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Abstract. The main aim of this article is to show that a very general 3-dimensional
del Pezzo fibration of degree 1,2,3 is not stably rational except for a del Pezzo fibration
of degree 3 belonging to explicitly described 2 families. Higher dimensional gener-
alizations are also discussed and we prove that a very general del Pezzo fibration of
degree 1,2,3 defined over the projective space is not stably rational provided that the
anticanonical divisor is not ample.

1. Introduction

In this paper we study stable rationality of del Pezzo fibrations of degrees 1, 2, and
3. Recent breakthroughs by Voisin [18], expanded by Colliot-Thélène and Pirutka [6],
have changed the landscape of the study of stable rationality. Consequently failure
of stable rationality was proven for large classes of rationally connected varieties (see
e.g. [17] for hypersurfaces and [1] for conic bundles both in arbitrary dimension). For
many families of varieties of dimension > 4 in these classes, even rationality was not
known. We apply the techniques of Colliot-Thélène and Pirutka to del Pezzo fibrations:
a subclass of Mori fiber spaces.

Theorem 1.1. Let X be a very general n-dimensional nonsingular del Pezzo fibration
of degree 1, 2, or 3 over Pn−2 embedded as a hypersurface in a toric P(1, 1, 2, 3)-,
P(1, 1, 1, 2)-, or P3-bundle over Pn−2, respectively, where n ≥ 3. If −KX is not ample,
then X is not stably rational.

We use the Chow group of zero cycles CH0(X) to detect stable rationality. If a
variety is not universally CH0-trivial, then it is not stably rational. To prove Theorem
1.1 we find a non universally CH0-trivial reduction X of X to a finite characteristic.
To do this we use Kollár’s technique to show that a reduction to characteristic 2 for del
Pezzo fibrations of degrees 1, 2 and to characteristic 3 (or 2) for del Pezzo fibrations of
degree 3 is not universally CH0-trivial under a suitable condition such as the ampleness
of the anti-canonical bundle. We then use the specialization theorem [6, Théorème 1.14]
of Coliot-Thélène and Pirutka to lift the results back to characteristic 0.

Theorem 1.1 is not in the strongest form of the result of this paper: we obtain stronger
results in Theorems 4.1, 5.1 and 6.1, whose statements require some preparations.
These cover the following varieties as a special case.

Theorem 1.2. Suppose that n ≥ 3. The following varieties are not stably rational.

(1) A double cover of Pn−2 × P2 branched along a very general divisor of bi-degree
(2m, 4) for m ≥ (n− 1)/2.

(2) A triple cover of Pn−2 × P2 branched along a very general divisor of bi-degree
(3m, 3) for m ≥ (n− 1)/3.
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2 IGOR KRYLOV AND TAKUZO OKADA

(3) A very general hypersurface of bi-degree (d, 3) in Pn−2 × P3 for d ≥ n− 1.

Note that the variety in (1) (resp. (2) and (3)), together with the morphism to the
first factor Pn−2, is a del Pezzo fibration of degree 2 (resp. degree 3). The results (2)
and (3) improve the corresponding results of [11].

It should be pointed out that Theorem 1.1 or even the above mentioned stronger
versions do not cover many families which we expect are not stably rational when
n ≥ 4: in that case a nonsingular del Pezzo fibration of degree 1, 2 or 3 over Pn−2 is
not necessarily embedded in a toric P(1, 1, 2, 3)-, P(1, 1, 1, 2)-, or P3-bundle over Pn−2.

Let us turn our attention to the 3-dimensional case. It is known that a nonsingular
del Pezzo fibration X/P1 of degree 1, 2, 3 is birationally rigid if −KX is not in the
interior of the mobile cone, which implies non-rationality of X (cf. [15, 8, 9]). Moreover
it is proved in [5] that a very general nonsingular del Pezzo fibration X/P1 of degree
3 is rational if and only if X is a hypersurface of bi-degree (1, 3) in P1 × P3. The
results of this paper, Theorems 4.1, 5.1, 6.1, in dimension three are very satisfying.
They cover all families of nonsingular del Pezzo fibrations of degree 1, 2 embedded in
a toric P(1, 1, 2, 3)-, P(1, 1, 1, 2) bundle over P1, respectively, and all but two families
of nonsingular del Pezzo fibrations of degree 3 embedded in a toric P3-bundle over P1.
Moreover 3-dimensional nonsingular del Pezzo fibrations of degrees 1, 2, 3 can always
be embedded into a toric P(1, 1, 2, 3)-, P(1, 1, 1, 2)-, or P3-bundle over P1 (see e.g. [15]).
Thus we get the following theorem.

Theorem 1.3. A very general 3-dimensional nonsingular del Pezzo fibration of degree
1, 2, 3 is not stably rational except when X is a del Pezzo fibration of degree 3 and
belongs to one of the explicitly described two families.

In the above exceptions, one family is the family of hypersurfaces of bi-degree (1, 3)
in P1 × P3 and the other is the family obtained by blowing-up cubic 3-folds along a
smooth plane cubic curve. A general member of the former and the latter family is
rational and non-rational ([4]), respectively.

Rationality questions for del fibrations of degree 4 over P1 are settled in [2, 16] and
it is shown in [10] that a very general del Pezzo fibration over P1 of degree 4 which is
not rational and not birational to a cubic threefold is not stably rational. It is also well
known that del Pezzo fibrations over P1 of degree > 5 are rational. Combining these
results with Theorem 1.3 we get the following.

Theorem 1.4. Let π : X → P1 be a very general del Pezzo fibration. Suppose X is
smooth and not birational to a cubic threefold. Then X is either rational or not stably
rational.

Thus in dimension 3, as far as very general members are concerned, the study of stable
(non-)rationality is completely settled (modulo cubic 3-folds) for del Pezzo fibrations.
Earlier Hassett and Tschinkel have proven a similar result for Fano varieties. They have
shown that a very general smooth Fano variety which is not birational to a smooth cubic
threefolds is either rational or not stably rational [10] (see also [14] for the similar result
for orbifold Fano 3-fold hypersurfaces).

Acknowledgments. The second author is partially supported by JSPS KAKENHI
Grant Number 26800019.
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2. Preliminaries

2.1. Weighted projective space bundles. In this section we assume that the ground
field is an algebraically closed field k.

2.1.1. Definition of WPS bundles. A toric weighted projective space bundle over Pn is
a projective simplicial toric variety P with Cox ring

Cox(P ) = k[u0, . . . , un, x0, . . . , xm],

which is Z2-graded as (
1 · · · 1 λ0 · · · λm
0 · · · 0 a0 · · · am

)
and with the irrelevant ideal I = (u0, . . . , un) ∩ (x0, . . . , xm), where λ0, . . . , λm are
integers and n,m, a0, . . . , am are positive integers. In other words, P is the geometric
quotient

P = (An+m+2 \ V (I))/G2
m,

where the action of G2
m = Gm×Gm on An+m+2 = Spec k[u0, . . . , un, x0, . . . , xm] is given

by the above matrix. We will simply say that P is the WPS bundle over Pn defined byu0 · · · un x0 · · · xm
1 · · · 1 | λ0 · · · λm
0 · · · 0 | a0 · · · am

 .

There is a natural projection P → Pn, which is the projection by the coordinates
u0, . . . , un, and its fiber is isomorphic to the weighted projective space P(a0, . . . , am).
We also call P (or P → Pn) a P(a0, . . . , am)-bundle over Pn.

Let p ∈ P be a point and let q ∈ An+m+2 \V (I) be a preimage of p via the morphism
An+m+2 \ V (I) → P and write q = (α0, . . . , αn, β0, . . . , βm). In this case we express
p ∈ P as p = (α0 : · · · :αn;β0 : · · · :βn). This is clearly independent of the choice of q.

We will frequently replace coordinates in order to simplify the expression of a given
point p ∈ P . Consider a point p = (α0 : · · · :αn;β0 : · · · : βn) and suppose for example
that α0 6= 0, βj 6= 0, aj = 1. Then for l 6= j such that λl/al ≥ λj , the replacement

xl 7→ α
λl−alλj
0 βalj xl − βlu

λl−alλj
0 xalj

induces an automorphism of P . By considering this coordinate change, we may assume
that the xl-coordinate is zero for l such that λl/al ≥ λj .

2.1.2. Weil divisors. Let P be a P(a0, . . . , am)-bundle as above. The action of Z2 on
Cox(P ) is given in the above matrix. We have the decomposition

Cox(P ) =
⊕

(α,β)∈Z2

Cox(P )(α,β),

where Cox(P )(α,β) consists of the homogeneous elements of bi-degree (α, β). An element
f ∈ Cox(P )(α,β) is called a (homogeneous) polynomial of bi-degree (α, β).

The (Weil) divisor class group Cl(P ) of P is isomorphic to Z2. Let F and D be the
divisors on P corresponding to (1, 0) and (0, 1), respectively, which form generators of
Cl(P ). Then F is the class of a fiber of the pullback of a hyperplane on Pn and the
zero locus (xi = 0) is linearly equivalent to λiF + aiD. We denote by OP (α, β) the
rank 1 reflexive sheaf corresponding to the divisor class of type (α, β). More generally,
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for a subscheme Z ⊂ P , we set OZ(α, β) = OX(α, β)|Z . Finally we remark that there
is an isomorphism

H0(P,OP (α, β)) ∼= Cox(P )(α,β)

and that the cone of nef divisors on P is generated by F and λlF + alD, where l is
such that λl/al = max{λj/aj | j = 0, . . . ,m}.

2.1.3. Affine charts. We give a description of standard open affine charts of P . For
i = 0, . . . , n and j = 0, . . . ,m, we define Ui,j = (ui 6= 0) ∩ (xj 6= 0) ⊂ P . Clearly the
Ui,j cover P . We only explain an explicit description of Ui,j for j such that ai = 1,
which is enough for our purpose. For k 6= i and l 6= j, we set

u
(i,j)
k =

uk
ui

and x
(i,j)
l =

u
alλj−λl
i xl
xalj

,

which are clearly G2
m-invariant rational functions on P which are regular on Ui,j . More-

over it is easy to see that Ui,j is isomorphic to the affine (n + m)-space with affine

coordinates {u(i,j)
k | k 6= i}∪{x(i,j)

l | l 6= j}. In the following, we abuse the notation and

we identify u
(i,j)
k with uj and x

(i,j)
l with xl, and we think of Ui,j as affine space with

coordinates {u0, . . . , un, x0, . . . , xm} \ {ui, xj}. Under this terminology, the restriction
map

H0(P,OP (α, β))→ H0(Ui,j ,OP (α, β)) ∼= H0(An+m,OAn+m)

can be understood as a homomorphism defined by substituting ui = xj = 1 in g(u, x) ∈
H0(P,OP (α, β)).

2.2. Universal CH0-triviality. For a variety X, we denote by CH0(X) the Chow
group of 0-cycles on X.

Definition 2.1. (1) A projective variety X defined over a field k is universally
CH0-trivial if for any field F containing k, the degree map CH0(XF )→ Z is an
isomorphism.

(2) A projective morphism ϕ : Y → X defined over a field k is universally CH0-
trivial if for any field F containing k, the push-forward map ϕ∗ : CH0(YF ) →
CH0(XF ) is an isomorphism.

We apply the specialization argument of universal CH0-triviality in the following
form.

Theorem 2.2 ([6, Théorème 1.14]). Let A be a discrete valuation ring with fraction
field K and residue field k, with k algebraically closed. Let X be a flat proper scheme
over A with geometrically integral fibers. Let X be the generic fiber X ×AK and Y the
special fiber X ×Ak. Assume that Y admits a universally CH0-trivial resolution Ỹ → Y
of singularities. Let K be an algebraic closure of K and assume that the geometric
generic fiber XK admits a resolution X̃ → XK . If X̃ is universally CH0-trivial, then

so is Ỹ .

In our applications of Theorem 2.2, the variety XK is always smooth.

Lemma 2.3 ([17, Lemma 2.2]). Let X be a smooth projective variety over a field. If
H0(X,Ωi

X) 6= 0 for some i > 0, then X is not universally CH0-trivial.
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2.3. Cyclic covers in positive characteristic. We briefly recall Kollár’s technique
of constructing a suitable invertible sheaf on cyclic covers in positive characteristics.

Let Z be a smooth variety of dimension n over an algebraically closed field of char-
acteristic p > 0, L an invertible sheaf on Z and s ∈ H0(Z,Lp) a global section. Let
τ : X → Z be the cyclic cover of degree p branched along the zero locus (s = 0) ⊂ Z.
By [12, V.5], there exists an invertible sheaf Q on Z such that τ∗Q ⊂ (Ωn−1

X )∨∨, where
∨∨ denotes the double dual. We set M := τ∗Q and call it the invertible sheaf asso-
ciated with the covering τ . Note that if the branched divisor (s = 0) is reduced, then
Q ∼= ωZ ⊗ Lp by [12, Lemma V.5.9].

We recall the definition of critical point of s ∈ H0(Z,Lp) which plays an important
role in the analysis of singularities of X. Let p ∈ Z be a point and let x1, . . . , xn be
local coordinates of Z at p. Take a local generator µ of L at p and write s = fµp, where
f = f(x1, . . . , xn). We write f = f0 + f1 + · · · , where fi is homogeneous of degree i
and we set

H(s) =

(
∂2f

∂xi∂xj

)
.

Definition 2.4. We say that s has a critical point at p if f1 = 0. Suppose that s
has a critical point at p. We say that s has a nondegenerate critical point at p if
rankH(s)(p) = n. When p = 2 and n is odd, we always have rankH(s)(p) < n. In this
case, we say that s has an almost nondegenerate critical point at p if

lengthOZ,p/(∂f/∂x1, . . . , ∂f/∂xn) = 2.

The above definition does not depend on the choice of local coordinates x1, . . . , xn
and the local generator µ of L (see [12, Section V.5]).

Remark 2.5. Let s = fµp be as above and a ∈ OZ,p an invertible element. We write
a = a(x1, . . . , xn) = a0 + a1 + · · · as before. We think of aps as a section around p
and compare critical points of s and aps at p. It is obvious that s has a critical point
at p if and only if so does aps since the linear term of af is a0f1 and a0 6= 0 (Here
recall that that the ground field is of characteristic p). Now suppose that s and aps
has a critical point at p. Then it is also easy to see that s has a nondegenerate critical
point (resp. (almost) nondegenerate critical point) at p if and only if so does aps since
H(s) = apH(s) and

OZ,p/(∂(apf)/∂x1, . . . , ∂(apf)/∂xn) = OZ,p/(∂f/∂x1, . . . , ∂f/∂xn).

This observation will be used later.

Remark 2.6. We explain an explicit description of (almost) nondegenerate critical
point. We refer readers to [12, Section V.5] for details. Suppose that s = fµp has a
critical point at p ∈ Z.

(1) If either p > 2 or p = 2 and n is odd, then s has a nondegenerate critical point
if and only if, in a suitable choice of x1, . . . , xn, f1 = 0 and

f2 =

{
x1x2 + x3x4 + · · ·+ xn−1xn, if n is even,

x2
1 + x2x3 + · · ·+ xn−1xn, if n is odd.

(2) If p = 2 and n is odd, then s has an almost nondegenerate critical point at p if
and only if, in a suitable choice of x1, . . . , xn, f1 = 0,

f2 = αx2
1 + x2x3 + · · ·+ xn−1xn,

for some constant α and the coefficient of x3
1 in f3 is non-zero.
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The following result is important.

Proposition 2.7 ([13, Proposition 4.1], cf. [7], [3, Proposition 7.8]). Let the notation
and assumption as above. If s has only (almost) nondegenerate critical points on Z,
then there exists a universally CH0-trivial resolution ϕ : Y → X of singularities such
that ϕ∗M ↪→ Ωn−1

Y .

2.4. Outline of the proof of Main Theorems. We explain an outline of the proof
of main theorems.

We first explain an outline for del Pezzo fibrations of degree 1 in detail. We consider
a complete linear system |OX(6µ, 6)| on a P(1, 1, 2, 3)-bundle P over Pn−2 defined byu0 · · · un−2 x y z w

1 · · · 1 | 0 λ 2µ 3µ
0 · · · 0 | 1 1 2 3

 ,

where n ≥ 3, λ, µ are integers. Over C, if X ∈ |OP (6µ, 6)| is a general member, then
π : X → Pn−2, the restriction of the projection P → Pn−2, is a nonsingular del Pezzo
fibration of degree 1 under some numerical conditions on λ, µ (which will be considered
later on). We consider a member X ∈ |OP (6µ, 6)| defined by an equation

w2 + f(u, x, y, z) = 0,

where f(u, x, y, z) is a general polynomial in variables of bi-degree (6µ, 6). Let Z be
the WPS bundle over Pn−2 defined byu0 · · · un−2 x y z

1 · · · 1 | 0 λ 2µ
0 · · · 0 | 1 1 2

 .

Then the natural morphism τ : X → Z is a double cover branched along the divisor
(f = 0) ⊂ Z. We see that the nonsingular locus of Z is the set Z◦ = Z \ (x = y = 0).

Now we assume that the ground field is an algebraically closed field k of characteristic
2. Set L = OZ(3µ, 3) and L◦ = L|Z◦ . Then we can apply the techniques of Kollár
summarized in Section 2.3 for X◦ → Z◦, where X◦ = τ−1(Z◦), and there exists a line
bundle M◦ ↪→ (Ωn−1

X◦ )∨∨ such that M◦ ∼= τ∗(ωZ◦ ⊗ L◦2). Let M ↪→ (Ωn−2
X )∨∨ be the

pushforward of M◦ via the inclusion X◦ ↪→ X. We prove the following.

(1) X is nonsingular along X \X◦.
(2) There exists a universally CH0-trivial resolution ϕ : Y → X of singularities of

X such that ϕ∗M ↪→ Ωn−1
Y .

(3) Under some conditions (e.g. n = 3 or −KX is not ample), H0(X,M) 6= 0.

Note that (1) in particular implies that M is an invertible sheaf. By (2), (3) and
Lemma 2.3, Y is not universally CH0-trivial. Then Theorems 1.1, 1.3 (for degree 1 case)
and their stronger version Theorem 4.1 will follow from the specialization Theorem 2.2
of universal CH0-triviality.

Outlines of the proofs for degree 2 and 3 cases are similar and we give brief explana-
tions. For del Pezzo fibrations of degree 2 or 3, we consider a complete linear system
|OP (δ, d)| on a WPS bundle over Pn−2 defined byu0 · · · un−2 x y z w

1 · · · 1 | 0 λ µ ν
0 · · · 0 | 1 1 1 m

 ,
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where n ≥ 3, d, δ, λ, µ, ν and m are integers such that (d,m) = (4, 2) and (3, 1). Over C,
if X ∈ |OX(δ, d)| is a general member and m = 2 (resp. m = 1), then π : X → Pn−2 is a
nonsingular del Pezzo fibration of degree 2 (resp. 3). Over an algebraically closed field k
of characteristic p ∈ {2, 3}, we consider a member X ∈ |OP (δ, d)| admitting a morphism
π : X → Z which is a branched covering of degree p over a normal projective variety
Z. As in the degree 1 case, let Z◦ be the nonsingular locus of Z and X◦ = τ−1(Z◦).
Then, corresponding to the covering X◦ → Z◦, there is an associated line bundle
M◦ ⊂ (Ωn−1

X◦ )∨∨. Then the main part of the rest of this paper is to prove (1), (2)
and (3) above, which will complete the proofs of Theorems 1.1, 1.3 and their stronger
versions Theorems 5.1, 6.1.

The proofs of (1) and (3) are straightforward, hence the proof of (2) is the central
part of this paper. In most of the cases, we can prove that the branched divisor of
the covering τ : X → Z has only (almost) nondegenerate critical points following the
arguments similar to [12, V.5], which proves (2) by Proposition 2.7. Note that the above
singularities are isolated. However, we encounter the case when the branched divisor
has critical points along a positive dimensional subvariety of Z, which are evidently
not (almost) nondegenerate. In the next section, we devote ourselves to give some
preliminary results in order to overcome this difficulty.

3. Some results on singularities and critical points

3.1. Lifting of differential forms. Let p ∈ Z be a germ of a nonsingular variety of
dimension n ≥ 4 defined over an algebraically closed field k of characteristic p ∈ {2, 3},
L an invertible sheaf on Z and f ∈ H0(Z,Lp). We denote by Crit(f) ⊂ Z the set of
critical points of f . Let τ : X → Z be the degree p cover branched along (f = 0) ⊂ Z.

We consider the following conditions on f .

Condition 3.1. There exist local coordinates x1, . . . , xn of Z with the origin at p
satisfying the following properties:

(1) f = α+ βx2
1 + x2x3 + γx3

1 + g, where α, β, γ ∈ k, g = g(x1, . . . , xn) is contained
in the ideal (x1, x2, x3)3 and the coefficient of x3

1 in g is zero. Moreover if p = 2,
then γ 6= 0, and if p = 3, then β 6= 0.

(2) Crit(f) = (x1 = x2 = x3 = 0) ⊂ Z.

Condition 3.2. There exist local coordinates x1, . . . , xn of Z with the origin at p
satisfying the following properties:

(1) f = α+ x1x2 + x3x4 + g, where α ∈ k and g = g(x1, . . . , xn) ∈ (x1, x3)2.
(2) Crit(f) = (x1 = x2 = x3 = x4 = 0) ⊂ Z.

Let M = τ∗Q ⊂ (Ωn−1
X )∨∨ be the invertible sheaf associated with τ and let η be a

(rational) (n−1)-form which is a generator ofM. Let τ−1(Crit(f)) be the inverse image
with the reduced induced scheme structure. If f satisfies one of the above conditions,
then τ−1(Crit(f)) is a nonsingular subvariety of X. Let ψ : Y → X be the blowup of
X along τ−1(Crit(f)) and E its exceptional divisor.

Lemma 3.3. Suppose that f satisfies either Condition 3.1 or 3.2. Then ϕ : Y → X is
a resolution of singularities of X and ϕ∗M ↪→ Ωn−1

Y .

Proof. We need to check that Y is nonsingular along ϕ−1(p). This is straightforward
and we omit the proof. We prove the latter part assuming Condition 3.1. By [12,
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Lemma V.5.9], a generator η of the invertible sheaf M can be expressed as

η =
dx2 ∧ · · · ∧ dxn

∂f/∂x2
=
dx2 ∧ · · · ∧ dxn

x3 + h
,

where h = h(x1, . . . , xn) ∈ (x1, . . . , xn)2. On the x2-chart of Y , that is, the chart with
coordinates y2 = x2, yi = xi/y2 for i 6= 2, we have

ϕ∗η =
dy2 ∧ dy2y3 ∧ dy4 · · · ∧ dyn

y2y3 + y2
2(· · · )

=
dy2 ∧ · · · ∧ dyn
y3 + y2(· · · )

.

Thus ϕ∗η does not have a pole along E, which implies ϕ∗M ↪→ Ωn−1
Y . The proof can

be done similarly when f satisfies Condition 3.2 and we omit it. �

3.2. Resolution of singularities. Let k be an algebraically closed field of character-
istic p ∈ {2, 3} and let Z = Am+2 be the affine space over k with affine coordinates
u1, . . . , um and x, y. The aim of this subsection is to construct a resolution of sin-
gularities of cyclic covers of Z branched along (f = 0) ⊂ Z for suitable polynomials
f = f(u, x, y).

Definition 3.4. For polynomials f1, f2 ∈ k[u, x, y], we write f1 ∼p f2 if f1 − f2 = hp

for some h ∈ k[u, x, y].

It is easy to see that if f1 ∼p f2, then the sets of critical points of f1 and f2 coincide.
We introduce the following conditions on f .

Condition 3.5. In case p = 2 we have

f ∼2 ax+ bx2 + cxy + y3 + g,

and in case p = 3 we have

f ∼3 ax+ bx2 + cxy + y2 + g,

where

(1) a, b, c are polynomials in variables u1, . . . , um with deg(a) > 0,
(2) the hypersurface in Amu1,...,um defined by a = 0 is nonsingular,

(3) g = g(u, x, y) is contained in the ideal (x, y)3 ⊂ k[u, x, y],
(4) if p = 2, then any monomial in g divisible by y3 is divisible by either y3x or y4,

and
(5) along an open subset of Z containing Ξ = (x = y = a = 0), the set of critical

points of f coincides with Ξ.

Condition 3.6. The characteristic p of the base field is 2 or 3 and

f ∼p ax+ by + g,

where

(1) a, b are polynomials in variables u1, . . . , um with deg(a),deg(b) > 0,
(2) the complete intersection in Amu1,...,um defined by a = b = 0 is nonsingular,

(3) g is contained in the ideal (x, y)2 ⊂ k[u, x, y], and
(4) along an open subset of Z containing Ξ = (x = y = a = b = 0), the set of

critical points of f coincides with Ξ.
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Let X be the degree p cover of Z branched along (f = 0) ⊂ Z. Explicitly, X is the

hypersurface in Am+3 = Z × A1
w defined by wp + f = 0. We denote by ψ : X̃ → X the

blowup of X along the nonsingular subvariety τ−1(Ξ) and by E its exceptional divisor.
Clearly X is isomorphic to a hypersurface in Am+3 defined by wp + f1 = 0 for any
f1 = f1(u, x, y) with f ∼p f1.

First we assume f satisfies Condition 3.5. Our aim is to observe the blowup ψ, and
thus we may assume

f =

{
ax+ bx2 + cxy + y3 + g, in case p = 2,

ax+ bx2 + cxy + y2 + g, in case p = 3,

where a, b, c and g are as in Condition 3.5, and that X is the hypersurface defined by

F := wp + f = 0.

Note that τ−1(Ξ) = (w = x = y = a = 0) and we this subvariety as Σ.

Lemma 3.7. Suppose that f satisfies Condition 3.5. Then the variety X̃ is nonsingular
on an open subset containing E. Moreover, there is an isomorphism

E ∼= S × Σ,

where
S = (δp,2w̃

2 + t̃x̃+ δp,3ỹ
2 = 0) ⊂ P3

t̃,x̃,ỹ,w̃
,

and ψ|E : E → S coincides with the projection S × Σ → Σ (Here δp,i is the Kronecker
delta).

Proof. The smoothness of X̃ along E can be checked étale locally on the base X and
thus follows from Lemma 3.3.

We give a proof assuming p = 2. The proof is similar when p = 3. In order to
visualize the blowup ψ, we introduce a new variable t and let U = Am+4 be the affine
space with coordinates u1, . . . , um, t, x, y, w. Then X is naturally isomorphic to the
complete intersection in U defined by

w2 + tx+ bxy + cx2 + y3 + g = t− a = 0.

Replacing t 7→ t− by − cx, the above equation can be written as

w2 + tx+ y3 + g = t− a− h = 0,

where g, h ∈ k[u, x, y] with g ∈ (x, y)3 and h ∈ (x, y). Let Ψ: V → U be the blowup

along (t = x = y = w = 0). Then ψ : X̃ → X is identified with the restriction of Ψ
to the proper transform of X ⊂ U via Ψ. The variety V is covered by standard affine
open charts Vt, Vx, Vy and Vw, which will be described below.

The t-chart Vt is an affine space Am+4 with coordinates u1, . . . , um, t̃ = t, x̃ = x/t,

ỹ = y/t and w̃ = w/t. X̃ ∩ Vt is defined by

w̃2 + x̃+ t̃ỹ3 + t̃g̃t = t̃− a− t̃h̃t = 0,

where g̃t = g(u, t̃x̃, t̃ỹ)/t̃3 and h̃t = h(u, t̃x̃, t̃ỹ)/t̃. On this chart, the exceptional divisor
E is cut out by t̃ = 0 and we have

E ∩ Vt = (t̃ = w̃2 + x̃ = a = 0) ⊂ Vt.
The x-chart Vx is an affine space Am+4 with coordinates u1, . . . , um, t̃ = t/x, x̃ = x,

ỹ = y/x and w̃ = w/x. X̃ ∩ Vx is defined by

w̃2 + t̃+ x̃ỹ3 + x̃g̃x = x̃t̃− a− x̃h̃x = 0,
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where g̃x = g(u, x̃, x̃ỹ)/x̃3 and h̃x = h(u, x̃, x̃ỹ)/x̃, and we have

E ∩ Vx = (x̃ = w̃2 + t̃ = a = 0) ⊂ Vx.
The y-chart Vy is an affine space Am+4 with coordinates u1, . . . , um, t̃ = t/y, x̃ = x/y,

ỹ = y and w̃ = w/y. X̃ ∩ Vy is defined by

w̃2 + t̃x̃+ ỹ + ỹg̃y = ỹt̃− a− ỹh̃y = 0,

where g̃y = g(u, ỹx̃, ỹ)/ỹ3 and h̃y = h(u, ỹx̃, ỹ)/ỹ, and we have

E ∩ Vy = (ỹ = w̃2 + t̃x̃ = a = 0) ⊂ Vy.

The w-chart Vw is an affine space Am+4 with coordinates u1, . . . , um, t̃ = t/w, x̃ =

x/w, ỹ = y/w and w̃ = w. X̃ ∩ Vw is defined by

1 + t̃x̃+ w̃ỹ3 + w̃g̃w = w̃t̃− a− w̃h̃w = 0,

where g̃w = g(u, w̃x̃, w̃ỹ)/w̃3 and h̃x = h(u, w̃x̃, w̃ỹ)/w̃, and we have

E ∩ Vw = (w̃ = 1 + t̃x̃ = a = 0) ⊂ Vw.
By gluing E ∩ Vt, . . . , E ∩ Vw, we see that E is isomorphic to

(w̃2 + t̃x̃ = a = 0) ⊂ P3 × Amu ,
which coincides with S ×Σ, and the morphism ψ|E : E → Σ is the projection S ×Σ→
Σ. �

Next, we assume that f satisfies Condition 3.6. Then we may assume f = ax+by+g,
where a, b and g are as in Condition 3.6, and that X is the hypersurface in Am+3 defined
by the equation

F := wp + ax+ by + g = 0.

Note that τ−1(Ξ) = (w = x = y = a = b = 0).

Lemma 3.8. The variety X̃ is nonsingular on an open subset containing E. Moreover,
there is an isomorphism

E ∼= S × Σ,

where

S = (δp,2w̃
2 + s̃x̃+ t̃ỹ = 0) ⊂ P4

s̃,t̃,x̃,ỹ,w̃
,

and ψ|E : E → S coincides with the projection S ×Σ→ Σ (Here, δp,2 is the Kronecker
delta).

Proof. The proof is similar to that of Lemma 3.7. The smoothness of X̃ follows from
Lemma 3.3. Let U = Am+5 be the affine space with coordinates u, s, t, x, y, w. The
variety X is isomorphic to the complete intersection in U defined by

wp + sx+ ty + g = s− a = t− b = 0.

Filtering off terms divisible by x, y and then replacing s, t, the above equations can be
written as

wp + sx+ ty = s− a− q = t− b− h = 0,

where q = q(u, x, y), h = h(u, x, y) are contained in (x, y). Let Ψ: V → U be the

blowup of U along (s = t = x = y = w = 0). Then ψ : X̃ → X can be identified
with the restriction of Ψ to the proper transform of X ⊂ U . The variety V is covered
by standard affine charts Vs, Vt, Vx, Vy and Vw. The description of these charts are
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similar to those in the proof of Lemma 3.7, and the description of E and ψ|E : E → Σ
follows. �

Remark 3.9. Let ψ : X̃ → X be as in Lemma 3.7 or 3.8. Let p ∈ X be a scheme point
and we consider the fiber ψ−1(p), viewed as a scheme over the residue field k(p). If
p /∈ Σ, then ϕ−1(p) is a point. If p ∈ Σ, then ψ−1(p) is Sk(p) defined over k(p), where
S is the quadric hypersurface given in Lemma 3.7 or 3.8. Clearly Sk(p) is universally
CH0-trivial. Therefore, by [6, Proposition 1.8], the morphism ψ is universally CH0-
trivial.

3.3. Smoothness of certain hypersurfaces.

Lemma 3.10. Let An+1 be an affine space with coordinates x1, . . . , xn, w, and let X ⊂
An+1 be the hypersurface defined by

F := wg(x1, . . . , xn) + f(x1, . . . , xn) = 0.

Suppose that the complete intersection in An with coordinates x1, . . . , xn defined by
f = g = 0 is nonsingular. Then X is nonsingular.

Proof. It is clear that the singular locus Sing(X) is contained in the closed subset
(g = 0) ⊂ X. We set V = (f = g = 0) ⊂ An and let JV be the Jacobian matrix
of V ⊂ An. Suppose that X has a singular point p = (α1, . . . , αn, β) ∈ X and set
q = (α1, . . . , αn) ∈ An. Then q ∈ V and we have

∂g

∂xi
(q)β +

∂f

∂xi
(q) = 0

for i = 1, . . . , n. This implies

(tJV )(q)

(
β
1

)
=

0
...
0

 ,

which is impossible since the rank of JV (q) is 2. Therefore X is nonsingular. �

3.4. Surjectivity of restriction maps. We study surjectivity of restriction maps of
global sections of a line bundle. We work over an algebraically closed field.

Definition 3.11. Let Z be a normal quasi-projective variety and N an invertible sheaf
on Z. For a positive integer k and a nonsingular point p ∈ Z, the restriction map

rN ,k(p) : H0(Z,N )→ N ⊗ (OZ/mk
p),

where mp is the maximal ideal of OZ,p, is called the kth restriction map of N at p.

Let Q be a WPS bundle over Pn defined byu0 · · · un x y z
1 · · · 1 | 0 λ µ
0 · · · 0 | 1 1 m

 ,

where m is a positive integer. We assume that λ, µ ≥ 0. We define

Ux = (x 6= 0) ⊂ Q, Πy = (x = 0) ∩ (y 6= 0) ⊂ Q, Γz = (x = y = 0) ⊂ Q,
so that Q is the disjoin union of Ux, Πy and Γz.

For positive integers δ, d and k, we consider the restriction map

rk(p) : H0(Q,OQ(δ, d))→ OQ(δ, d)⊗ (OQ/mk
p),
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and consider its surjectivity.

Lemma 3.12. Suppose that d ≥ 3m and 0 ≤ λ, µ. Then the following hold.

(1) If δ ≥ max{2, 2λ, 2µ}, then r3(p) is surjective for any p ∈ Ux.
(2) If δ ≥ max{3, 3λ, 3µ}, then r4(p) is surjective for any point p ∈ Ux.
(3) If µ ≥ mλ and δ ≥ max{dλ+ 1, (d−m)λ+ µ}, then r2(p) is surjective for any

point p ∈ Πy.
(4) If m = 1, λ ≤ µ and δ ≥ dµ+ 1, then r2(p) is surjective for any p ∈ Γz.

Proof. Set L = OQ(δ, d). A global section of L is a linear combination of the monomials

{ui10 · · ·u
in
n x

jykzl | i0 + · · ·+ in + kλ+ lµ = δ, j + k +ml = d}.
We prove (1) and (2). By replacing coordinates we may assume p = (1:0 : · · · :0; 1 :0 :0).
If δ ≥ max{2, 2λ, 2µ}, then

uiuju
δ−2
0 xd, uiu

δ−λ−1
0 xd−1y, uiu

δ−µ−1
0 xd−mz,

uδ−2λ
0 xd−my2, uδ−λ−µ0 xd−m−1yz, uδ−2µ

0 xd−2mz2,

where 0 ≤ i, j ≤ n, are contained in H0(Q,L) and they restricts to basis of L⊗(OZ/m3
p).

Similarly, if δ ≥ max{3, 3λ, 3µ}, then

uiujuku
δ−3
0 xd, uiuju

δ−λ−2
0 xd−1y, uiuju

δ−µ−2
0 xd−mz,

uiu
δ−2λ−1
0 xd−2y2, uiu

δ−λ−µ−1
0 xd−1−myz, uiu

δ−2µ−1
0 xd−2mz2,

uδ−3λ
0 xd−3y3, uδ−2λ−µ

0 xd−2−my2z, uδ−λ−2µ
0 xd−1−2myz2, uδ−3µ

0 xd−3mz3,

where 0 ≤ i, j, k ≤ n, are contained in H0(Q,L) and they restrict to a basis of L ⊗
(OQ/m4

p). This proves (1) and (2).
We prove (3). Let p ∈ Πy be a point. By the assumption µ ≥ mλ, we may assume

p = (1:0 : · · · :0; 0 :1 :0). Then, since δ ≥ max{dλ+ 1, (d−m)λ+ µ}, we see that

uiu
δ−dλ−1
0 yd, u

δ−(d−1)λ
0 xyd−1, u

δ−(d−m)λ−µ
0 yd−mz,

where 0 ≤ i ≤ n, are contained in H0(Q,L) and they restrict to a basis of L⊗(OQ/m2
p).

Thus (3) is proved.
Finally we prove (4). By (3), r2(p) is surjective at any point p ∈ Πy and it remains

to prove the surjectivity along Γz. We may assume p = (1 : 0 : · · · : 0; 0 : 0 : 1). Then,
since δ ≥ dµ+ 1 = max{dµ+ 1, (d− 1)µ+ λ}, we see that

uiu
δ−dµ+1
0 zd, u

δ−(d−1)µ
0 xzd−1, u

δ−(d−1)µ−λ
0 yzd−1,

where 0 ≤ i ≤ n, are contained in H0(Q,L) and they restrict to basis of L⊗ (OQ/m2
p).

This completes the proof. �

Remark 3.13. Suppose that the characteristic of the ground field is p > 0 and let L
be an invertible sheaf on Q.

The surjectivity of the 3rd (resp. 4th) restriction map of Lp on Ux implies that a
general section f ∈ H0(Q,Lp) has only nondegenerate (resp. almost nondegenerate)
critical points on Ux when p 6= 2 or p = 2 and dimQ is even (resp. p = 2 and dimQ is
odd).

The surjectivity of the 2nd restriction map of Lp on the set Ξ, where Ξ = Πy,Γz or
Πy ∪Γz, implies that a general section f ∈ H0(Q,Lp) does not have a critical point on
Ξ. This is because the surjectivity imposes dimQ independent conditions for a global
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section of Lp to have a critical point at a given point p ∈ Ξ and on the other hand we
have dim Ξ < dimQ.

4. Del Pezzo fibrations of degree 1

For integers n, λ and µ such that n ≥ 3 and λ ≥ 0, we denote by P1(n, λ, µ) the
P(1, 1, 2, 3)-bundle over Pn−2 defined byu0 · · · un−2 x y z w

1 · · · 1 | 0 λ 2µ 3µ
0 · · · 0 | 1 1 2 3

 ,

and consider the complete linear system |OP (6µ, 6)|, where P = P1(n, λ, µ). The aim
of the present section is to prove the following.

Theorem 4.1. Suppose that the ground field is C. Let X be a very general member
of |OP (6µ, 6)|, and suppose that π : X → Pn−2 is a nonsingular del Pezzo fibration. If
4µ− λ− (n− 1) ≥ 0, then X is not stably rational.

Corollary 4.2. Let X be as in Theorem 4.1 (without assuming 4µ− λ− (n− 1) ≥ 0).
If either n ∈ {3, 4} or −KX is not ample, then X is not stably rational.

Lemma 4.3. Suppose that the ground field is C. Let X be a general member of
|OP (6µ, 6)| and suppose that π : X → Pn−2 is a nonsingular del Pezzo fibration. Then
the following hold.

(1) µ > 0.
(2) If µ < λ, then 6µ = 5λ.

Proof. Let F = F (u, x, y, z, w) be a defining polynomial of X.
We prove (1). Suppose that µ < 0. Then F is a polynomial in variables z, w and

X is clearly singular. This is a contradiction and we have µ ≥ 0. Suppose that µ = 0.
If λ > 0, then F does not involve the variable y. This implies that X is singular
along (x = z = w = 0) ⊂ X. Thus λ = 0 and P = P1(n, 0, 0) is the direct product
Pn−2 × P(1, 1, 2, 3) and X is isomorphic to Pn−2 × S, where S is a (smooth) del Pezzo
surface of degree 1. This implies ρ(X) > 2 and X is not a Mori fiber space. This is a
contradiction and (1) is proved.

We prove (2). Suppose that µ < λ. Then we can write

F = xg(u0, u1, x, y, z, w) + w2 + z3,

for some polynomial g of bi-degree (6µ, 5). If 5λ > 6µ, then g does not contain a
monomial divisible by y5, which implies that X is singular along (x = z = w = 0).
If 5λ < 6µ, then the terms in g divisible by y5 can be written as a(u0, u1)y5, where
a(u0, u1) is homogeneous of degree 6µ − 5λ > 0. But then X is singular at any point
of (a = x = z = w = 0) ⊂ P which is non-empty. Thus 6µ = 5λ and the proof is
completed. �

Lemma 4.4. Let the notation and assumption as in Lemma 4.3.

(1) If −KX is not ample, then 3µ ≥ λ+ n− 1.
(2) If n ∈ {3, 4}, then 4µ− λ− (n− 1) ≥ 0.

Proof. Take FP ∈ |OP (1, 0)|, DP ∈ |OP (0, 1)|, and set F = FP |X , D = DP |X . By
adjunction, we have −KX ∼ (n− 1 + λ− µ)F +D.
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We prove (1). Suppose that λ ≤ µ. Then the complete linear system |OP (6µ, 6)| is
base point free. This implies that µF + D is nef. Since ρ(X) = 2, a divisor αF + D
is ample if α > µ, and the assertion follows immediately. Suppose that λ > µ. Then
|OP (6λ, 6)| is base point free. This implies that λF +D is nef. It follows that a divisor
αF + D is ample if α > λ, and we obtain the inequality n − 1 ≤ µ. Combining this
inequality and 6µ = 5λ, it is easy to check that the inequality 3µ ≥ λ+ n− 1 holds.

We prove (2). Suppose to the contrary that 4µ − λ − (n − 1) < 0. If µ ≥ λ, then
3λ < n − 1 ≤ 3 and hence λ = 0. But then 4µ < n − 1 ≤ 3. This is a contradiction
since µ > 0 by Lemma 4.3. If µ < λ, then 6µ = 5λ and we have (7/3)λ < n − 1 ≤ 3.
This implies λ ≤ 1. This is again a contradiction since 6µ = 5λ and µ > 0, and we
obtain the desired inequality. �

In the rest of the present section, we assume that (n, λ, µ) satisfies the assumption
of Lemma 4.3 and we keep the following setting.

Setting 4.5. • The ground field k is algebraically closed and char(k) = 2.
• X is a hypersurface of bi-degree (6µ, 6) in P = P1(n, λ, µ) defined by

F := w2 + f(u, x, y, z) = 0,

where f(u, x, y, z) is a general polynomial of bi-degree (6µ, 6).
• Z the P(1, 1, 2)-bundle over Pn−2 defined byu0 · · · un−2 x y z

1 · · · 1 | 0 λ 2µ
0 · · · 0 | 1 1 2

 .

• L := OZ(3µ, 3),
• τ : X → Z is the restriction of the projection P 99K Z, which is the double

cover of Z branched along f ∈ H0(Z,L2).
• Z◦ := Z \ (x = y = 0) is the smooth locus of Z, X◦ = τ−1(Z◦) and τ◦ = τ |X◦ .
• M◦ is the invertible sheaf associated to τ◦ andM = ι∗M◦, where ι : X◦ ↪→ X.

We define

Ux = (x 6= 0) ⊂ Z and Πy = (x = 0) ∩ (y 6= 0) ⊂ Z,
so that we have Z◦ = Ux ∪ Πy. We will show that X admits a universally CH0-trivial

resolution ϕ : Y → X of singularities such that ϕ∗M ↪→ Ωn−1
Y . To do so we need

to analyze the critical points of f ∈ H0(Z◦,L2), which will be done in the following
subsections.

4.1. Case λ 6= µ.

Lemma 4.6. A general f ∈ H0(Z,L2) has only (almost) nondegenerate critical points
on Z◦ and X is nonsingular along X \X◦.

Proof. We have 6µ ≥ max{3, 3λ, 3µ} by Lemma 4.3. By Lemma 3.12, the 4th restriction
map of L2 is surjective at any point p ∈ Ux. Thus a general f ∈ H0(Z,L2) has only
(almost) nondegenerate critical points on Ux.

We consider critical points on Πy. We first consider the case µ > λ. In this case,
6µ ≥ max{6λ+1, 4λ+2µ}. By Lemma 3.12, the 2nd restriction map of L2 is surjective
at any p ∈ Πy and hence a general f ∈ H0(Z,L2) does not have a critical point on Πy.
We next consider the case µ < λ. In this case 6µ = 5λ and we can write

f = z3 + x(y5 + a4µ−3λy
3z + b2µ−λyz

2) + x2g(u, x, y, z),
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where g(u, x, y, z) is of bi-degree (6µ, 4). It is easy to see that if f has a critical point
at p ∈ Πy, then

p ∈
(
x =

∂f

∂x
=
∂f

∂z
= 0

)
∩Πy.

But the above set is clearly empty and thus f cannot have a critical point along Πy.
Therefore the first assertion is proved.

We prove the latter assertion. We see that X is defined by an equation

F := w2 + z3 + g(u, x, y, z, w) = 0,

where g ∈ (x, y). We have

X \X◦ = (x = y = 0) ∩X = (x = y = w2 + z3 = 0),

which implies that z does not vanish at any point p ∈ X \X◦. Thus X is nonsingular
along X \X◦ since ∂F/∂z = z2 6= 0 along X \X◦. �

4.2. Case λ = µ.

Lemma 4.7. A general f ∈ H0(Z,L2) has only (almost) nondegenerate critical points
on Ux and X is nonsingular along X \X◦.

Proof. This can be proved in the same way as Lemma 4.7 since 6µ ≥ max{3, 3λ, 3µ}.
�

Let Crit(f) ⊂ Z◦ be the set of critical points of f on Z◦. Lemma 4.7 shows that
C1 := Crit(f) ∩ Ux consists of (almost) nondegenerate critical points. We need to
consider Crit(f) \ C1, or in other words, the critical points of f on Πy. We can write

f = αy6 + βy4z + γy2z2 + z3 + x(aµy
5 + bµy

3z + cµyz
2) + x2g,

where α, β, γ ∈ k, aµ, bµ, cµ ∈ k[u] are of degree µ and g = g(u, x, y, z) is of bi-degree
(6µ, 4). Replacing z, we may assume that β = 0.

Lemma 4.8. We have
Crit(f) = C1 ∪ C2,

where C2 = (x = z = aµ = 0) ⊂ Z.

Proof. This follows immediately since

∂f

∂x
|(x=0) = aµy

5 + bµy
3z + cµyz

2,
∂f

∂z
|(x=0) = z2,

and ∂f/∂ui vanishes along (x = 0) for any i. �

By Lemma 4.8, the singular locus of X is τ−1(C1) ∪ τ−1(C2). Let ϕ : Y → X
be the composite of blowups of X at each point of τ−1(C1) and along τ−1(C2). The
singularities τ−1(C1) correspond to (almost) nondegenerate critical points and ϕ gives a
desired resolution of such a singularities (see Proposition 2.7 and also [13, Proposition
4.1]). Note that if n = 3, then C2 is also isolated and f has almost nondegenerate
critical points at each point of C2. We will observe that ϕ gives a desired resolution of
singularities along τ−1(C2) ⊂ X assuming n > 3.

Recall that

f = αy6 + γy2z2 + z3 + x(aµy
5 + bµy

3z + cµyz
2) + x2g,

and
C2 = (x = z = aµ = 0).
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We write g = y4d2µ + h, where d2µ = d2µ(u) and h = h(u, x, y, z) does not contain a
monomials divisible by y4. Note that h ∈ (x, z). We see that C2 ⊂ Z is covered by
open sets Ui,y = (ui 6= 0) ∩ (y 6= 0) ⊂ Z for i = 0, . . . , n− 2. In the following we work
with U0,y and analyze the restriction of f to U0,y. By symmetry the descriptions for
the other Ui,y are completely the same.

The open set U0,y is isomorphic to the affine space An and the restriction of the
sections u1, . . . , un−2, x, z to U0 are the affine coordinates of U0

∼= An. By a slight
abuse of notation, the restriction of ui, x, z to U0 are also denoted by the same symbol.
For a polynomial e = e(u0, . . . , un−2, x, y, z), we define

ē = ē(u1, . . . , un−2, x, z) = e(1, u1, . . . , un−2, x, 1, z).

We have

f |U0,y = α+ γz2 + z3 + aµx+ bµxz + cµxz
2 + dx2 + x2h̄

∼2 aµx+ dx2 + bµxz + z3 + (cµxz
2 + x2h̄)

We see that deg aµ = µ > 0 and the hypersurface in An−2
u defined by aµ = 0 is

nonsingular since f is general. Moreover cµxz
2 + x2h̄ is contained in the ideal (x, z)3

and it does not contain a monomial divisible by z3. This shows that f |U0,y satisfies

Condition 3.5 and, by Lemma 3.7, the blowup of X along τ−1(C2) is universally CH0-
trivial, resolves the singularity of X along τ−1(C2) and pulls back the sheaf M into a
subsheaf of Ωn−1.

The following is the conclusion of Sections 4.1 and 4.2.

Proposition 4.9. Suppose that (n, λ, µ) satisfies the assumption of Lemma 4.3 and let
X be as in Setting 4.5. Then there exists a universally CH0-trivial resolution ϕ : Y → X
of singularities such that ϕ∗M ↪→ Ωn−1

Y and we have

M∼= OX(4µ− λ− (n− 1), 2).

Proof. The existence of the universally CH0-trivial resolution ϕ : Y → X follows from
the results of Sections 4.1, 4.2 and Proposition 2.7. We have ωZ ∼= OZ(−(n− 1)− λ−
2µ,−4) and L ∼= OZ(3µ, 3), so that

M∼= τ∗(ωZ ⊗ L2) ∼= OX(4µ− λ− (n− 1), 2),

and the proof is completed. �

4.3. Proof of Theorem 4.1 and Corollary 4.2.

Proof of Theorem 4.1. Let X be as in Setting 4.5. By Proposition 4.9, there exists
a universally trivial resolution ϕ : Y → X such that ϕ∗M ↪→ Ωn−1

Y . The assumption

4µ − λ − (n − 1) ≥ 0 implies that H0(X,M) 6= 0 and hence H0(Y,Ωn−1
Y ) 6= 0. By

Lemma 2.3, Y is not universally CH0-trivial. Now we assume that f ∈ H0(Z,L2) is
very general so that the coefficients of f are algebraically independent over F2. We
can lift it to characteristic 0 via the ring of Witt vectors which is a DVR with residue
field k, and then to C by choosing an embedding of the fraction field of the DVR into
C. Thus Theorem 4.1 follows from Theorem 2.2 (see Section 2.4 for a more detailed
explanation). �

Proof of Corollary 4.2. This follows from Theorem 4.1 and Lemma 4.4. �
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5. Del Pezzo fibrations of degree 2

For integers n, λ, µ and ν, we denote by P = P2(n, λ, µ, ν) the P(1, 1, 1, 2)-bundle
over Pn−2 defined by u0 · · · un−2 x y z w

1 · · · 1 | 0 λ µ ν
0 · · · 0 | 1 1 1 2


and consider the complete linear system |OP (2ν, 4)|. We assume that n ≥ 3 and, by
normalizing the action, we may assume 0 ≤ λ ≤ µ. The aim of the present section is
to prove the following.

Theorem 5.1. Suppose that the ground field is C. Let X be a very general member of
|OP (2ν, 4)|, and suppose that X is nonsingular and the projection π : X → Pn−2 is a
del Pezzo fibration. If 2ν − λ− µ− (n− 1) ≥ 0, then X is not stably rational.

Corollary 5.2. Let X be as in Theorem 5.1 (without assuming 2ν−λ−µ−(n−1) ≥ 0).
If either n = 3 or −KX is not ample, then X is not stably rational.

Lemma 5.3. Suppose that the ground field is C. Let X be a general member of
|OP (2ν, 4)| and suppose that π : X → Pn−2 is a nonsingular del Pezzo fibration. Then
the following hold.

(1) ν ≥ 1, and if ν = 1, then λ = µ = 0.
(2) 2ν ≥ 3µ.
(3) 2ν ≥ 4λ.
(4) If 3µ < 2ν < 4µ and 2ν 6= 3µ+ λ, then n = 3.
(5) If 2ν < 3µ+ λ, then 2ν = 3µ.

Proof. We prove (1). Suppose that ν < 0. Then the monomials of bi-degree (2ν, 4) are
divisible by w and thus X is either reducible or non-reduced. Thus ν ≥ 0. Suppose
that ν = 0. If in addition λ > 0, then w2, wx2, x4 are the monomials of bi-degree
(2ν, 4) = (0, 4) and thus X is reducible. Thus λ = 0. If µ > 0, then

w2, wx2, wxy, wy2, x4, x3y, x2y2, xy3, y4

are the monomials of bi-degree (2ν, 4) = (0, 4). In this case X is singular along (x =
y = w = 0) ∼= P1. This contradicts the smoothness of X and thus µ = 0. Then X
is isomorphic to the product P1 × S, where S is a del Pezzo surface of degree 2, and
π : X → P1 is not a del Pezzo fibration. This proves the first assertion of (1). The
latter assertion follows (2).

We prove (2). Suppose that 2ν < 3µ. Then there are no monomials of bi-degree
(2ν, 4) which are divisible by z3, and z2w is of bi-degree (2µ+ ν, 4) with 2µ+ ν > 2ν.
Thus X is singular along (x = y = w = 0) ∼= P1. This is a contradiction and (2) is
proved.

We prove (3). Suppose that 2ν < 4λ. Then, any monomial of bi-degree (2ν, 4) is
divisible either w or x, which implies that X contains the sub WPS bundle (x = w =
0) ⊂ P . This is impossible since ρ(X) = 2. Proof of second assertion?

We prove (4) and (5). We assume that 2ν < 4µ. Then the defining polynomial of X
can be written as

z3(a2ν−3µx+ b2ν−3µ−λy) + z2f(u, x, y, w) + zg(u, x, y, w) + h(u, x, y, w),

where a = a(u), b = b(u) are homogeneous polynomials of indicated degree and f, g, h
are of bi-degree (2ν − 2µ, 2), (2ν − µ, 3), (2ν, 4), respectively. Suppose in addition that
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2ν < 3µ+λ. Then b = 0. If deg a > 0, then X is singular along (a = x = y = w = 0) ⊂
X, which is non-empty. Thus deg a = 0, that is, 2ν = 3µ, and (5) is proved. Suppose
that 2ν > 3λ+ µ. Then deg a and deg b are positive. It is easy to see that X singular
along (a = b = x = y = w = 0), which is nonempty if n ≥ 4. Therefore we conclude
n = 3 and (4) is proved. �

Lemma 5.4. Let the notation and assumption as in Lemma 5.3.

(1) If −KX is not ample, then 2ν − λ− µ− (n− 1) ≥ 0.
(2) If n = 3, then 2ν − λ− µ− 2 ≥ 0.

Proof. Take FP ∈ |OP (1, 0)|, DP ∈ |OP (0, 1)|, and set F = FP |X , D = DP |X . By
adjunction, we have −KX ∼ (n− 1 + λ+ µ− ν)F +D.

We prove (1). Suppose first that ν ≥ 2µ. Then |OP (ν, 2)| is base point free. This
implies that νF + 2D is nef. Since ρ(X) = 2, a divisor αF + D is ample if α > ν/2,
and the assertion follows immediately. Suppose next that ν < 2µ. Then |OP (µ, 1)| is
base point free. This implies that λF + D is nef. It follows that a divisor αF + D is
ample if α > λ, and we obtain the inequality λ+ n− 1 ≤ ν. Combining this inequality
with 2ν ≥ 3µ, it is easy to check that the inequality 2ν ≥ µ+ λ+ n− 1 holds.

We prove (2). Assume to the contrary that 2ν − λ − µ − 2 < 0. Then since λ ≤ µ,
we have 3µ ≤ 2ν ≤ 2µ+ 1. Thus µ = 0, 1. But this is impossible since ν > 0. �

In the rest of the present section, we assume that (n, λ, µ, ν) satisfies the assumption
of Lemma 5.3. We keep the following setting except in Subsection 5.3.

Setting 5.5. • The ground field k is algebraically closed and char(k) = 2.
• X is a hypersurface of bi-degree (2ν, 4) in P = P2(n, λ, µ, ν) defined by

F := w2 + f(u, x, y, z) = 0,

where f(u, x, y, z) is a general polynomial of bi-degree (2ν, 4).
• Z is the P2-bundle over Pn−2 defined byu0 · · · un−2 x y z

1 · · · 1 | 0 λ µ
0 · · · 0 | 1 1 1

 .

• L = OZ(ν, 2).
• τ : X → Z is the restriction of the projection P 99K Z, which is the double

cover of Z branched along f ∈ H0(Z,L2).
• M is the invertible sheaf on X associated to the double cover τ .

We define

Ux = (x 6= 0) ⊂ Z, Πy = (x = 0) ∩ (y 6= 0) ⊂ Z, Γz = (x = y = 0) ⊂ Z,
so that we have Z = Ux∪Πy∪Γz. We will analyze the critical points of f ∈ H0(Z◦,L2),
which will be done in the following subsections.

5.1. Case ν 6= 2µ and λ, µ, ν does not satisfy 2ν = 3µ = 4λ.

Lemma 5.6. The section f ∈ H0(Z,L2) has only (almost) nondegenerate critical points
on Z.

Proof. We first treat the case ν = 1. Then λ = µ = 0 by Lemma 5.3. Hence Z ∼=
Pn−2×P2 and L2 ∼= OPn−2×P2(2, 4). We see that 2 = 2ν = max{2, 2λ, 2µ}. If n is even,
then, by Lemma 3.12, a general f ∈ H0(Z,L2) has only nondegenerate critical points
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on Z. We assume that n is odd. Let p ∈ Z be a point. Replacing coordinates, we may
assume p = (1 : 0 : · · · : 0; 1 : 0 : 0). Then, since the 2nd and 3rd restriction maps of L2

at p are surjective, n independent conditions are imposed for a section in H0(Z,L2) to
have a critical point at p. Consider a section of the form

g = (u1u2 + u3u4 + · · ·+ un−4un−3)x4 + u0un−2x
3y + u2

0xz
3 + · · · ,

which has an almost nondegenerate critical point at p. This shows that additional
conditions are imposed for a section to have a critical point at p which is worse than
almost nondegenerate critical point. By counting dimension, we conclude that a general
f ∈ H0(Z,L2) has only almost nondegenerate critical points on Z. In the rest of the
proof, we assume that ν ≥ 2.

We have 2ν ≥ max{3, 3λ, 3µ} and, by Lemma 3.12, the 4th restriction map of L2 is
surjective at any point p ∈ Ux, and it remains to consider critical points on Πy∪Γz. We
claim that 2ν ≥ 4λ+ 1. Suppose that 2ν < 4λ+ 1. Then, by Lemma 5.3.(1), we have
2ν = 4λ. Since we are assuming that 2ν = 3µ = 4λ does not hold in this subsection,
we have 2ν 6= 3µ, which implies 4λ = 2ν ≥ 3µ + λ by Lemma 5.3.(5). This implies
λ ≥ µ, hence λ = µ. This is a contradiction since we are assuming ν 6= 2µ. We divide
the proof into several cases.

Suppose that 2ν ≥ 3λ + µ. Then, by Lemma 3.12, the 2nd restriction map of L2

is surjective at any point p ∈ Πy. Thus a general f ∈ H0(Z,L2) has only (almost)
nondegenerate critical points on Z \ Γz and it remains to consider critical point along
Γz. If 2ν > 4µ, then we are done by Lemma 3.12. In the following we show that f does
not have a critical point along Γz assuming that 2ν < 4µ. In this case we can write

f = a2ν−3µxz
3 + b2ν−3µ−λyz

3 + g,

where g(u, x, y, z) ∈ (x, y)2. This means that the set of critical points of f contained in
Γz is contained in C := (a = b = 0) ∩ Γz. Clearly C = ∅ if either a or b is a constant,
that is, either 2ν = 3µ or 2ν = 3µ+ λ. If ν 6= 3µ, 3µ+ λ, then n = 3 and the C is also
empty because a and b are general. Thus f cannot have a critical point on Γz.

Suppose that 2ν < 3λ+ µ. Then we have 2ν = 3µ by Lemma 5.3. We can write

f = a2ν−4λy
4 + x(z3 + bµ−λz

2y + c2µ−2λzy
2 + d3µ−3λy

3) + g,

where a, b, c, d are homogeneous polynomials in variables u of the indicated degree and
g = g(u, x, y, z) ∈ (x2) is of bi-degree (2ν, 4). Note that deg a = 2ν − 4λ ≥ 2. We set
h = z3 + bz2y + czy2 + dy3. It is easy to check that

Crit(f) ∩ (x = 0) = C ∩ (x = h = 0) ⊂ Z,
where

C =

(
∂a

∂u0
= · · · = ∂a

∂un−2
= 0

)
⊂ Z.

The set C is a union of fibers of the P2-bundle Z → Pn−2 over critical points of a,
viewed as a section in H0(Pn−2,OPn−2(2ν − 4λ)). Since a is general, we see that C
consists of finitely many fibers and thus Crit(f) consists of finitely many closed points.

Now we consider the case when n is odd and deg a = 2. In this case we claim C = ∅.
Indeed, then the Hessian matrix of the quadric in even number of variables u0, . . . , un−2

is invertible, and this implies that the set of critical points of a ∈ H0(Pn−2,OPn−2(2))
is empty. Thus we have Crit(f) ∩ (x = 0) = ∅.

In the following we assume that either n is even or n is odd and deg a > 2. Then we
see that the section a, viewed as a section on Pn−2, has only (almost) nondegenerate
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critical points. Moreover we may assume that ∂h/∂z does not vanish at any point of
Crit(f)∩(x = 0). This is indeed possible by choosing c so that C∩(c = 0) = ∅. Now let
p ∈ Crit(f)∩ (x = 0) be a point. We may assume that p = (1:0 : · · · :0; 0 :1 :0) ∈ Z. We
can choose u1, . . . , un−2, x, z as local coordinates of Z at p. By using these coordinates,
the restriction of f to p is of the form

q(u1, . . . , un−2) + x(z + `(u1, . . . , un−2) + e2) + x2(α+ e1),

where

q =

{
u1u2 + u3u4 + · · ·+ un−3un−2, if n is even,

u2
1 + u2u3 + · · ·+ un−3un−2 + u3

1, if n is odd,

α ∈ k, ` is a linear form in u1, . . . , un−2 and ei = ei(u1, . . . , un−2, x, z) ∈ mi
p, where

mp = (u1, . . . , un−2, x, z). It is now clear that f has an (almost) nondegenerate critical
points at p and the proof is completed. �

5.2. Case ν = 2µ.

5.2.1. Subcase 2ν = 4µ and µ > λ.

Lemma 5.7. The section f ∈ H0(Z,L2) has only (almost) nondegenerate critical points
on Z \ Γz = Ux ∪Πy.

Proof. Note that we have ν ≥ 2 (and µ ≥ 1). Hence 2ν ≥ max{3, 3λ, 3µ} and 2ν ≥
max{4λ+ 1, 3λ+ µ} and the assertion follows from Lemma 3.12. �

Let Crit(f) ⊂ Z be the set of critical points of f and set C1 = Crit(f)∩ (Z \Γz) and
C2 = Crit(f) ∩ Γz, so that we have Crit(f) = C1 ∪ C2. By Lemma 5.7, C1 consists of
isolated points which are (almost) nondegenerate critical points. We need to analyze
C2 and construct a resolution of singularities of X along τ−1(C2).

We can write

f = αz4 + aµxz
3 + bµ−λyz

3 + g(u, x, y, z),

where aµ, bµ−λ are polynomials in variables u of indicated degree and g(u, x, y, z) ∈
(x, y)2 is of bi-degree (4µ, 4). It is easy to see that C2 = (x = y = aµ = bµ−λ = 0) and
C2 is covered by Ui,z = (ui 6= 0) ∩ (z 6= 0) ⊂ Z for i = 0, . . . , n− 2. In the following we
work with U0,y and analyze the restriction of f to U0,z. The analysis for the other Ui,z
is completely the same.

The open set U0,z is isomorphic to An with affine coordinates u1, . . . , un−2, x, y and
we have

f |U0,z = α+ aµx+ bµ−λy + ḡ ∼2 aµx+ bµ−λy + ḡ,

where ḡ = g(1, u1, . . . , un−2, x, y, 1). Since a, b are general and ḡ ∈ (x, y)2, the polyno-
mial f |U0,z satisfies Condition 3.6. Thus, by Lemma 3.8, the blowup of X along τ−1(C2)

is universally CH0-trivial, resolves the singularity of X along τ−1(C2) and pulls back
M into a subsheaf of Ωn−1.

5.2.2. Subcase 2ν = 4µ and µ = λ.

Lemma 5.8. The section f ∈ H0(Z,L2) has only (almost) nondegenerate critical points
on Ux.

Proof. Note that we have ν ≥ 2 (and µ ≥ 1). Hence 2ν ≥ max{3, 3λ, 3µ} and the
assertion follows from Lemma 3.12. �
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Let Crit(f) ⊂ Z be the set of critical points of f and set C1 = Crit(f) ∩ Ux and
C2 = Crit(f)∩ (Z \Ux), so that we have Crit(f) = C1∪C2. By Lemma 5.8, C1 consists
of isolated points which are (almost) nondegenerate critical points. We need to analyze
C2 and construct a resolution of singularities of X along τ−1(C2).

We can write

f = αy4 + βy3z + γy2z2 + δyz3 + εz4 + x(ay3 + by2z + cyz2 + dz3) + g,

where α, . . . , ε ∈ k, a, . . . , d are polynomials in variables of degree µ > 0 and g =
g(u, x, y, z) ∈ (x2) if of bi-degree (4µ, 4). Replacing z and rescaling y, we assume δ = 0
and β = 1. We write g = x2z2e+h, where e = e(u) and h = h(u, x, y, z) ∈ (x2)∩(x, y)3.
It is then easy to see that C2 = (x = y = d = 0) and C2 is covered by the open sets
Ui,z = (ui 6= 0) ∩ (z 6= 0) ⊂ Z for i = 0, . . . , n − 2. In the following we work with U0,z

and analyze the restriction of f to U0,z.
The open subset U0,z is isomorphic to An with affine coordinates u1, . . . , un−2, x, y

and we have
f |U0,z ∼2 d̄x+ ēx2 + c̄xy + y3 + (āxy3 + b̄xy2 + h̄).

The hypersurface in An−2
u defined by d̄ = 0 is nonsingular since d is general, and

h ∈ (x2) ∩ (x, y)3. Thus, by Lemma 3.8, the blowup of X along τ−1(C2) is universally
CH0-trivial, resolves the singularity of X along τ−1(C2) and pulls back M into a
subsheaf of Ωn−1.

The following is the conclusion of Sections 5.1 and 5.2.

Proposition 5.9. Suppose that (n, λ, µ, ν) satisfies the assumption of Lemma 5.3 and
let X be as in Setting 5.5. Then there exists a universally CH0-trivial resolution ϕ : Y →
X of singularities of X such that ϕ∗M ↪→ Ωn−1

Y , and we have

M∼= OX(2ν − λ− µ− (n− 1), 1).

Proof. The existence of ϕ : Y → X follows from the results of Sections 5.1, 5.2 and
Proposition 2.7. We have ωZ ∼= OZ(−(n− 1)− λ− µ,−3) and L ∼= OZ(ν, 2). Thus

M∼= τ∗(ωZ ⊗ L2) ∼= OX(2ν − λ− µ− (n− 1), 1),

and the proof is completed. �

5.3. Case 2ν = 3µ = 4λ. In this subsection we keep the following setting.

Setting 5.10. • The ground field k is algebraically closed and char(k) = 3.
• X is a hypersurface in P = P2(n, λ, µ, ν) defined by

F := z3x+ f(u, x, y, w) = 0,

where f(u, x, y, w) is a general polynomial of bi-degree (2ν, 4).
• R is the P(1, 1, 3, 2)-bundle over Pn−2 defined byu0 · · · un−2 x y z̄ w

1 · · · 1 | 0 λ 3µ ν
0 · · · 0 | 1 1 3 2

 .

• Z is the hypersurface in R defined by F̄ := z̄x+ f = 0.
• L = OZ(µ, 1).
• τ : X → Z is the restriction of the triple cover P → R, which is a triple cover

of Z branched along z̄ ∈ H0(Z,L3).
• Z◦ = Z \ (x = y = w = 0) ∩ Z, X◦ = τ−1(Z◦) and τ◦ = τ |X◦ .
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Lemma 5.11. Z◦ is nonsingular and X is nonsingular along X \X◦.

Proof. It is clear that the singular locus of Z◦ is contained in (x = 0)∩Z = (x = f = 0).
We can write the defining polynomial of Z as

F̄ = z̄x+ αw2 + w(βy2 + g) + γy4 + h,

where α, β, γ ∈ k and h = h(u, x, y), g = g(u, x, y) are polynomials of bi-degree (ν, 2),
(2ν, 4), respectively, and both of them are divisible by x. Since f is general, α, β, γ are
general. In particular α 6= 0 and we have Z◦ = Z \

(
(x = y = 0) ∩ Z

)
, so that Z◦

is covered by two open subsets Ux = (x 6= 0) and Uy = (y 6= 0) of R. By the above
argument, Z ∩ Ux is nonsingular and it remains to show that Z ∩ Uy is nonsingular
along (x = 0)∩Uy. The open set Uy ⊂ R is isomorphic to Pn−2 ×A3

x,z̄,w and Z ∩Uy is
defined by

F̄ (u, x, 1, z̄, w) = z̄x+ αw2 + w(β + g(u, x, 1)) + γ + h(u, x, 1) = 0.

We have (∂F̄ /∂w)|(x=0) = 2αw + β since g, h are divisible by x. It is then straightfor-
ward to check that the singular locus of Z ∩ Uy along (x = 0) ⊂ Uy is contained in the
set

(x = F̄ = 2αw + β = 0) ⊂ Uy,
which is empty since α, β, γ are general. Thus Z◦ is nonsingular.

We have X \ X◦ = (x = y = w = 0) ∩ X which is contained in the open subset
V = (z 6= 0) ⊂ P . The open subset V is isomorphic to Pn−2 ×A3

x,y,w and X ∩ V is the
hypersurface defined by x+ f(u, x, y, w) = 0 in V . It is then straightforward to check
that X ∩ V is nonsingular along (x = y = w = 0) ⊂ V . Thus X is nonsingular along
X \X◦ as desired. �

Since Z◦ is nonsingular, we can defineM◦ to be the invertible sheaf on X◦ associated
to the triple cover τ◦, and we set M = ι∗M◦, where ι : X◦ ↪→ X.

Lemma 5.12. The section z̄ has only nondegenerate critical points on Z◦.

Proof. Since z̄x is the unique term of the defining polynomial z̄x+ f of Z involving z̄,
we can choose z̄ (or more precisely its translation) as a part of local coordinates of Z
at any point in (x = 0) ∩ Z. Hence the section z̄ does not have a critical point along
(x = 0) ∩ Z.

It remains to consider critical points of z̄ on the open set Ux. On Ux, by setting x = 1,
we have z̄ = −f . Eliminating z̄, it is enough to show that f has only nondegenerate
critical points on the open subset (x 6= 0) of the P(1, 1, 2)-bundle R′ over Pn−2 defined
by u0 · · · un−2 x y w

1 · · · 1 | 0 λ ν
0 · · · 0 | 1 1 2

 .

The section f is a general element of H0(R′,N ), where N = OR′(2ν, 4) and, by Lemma
3.12, the 3rd restriction map

r3(p) : H0(R′,N )→ N ⊗ (OR′/m3
p)

is surjective at any point p ∈ (x 6= 0) ⊂ R′ since 2ν ≥ max{2, 2λ, 2ν}. This shows that f
has only nondegenerate critical points on (x 6= 0) ⊂ R′ and the proof is completed. �
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Proposition 5.13. Suppose that (n, λ, µ, ν), where 2ν = 3µ = 4λ, satisfies the assump-
tion of Lemma 5.3 and let X be as in Setting 5.10. Then there exists a universally
CH0-trivial resolution ϕ : Y → X of singularities of X such that ϕ∗M ↪→ Ωn−1

Y , and
we have

M∼= OX(ν − λ− (n− 1), 0).

Proof. The existence of ϕ : Y → X follows from Lemmas 5.11, 5.12 and Proposition
2.7. We have ωZ ∼= OZ(−(n− 1)− λ− 3µ+ ν,−3) and L ∼= OZ(µ, 1), so that

M∼= τ∗(ωZ ⊗ L3) ∼= OZ(−(n− 1)− λ+ ν, 0),

and the proof is completed. �

5.4. Proofs of Theorem 5.1 and Corollary 5.2.

Proof of Theorem 5.1. Note that ν − λ − (n − 1) ≥ 2ν − λ − µ − (n − 1) in the case
when 2ν = 3µ = 4λ. Thus, by the same reasoning as in the proof of Theorem 4.1, this
follows from Propositions 5.9, 5.13 and Theorem 2.2. �

Proof of Corollary 5.2. This follows from Lemma 5.4 and Theorem 5.1 �

6. Del Pezzo fibrations of degree 3

For integers n ≥ 3, λ, µ, ν, we denote by P3(n, λ, µ, ν) the P3-bundle over Pn−2 defined
by u0 · · · un−2 x y z w

1 · · · 1 | 0 λ µ ν
0 · · · 0 | 1 1 1 1

 ,

and we consider the complete linear system |OP (θ, 3)| for an integer θ, where P =
P3(n, λ, µ, ν). For a member X ∈ |OP (θ, 3)|, we denote by π : X → Pn−2 the restriction
of the projection P → Pn−2, whose fibers are cubic hypersurfaces in P3. The aim of
the present section is to prove the following.

Theorem 6.1. Suppose that the ground field is C. Let X be a very general member
of |OP (θ, 3)| and suppose that π : X → Pn−2 is a nonsingular del Pezzo fibration. If
θ ≥ λ+ µ+ (n− 1), then X is not stably rational.

Corollary 6.2. Let X be as in Theorem 6.1 (without assuming θ ≥ λ+ µ+ (n− 1)).
If either −KX is not ample or n = 3 and (θ, λ, µ, ν) 6= (1, 0, 0, 0), (3, 1, 1, 1), then X is
not stably rational.

Lemma 6.3. Suppose that the ground filed is C. Let X be a general member of
|OP (θ, 3)| and suppose that π : X → Pn−2 is a nonsingular del Pezzo fibration. Then
the following hold.

(1) θ ≥ 2ν.
(2) θ ≥ 3µ.
(3) If 2ν + µ < θ < 3ν, then n ≤ 4.
(4) If 2ν + λ < θ < 2ν + µ, then n = 3.
(5) If θ < 2ν + λ, then θ = 2ν.
(6) If θ ≤ 2, then the quadruple (θ, λ, µ, ν) is one of the following:

(2, 0, 0, 0), (2, 0, 0, 1), (1, 0, 0, 0).
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Proof. Clearly θ ≥ 2ν because otherwise X is singular along (x = y = z = 0). If
θ < 3µ, then X contains the P2-bundle (x = y = 0) ⊂ P over Pn−2 and thus the Picard
number of X is at least 3. These prove (1) and (2).

We prove (3), (4) and (5). Suppose that θ < 3ν. Then X is defined by an equation
of the form

w2(aθ−2νx+ bθ−2ν−λy + cθ−2ν−µz) + wf(u, x, y, z) + g(u, x, y, z) = 0,

where a, b, c are homogeneous polynomials in variables u of indicated degrees and f, g
are of bi-degrees (θ−ν, 2), (θ, 3), respectively. The set Σ = (x = y = z = a = b = c = 0)
is contained in the singular locus of X. Hence we must have Σ = ∅, that is, n ≤ 4 if
2ν + µ < θ, and n = 3 if 2ν + λ < θ < 2ν + µ. This proves (3) and (4). If θ < 2ν + λ,
then b = c = 0 and the set Σ is empty if and only if a is a constant, that is, θ = 2ν.
This proves (5).

Finally we prove (6). We claim that θ ≥ 1. Clearly we have θ ≥ 0 because otherwise
|OP (θ, 3)| = ∅. If θ = 0, then λ = µ = ν = 0 by (1) and thus X is the product
Pn−2 × S, where S is a cubic surface. This is impossible and we have θ ≥ 1 and the
claim is proved. Now we assume that θ ≤ 2. By (2), we have λ = µ = 0. If θ = 1, then
ν = 0 by (1) and we have (θ, λ, µ, ν) = (1, 0, 0, 0). If θ = 2, then ν ≤ 1 by (1) and we
have (θ, λ, µ, ν) = (2, 0, 0, 0), (2, 0, 0, 1). This completes the proof. �

Lemma 6.4. Suppose that the ground filed is C and π : X → Pn−2 is a nonsin-
gular del Pezzo fibration. If either −KX is not ample or n = 3 and (θ, λ, µ, ν) 6=
(1, 0, 0, 0), (3, 1, 1, 1), then θ ≥ λ+ µ+ (n− 1).

Proof. Take divisors FP ∈ |OQ(1, 0)|, DP ∈ |OP (0, 1)| and set F = FP |X , D = DP |X .
It is clear that OP (ν, 1) is generated by global sections and not ample. Thus the cone of
ample divisors on P is the interior of the cone spanned by FP and νFP+DP ∈ |OP (ν, 1)|.
Hence a divisor αF+D on X is ample if α > ν. By adjunction, we have an isomorphism

OX(−KX) ∼= OX(n− 1 + λ+ µ+ ν − θ, 1),

that is, −KX ∼ (n − 1 + λ + µ + ν − θ)F + D. Thus, if −KX is not ample, then the
inequality θ ≥ λ+ µ+ (n− 1) holds.

We consider the case when n = 3 and we assume that θ ≤ λ + µ + 1. Since 3µ ≤ θ
and λ ≤ µ, we have 3µ ≤ 2µ + 1, that is, µ = 0, 1. Suppose that µ = 0. In this case
λ = 0 and θ ≤ 1, which implies θ = 1 since θ > 0. Moreover we have ν = 0 since
2ν ≤ θ and thus (θ, λ, µ, ν) = (1, 0, 0, 0). Suppose that µ = 1. By the inequalities
λ ≤ µ ≤ ν, θ ≥ 3µ, θ ≤ λ + µ + 1 and θ ≥ 2ν, we have λ = ν = 1 and θ = 3, that is,
(θ, λ, µ, ν) = (3, 1, 1, 1). Therefore the proof is completed. �

Remark 6.5. If (θ, λ, µ, ν) = (1, 0, 0, 0), then X is a hypersurface of bi-degree (1, 3)
on Pn−2 × P3 and it is clearly rational. If (θ, λ, µ, ν) = (3, 1, 1, 1), then X is birational
to a (nonsinglar) cubic n-fold. More precisely X is the blowup of a nonsingular cubic
n-fold along a nonsingular plane cubic curve.

In the following subsections we assume that (θ, λ, µ, ν) satisfies the assumption of
Lemma 6.3 and that (θ, λ, µ, ν) 6= (1, 0, 0, 0). Note that we have θ ≥ 2 by Lemma 6.3.

6.1. Case θ > 3ν. In this section we keep the following setting.

Setting 6.6. • The ground field k is algebraically closed and char(k) = 3.
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• X is a hypersurface in P = P3(n, λ, µ, ν) defined by

F := aθ−3νw
3 + f(u, x, y, z) = 0,

where aθ−3ν = aθ−3ν(u) is homogeneous of degree θ − 3ν > 0 and f(u, x, y, z)
is of bi-degree (θ, 3). We assume that a and f are both general.
• R is the P(1, 1, 1, 3)-bundle over Pn−2 defined byu0 · · · un−2 x y z w̄

1 · · · 1 | 0 λ µ 3ν
0 · · · 0 | 1 1 1 3

 .

• Z is the hypersurface in R defined by F̄ := aw̄ + f = 0.
• L = OZ(ν, 1).
• τ : X → Z is the restriction of the triple cover P → R, which is a triple cover

of Z branched along w̄ ∈ H0(Z,L3).
• Z◦ = Z \ (x = y = z = 0) ∩ Z, X◦ = τ−1(Z◦) and τ◦ = τ |X◦ .

Lemma 6.7. Z◦ is nonsingular and X is nonsingular along X \X◦.

Proof. It is clear that the singular locus of Z◦ is contained in (a = f = 0). We will
show that (w̄ = a = f = 0) ⊂ R is nonsingular, which implies that Z◦ is nonsingular
by Lemma 3.10. We see that (w̄ = 0) ⊂ R is isomorphic to the P2-bundle Q over Pn−2

defined by u0 · · · un−2 x y z
1 · · · 1 | 0 λ µ
0 · · · 0 | 1 1 1

 ,

which is also isomorphic to PPn−2(E), where E is a direct sum of three invertible sheaves
on Pn−2. Let H be the hypersurface in Q defined by a = 0. Then it is isomorphic to
PH′(E|H′), where H ′ is the hypersurface in Pn−2 defined by a = 0. The hypersurface
H ′ ⊂ Pn−2 is nonsingular since a is general, and hence H is nonsingular. We see that
(w̄ = a = f = 0) ⊂ Q is isomorphic to the hypersurface in H defined by f = 0. The
section f can be viewed as a section of OQ(θ, 3) which is very ample since θ > ν. It
follows that f |V is a general section of the very ample invertible sheaf OQ(θ, 3)|H and
(w̄ = a = f = 0) is nonsingular.

We prove the latter part. We have X \ X◦ = (x = y = z = 0) ⊂ P . It is easy to
see that X is nonsingular along (x = y = z = 0) if the hypersurface in Pn−2 defined by
a = 0 is nonsingular. The latter is clearly satisfied since a is general. �

Since Z◦ is nonsinguar, we can defineM◦ to be the invertible sheaf on X◦ associated
to the triple cover τ◦, and we set M = ι∗M◦, where ι : X◦ ↪→ X.

Lemma 6.8. The section w̄ has only nondegenerate critical points on Z◦.

Proof. Clearly w̄ does not have a critical point on (a = 0) ∩ Z◦. On the open subset
(a 6= 0)∩Z◦, the section w̄ has a critical point if and only if −a3w̄ = a2f has a critical
point (see Remark 2.5). Let Q be the P2-bundle over Pn−2 defined in the proof of
Lemma 6.7, which is isomorphic to (w̄ = 0) ⊂ R. It is enough to show that the section
a2f , viewed as a section on Q, has only nondegenerate critical points on the open set
U = (a 6= 0) ⊂ Q. We define

V = {a2g | g ∈ H0(Q,OQ(θ, 3))} ⊂ H0(Q,OQ(3θ − 6ν, 3)).
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which is a k-vector space (note that we are fixing a). For a point p ∈ U and an integer
k > 0, we consider the restriction maps

rV,k(p) : V → OQ(3θ − 6ν, 3))⊗ (OQ/mk
p),

rk(p) : H0(Q,OQ(θ, 3))→ OQ(θ, 3)⊗ (OQ/mk
p).

If rk(p) is surjective, then so is rV,k(p) since a does not vanish at p ∈ U . Thus, by the
dimension counting argument, it is enough to show that r3(p) and r2(p) are surjective
at any point p ∈ (x 6= 0) ⊂ Q and p ∈ (x = 0) ⊂ Q, respectively. But this follows from
Lemma 3.12 since θ ≥ max{2, 2λ, 2µ} and θ > 3µ, and the proof is completed. �

6.2. Case θ = 3ν. In this subsection we keep the following setting.

Setting 6.9. • The ground field k is algebraically closed and of char(k) = 3.
• X is a hypersurface in P = P3(n, λ, µ, ν) defined by

F := w3 + f(u, x, y, z) = 0,

where f(u, x, y, z) is a general polynomial of bi-degree (θ, 3).
• Z is the P2-bundle over Pn−2 defined byu0 · · · un−2 x y z

1 · · · 1 | 0 λ µ
0 · · · 0 | 1 1 1

 .

• L = OZ(ν, 1).
• τ : X → Z is the restriction of the projection P 99K Z, which is a triple cover

of Z branched along f ∈ H0(Z,L3).
• M is the invertible sheaf on X associated to the triple cover τ .

We set

Ux = (x 6= 0) ⊂ Z, Πy = (x = 0) ∩ (y 6= 0) ⊂ Z, Πz = (x = y = 0) ⊂ Z,
so that we have Z = Ux ∪Πy ∪Πz.

6.2.1. Subcase ν > µ.

Lemma 6.10. The section f ∈ H0(Z,OZ(θ, 3)) has only nondegenerate critical points
on Z.

Proof. This follows from Lemma 3.12 since θ ≥ max{2, 2λ, 2µ} and θ ≥ 3µ+ 1. �

6.2.2. Subcase ν = µ > λ.

Lemma 6.11. The section f ∈ H0(Z,L3) has only nondegenerate critical points on
Z \ Γz.

Proof. This follows from Lemma 3.12 since θ = 3ν ≥ max{2, 2λ, 2µ} and θ = 3ν ≥
max{3λ+ 1, 2λ+ µ}. �

We can write
f = αz3 + aµz

2x+ bµ−λz
2y + g(u, x, y, z),

where α ∈ k, aµ, bµ−λ are polynomials in u of indicated degree and g ∈ (x, y)2. Let
Crit(f) be the set of critical points of f .

Lemma 6.12. We have Crit(f) = C1∪C2, where C1 consists of nondegenerate critical
points on Z \ Γz and C2 = (x = y = a = b = 0).
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Proof. Set C1 = Crit(f) ∩ (Z \ Γz) and C2 = Crit(f) ∩ Γz so that Crit(f) = C1 ∪ C2.
Then it is easy to see that C2 = (x = y = a = b = 0). �

The set C2 is covered by the Ui,z = (ui 6= 0) ∩ (z 6= 0) ⊂ Z for i = 0, . . . , n− 2. We
analyze the restriction of f to U0,z. The analysis for the other Ui,z is completely the
same. The open set U0,z is isomorphic to An with affine coordinates u1, . . . , un−2, x, y
and we have

f ∼3 āx+ b̄y + ḡ,

where ḡ = g(1, u1, . . . , un−2, x, y, 1) and similarly for ā and b̄. We have deg a = µ > 0,
deg b = µ − λ > 0, and the complete intersection in An−2

u defined by ā = b̄ = 0 is
nonsingular since a, b are general. Moreover ḡ ∈ (x, y)2. Thus, by Lemma 3.8, the
blowup of X along τ−1(C2) is universally CH0-trivial, resolves the singularity of X
along τ−1(C2) and pulls back M into a subsheaf of Ωn−1.

6.2.3. Subcase ν = µ = λ.

Lemma 6.13. The section f ∈ H0(Z,L3) has only nondegenerate critical points on
Ux.

Proof. This follows from Lemma 3.12 since θ ≥ max{2, 2λ, 2µ}. �

We can write

f = αy3 + βy2z + γyz2 + δz3 + x(aµy
2 + bµyz + cµz

2) + g(u, x, y, z),

where α, β, γ, δ ∈ k, aµ, bµ, cµ are homogeneous polynomials in u of degree µ and
g ∈ (x)2. Let Crit(f) be the set of critical points of f . Replacing z and rescaling y, we
may assume γ = 0 and β = 1.

Lemma 6.14. We have Crit(f) = C1∪C2, where C1 consists of nondegenerate critical
points on Z \ Γz and C2 = (x = y = c = 0).

Proof. Set C1 = Crit(f) ∩ Ux and C2 = Crit(f) ∩ (Z \ Ux) so that Crit(f) = C1 ∪ C2.
Then it is easy to see that C2 = (x = y = c = 0). �

The set C2 is covered by Ui,z = (ui 6= 0) ∩ (z 6= 0) ⊂ Z for i = 0, . . . , n − 2. We
analyze the restriction of f to U0,z. The analysis for the other Ui,z is completely the
same. We write g = d2µx

2z + h, where d3µ = d3µ(u) and h = h(u, x, y, z) does not
contain a monomial divisible by x2z. Note that h ∈ (x, y)3. The open subset U0,z is
isomorphic to An with affine coordinates u1, . . . , un−2, x, y and we have

f ∼3 c̄x+ d̄x2 + b̄xy + y2 + (āxy2 + h̄),

where ḡ = g(1, u1, . . . , un−2, x, y, 1) and similarly for the others. We have deg(c̄) >
0 and the hypersurface in An−2

u defined by c̄ = 0 is nonsingular since c is general.
Moreover we have āxy2 + h̄ ∈ (x, y)3. Thus, by Lemma 3.8, the blowup of X along
τ−1(C2) is universally CH0-trivial, resolves the singularity of X along τ−1(C2) and pulls
back M into a subsheaf of Ωn−1.
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6.3. Case θ < 3ν. In this case we have θ ≥ 2ν and we keep the following setting.

Setting 6.15. • The ground field k is algebraically closed and char(k) = 2.
• X is a hypersurface X in P = P3(n, λ, µ, ν) defined by

F := w2(aθ−2νx+ bθ−2ν−λy + cθ−2ν−µz) + f(u, x, y, z) = 0,

where a, b, c are homogeneous polynomials of the indicated degree in the variable
u and f(u, x, y, z) is of bi-degree (θ, 3). We assume that a, b, c and f are general.
• R′ is the P(1, 1, 1, 2)-bundle over Pn−2 defined byu0 · · · un−2 x y z w̄

1 · · · 1 | 0 λ µ 2ν
0 · · · 0 | 1 1 1 2


• Z is the hypersurface in R′ defined by F̄ := w̄(ax+ by + cz) + f = 0.
• L = OZ(ν, 1).
• τ : X → Z is the restriction of the double cover P → R′, which is the double

cover of Z branched along w̄ ∈ H0(Z,L2).
• Z◦ = Z \ (x = y = z = 0) ∩ Z, X◦ = τ−1(Z◦) and τ◦ = τ |X◦ .

We set g = ax+by+cz. We understand, for example, that c = 0 when θ−2ν−µ < 0.

Remark 6.16. By (3), (4) and (5) of Lemma 6.3, the system of equations a = b = c = 0
does not have a solution in Pn−2.

Lemma 6.17. Z◦ is nonsingular and X is nonsingular along X \X◦.

Proof. Let Q be the P2-bundle over Pn−2 defined in the proof of Lemma 6.7. If θ = 2ν,
then Z ∼= Q, so that Z◦ = Z is nonsingular and X = X◦. In the following we assume
that θ > 2ν. For the first assertion, it is enough to show that ∆ := (w̄ = g = f = 0) ⊂
R′ is nonsingular by Lemma 3.10. We identify Q with (w̄ = 0) ⊂ R′. The hypersurface
H = (g = 0) ⊂ Q is nonsingular since g = ax+ by + cz is linear with respect to x, y, z
and a = b = c = 0 has no non-trivial solution (see Remark 6.16). The section f can be
viewed as a general element of H0(Q,OQ(θ, 3)) and OQ(θ, 3) is very ample since θ > µ.
Now ∆ isomorphic to the hypersurface of H cut out by f = 0, which is nonsingular by
Bertini theorem.

We prove the second assertion. We have

Ξ := X \X◦ = (x = y = z = 0) ⊂ P.

and
∂F

∂x
|Ξ = aw2,

∂F

∂y
|Ξ = bw2,

∂F

∂z
|Ξ = cw2.

From this we deduce that X is nonsingualr along Ξ = X \X◦ since the locus (a = b =
c = 0) ⊂ P is empty. �

Since Z◦ is nonsinguar, we can defineM◦ to be the invertible sheaf on X◦ associated
to the double cover τ◦, and we set M = ι∗M◦, where ι : X◦ ↪→ X.

Lemma 6.18. The section w̄ ∈ H0(Z,L2) has only (almost) nondegenerate critical
points on Z◦.

Proof. As in the proof of Lemma 6.8, it is enough to show that the section gf (= −w̄g2),
which is viewed as a section of OQ(2θ−2ν, 4), has only (almost) nondegenerate critical
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points on (g 6= 0) ⊂ Q. This follows if we show that the 4th (resp. 2nd) restriction map
r4(p) of OQ(θ, 3) is surjective at any point of Ux ∩ (g 6= 0) (resp. (Πy ∪ Γz) ∩ (g 6= 0)).

We first consider the case θ ≥ 3. If in addition θ > 3µ, then the assertion follows
from Lemma 3.12. In the following we assume θ = 3µ. Then, since θ < 2ν + µ, we are
in one of the following cases:

(i) n = 3 and 2ν + λ < θ = 3µ < 2ν + µ.
(ii) θ = 3µ = 2ν + λ.
(iii) θ = 3µ = 2ν.

In any of the above cases, we have θ ≥ max{3, 3λ, 3µ} and, by Lemma 3.12, r4(p)
is surjective at any point p ∈ Ux for a general f ∈ H0(OQ(θ, 3)). If we are in case
(iii), then the proof is completed since we may assume g = x in this case and thus
(g 6= 0) = Ux.

Suppose that we are in case (i) or (ii). We have θ ≥ max{3λ + 1, 2λ + µ} and, by
Lemma 3.12, r2(p) is surjective at any point p ∈ Πy. It follows that gf does not have
a critical points along Πy. Now, since g = ax+ by, the set (g 6= 0) ⊂ Q is contained in
Ux ∪Πy. Thus gf has only (almost) nondegenerate critical points on (g 6= 0) ⊂ Q.

We consider the case when θ < 3. In this case (θ, λ, µ, ν) = (2, 0, 0, 1) and a, b, c are
constants. Thus we may assume g = x and it is enough to show that the section xf
has only (almost) nondegenerate critical points on Ux. We have θ ≥ max{2, 2λ, 2µ},
which implies surjectiveity of r3(p) for p ∈ Ux. Thus, if n is even, then xf has only
nondegenerate critical points on Ux. It remains to consider the case when n is odd.
Let p ∈ Ux be a point. It is clear that r2(p) is surjective. It follows that the sections
f ∈ H0(Q,OQ(2, 3)) such that xf has a critical point at p form a codimension n
subspace of H0(Q,OQ(2, 3)). Thus it is enough to show that the existence of f ∈
H0(Q,OQ(2, 3)) which has an almost nondegenerate critical point at p. We may assume
that p = (1:0 : · · · :0; 1 :0 :0) and consider a section

f = (u1u2 + · · ·+ un−4un−3)x3 + u0un−2x
2y + u2

0z
3 + · · · ∈ H0(Q,OQ(2, 3)).

It is easy to see that f has almost nondegenerate critical point at p and the proof is
completed. �

We summarize the results of Sections 6.1, 6.2 and 6.3.

Proposition 6.19. Suppose that (θ, λ, µ, ν) satisfies the assumption of Lemma 6.3 and
that (θ, λ, µ, ν) 6= (1, 0, 0, 0). Let X be as in one of Settings 6.6, 6.9, 6.15. Then there
exists a universally CH0-trivial resolution ϕ : Y → X of singularities of X such that
ϕ∗M ↪→ Ωn−1

Y , and we have

M∼= OX(θ − λ− µ− (n− 1), 0).

6.4. Proofs of Theorem 6.1 and Corollary 6.2.

Proof of Theorem 6.1. This follows from Proposition 6.19 and Theorem 2.2. �

Proof of Corollary 6.2. This follows from Lemma 6.4 and Theorem 6.1. �

We prove the results in Section 1. Theorems 1.1 and 1.3 follow from Corollaries 4.2,
5.2 and 6.2. We prove Theorem 1.2 in which the variety in (1) corresponds to (λ, µ, ν) =
(0, 0,m) in Theorem 5.1 and those in (2), (3) correspond to (λ, µ, ν, θ) = (0, 0,m, 3m),
(0, 0, 0, d) in Theorem 6.1, respectively. Therefore Theorem 1.2 follows immediately.
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