G can be the
following: (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2) and
(3, 2).

[(ii)] If H ∈ Σ, then ranks of H can be the following: (1, 1), (2, 0), (2, 1),
(1, 2), (2, 2) and (3, 2).

Proof. [(i)] If rk1(H) = 3, then there are two generators of H in H ∩
[G,G]/Z(G), so rk2(H) = 2. Thus, cases (3, 0) and (3, 1) are not possible.
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[(ii)] It is easy to check that for any g ∈ G the centralizer
CG(g) )

〈
g, Z(G)

〉
. For an irreducible weight pair (H,χ) we have

S(H,χ) = H, and by Remark 2.6 for g ∈ H a subgroup
〈
g, Z(G)

〉
( H.

Then there are always more than two generators in H. Thus, the cases (0, 0),
(0, 1), and (1, 0) are not possible. The case of (0, 2) ranks is also not possible
since the centralizer CG(H) coincides with the following subgroup of G:

1 0 Z Z
0 1 Z Z
0 0 1 0
0 0 0 1

 ,

which is bigger than H. Then there exists a weight pair (H ′, χ′) which extends
the pair (H,χ). It contradicts the condition S(H,χ) = H. �

Let us denote by Σr1,r2 the restriction of Σ to the set of subgroups H ⊂ G
such that rk1(H) = r1, rk2(H) = r2. The set Σ is a disjoint union of sets
Σr1,r2 . Let us denote corresponding bundles Y , Z restricted to Σr1,r2 by Yr1,r2 ,
Zr1,r2 , and similarly the bundle Xr1,r2 → Ξr1,r2 .

In this subsection we describe consecutively the set Σr1,r2 , bundles Yr1,r2 ,
Zr1,r2 , and Xr1,r2 → Ξr1,r2 for all possible ranks of subgroups of the set Σ for
the group G.

We denote by µ∞ the union of groups of roots from unity.

4. The case of rk1(H) = 1, rk2(H) = 1.

Let us define sets S, S1, S2, S3, S4, N1, and N2.

S = {(a, d, f, b, e) ∈ Z5 | GCD (
fb− ae

n
, a, d, f) = 1, n = GCD(a, f)},

S1 = {(a, d, f, b, e) ∈ Z5 | a 6= 0, d 6= 0, f 6= 0} ∩ S,

S2 = {(a, d, f, b, e) ∈ Z5 | a = 0, d 6= 0, f 6= 0} ∩ S,

S3 = {(a, d, f, b, e) ∈ Z5 | a 6= 0, d 6= 0, f = 0} ∩ S,

S4 = {(a, d, f, b, e) ∈ Z5 | a 6= 0, d = 0, f 6= 0} ∩ S,

N1 = {(a, d, f, b, e) ∈ Z5 | a 6= 0, d = 0, f = 0, b = 1} ∩ S,
9



N2 = {(a, d, f, b, e) ∈ Z5 | a = 0, d = 0, f 6= 0, e = 1} ∩ S.

Proposition 4.1. There is a canonical bijection φ from S1 ∪ S2 ∪ S3 ∪ S4 ∪
N1 ∪ N2 to Σ1,1. It maps a tuple (a, d, f, b, e) to a subgroup H, generated by
the following matrices

h1 =


1 a b 0
0 1 d e
0 0 1 f
0 0 0 1

 , h2 =


1 0 a

n
0

0 1 0 f
n

0 0 1 0
0 0 0 1

 , C =


1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

 ,

where n = GCD(a, f). Moreover, for every H ∈ Σ1,1, a subgroup H is abelian.
We can extend the bijection φ to the map from

(C∗)2 × {C∗ \ µ∞} = {t, z ∈ (C∗)2, λ /∈ µ∞}
to Y1,1;H , which is defined as follows:

t = χ(h1), z = χ(h2), λ = χ(C).

Proof. The proof goes as follows. First, we prove that if H ∈ Σ1,1, then a
subgroup H is abelian, and it is generated by h1, h2, C in the form given in
Proposition 4.1. Then we obtain conditions for generators h1, h2 that the
corresponding subgroup H can form an irreducible weight pair with some
character χ. Then we study characters χ1, χ2 : H → C∗ which correspond
to equivalent irreducible weight pairs (H,χ1) and (H,χ2). Finally, we obtain
conditions for a character χ that (H,χ) is an irreducible weight pair.

Since rk1(H) = rk2(H) = 1, we have one generator h1 such that〈
h1

〉
/
(
[G,G] ∩ H

)
is not trivial. Let us denote by h2 a generator such that〈

h2

〉
/
(
[G,G] ∩ H

)
is trivial and

(〈
h2

〉
∩ [G,G]

)
/Z(G) is not trivial. By Re-

mark 2.6 the center Z(G) is contained in H, hence we can choose generators
h1 and h2 such that

〈
h1

〉
∩ Z(G) and

〈
h2

〉
∩ Z(G) are trivial.

If the commutator [h1, h2], which is contained in the center of G, is not
trivial, then χ([h1, h2]) = χ(C)N = 1 for some integer N . But if χ(C) is a root
of unity, then rk2(CG(H)) = 2, since in this case both elements

1 0 k1 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


1 0 0 0
0 1 0 k2

0 0 1 0
0 0 0 1


are contained in H for some integers k1 and k2. By Remark 2.6 the centralizer
CG(H) ⊂ H, thus χ(C) is not a root of unity.

Hence, generators h1, h2 commute, and H is abelian. Then it follows from
Lemma 2.10 that H = H∗.
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Put

h1 =


1 a b 0
0 1 d e
0 0 1 f
0 0 0 1

 .

If a = f = 0, then rk2(CG(H)) = 2, but the centralizer CG(H) ⊂ H by
Remark 2.6. Then either a or f are non-zero.

Since generators h1, h2 commute, we obtain that hk2 is equal to
1 0 a 0
0 1 0 f
0 0 1 0
0 0 0 1


for some integer k. If a and f are coprime then h2 coincides with this element.
If not, then since a subgroup H is isolated, it has to contain all its roots. Hence

h2 =


1 0 a

n
0

0 1 0 f
n

0 0 1 0
0 0 0 1

 ,

where n = GCD(a, f). Let us denote by (a′, f ′) the proportional coprime
tuple ( a

n
, f
n
).

Now we will obtain conditions for a subgroup H to be an isolated subgroup.
In order to do that we will study tuples (a, d, f, b, e) which correspond to
generators of subgroups H such that H ⊂ H∗.

Let g ∈ H∗ \H. That means that there are such natural r1 > 1 and integer
r2, r3 that gr1 = hr21 h

r3
2 . Let

g =


1 ã b̃ 0

0 1 d̃ ẽ

0 0 1 f̃
0 0 0 1

 .

That means that


1 r1ã r1b̃+ r1(r1−1)

2
ãd̃ 0

0 1 r1d̃ r1ẽ+ r1(r1−1)
2

f̃ d̃

0 0 1 r1f̃
0 0 0 1

 =
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
1 r2a r2b+ r2(r2−1)

2
ad 0

0 1 r2d r2e+ r2(r2−1)
2

fd
0 0 1 r2f
0 0 0 1

×


1 0 r3a
′ 0

0 1 0 r3f
′

0 0 1 0
0 0 0 1


It implies thatr1ã

r1d̃

r1f̃

 =

r2a
r2d
r2f

 and

r1ã

r1d̃

r1f̃

 = lr1

a′′d′′
f ′′

 ,

where (a′′, d′′, f ′′) is a coprime tuple which is proportional to (a, d, f).
Then r1l = r2n for some integer l. Let us notice that if n = 1 then it is easy

to observe that g is an element of H.
If GCD(l, n) is greater than 1, then we may divide the equality r1l = r2n by

GCD(l, n) and obtain the new equality r1l
′ = r2n

′ with GCD(l′, n′) = 1. After
that, we can replace a tuple (l, n) with a proportional coprime tuple (l′, n′).
Since modulo this replacement it does not change the proof, we proceed with
the case when GCD(l, n) = 1.

We have r1 = nr and r2 = lr for some integer r.
From gr1 = hr21 h

r3
2 we obtain

r1b̃+
r1(r1 − 1)

2
l2a′′d′′ = r2b+

r2(r2 − 1)

2
n2a′′d′′ + r3a

′,

r1ẽ+
r1(r1 − 1)

2
l2f ′′d′′ = r2e+

r2(r2 − 1)

2
n2f ′′d′′ + r3f

′.

Then

r1b̃− r2b = (
r2(r2 − 1)

2
n2kd′′ − r1(r1 − 1)

2
l2kd′′ + r3)a′,

r1ẽ− r2e = (
r2(r2 − 1)

2
n2kd′′ − r1(r1 − 1)

2
l2kd′′ + r3)f ′.

Let us denote the expression ( r2(r2−1)
2

n2kd′′− r1(r1−1)
2

l2kd′′+r3) by M . Then
M can be an arbitrary integer since r3 can be an arbitrary integer. Now we
need to obtain the condition for the system of equations

r(nb̃− lb) = Ma′,

r(nẽ− le) = Mf ′.

to be solvable in b̃, ẽ ∈ Z2, where integers M, r, and l are coprime with n, and
integers b, e, n, a′, f ′ are fixed.
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The system is solvable if and only if

l(bf ′ − ea′) = n(b̃f ′ − ẽa′).

Since n and l are coprime, the condition above is equivalent to the following
one: (bf ′−ea′) is divisible by n. Then (b̃f ′− ẽa′) = lm for some integer m and

since a′ and f ′ are coprime, there always exist integers b̃ and ẽ which satisfy
the equation.

Finally, we can see that a subgroup H is isolated if and only if H ∈ φ(S).

Now for every H ∈ Σ1,1, we will describe the fiber Y1,1;H . We need to check
that Y1,1;H parametrizes all characters χ of H which correspond to irreducible
weight pairs (H,χ).

(i). If H ∈ Σ1,1 \ (φ(N1) ∪ φ(N2) ∪ φ(S2) ∪ φ(S3)) then the quotient
NG(H)/H is generated by

g1 =


1 a′ 0 0
0 1 0 0
0 0 1 −f ′
0 0 0 1

 , g2 =


1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

 .

The action of g1 and g2 on a character χ is as follows:

(4.2) χg1(h1) = χ(h1)χ(h2)dλa
′e+f ′b+a′f ′d, χg1(h2) = χ(h2)λ2a′f ′ ,

and

χg2(h1) = χ(h1)λ−a, χg2(h2) = χ(h2).

We can see that if χ(C) = λ is not a root of unity, then the action above is
free, which means that S(H,χ) = H for a corresponding weight pair (H,χ).

If H ∈ φ(S2), then the generator g2 is replaced by

g2 =


1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

The action is as follows:

(4.3) χg1(h1) = χ(h1)χ(h2)dλf
′b, χg1(h2) = χ(h2),

and
13



χg2(h1) = χ(h1)λf , χg2(h2) = χ(h2).

Again, we can see that if χ(C) = λ is not a root of unity, then the action
above is free, which means that S(H,χ) = H.

(ii). If H ∈ (φ(N1) ∪ φ(N2)), then it is easy to check that NG(H) = G.
Without loss of generality let us consider the case of a subgroup H with f =
d = 0. The other one with a = d = 0 is treated similarly. Since H is isolated,
its generators h1 and h2 may be chosen as follows:

h1 =


1 a 0 0
0 1 0 e
0 0 1 0
0 0 0 1

 , h2 =


1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Then the quotient NG(H)/H is generated by

g1 =


1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

 , g2 =


1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1


and

g3 =


1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 .

The action of g1, g2 and g3 on characters is as follows:

χg1(h1) = χ(h1)χ(h2)−a, χg1(h2) = χ(h2),

χg2(h1) = χ(h1)χ(C)−a, χg2(h2) = χ(h2),

χg3(h1) = χ(h1), χg3(h2) = χ(h2)χ(C)−1.

(4.4)

Again, we can see that if χ(C) = λ is not a root of unity, then the action
above is free, which means that S(H,χ) = H and corresponding representa-
tions are irreducible.

�

Let us consider the following action: z → zλn, n ∈ Z.
If λ is a root of unity, then the quotient of z ∈ C∗ by this action is confor-

mally equivalent to C∗.
In a case that λ is not in S1, then the quotient by this action is an elliptic

curve, which we denote by Eλ =
〈
C∗/λn, n ∈ Z

〉
.

In a case that λ ∈ S1 \µ∞, we denote the corresponding quotient by Pλ (not
separable).
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Let both λ and z be not roots of unity. We denote by Tz,λ =〈
C∗/λn1zn2 , n1, n2 ∈ Z2

〉
(not separable).

Let us denote by Z
(3)
1,1;H = {{t, z ∈ (C∗)2, λ /∈ µ∞}/ ∼}, by Z

(2)
1,1;H = {{z ∈

C∗, λ /∈ µ∞}/ ∼} and by Z
(1)
1,1;H = {λ /∈ µ∞}, where ∼ is defined in 2.12.

Corollary 4.5. If H ∈ φ(S1), then the fiber Z1,1;H of Z1,1 over a subgroup H
has iterated structure of a bundle, namely:

Z
(3)
1,1;H → Z

(2)
1,1;H → Z

(1)
1,1;H .

We describe fibers of this bundle consecutively in coordinates (t, z, λ).

{Tzdλa′e+f ′b+a′f ′d, a} , {Eλ2a′f ′ \ µ∞} , {C∗ \ S1} ∪

{Tzdλa′e+f ′b+a′f ′d, a} , {Pλ2a′f ′ \ µ∞} , {S1 \ µ∞} ∪

{EλGCD(a′e+f ′b+a′f ′d,a)} , {µ∞} , {C∗\S1} ∪ {PλGCD(a′e+f ′b+a′f ′d,a)} , {µ∞} , {S1\µ∞};

If H ∈ φ(S2), then the fibers Z
(3)
1,1;H → Z

(2)
1,1;H → Z

(1)
1,1;H over H are canoni-

cally bijective to:

{Tzdλf ′b,λf} , {C∗ \ S1} , {C∗ \ S1} ∪ {Tzdλf ′b,λf} , {S1 \ µ∞} , {C∗ \ S1} ∪

{EλGCD(f ′b,f)} , {µ∞} , {C∗ \ S1} ∪ {Tzdλf ′b,λf} , {C∗ \ µ∞} , {S1 \ µ∞} ∪

{PλGCD(f ′b,f)} , {µ∞} , {S1 \ µ∞};

If H ∈ φ(S3), then the fibers Z
(3)
1,1;H → Z

(2)
1,1;H → Z

(1)
1,1;H over H are canoni-

cally bijective to:

{Tzdλa′e,λa} , {C∗ \ S1} , {C∗ \ S1} ∪ {Tzdλa′e,λa} , {S1 \ µ∞} , {C∗ \ S1} ∪

{EλGCD(a′e,a)} , {µ∞} , {C∗ \ S1} ∪ {Tzdλa′e,λa} , {C∗ \ µ∞} , {S1 \ µ∞} ∪

{PλGCD(a′e,a)} , {µ∞} , {S1 \ µ∞};

If H ∈ φ(S4), then the fibers Z
(3)
1,1;H → Z

(2)
1,1;H → Z

(1)
1,1;H over H are canoni-

cally bijective to:

{EλGCD(a′e+f ′b,a)} , {Eλ2a′f ′} , {C∗\S1} ∪ {PλGCD(a′e+f ′b,a)} , {Pλ2a′f ′} , {S1\µ∞};

If H ∈ φ(N1), then the fibers Z
(3)
1,1;H → Z

(2)
1,1;H → Z

(1)
1,1;H over H are canoni-

cally bijective to:

{Tza,λa} , {Eλ \ µ∞} , {C∗ \ S1} ∪ {Eλ} , {µ∞} , {C∗ \ S1} ∪

{Tza,λa} , {Pλ \ µ∞} , {S1 \ µ∞} ∪ {Pλ} , {µ∞} , {S1 \ µ∞}.
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If H ∈ φ(N2), then the fibers Z
(3)
1,1;H → Z

(2)
1,1;H → Z

(1)
1,1;H over H are canoni-

cally bijective to:

{Tzf ,λf} , {Eλ \ µ∞} , {C∗ \ S1} ∪ {Eλ} , {µ∞} , {C∗ \ S1} ∪
{Tzf ,λf} , {Pλ \ µ∞} , {S1 \ µ∞} ∪ {Pλ} , {µ∞} , {S1 \ µ∞}.

Proof. Follows directly from formulas of the action of NG(H)/H on a character
χ of H above (equations 4.4, 4.3). �

Lemma 4.6. If H1 ∈ Σ1,1 \ (φ(N1) ∪ φ(N2)), then the following subgroups
H2 ∈ Σ1,1 are equivalent to H1:

H2 = φ((a, d, f, b+ d̃f, e− d̃a)) for an arbitrary integer d̃.
Fibers Z1,1;H1 , Z1,1;H2 over subgroups H1, H2 can be canonically identified.

Proof. Since H1 = H∗1 for H1 ∈ Σ1,1, as proved in Proposition 4.1, we need
to consider only subgroups H2 such that (H2)g = H1 and χ1|Hg

2∩H1
= χg2|Hg

2∩H1

for some element g ∈ G.
If H1 = φ((a, d, f, b, e)) ∈ Σ1,1 \ (φ(N1) ∪ φ(N2)), then H1 is not normal

and the quotient G/NG(H1) is generated by

g =


1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

 .

Then it is easy to compute the parameters of conjugated subgroups:
H2 = φ((a, d, f, b+ d̃f, e− d̃a)). If we denote non-central generators of H2 by

h̃1, h̃2, then characters of the subgroups are related as follows: χ2(h̃1) = χg1(h1),

χ2(h̃2) = χ1(h2) and χ2(C) = χ1(C). It gives a canonical identification of
fibers Z1,1;H1 , Z1,1;H2 over subgroups H1 and H2.

�

5. The case of rk1(H) = 2, rk2(H) = 0.

Let us define a set

S = {(a, b, e, f ′, b′, e′) ∈ Z6 | ae′+f ′b = 0, a 6= 0, f 6= 0, |GCD(a, b, e)| = 1, |GCD(f ′, b′, e′)| = 1}.

Lemma 5.1. There is a canonical bijection φ from S to Σ2,0. It maps a tuple
(a, b, e, f ′, b′, e′) to a subgroup H, generated by the following matrices

h1 =


1 a b 0
0 1 0 e
0 0 1 0
0 0 0 1

 , h2 =


1 0 b′ 0
0 1 0 e′

0 0 1 f ′

0 0 0 1

 , C =


1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

 .
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Moreover, for every H ∈ Σ2,0, a subgroup H is abelian.
We can extend the bijection φ to the map from

(C∗)2 × {C∗ \ µ∞} = {(t, s, λ) | λ /∈ µ∞}
to Y2,0;φ(α), which is defined as follows:

t = χ(h1), s = χ(h2), λ = χ(C).

Proof. The proof goes as follows. First, we prove that if H ∈ Σ2,0, then H
is generated by h1, h2, C in the form above. After that, we prove that H is
abelian. After that, we obtain conditions for h1, h2 that the corresponding
subgroup H is isolated. Then we study characters χ1, χ2 : H → C∗ which
correspond to equivalent irreducible weight pairs (H,χ1) and (H,χ2). Finally,
we obtain conditions for a character χ that (H,χ) is an irreducible weight pair.

Let us denote by h1, h2 two generators of H/H ∩ [G,G]. Since rk2(H) = 0,
it follows that the commutator [h1, h2] is in the center of G. If χ(C) is a
root of unity, then we can extend a weight pair (H,χ) to (H ′, χ′) with the
rank rk2(H ′) = 2. Hence if χ(C) is a root of unity, the pair (H,χ) is not
irreducible. Then χ(C) is not a root of unity, and h1 and h2 commute. Then
generators h1 and h2 have the following form:

h1 =


1 a b 0
0 1 0 e
0 0 1 0
0 0 0 1

 , h2 =


1 0 b′ 0
0 1 0 e′

0 0 1 f ′

0 0 0 1


such that ae′+f ′b = 0. The last condition follows from the equality [h1, h2] = 1.

Since H is abelian, then by Lemma 2.10 it is isolated.
The conditions for generators h1 and h2 that H is isolated are easy to

compute in this case. They are the following ones: GCD(a, b, e) = 1 and
GCD(f ′, b′, e′) = 1.

Now for every H ∈ Σ2,0, we need to describe the fiber Y2,0;H .
For all subgroups H ∈ Σ2,0, the quotient NG(H)/H is generated by

g1 =


1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

 , g2 =


1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1


The action of g1, g2 on a character χ is as follows:

χg1(h1) = χ(h1)λf
′
, χg1(h2) = χ(h2)

χg2(h1) = χ(h1), χg2(h2) = χ(h2)λ−a.
(5.2)
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We can see that the action above is free if χ(C) = λ is not a root of unity,
which means that corresponding representations are irreducible.

�

Let us denote by Z
(2,1)
2,0;H = {{t ∈ C∗, λ /∈ µ∞}/ ∼}, by Z

(2,2)
2,0;H = {{s ∈

C∗, λ /∈ µ∞}/ ∼} and by Z
(1)
2,0;H = {λ /∈ µ∞}, where ∼ is defined in 2.12.

Corollary 5.3. If H ∈ Σ2,0, then the fiber Z2,0;H of Z2,0 over a subgroup H
has the following iterated structure of a bundle, namely:

Z
(2,1)
2,0;H → Z

(1)
2,0;H , Z

(2,2)
2,0;H → Z

(1)
2,0;H .

We describe fibers of these bundles consecutively in coordinates (t, s, λ).

{Eλf ′} , {Eλa} , {C∗ \ S1} ∪ {Pλf ′} , {Pλa} , {S1 \ µ∞}.

Proof. Follows directly from NG(H)/H action on a character χ of H above
(equations 5.2). �

Lemma 5.4. If H1 ∈ Σ2,0, then the following subgroups H2 ∈ Σ2,0 are equiv-
alent to H1:
H2 = φ((a, b− ad̃, e, f, b′, e′ + f ′d̃)) for an arbitrary integer d̃.
Fibers Z2,0;H1 , Z2,0;H2 over subgroups H1, H2 can be canonically identified.

Proof. Since H1 = H∗1 , by Proposition 2.16 we need to study only such sub-
groups H2 that there exists an element g ∈ G such that (H2)g = H1 and
χ1|Hg

2∩H1
= χg2|Hg

2∩H1
. If H1 ∈ Σ2,0, then the quotient G/NG(H1) is generated

by

g =


1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

 .

Then it is easy to observe that conjugated subgroups are
φ(( a, b − a d̃, e, f ′, b′, e′ + f ′ d̃)). If we denote non-central gen-

erators of H2 by h̃1, h̃2, then the characters of the subgroups are related

as follows: χ2(h̃1) = χd̃1(h1), χ2(h̃2) = χd̃1(h2) and χ2(C) = χ1(C). It
gives a canonical identification of fibers Z2,0;H1 , Z2,0;H2 over subgroups H1

and H2. �
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6. The case of rk1(H) = 2, rk2(H) = 1.

Let us define sets S1, S2.

S1 = {(a, e, d′, e′) ∈ Z4 | a 6= 0, d 6= 0 and |GCD(a, e)| = 1, |GCD(d′, e′)| = 1}.
S2 = {(a, e, d′, e′) ∈ Z4 | a 6= 0, d 6= 0 and |GCD(a, e)| = k1, |GCD(d′, e′)| = k2, |k1k2| > 1}.

Lemma 6.1. There is a canonical bijection φ from S1 ∪ S2 to Σ2,1. It maps
a tuple (a, e, d′, e′) to a subgroup H, generated by the following matrices

h1 =


1 a 0 0
0 1 0 e
0 0 1 0
0 0 0 1

 , h2 =


1 0 0 0
0 1 d′ e′

0 0 1 0
0 0 0 1

 , C =


1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

 .

If H ∈ φ(S1), then we can extend the bijection φ to the map from

(C∗)2 × µN × {C∗ \ µ∞} = {(t, r, z, λ) | zad′λae′ = 1 and λ /∈ µ∞}
to Y2,1;H , which is defined as follows:

t = χ(h1), r = χ(h2), z = χ(h3), λ = χ(C).

If H ∈ φ(S2), we can extend the bijection φ
to the map from (C∗)2 × µN × {C∗ \ µ∞} =

{(t, r, z, λ) | zad′λae′ = 1, the minimal natural m that z
ad′m
k1k2 λ

ae′m
k1k2 = 1

equals |k1k2|, and λ /∈ µ∞} to Y2,1;H , which is defined as above.

Proof. The proof goes as follows. First, we prove that if H ∈ Σ2,1, then its
generators may be chosen in the form given in Lemma 6.1. Then we study
characters χ1, χ2 : H → C∗ which correspond to equivalent irreducible weight
pairs (H,χ1) and (H,χ2). After that, we obtain conditions for a character χ
that (H,χ) is an irreducible weight pair.

Let us denote the two generators of H/H∩ [G,G] by h1, h2. If χ(C) is a root
of unity, then we need to extend the weight pair (H,χ) to the pair (H ′, χ′)
with the rank rk2(H ′) = 2. Hence χ(C) is not a root of unity. Let us denote
by h3 the generator of H ∩ [G,G]/Z(G). Let us first consider generators h1

and h2 in the following (general) form:

h1 =


1 a b 0
0 1 d e
0 0 1 f
0 0 0 1

 , h2 =


1 a′ b′ 0
0 1 d′ e′

0 0 1 f ′

0 0 0 1


If d = d′ = 0, then the commutator [h1, h2] is in the center of the group

G. But then [h1, h3] and [h2, h3] can not both be unity, hence χ(C) is a root
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of unity, which contradicts the earlier statement. Then either d or d′ is not
zero. Hence, the commutator [h1, h2] = hk3C

n for some integers k, n. Then
χ(h3)adχ(C)ae

′
= 1 (in particular, if e′ = 0 we obtain that χ(h3) is a root of

unity). Besides, [h1, h3] = [h2, h3] = 1, otherwise [h1, h3] and [h2, h3] are in the
center of the group G, and χ(C) is a root of unity. Then the generator h3 has
to be proportional to [h1, h2], that is, to the element

1 0 −a 0
0 1 0 f
0 0 1 0
0 0 0 1

 .

From [h1, h3] = [h2, h3] = 1 we obtain that either f = f ′ = 0 or a = a′ = 0.
Let us consider the case of f = f ′ = 0 (the other one is treated similarly, if
we put integer parameters f = a, b = e, b′ = e′). Since [h1, h2] = hk3C

n, the
generator h3 has the following form:

h3 =


1 0 b′′ 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

But the element 
1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1


belongs to CG(H). Then by Remark 2.6, it coincides with h3.

So we can have generators h1 and h2 in the following form (dividing h1 and
h2 by hb3 and hb

′
3 correspondingly):

h1 =


1 a 0 0
0 1 0 e
0 0 1 0
0 0 0 1

 , h2 =


1 0 0 0
0 1 d′ e′

0 0 1 0
0 0 0 1

 .

A subgroup H in this case is not necessarily isolated. Namely, it is not
isolated if |GCD(a, e)| > 1 or |GCD(d, e′)| > 1.

Now for each H ∈ Σ2,1 we describe the fiber Y2,1;H .
For all subgroups H ∈ Σ2,1, the quotient NG(H)/H is generated by
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g =


1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

 .

The action of g on a character χ is as follows:

(6.2) χg(h1) = χ(h1)λ−a, χg(h2) = χ(h2), χg(h3) = χ(h3).

If |GCD(a, e)| = k1, |GCD(d, e′)| = k2, |k1k2| > 1, and

χ(h3)
adm
k1k2χ(C)

ae′m
k1k2 = 1 for an integer m, then the elements h

m1
k1

2 and h
m2
k2

2

belong to CG(H) \ H. It contradicts irreducibility of corresponding induced
representation.

Thus, we can see that given the conditions for a character χ of H formulated
in Lemma 6.1, the action above 6.2 is free. Then corresponding representations
are irreducible. �

Let us denote by Z
(2,1)
2,1;H = {{(t, λ) | t ∈ C∗, λ /∈ µ∞}/ ∼}, by Z

(1,1)
2,1;H = {r ∈

C∗}, by Z
(2,2)
2,1;H = {{(z, λ) | z ∈ C∗, λ /∈ µ∞}/ ∼} and by Z

(1,2)
2,1;H = {λ /∈ µ∞},

where ∼ is defined in 2.12.

Corollary 6.3. If H ∈ Σ2,1, then the fiber Z2,1;H of Z2,1 over a subgroup H
has iterated structure of a bundle, namely:

Z
(2,1)
2,1;H → Z

(1,2)
2,1;H , Z

(1,1)
2,1;H , Z

(2,2)
2,1;H → Z

(1,2)
2,1;H .

We describe fibers of these bundles consecutively in coordinates (t, r, z, λ):
{Eλa} , C∗ , µad′ , {C∗ \ S1} ∪ {Pλa} , C∗ , µad′ , {S1 \ µ∞}.

Proof. Follows directly from NG(H)/H action on a character χ of a subgroup
H above (equations 6.2).

We obtain the value of z = (λ−ae
′
)

1
ad′ from zad

′
λae

′
= 1. �

Lemma 6.4. If H1 ∈ Σ2,1, then the following subgroups are equivalent to H1:

H2 = φ((a, e, d′, e′ − d′f̃)) for an arbitrary integer f̃ .
If H1 ∈ φ(S2), then there is also a finite set of subgroups which are F -

equivalent to H1.
Fibers Z2,1;H1 and Z2,1;H2 over equivalent subgroups may be identified canon-

ically.
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Proof. First, by Proposition 2.16[(i)] we consider G/NG(H∗1 ) action on H1.
The quotient G/NG(H∗1 ) is generated by

g =


1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 .

It is easy to compute that conjugated subgroups are φ((a, e, d′, e′ − d′f̃)). Let

us denote generators of H2 which generate H2/
(
H2 ∩ [G,G]

)
by h̃1, h̃2, and

we denote by h̃3 the element which generates
(
H2 ∩ [G,G]

)
/Z(G). Then char-

acters of the subgroups are related as follows: χ2(h̃1) = χf̃1(h1), χ2(h̃2) =

χf̃1(h2), χ2(h̃3) = χf̃1(h3), and χ2(C) = χ1(C). It gives a canonical identifica-
tion of fibers Z2,1;H1 and Z2,1;H2 over subgroups H1 and H2.
If H1 ∈ φ(S2), then H1 is not isolated. By Proposition 2.16[(ii)] we need to
consider also equivalent irreducible weight pairs (H1, χ1) and (H2, χ2) such
that H∗1 = H∗2 and H1 6= H2. Clearly, we can only possibly extract roots from
generators h1 and h2. The condition zad

′
λae

′
= 1 (which here stands for

χ1([h1, h2]) = 1) holds as well for H2, since h3 = h̃3, χ1(h3) = χ2(h3) = z and
χ1(C) = χ2(C) = λ. Let us denote GCD(a, e) = k1 and GCD(d′, e′) = k2.
Then for every divisor m1 of k1, a subgroup φ(( a

m1
, e
m1
, d′m1, e

′m1)) with a

character χ2 defined by χ1(h1) = χ2(h̃1)m1 , χ1(h2)m1 = χ(h̃2) is F -equivalent
to H1. Similarly, a subgroup φ((am2, em2,

d′

m2
, e′

m2
)) with a character χ2 defined

by χ1(h1)m2 = χ(h̃1), χ1(h2) = χ(h̃2)m2 is F -equivalent to H1.
�

7. The case of rk1(H) = 1, rk2(H) = 2.

Let us define sets S1, S2, S3, and A.

S1 = {(a, d, f, b, e, b′, e′) ∈ Z7 | a 6= 0, f 6= 0, e′ 6= 0, b′ 6= 0, |b| < |b′|, |e| < |e′|},

S2 = {(a, d, f, b, e, b′, e′) ∈ Z7| a 6= 0, d 6= 0, f = 0, e′ 6= 0, b′ = 1, b = 0, |e| < |e′| },

S3 = {(a, d, f, b, e, b′, e′) ∈ Z7| a = 0, d 6= 0, f 6= 0, b′ 6= 0, e′ = 1, |b| < |b′|, e = 0},

A = {(a, d, f, b, e, b′, e′) ∈ Z7 | a = f = 0, d = 1, b = 0, e = 0, b′ = 1, e′ = 1}.

Let N = GCD(|ae′|, |fb′|).
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Lemma 7.1. There is a canonical bijection φ from S1 ∪ S2 ∪ S3 ∪ A
to Σ1,2. It maps a tuple (a, d, f, b, e, b′, e′) to a subgroup H, generated by the
following matrices

h1 =


1 a b 0
0 1 d e
0 0 1 f
0 0 0 1

 , h2 =


1 0 b′ 0
0 1 0 0
0 0 1 0
0 0 0 1

 , h3 =


1 0 0 0
0 1 0 e′

0 0 1 0
0 0 0 1

 , C =


1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

 .

If H ∈ φ(S1) ∪ φ(S2) ∪ φ(S3), we can extend the bijection φ to the map
from

C∗ × {C∗ \ µ∞} × {C∗ \ µ∞} × {µN} = {(t, z, w, λ) | z, w /∈ µ∞, λN = 1}
to Y1,2;H , which is defined as follows:

t = χ(h1), z = χ(h2), w = χ(h3), λ = χ(C).

If H ∈ φ(A), then H is abelian (and there is only one such a subgroup). We
can extend the bijection φ to the map from

C∗ × {C∗ \ µ∞} × {C∗ \ µ∞} × C∗ = {(t, z, w, λ) | z, w /∈ µ∞} ∪
C∗ × C∗ × C∗ × {C∗ \ µ∞} = {(t, z, w, λ) | λ /∈ µ∞}

to Y1,2;H , which is defined as above.

Proof. The proof goes as follows. We consider cases of non-abelian subgroups
and the abelian subgroup separately. We study characters χ1, χ2 : H → C∗
which correspond to equivalent irreducible weight pairs (H,χ1) and (H,χ2).
Then we obtain conditions for a character χ that (H,χ) is an irreducible weight
pair, and we compute the fiber Y1,2;H over a subgroup H.

Clearly, a subgroup H with ranks rk1(H) = 1, rk1(H) = 2 can be generated
as follows:

h1 =


1 a b 0
0 1 d e
0 0 1 f
0 0 0 1

 , h2 =


1 0 b′ 0
0 1 0 0
0 0 1 0
0 0 0 1

 , h3 =


1 0 0 0
0 1 0 e′

0 0 1 0
0 0 0 1


We have χ([h1, h2]) = χ(C)fb

′
= 1 and χ([h1, h3]) = χ(C)ae

′
= 1. From

irreducibility criterion S(H,χ) = H we conclude that b′, e′ have to be minimal
natural numbers satisfying the condition χ(C)fb

′
= χ(C)ae

′
= 1 (otherwise we

can extend the weight pair). Obviously, integers b′ and e′ have to be non-zero
and |b|, |e| may be chosen to be smaller than |b′|, |e′|. If f = 0, then b′ = 0
from the condition S(H,χ) = H, and hence b = 0 (similarly for a = 0 we have
e = 0).

(i). First, let us consider the case of a subgroup H ∈ Σ1,2\φ(A). Then either
a 6= 0, or f 6= 0, and hence, χ(C) is a root of unity. Let us consider the first
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case with a 6= 0 (the other one with f 6= 0 is treated similarly). If d = 0 then
the weight pair may be extended to the one with ranks rk1(H) = rk2(H) = 2.
Hence, d is non-zero.

In this case, the quotient NG(H)/H is generated by

g1 =


1 0 0 0
0 1 d′ 0
0 0 1 0
0 0 0 1

 , g2 =


1 0 0 0
0 1 0 0
0 0 1 f ′

0 0 0 1

 ,

where d′ in g1 is such a minimal natural number that ad′ is divisible by b′ and
fd′ is divisible by e′, and f ′ in g2 is a minimal natural number that f ′d is
divisible by e′.

In this case a subgroup H is not necessarily isolated.
Generators g1, g2 act on a character χ as follows:

χg1(h1) = χ(h1)χ(h2)−
ad′
b′ χ(h3)

fd′
e′ ,

χg1(h2) = χ(h2), χg1(h3) = χ(h3)

and

χg2(h1) = χ(h1)χ(h3)−
f ′d
e′ χ(C)−bf

′
,

χg2(h2) = χ(h2)χ(C)−b
′f ′ , χg2(h3) = χ(h3).

From irreducibility criterion S(H,χ) = H we obtain that neither χ(h2) nor

χ(h3) is a root of unity, otherwise we can extend the weight pair (H,χ) to
the weight pair (H ′, χ′) with rk1(H ′) = rk2(H ′) = 2. If these conditions are
satisfied, then the action above is free, and corresponding representations are
irreducible.

(ii). Now let us consider the case of the abelian subgroup H ∈ φ(A) (all
the other cases were proven to correspond to non-abelian subgroups). Since
[h1, h2] = [h1, h3] = 1, we have a = f = 0 for a generator h1 in the following
form: 

1 a b 0
0 1 d e
0 0 1 f
0 0 0 1

 .

From Lemma 2.10 it follows that since H is abelian, it is isolated. Hence,
generators of H have the following form:
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h1 =


1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

 , h2 =


1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

 , h3 =


1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1


Since NG(H) = G, the quotient NG(H)/H is generated by

g1 =


1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , g2 =


1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 .

Then g1 and g2 act on a character χ as follows:

χg1(h1) = χ(h1)χ(h2), χg1(h2) = χ(h2), χg1(h3) = χ(h3)λ

and

χg2(h1) = χ(h1)χ(h3)−1, χg2(h2) = χ(h2)λ−1, χg2(h3) = χ(h3).

Then from irreducibility criterion S(H,χ) = H we obtain that χ(h2), χ(h3)
or χ(C) is not a root of unity. If these conditions are satisfied, then the action
above is free, and corresponding representations are irreducible.

�

Let us denote by Z
(2)
1,2;H = {{(t, z, w, λ) | t ∈ C∗, z, w ∈ {C∗ \ µ∞}2, λN =

1}/ ∼}, by Z
(1)
1,2;H = {(z, w, λ) | z, w ∈ {C∗ \ µ∞}2, λN = 1}, where ∼ is

defined in 2.12.
Let us denote by Z

(2)
1,2, ab;H = {{(t, z, w, λ) | t ∈ C∗, z or w or λ /∈ µ∞}/ ∼},

by Z
(1)
1,2, ab;H = {(z, w, λ) | z or w or λ /∈ µ∞}, where ∼ is defined in 2.12.

Corollary 7.2. If H ∈ Σ1,2\φ(A), then the fiber Z1,2;H of Z1,2 over a subgroup
H has the following iterated structure of a bundle, namely:

Z
(2)
1,2;H → Z

(1)
1,2;H .

We describe fibers of this bundle consecutively in coordinates (t, z, w, λ).

T
z
ad′
b′ w

fd′
e′ , w

f ′d
e′ λbf ′

, {C∗ \ µ∞} , {C∗ \ µ∞} , {µN};

If H ∈ φ(A), then the fiber Z1,2;H of Z1,2 over a subgroup H has the following
iterated structure of a bundle, namely:

Z
(2)
1,2 ab;H → Z

(1)
1,2 ab;H .

25



We describe fibers of this bundle consecutively in coordinates (t, z, w, λ).

Tz,w , {Eλ \ µ∞} , {Eλ \ µ∞} , {C∗ \ S1} ∪

Tz,w , {Pλ \ µ∞} , {Pλ \ µ∞} , {S1 \ µ∞} ∪
{Ez} , {Eλ \ µ∞} , {Eλ ∩ µ∞} , {C∗ \ S1} ∪
{Ez} , {Pλ \ µ∞} , {Pλ ∩ µ∞} , {S1 \ µ∞} ∪
{Ew} , {Eλ ∩ µ∞} , {Eλ \ µ∞} , {C∗ \ S1} ∪
{Ew} , {Pλ ∩ µ∞} , {Pλ \ µ∞} , {S1 \ µ∞} ∪
{C∗} , {Eλ ∩ µ∞} , {Eλ ∩ µ∞} , {C∗ \ S1} ∪
{C∗} , {Pλ ∩ µ∞} , {Pλ ∩ µ∞} , {S1 \ µ∞} ∪
{Tz,w} , {C∗ \ µ∞} , {C∗ \ µ∞} , {µ∞} ∪
{Tz,w} , {C∗ \ µ∞} , {C∗ \ µ∞} , {µ∞}.

Proof. Follows directly from NG(H)/H action on a character χ of H above.
�

Lemma 7.3. If H ∈ Σ1,2 \ φ(A), then there are only subgroups, which are
F -equivalent to H (finitely many subgroups).

If H ∈ φ(A), then the corresponding subgroup is abelian and normal, and it
is not equivalent to any other subgroups.

Fibers Z1,2;H1 and Z1,2;H2 over equivalent subgroups H1 and H2 may be iden-
tified canonically.

Proof. Let us consider H1 ∈ Σ1,2 \ φ(A).
Since NG(H∗1 ) = G, by Proposition 2.16[(ii)] we consider only equivalent

irreducible weight pairs (H1, χ1) and (H2, χ2) with H∗1 = H∗2 and H1 6= H2.
We can only possibly extract roots from generators h1, h2, and h3. Then if

there is an element g1 ∈ G\H1 such that gk11 = h1, then by Proposition 2.16[(ii)]
for any divisor m1 of k1 there exists a finite set of exponents of generators h2

and h3 such that S(H2, χ2) = H2. Since gb
′

2 = h2 and ge
′

3 = h3, where

g2 =


1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

 , g3 =


1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

 ,

then for any divisor m2 of b′ and any divisor m3 of e′, there also exists a finite
set of corresponding exponents. We omit concrete expressions of parameters
of equivalent weight pairs for their cumbersomeness (but they are easy to
compute).
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Since a, d, f, b′, e′ are fixed, once we fixed the exponents of generators of
H1, there are only parameters b < |b′| and e < |e′| , which yet can produce
equivalent irreducible weight pairs. Let us consider H2 = φ((a, d, f, 0, 0, b′, e′))

with a character χ2 defined by χ2(h̃1) = χ1(h1)χ1(h2)−
b
b′χ1(h3)−

e
e′ and

χ1(
〈
h2, h3, C

〉
) = χ2(

〈
h2, h3, C

〉
). Then H∗1 = H∗2 and χ1|H1∩H2 = χ2|H1∩H2 .

All such irreducible weight pairs are F -equivalent.
If H ∈ φ(A), then the corresponding subgroup H is normal and abelian.

Hence, H is isolated, and by Proposition 2.16 the weight pair (H,χ) can not
be equivalent to any irreducible weight pair with a different subgroup H2.

�

8. The case of rk1(H) = 2, rk2(H) = 2.

Let us define sets S1, S2, S3 and S4.

S1 = {(a, f, b, e, d′, f ′, b′, e′, b′′, e′′) ∈ Z10 | a 6= 0, d 6= 0, f ′ 6= 0, f 6= 0, b′′ 6= 0, e′′ 6= 0,

d′f
... e′′, d′a

... b′′, |b| < |b′′|, |e| < |e′′|, |b′| < |b′′|, |e′| < |e′′|},
S2 = {(a, f, b, e, d′, f ′, b′, e′, b′′, e′′) ∈ Z10 | a 6= 0, d 6= 0, f = f ′ = 0, e′′ 6= 0, b′′ = 1,

b = b′ = 0, |e| < |e′′|, |e′| < |e′′|},
S3 = {(a, f, b, e, d′, f ′, b′, e′, b′′, e′′) ∈ Z10 | a = 0, d 6= 0, f ′ 6= 0, f = 0, e′′ = 1, b′′ 6= 0,

e = e′ = 0, |b′| < |b′′|, |b| < |b′′|},
S4 = {(a, f, b, e, d′, f ′, b′, e′, b′′, e′′) ∈ Z10 | a 6= 0, f ′ 6= 0, d′ = 0, b′′ 6= 0,

e′′ 6= 0, |b| < |b′′|, |e| < |e′′|, |b′| < |b′′|, |e′| < |e′′|}.

Let N = GCD(fb′′, f ′b′′, ae′′). Let us denote by Cz,w the following curve:

{w
−d′f
e′′ z

−d′a
b′′ λae

′+bf ′−b′f = 1 | z, w ∈ (C∗)2, z or w /∈ µ∞, λ
N = 1}. Let

us denote by Cz,w,sing the following manifold: {w, z ∈ Cz,w such that z ∈
µ∞ and w ∈ {S1 \ µ∞} }. Let N2 be a minimal natural number such that if

z
−d′a
b′′ λae

′
= 1, then zN2 = 1. Let N3 be a minimal natural number such that if

w
−d′f
e′′ λbf

′−b′f = 1, then wN3 = 1.

Lemma 8.1. There is a canonical bijection φ from S1 ∪ S2 ∪ S3 ∪ S4 to
Σ2,2. It maps a tuple (a, f, b, e, d′, f ′, b′, e′, b′′, e′′) to a subgroup H, generated
by the following matrices

h1 =


1 a b 0
0 1 0 e
0 0 1 f
0 0 0 1

 , h2 =


1 0 b′ 0
0 1 d′ e′

0 0 1 f ′

0 0 0 1

 ,
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h3 =


1 0 b′′ 0
0 1 0 0
0 0 1 0
0 0 0 1

 , h4 =


1 0 0 0
0 1 0 e′′

0 0 1 0
0 0 0 1

 , C =


1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

 .

If H ∈ φ(S1), we can extend the bijection φ to the map from

C∗ × C∗ × Cz,w × µN = {(t, s, z, w, λ) | w
−d′f
e′′ z

−d′a
b′′ λae

′+bf ′−b′f = 1, λ ∈ µN}

to Y2,2;H , which is defined as follows:

t = χ(h1), s = χ(h2), z = χ(h3), w = χ(h4), λ = χ(C).

If H ∈ φ(S2), we can extend the bijection φ to the map from

C∗ × C∗ × µN2 × {C∗ \ µ∞} × µae′′ = {(t, s, z, w, λ) | z
−d′a
b′′ λae

′
= 1, λ ∈ µae′′}

to Y2,2;H , which is defined as above.
If H ∈ φ(S3), we can extend the bijection φ to the map from

C∗×C∗×{C∗\µ∞}×µN3×µf ′b′′ = {(t, s, z, w, λ) | w
−d′f
e′′ λbf

′−b′f = 1, λ ∈ µf ′b′′}

to Y2,2;H , which is defined as above.
If H ∈ φ(S4), we can extend the bijection φ to the map from

C∗ × C∗ × {C∗ \ µ∞} × C∗ × µN = {(t, s, z, w, λ) | z or w /∈ µ∞, λ ∈ µN}

to Y2,2;H , which is defined as above.

Proof. The proof goes as follows. We consider separately cases of
H ∈

(
φ(S1) ∪ φ(S2) ∪ φ(S3)

)
and the case of H ∈ φ(S4). Then we

study characters χ1, χ2 : H → C∗ which correspond to equivalent irreducible
weight pairs (H,χ1) and (H,χ2). Then we obtain conditions for a character χ
that (H,χ) is an irreducible weight pair, and we compute the fiber Y2,2;H .

(1). If H ∈ φ(S1), φ(S2) or φ(S3), then all cases of such subgroups are
treated similarly, and without loss of generality we consider the case of a
subgroup H ∈ φ(S1).

If H ∈ φ(S1), then a subgroup H can be generated as follows:

h1 =


1 a b 0
0 1 0 e
0 0 1 f
0 0 0 1

 , h2 =


1 0 b′ 0
0 1 d′ e′

0 0 1 f ′

0 0 0 1

 ,
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h3 =


1 0 b′′ 0
0 1 0 0
0 0 1 0
0 0 0 1

 , h4 =


1 0 0 0
0 1 0 e′′

0 0 1 0
0 0 0 1


Since [h1, h2] = hn1

3 h
n2
4 C

n3 for some integers n1, n2, n3, we obtain that
d′f

... e′′ and d′a
... b′. Clearly we can generate H with parameters of

generators satisfying |b| < |b′′|, |e| < |e′′|, |b′| < |b′′|, |e′| < |e′′|.
We have

(8.2) χ([h1, h2]) = w
−d′f
e′′ z

−d′a
b′′ λ−ad

′f−ad′f ′+ae′+bf ′−b′f = 1,

χ([h1, h3]) = λ−fb
′′

= 1, χ([h1, h4]) = λae
′′

= 1,

χ([h2, h3]) = λ−f
′b′′ = 1.

Since d′f
... e′′, d′a

... b′ and λGCD(f,f ′)b′′ = λae
′′

= 1, we have λ−ad
′f−ad′f ′ = 1.

Then
(8.3)

χ([h1, h2]) = w
−d′f
e′′ z

−d′a
b′′ λ−ad

′f−ad′f ′+ae′+bf ′−b′f = w
−d′f
e′′ z

−d′a
b′′ λae

′+bf ′−b′f = 1.

The quotient NG(H)/H is generated by

g =


1 0 0 0
0 1 0 0

0 0 1 f̃
0 0 0 1


where f̃ is the minimal natural number such that f̃d′ is divisible by e′′.

The generator g acts on a character χ as follows:

χg(h1) = χ(h1)λ−bf̃ , χg(h2) = χ(h2)χ(h4)−
d′f̃
e′′ λ−b

′f̃

and

χg(h3) = χ(h3)λ−b
′′f̃ , χg(h4) = χ(h4).

Then from irreducibility criterion S(H,χ) = H we obtain that the
central character χ(C) is a root of unity of order N , where N =
GCD(f ′b′′, ae′′, fb′′) = 1.

From the equation 8.3, we obtain conditions for w and z defining N2 and
N3. If both z and w are roots of unity, then the weight pair extends to the
one with rk1(H) = 3. Then for all three cases of φ(S1), φ(S2) and φ(S3) we
have Z2,2;H ⊆ {C∗ × C∗ × µ∞ × {C∗ \ µ∞} × µ∞} (concrete formulas are in
Lemma 7.1 formulation).

(ii). If H ∈ φ(S4), then a subgroup H may be generated as follows:
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h1 =


1 a b 0
0 1 0 e
0 0 1 0
0 0 0 1

 , h2 =


1 0 b′ 0
0 1 0 e′

0 0 1 f ′

0 0 0 1

 ,

h3 =


1 0 b′′ 0
0 1 0 0
0 0 1 0
0 0 0 1

 , h4 =


1 0 0 0
0 1 0 e′′

0 0 1 0
0 0 0 1


Then we have

χ([h1, h2]) = λae
′+bf ′ = 1,

χ([h1, h4]) = λae
′′

= 1,

χ([h2, h3]) = λ−f
′b′′ = 1.

The quotient NG(H)/H is generated by

g =


1 0 0 0

0 1 d̃ 0
0 0 1 1
0 0 0 1

 ,

where d̃ is the minimal natural number such that d̃a is divisible by b′′ and d̃f ′

is divisible by e′′.
The generator g acts on a character χ as follows:

χg(h1) = χ(h1)χ(h3)−
ad̃
b′′ , χg(h2) = χ(h2)χ(h4)−

f ′d̃
e′′

and

χg(h3) = χ(h3), χg(h4) = χ(h4).

Then from irreducibility criterion S(H,χ) = H we obtain that the central
character χ(C) is a root of unity of order N , which was defined earlier.

If both z and w are roots of unity, then the weight pair extends to the
one with rk1(H) = 3. Thus, if H ∈ φ(S4), then Z2,2;H is bijective to
{C∗ × C∗ × {C∗ \µ∞}×C∗×µN} = {(t, s, z, w, λ) | z or w /∈ µ∞, λ ∈ µN}.

�
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Let us denote by Z
(2)
2,2;H = {{(t, s, z, w, λ) | t, s ∈

(C∗)2, | w
−d′f
e′′ z

−d′a
b′′ λae

′+bf ′−b′f = 1, λ ∈ µN}/ ∼} and by Z
(1)
2,2;H =

{(z, w, λ) |w
−d′f
e′′ z

−d′a
b′′ λae

′+bf ′−b′f = 1, λ ∈ µN}, where ∼ is defined in 2.12.

Corollary 8.4. If H ∈ φ(S1), then the fiber Z2,2;H of Z2,2 over a subgroup H
has iterated structure of a bundle, namely:

Z
(2)
2,2;H → Z

(1)
2,2;H .

We describe fibers of this bundle consecutively in coordinates (t, s, z, w, λ):

C∗ , E
w

d′f̃
e′′

, Cz,w , µN ∪ C∗ , P
w

d′f̃
e′′

, Cz,w,sing , µN ;

If H ∈ φ(S2), then the fibers Z
(2)
2,2;H → Z

(1)
2,2;H over H are canonically bijec-

tive to:

C∗ , E
w

d′f̃
e′′

, µN2 , {C∗ \ S1} , µae′′ ∪ C∗ , P
w

d′f̃
e′′

, µN2 , {S1 \ µ∞} , µae′′ ;

If H ∈ φ(S3), then the fibers Z
(2)
2,2;H → Z

(1)
2,2;H over H are canonically bijec-

tive to:

E
z
d′a
b′′

, C∗ , {C∗ \ S1} , µN3 , µf ′b′′ ∪ P
z
d′a
b′′

, C∗ , {S1 \ µ∞} , µN3 , µf ′b′′ ;

If H ∈ φ(S4), then the fibers Z
(2)
2,2;H → Z

(1)
2,2;H over H are canonically bijec-

tive to:

E
z
d′a
b′′
, E

w
d′f̃
e′′
, {C∗\S1} , {C∗\S1} , µN ∪ P

z
d′a
b′′
, E

w
d′f̃
e′′
, {S1\µ∞} , {C∗\S1} , µN ∪

E
z
d′a
b′′
, P

w
d′f̃
e′′
, {C∗\S1} , {S1\µ∞} , µN ∪ P

z
d′a
b′′
, P

w
d′f̃
e′′
, {S1\µ∞} , {S1\µ∞} , µN ∪

C∗ , E
w

d′f̃
e′′

, µ∞ , {C∗ \ S1} , µN ∪ E
z
d′a
b′′

, C∗ , {C∗ \ S1} , µ∞ , µN ∪

C∗ , P
w

d′f̃
e′′

, µ∞ , {S1 \ µ∞} , µN ∪ P
z
d′a
b′′

, C∗ , {S1 \ µ∞} , µ∞ , µN .

Proof. Follows directly from NG(H)/H action on a character χ of H above.
�

Lemma 8.5. If H ∈ Σ2,2, then there are only subgroups, which are F -
equivalent to H (finitely many subgroups).

Fibers Z2,2;H1 and Z2,2;H2 over equivalent subgroups H1 and H2 may be iden-
tified canonically.
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Proof. Since NG(H∗1 ) = G, by Proposition 2.16[(ii)] we need to consider only
equivalent irreducible weight pairs (H2, χ2) such that H∗1 = H∗2 and H1 6= H2.

Values of a character χ1 in this case have to satisfy the following conditions:

λf
′b′′ = λfb

′′
= λae

′′
= 1,

w
−d′f
e′′ z

−d′a
b′′ λae

′+bf ′−b′f = 1.

Let us denote GCD(f ′b′′, fb′′, ae′′) by N .
We can only possibly extract roots from generators h1, h2, h3, and h4. If

there is g1 ∈ G\H1 such that gk11 = h1, or g2 ∈ G\H1 such that gk22 = h2, then
by Proposition 2.16[(ii)] for any divisor m1 of k1 or m2 of k2, there exists a
finite set of exponents of other generators such that S(H2, χ2) = H2. Similarly,
for any divisor m3 of b′ and any divisor m4 of e′, there also exists a finite set
of corresponding exponents. We omit concrete expressions of parameters of
equivalent irreducible weight pairs due to their cumbersomeness.

Since a, f, d′, f ′, b′′, e′′ are fixed, once we fixed the exponents of generators of
H1, there are only parameters b, b′ < |b′′| and e, e′ < |e′′| which can be varied
to produce equivalent irreducible weight pairs. Since we have

w
−d′f
e′′ z

−d′a
b′′ λae

′+bf ′−b′f = 1,

the expression ae′ + bf ′ − b′f can not be changed modulo N , since λN = 1.
Thus, if we replace b, b′ < |b′′| and e, e′ < |e′′| by b̃, b̃′ < |b′′| and ẽ, ẽ′ < |e′′|
such that

(ae′ + bf ′ − b′f) ≡ (aẽ′ + b̃f ′ − b̃′f)(modN),

then there exists a corresponding character χ2 of a corresponding subgroup
H2 such that χ1|H1∩H2 = χ2|H1∩H2 . All such weight pairs are also F -equivalent
to the weight pair (H1, χ1) .

�

9. The case of rk1(H) = 3, rk2(H) = 2.

Let S = {(a, b, e, d′, b′, e′, f ′′, b′′, e′′, b′′′, e′′′) ∈ Z11 | a 6= 0, d′ 6= 0, f ′′ 6=
0, b′′′ 6= 0, e′′′ 6= 0, |b| < |b′′′|, |e| < |e′′′|, |b′| < |b′′′|, |e′| < |e′′′|, |b′′| <
|b′′′|, |e′′| < |e′′′|}.

Let us denote GCD(f ′′b′′′, ae′′ + bf ′′, ae′′′) by N3, and let λN3 = 1. Let N1

be a minimal natural number such that zN1 = 1, if z
−d′a
b′′′ λ−ae

′
= 1. Let N2 be

a minimal natural number such that wN2 = 1, if w
d′f ′′
e′′′ λb

′f ′′ = 1.
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Lemma 9.1. There is a canonical bijection φ from S to Σ3,2. It maps a tuple
(a, b, e, d′, b′, e′, f ′′, b′′, e′′, b′′′, e′′′) to a subgroup H, generated by the following
matrices

h1 =


1 a b 0
0 1 0 e
0 0 1 0
0 0 0 1

 , h2 =


1 0 b′ 0
0 1 d′ e′

0 0 1 0
0 0 0 1

 , h3 =


1 0 b′′ 0
0 1 0 e′′

0 0 1 f ′′

0 0 0 1

 ,

h4 =


1 0 b′′′ 0
0 1 0 0
0 0 1 0
0 0 0 1

 , h5 =


1 0 0 0
0 1 0 e′′′

0 0 1 0
0 0 0 1

 , C =


1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

 .

If H ∈ φ(S), we can extend the bijection φ to the map from

C∗×C∗×C∗×µN1×µN2×µN3 = {(t, r, s, z, w, λ) | z ∈ µN1 , w ∈ µN2 , λ ∈ µN3}

to Y3,2;H , which is defined as follows:

t = χ(h1), r = χ(h2), s = χ(h3), z = χ(h4), w = χ(h5), λ = χ(C).

Proof. If H ∈ Σ3,2, then H may be generated as follows:

h1 =


1 a b 0
0 1 0 e
0 0 1 0
0 0 0 1

 , h2 =


1 0 b′ 0
0 1 d e′

0 0 1 0
0 0 0 1

 , h3 =


1 0 b′′ 0
0 1 0 e′′

0 0 1 f
0 0 0 1

 ,

h4 =


1 0 b′′′ 0
0 1 0 0
0 0 1 0
0 0 0 1

 , h5 =


1 0 0 0
0 1 0 e′′′

0 0 1 0
0 0 0 1

 .

Then we have

χ([h1, h2]) = z
−d′a
b′′′ λ−ae

′
= χ(h4)N1 = 1,

χ([h2, h3]) = w
d′f ′′
e′′′ λb

′f ′′ = χ(h5)N2 = 1.

We also have χ(C)N3 = λN3 = 1, because

χ([h1, h3]) = λ−ae
′′−bf ′′ = 1,

χ([h3, h4]) = λb
′′′f ′′ = 1

and
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χ([h1, h5]) = λ−ae
′′′

= 1.

In this case, the quotient NG(H)/H is clearly finite, and since N1, N2 and N3

are chosen to be minimal natural numbers such that zN1 = wN2 = λN3 = 1, the
action of NG(H)/H on characters is free. Hence, S(H,χ) = H, and the cor-
responding representations are irreducible and finite-dimensional. Let us note
that this case is the only one of finite-dimensional irreducible representations,
all the others (cases 1− 5) refer to the infinite-dimensional ones.

�

Corollary 9.2. If H ∈ Σ3,2, then the fiber Z3,2;H over H is canonically bijec-
tive to:

C∗ × C∗ × C∗ × µN1 × µN2 × µN3 .

Proof. Since in this case NG(H)/H is finite, its action on a character χ does
not change a conformal class of Y3,2;H . �

Lemma 9.3. If H ∈ Σ3,2, then there are only subgroups, which are F -
equivalent to H (finitely many subgroups).

Fibers Z3,2;H1 and Z3,2;H2 over equivalent subgroups H1 and H2 may be iden-
tified canonically.

Proof. If H1 ∈ Σ3,2, then H∗1 = G. By Proposition 2.16[(ii)] we need to
consider only equivalent irreducible weight pairs (H2, χ2) such that H∗1 = H∗2
and H1 6= H2.

Conditions for characters in this case are the following ones:

λf
′′b′′′ = λae

′′+bf ′′ = λae
′′′

= 1,

w
d′f ′′
e′′′ λb

′f ′′ = 1 and z
−d′a
b′′′ λ−ae

′
= 1.

Let us denote GCD(f ′′b′′′, ae′′ + bf ′′, ae′′′) by N3.
We can possibly extract roots from generators h1, h2, h3, h4, and h5. If

there is g1 ∈ G \H1 such that gk11 = h1, or g2 ∈ G \H1 such that gk22 = h2, or
g3 ∈ G \H1 such that gk33 = h3, then by Proposition 2.16[(ii)] for any divisor
m1 of k1 or m2 of k2 or m3 of k3, there exists a finite set of exponents of other
generators such that S(H2, χ2) = H2. Similarly, for any divisor m4 of b′′′ and
any divisor m5 of e′′′, there also exists a finite set of corresponding exponents.

Since a, d′, f ′′, b′′′, e′′′ are fixed, once we fixed the exponents of generators of
H1, there are only parameters b, b′, b′′ < |b′′′| and e, e′, e′′ < |e′′′| which can be
varied to produce equivalent irreducible weight pairs. Since we have

w
d′f ′′
e′′′ λb

′f ′′ = 1 and z
−d′a
b′′′ λ−ae

′
= 1 and λae

′′+bf ′′ = 1,
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the expressions b′f ′′, −ae′ and ae′′+ bf ′′ can not be changed modulo N3, since
λN3 = 1. So if we replace b, b′, b′′ < |b′′′| and e, e′, e′′ < |e′′′| by b̃, b̃′, b̃′′ < |b′′′|
and ẽ, ẽ′, ẽ′′ < |e′′′| such that expressions above are unchanged modulo N3,
then there exists a corresponding character χ2 of a corresponding subgroup
H2 such that χ1|H1∩H2 = χ2|H1∩H2 . All such weight pairs are also F -equivalent
to the weight pair (H1, χ1).

�

10. The main result

Thus, we have finally obtained:

Theorem 10.1. There is a one-to-one correspondence between the following
spaces:

1. The union of the total spaces of the following bundles: X1,1 → Ξ1,1,
X2,0 → Ξ2,0, X2,1 → Ξ2,1, X1,2 → Ξ1,2, X2,2 → Ξ2,2, and X3,2 → Ξ3,2.

2. A coarse moduli space of irreducible representations for the group of unipo-
tent matrices of order 4 with integer entries which have finite weight.

A map from Xr1,r2 → Ξr1,r2 to the set of irreducible monomial representa-
tions is defined as follows:

(H,χ) 7−→ indGH(χ).

The fibers of these bundles are given in Corollaries 4.5, 5.3, 6.3, 7.2, 8.4, 9.2
and Lemmas 4.6, 5.4, 6.4, 7.3, 8.5, 9.3. The definition of the bundle Xr1,r2 →
Ξr1,r2 is given in 2.14.

The fibers of the bundle Zrk1,rk2 → Σrk1,rk2 are given in Table 1 below (see
the corresponding definition in 2.12).
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Table 1. Fibers of the bundle Zrk1,rk2 → Σrk1,rk2

rk1 rk2 Subset t r s z w λ
1 1 φ(S1) Tzdλa′e+f ′b+a′f ′d, a Eλ2a′f ′ \ µ∞ C∗ \ S1

1 1 φ(S1) Tzdλa′e+f ′b+a′f ′d, a Pλ2a′f ′ \ µ∞ S1 \ µ∞
1 1 φ(S1) EλGCD(a′e+f ′b+a′f ′d,a) µ∞ C∗ \ S1

1 1 φ(S1) PλGCD(a′e+f ′b+a′f ′d,a) µ∞ S1 \ µ∞
1 1 φ(S1) Tzdλa′e+f ′b+a′f ′d, a Eλ2a′f ′ \ µ∞ C∗ \ S1

1 1 φ(S1) Tzdλa′e+f ′b+a′f ′d, a Pλ2a′f ′ \ µ∞ S1 \ µ∞
1 1 φ(S1) EλGCD(a′e+f ′b+a′f ′d,a) µ∞ C∗ \ S1

1 1 φ(S1) PλGCD(a′e+f ′b+a′f ′d,a) µ∞ S1 \ µ∞
1 1 φ(S2) Tzdλa′e+f ′b+a′f ′d, a Eλ2a′f ′ \ µ∞ C∗ \ S1

1 1 φ(S2) Tzdλa′e+f ′b+a′f ′d, a Pλ2a′f ′ \ µ∞ S1 \ µ∞
1 1 φ(S2) EλGCD(a′e+f ′b+a′f ′d,a) µ∞ C∗ \ S1

1 1 φ(S2) PλGCD(a′e+f ′b+a′f ′d,a) µ∞ S1 \ µ∞
1 1 φ(S2) Tzdλa′e+f ′b+a′f ′d, a Eλ2a′f ′ \ µ∞ C∗ \ S1

1 1 φ(S2) Tzdλa′e+f ′b+a′f ′d, a Pλ2a′f ′ \ µ∞ S1 \ µ∞
1 1 φ(S2) EλGCD(a′e+f ′b+a′f ′d,a) µ∞ C∗ \ S1

1 1 φ(S2) PλGCD(a′e+f ′b+a′f ′d,a) µ∞ S1 \ µ∞
1 1 φ(S3) Tzdλa′e,λa C∗ \ S1 C∗ \ S1

1 1 φ(S3) Tzdλa′e,λa S1 \ µ∞ C∗ \ S1

1 1 φ(S3) Tzdλa′e,λa C∗ \ µ∞ S1 \ µ∞
1 1 φ(S3) EλGCD(a′e,a) µ∞ C∗ \ S1

1 1 φ(S3) PλGCD(a′e,a) µ∞ S1 \ µ∞
1 1 φ(S4) EλGCD(a′e+f ′b,a) Eλ2a′f ′ C∗ \ S1

1 1 φ(S4) PλGCD(a′e+f ′b,a) Pλ2a′f ′ S1 \ µ∞
1 1 φ(N1) Tza,λa Eλ \ µ∞ C∗ \ S1

1 1 φ(N1) Tza,λa Pλ \ µ∞ S1 \ µ∞
1 1 φ(N1) Eλ µ∞ C∗ \ S1

1 1 φ(N1) Pλ µ∞ S1 \ µ∞
1 1 φ(N2) Tzf ,λf Eλ \ µ∞ C∗ \ S1

1 1 φ(N2) Tzf ,λf Pλ \ µ∞ S1 \ µ∞
1 1 φ(N2) Eλ µ∞ C∗ \ S1

1 1 φ(N2) Pλ µ∞ S1 \ µ∞
2 0 Σ2,0 Eλf ′ Eλa C∗ \ S1

2 0 Σ2,0 Pλf ′ Pλa S1 \ µ∞
2 1 Σ2,1 Eλa C∗ µad′ C∗ \ S1

2 1 Σ2,1 Pλa C∗ µad′ S1 \ µ∞
1 2 Σ1,2 \ φ(A) T

z
ad′
b′ w

fd′
e′ , w

f ′d
e′ λbf ′

C∗ \ µ∞ C∗ \ µ∞ µN
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1 2 φ(A) Tz,w Eλ \ µ∞ Eλ \ µ∞ C∗ \ S1

1 2 φ(A) Tz,w Pλ \ µ∞ Pλ \ µ∞ Pλ \ µ∞
1 2 φ(A) Ez Eλ \ µ∞ Eλ \ µ∞ C∗ \ S1

1 2 φ(A) Ez Pλ \ µ∞ Pλ \ µ∞ S1 \ µ∞
1 2 φ(A) Ew Eλ ∩ µ∞ Eλ ∩ µ∞ C∗ \ S1

1 2 φ(A) Ew Pλ ∩ µ∞ Pλ ∩ µ∞ S1 \ µ∞
1 2 φ(A) C∗ Eλ ∩ µ∞ Eλ ∩ µ∞ C∗ \ S1

1 2 φ(A) C∗ Pλ ∩ µ∞ Pλ ∩ µ∞ S1 \ µ∞
1 2 φ(A) Tz,w C∗ \ µ∞ C∗ \ µ∞ µ∞
1 2 φ(A) Tz,w C∗ \ µ∞ C∗ \ µ∞ µ∞
2 2 φ(S1) C∗ E

w
d′f̃
e′′

Cz,w Cz,w µN

2 2 φ(S1) C∗ P
w

d′f̃
e′′

Cz,w,sing Cz,w,sing µN

2 2 φ(S1) C∗ E
w

d′f̃
e′′

Cz,w Cz,w µN

2 2 φ(S1) C∗ P
w

d′f̃
e′′

Cz,w,sing Cz,w,sing µN

2 2 φ(S2) C∗ E
w

d′f̃
e′′

µN2 C∗ \ S1 µae′′

2 2 φ(S2) C∗ P
w

d′f̃
e′′

µN2 S1 \ µ∞ µae′′

2 2 φ(S3) E
z
d′a
b′′

C∗ C∗ \ S1 µN3 µf ′b′′

2 2 φ(S3) P
z
d′a
b′′

C∗ S1 \ µ∞ µN3 µf ′b′′

2 2 φ(S4) E
z
d′a
b′′

E
w

d′f̃
e′′

C∗ \ S1 C∗ \ S1 µN

2 2 φ(S4) P
z
d′a
b′′

E
w

d′f̃
e′′

S1 \ µ∞ C∗ \ S1 µN

2 2 φ(S4) E
z
d′a
b′′

E
w

d′f̃
e′′

C∗ \ S1 C∗ \ S1 µN

2 2 φ(S4) P
z
d′a
b′′

P
w

d′f̃
e′′

S1 \ µ∞ S1 \ µ∞ µN

2 2 φ(S4) C∗ E
w

d′f̃
e′′

µ∞ C∗ \ S1 µN

2 2 φ(S4) E
z
d′a
b′′

C∗ C∗ \ S1 µ∞ µN

2 2 φ(S4) C∗ P
w

d′f̃
e′′

µ∞ S1 \ µ∞ µN

2 2 φ(S4) P
z
d′a
b′′

C∗ S1 \ µ∞ µ∞ µN

3 2 Σ3,2 C∗ C∗ C∗ µN1 µN2 µN3
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