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Neural oscillations track linguistic information during speech comprehension (Ding et al., 2016; Keitel et al., 2018), and are known to
be modulated by acoustic landmarks and speech intelligibility (Doelling et al., 2014; Zoefel and VanRullen, 2015). However, studies
investigating linguistic tracking have either relied on non-naturalistic isochronous stimuli or failed to fully control for prosody.
Therefore, it is still unclear whether low-frequency activity tracks linguistic structure during natural speech, where linguistic structure
does not follow such a palpable temporal pattern. Here, we measured electroencephalography (EEG) and manipulated the presence of
semantic and syntactic information apart from the timescale of their occurrence, while carefully controlling for the acoustic-prosodic
and lexical-semantic information in the signal. EEG was recorded while 29 adult native speakers (22 women, 7 men) listened to natu-
rally spoken Dutch sentences, jabberwocky controls with morphemes and sentential prosody, word lists with lexical content but no
phrase structure, and backward acoustically matched controls. Mutual information (MI) analysis revealed sensitivity to linguistic con-
tent: MI was highest for sentences at the phrasal (0.8–1.1Hz) and lexical (1.9–2.8Hz) timescales, suggesting that the delta-band is
modulated by lexically driven combinatorial processing beyond prosody, and that linguistic content (i.e., structure and meaning)
organizes neural oscillations beyond the timescale and rhythmicity of the stimulus. This pattern is consistent with neurophysiologically
inspired models of language comprehension (Martin, 2016, 2020; Martin and Doumas, 2017) where oscillations encode endogenously
generated linguistic content over and above exogenous or stimulus-driven timing and rhythm information.
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Significance Statement

Biological systems like the brain encode their environment not only by reacting in a series of stimulus-driven responses, but
by combining stimulus-driven information with endogenous, internally generated, inferential knowledge and meaning.
Understanding language from speech is the human benchmark for this. Much research focuses on the purely stimulus-driven
response, but here, we focus on the goal of language behavior: conveying structure and meaning. To that end, we use natural-
istic stimuli that contrast acoustic-prosodic and lexical-semantic information to show that, during spoken language compre-
hension, oscillatory modulations reflect computations related to inferring structure and meaning from the acoustic signal.
Our experiment provides the first evidence to date that compositional structure and meaning organize the oscillatory
response, above and beyond prosodic and lexical controls.

Introduction
How the brain maps the acoustics of speech onto abstract struc-
ture and meaning during spoken language comprehension
remains a core question across cognitive science and neuro-
science. A large body of research has shown that neural popula-
tions closely track the envelope of the speech signal, which
correlates with the syllable rate (Peelle and Davis, 2012; Zoefel
and VanRullen, 2015; Kösem et al., 2018), yet much less is
known about the degree to which neural responses encode
higher-level linguistic information such as words, phrases, and
clauses. While previous studies suggest a crucial role for delta-
band oscillations in the top-down generation of hierarchically
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structured linguistic representations (Ding et al., 2016; Keitel et
al., 2018), they have so far either relied on non-naturalistic stim-
uli or failed to fully control for prosody. Here, we use a novel ex-
perimental design that allows us to investigate how structure and
meaning shape the tracking of higher-level linguistic units, while
using naturalistic stimuli and carefully controlling for prosodic
fluctuations.

The strongest evidence for tracking of linguistic information
so far are studies by Ding et al. (2016, 2017a), who found
enhanced activity in the delta frequency range for sentences
compared with word lists. They investigated this using isochro-
nous, synthesized stimuli devoid of prosodic information. Yet
phrases, clauses, and sentences usually do have acoustic-prosodic
correlates (e.g., pauses, intonational contours, final lengthening,
fundamental frequency reset; Eisner and McQueen, 2018). These
might not be as prominent in the modulation spectrum of speech
as syllables (Ding et al., 2017b), but listeners draw on them dur-
ing language comprehension and learning (Soderstrom et al.,
2003). As such, Ding et al. (2017a) cannot clearly distinguish
between the generation of linguistic structure and meaning ver-
sus inferred prosody, and it is unclear whether their results gen-
eralize to naturalistic stimuli, where the timing of linguistic units
is more variable.

Almost orthogonally to Ding et al. (2016, 2017a), Keitel et al.
(2018) used naturalistic stimuli and found enhanced tracking
(compared with reversed controls) in the delta-theta frequency
range. However, as they did not include a systematic control for
linguistic content, it is unclear whether their results are driven by
tracking of prosodic information in the acoustic signal, rather
than linguistic information.

In the current study, we bridge this gap by contrasting these
two core sources of linguistic representations: prosodic structure,
which can, but does not always, correlate with syntactic and in-
formation structure, and lexical semantics, which arises in iso-
lated words and concepts. Participants listened to naturally
spoken, structurally homogenous sentences, jabberwocky items
(containing sentence-like prosody, but no lexical semantics),

and word lists (containing lexical semantics, but no sentence-
like structure and prosody; see Table 1 for examples).
Additionally, we used reversed speech as the core control of
our experiment because it has an identical modulation spec-
trum for each forward condition.

Using electroencephalography (EEG), we analyzed tracking at
linguistically relevant timescales as quantified by mutual infor-
mation (MI)—a typical measure of neural tracking that captures
the informational similarity between two signals (Cogan and
Poeppel, 2011; Gross et al., 2013; Kayser et al., 2015; Keitel et al.,
2017, 2018). Figure 1 shows an overview of the experimental
design and analysis pipeline.

We hypothesize that neural tracking (“entrainment in the
broad sense,” as defined by Obleser and Kayser, 2019) will
be stronger for stimuli containing higher-level linguistic
structure and meaning, above and beyond the acoustic-pro-
sodic (jabberwocky) and lexical-semantic (word list) con-
trols. This may reflect a process of perceptual inference
(Martin, 2016, 2020), whereby biological systems like the
brain encode their environment not only by reacting in a
series of stimulus-driven responses, but by combining stim-
ulus-driven information with endogenous, internally gener-
ated, inferential knowledge and meaning (Meyer et al.,
2019). In sum, our study offers novel insights into how
structure and meaning influence the neural response to nat-
ural speech above and beyond prosodic modulations and
word-level meaning.

Materials and Methods
Participants. Thirty-five native Dutch speakers (26 females, 9 males;

age range, 19–32 years; mean age, 23 years) participated in the experi-
ment. They were recruited from the Max Planck Institute for
Psycholinguistics (MPI) participant database with written consent
approved by the Ethics Committee of the Social Sciences Department of
Radboud University (Project code: ECSW2014-1003-196a). Six partici-
pants were excluded from the analysis because of excessive artifact

Figure 1. Experimental design and analysis pipeline. Participants listened to sentences, jabberwocky items, and word lists while their brain response was recorded using EEG. Step 1: Speech
Processing: 1.1, the speech signal is annotated for the occurrence of phrases, words, and syllables in the stimuli, and, based on this, frequency bands of interest for each of the linguistic units
can be identified; 1.2, a cochlear filter is applied to the speech stimuli and the amplitude envelope is extracted. Step 2: further processing is identical for both speech and EEG modalities: 2.1,
broadband filters are applied in the previously identified frequency bands of interest; 2.2, Hilbert transforms are computed in each filtered signal, and real and imaginary parts of the Hilbert
transform output are used for further analysis. Step 3: MI computation; mutual information is computed between the preprocessed speech and EEG signal in each of the three conditions and
their respective backward controls.
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contamination. All participants in the experiment reported normal hear-
ing and were remunerated for their participation.

Materials. The experiment used the following three conditions:
Sentence, Jabberwocky, and Wordlist. Eighty sets (triplets) of the three
conditions (Sentence, Jabberwocky, Wordlist) were created, resulting in
240 stimuli. In addition to one “standard” forward presentation of each
stimulus, participants also listened to a version of each of the stimuli
played backward, thus resulting in a total of 480 stimuli.

Dutch stimuli consisted of 10 words, which were all disyllabic except
for “de” (the) and “en” (and), thus resulting in 18 syllables in total.
Sentences all consisted of two coordinate clauses, which followed the
structure [Adj N V N Conj Det Adj N V N]. Word lists consisted of the
same 10 words as in the Sentence condition, but scrambled in syntacti-
cally implausible ways (either [V V Adj Adj Det Conj N N N N], or [N N
N N Det Conj V V Adj Adj], to avoid any plausible internal combinations
of words). Jabberwocky items were created using the wuggy pseudoword
generator (Keuleers and Brysbaert, 2010), following the same syntactic
structure as the Sentences. Specifically, standard wuggy parameters were
set to match two of three subsyllabic segments wherever possible, as well
as letter length, transition frequencies, and length of subsyllabic seg-
ments. The lexicality feature of wuggy was used to ensure that none of
the generated pseudowords were existing lexical items in Dutch. In addi-
tion, all pseudowords were proofread by native Dutch speakers to ensure
that none of their phonetic forms matched that of an existing word in
Dutch. Inflectional morphemes (e.g., plural morphemes) as well as func-
tion words (“de” - the and “en” - and) were kept unchanged. Table 1
shows an example of stimuli in each condition. (Please see https://osf.io/
rv5y7/ for a list of all 480 stimuli and their translations.)

Forward stimuli were recorded by a female native speaker of Dutch
in a sound-attenuating recording booth. All stimuli were recorded at a
sampling rate of 44.1 kHz (mono), using the Audacity sound recording
and analysis software (Audacity Team, 2014). After recording,
pauses were normalized to ;150ms in all stimuli, and the intensity
was scaled to 70 dB using the Praat voice analysis software (Boersma
and Weenink, 2020). Stimuli from all three conditions were then
reversed using Praat. Figure 2 shows modulation spectra for forward
and backward conditions.

Procedure. Participants were tested individually in a sound-attenuat-
ing and Faraday cage-enclosed booth. They first completed a practice
session with four trials (one from each forward condition and one back-
ward example) to become familiarized with the experiment. All 80 stim-
uli from each condition were presented to the participants in separate
blocks. The order of the blocks was pseudorandomized across listeners,
and the order of the items within each block was randomized. During
each trial, participants were instructed to look at a fixation cross, which
was displayed at the center of the screen (to minimize eye movements
during the trial), and listen to the audio, which was presented to them at
a comfortable level of loudness. The audio recording was presented
500ms after the fixation cross appeared on the screen, and the fixation
cross remained on the screen for the entire duration of the audio record-
ing. Fifty milliseconds after the end of each recording, the screen
changed to a transition screen [a series of hash symbols (#####) indicat-
ing that participants could blink and briefly rest their eyes], after which
participants could advance to the next item via a button-press. After
each block, participants were allowed to take a self-paced break. The
experiment was run using the Presentation software (Neurobehavioral
Systems) and took ;50–60min to complete. EEG was continuously
recorded with a 64-channel EEG system (MPI equidistant montage)
connected to a BrainAmp amplifier using BrainVision Recorder

software, digitized at a sampling rate of 500Hz and referenced to the left
mastoid. The time constant for the hardware high-pass filter was 10 s
(0.016Hz; first-order Butterworth filter with 6 dB/octave), the high-cut-
off frequency was 249Hz. The impedance of electrodes was kept at,25
kX. Data were rereferenced offline to the average reference.

EEG data preprocessing. The analysis steps were conducted using the
FieldTrip Analysis Toolkit revision 20180320 (Oostenveld et al., 2011)
on MATLAB version 2016a (MathWorks). The raw EEG signal was seg-
mented into a series of variable length epochs, starting at 200ms before
the onset of the utterance and lasting until 200ms after its end. The sig-
nal was low-pass filtered to 70Hz, and a bandstop filter centered at
;50Hz (62Hz) was applied in each epoch to exclude line noise [both
zero-phase FIR (finite impulse response) filters using Hamming win-
dows]. All data were visually inspected, and channels contaminated with
excessive noise were excluded from the analysis. Independent compo-
nent analysis was performed on the remaining channels, and compo-
nents related to eye movements, blinking, or motion artifacts were
subtracted from the signal. Epochs containing voltage fluctuations
exceeding 6100mV or exceeding a range of 150mV were excluded from
further analysis. We selected a cluster of 22 electrodes for all further
analyses based on previous studies that found broadly distributed effects
related to sentence processing (Kutas and Federmeier, 2000; Kutas et al.,
2006; see also Ding et al., 2017a). Specifically, the electrode selection
included the following electrodes: 1, 2, 3, 4, 5, 8, 9, 10, 11, 28, 29, 30, 31,
33, 34, 35, 36, 37, 40, 41, 42, and 43 (electrode names based on the MPI
equidistant layout). We note that our results also hold for all electrodes,
as described in the Results section below.

Speech preprocessing. For each stimulus, we computed the wideband
speech envelope at a sampling rate of 150Hz following the procedure
reported by Keitel et al. (2018) and others (Gross et al., 2013; Keitel et
al., 2017). We first filtered the acoustic waveforms into eight frequency
bands (100–8000Hz; third-order Butterworth filter, forward and
reverse), equidistant on the cochlear frequency map (Smith et al., 2002).
We then estimated the wideband speech envelope by computing the
magnitude of the Hilbert transformed signal in each band and averaging
across bands.

The timescales of interest for further mutual information analysis
were identified in a fashion similar to that described in the study by
Keitel et al. (2018). We first annotated the occurrence of linguistic units
(phrases, words, and syllables) in the speech stimuli. Here, phrases were
defined as adjective-noun/noun-verb combinations (e.g., in the Sentence
condition: “bange helden” – timid heroes; “plukken bloemen” – pluck
flowers, and so on; in the Jabberwocky condition: “garge ralden” – flimid
lerops etc.; in the Wordlist condition, a “pseudo-phrase” corresponds to
adjacent noun–noun, verb–verb, and adjective–adjective pairs; e.g., “hel-
den bloemen” – heroes flowers). Unit-specific bands of interest were then
identified by converting each of the rates into frequency ranges across
conditions. This resulted in the following bands: 0.8–1.1Hz (phrases); 1.9–
2.8Hz (words); and 3.5–5.0Hz (syllables). Note that the problem the brain
faces during spoken language comprehension is even more complex than
this, because the timescales of linguistic units can highly overlap, even
within a single sentence (Obleser et al., 2012). Populations of neurons that
“entrain” to words will thus also have to be sensitive to information that
occurs outside of these—rather narrow—frequency bands.

For an additional, exploratory annotation-based MI analysis (see
Results, subsection Tracking of abstract linguistic units), we further cre-
ated linguistically abstracted versions of our stimuli. Specifically, our aim
was to create annotations that captured linguistic information at the
phrase frequency entirely independent of the acoustic signal. Based on

Table 1. Example items in Sentence, Jabberwocky, and Wordlist conditions

Sentence Jabberwocky Wordlist

[Bange helden] [plukken bloemen] en de [bruine vogels]
[halen takken]

[Garge ralden] [spunken drijmen] en de [druize gomels]
[paven mukken]

[helden bloemen] [vogels takken] de en [plukken halen]
[bange bruine]

[Timid heroes] [pluck flowers] and the [brown birds] [gather
branches]

[Flimid lerops] [bruck clowters] and
the [trown plirds] [shmather blamches]

[heroes flowers] [birds branches] the and [pluck gather] [timid
brown]

Sentences consisted of 10 words [disyllabic, except for “de” (“the”) and “en” (“and”)] and carried sentence prosody. Jabberwocky items consisted of 10 pseudowords with morphology; they also carried sentence prosody.
Word lists consisted of the same 10 words as the sentence condition, but scrambled so as to be syntactically implausible. They had list prosody. Marked with square brackets are “phrases” in all three conditions. Note that
the pseudowords/words in all three conditions had the same stress patterns.
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the word-level annotations of our stimuli, we created dimensionality-
reduced arrays for further analysis (see the “Semantic composition” anal-
yses reported by Brodbeck et al., 2018). Specifically, we identified all
time points in the spoken materials where words could be integrated
into phrases and marked each of these words associated with phrase
composition [e.g., in a sentence such as “bange helden plukken bloemen
en de bruine vogels halen takken” (timid heroes pluck flowers and the
brown birds gather branches), the words “helden” (heroes), “bloemen”
(flowers), “vogels” (birds), and “takken” (branches) were marked]. All
these critical words were coded as 1 for their entire duration, while all
other timepoints (samples) were marked as 0 (Brodbeck et al., 2018).
This resulted in an abstract “spike train” array of phrase-level structure
building that is independent of the acoustic envelope. We repeated this
procedure for all items individually in all three conditions, since our
stimuli were naturally spoken and thus differed slightly in duration and
time course. Note that, consequently, this “phrase-level composition
array” is somewhat arbitrary for the Wordlist condition as there are, per
definition, no phrases in a word list. We annotated “pseudo-phrases” the
same way as shown in Table 1. The procedure is visualized in Figure 3.

Mutual information analysis. We used MI to quantify the statistical
dependency between the speech envelopes and the EEG recordings
according to the procedure described in the study by Keitel et al. (2018;
see also Gross et al., 2013; Kayser et al., 2015; Keitel et al., 2017). Based
on the previously identified frequency bands of interest (see subsection
“Speech preprocessing” above), we filtered both speech envelopes and
EEG signals in each band (third-order Butterworth filter, forward and
reverse). We then computed the Hilbert transform in each band, which
resulted in two sets of two-dimensional variables (one for speech signals
and one for EEG responses) in each condition (forward and backward;
see Ince et al., 2017; for a more in-depth description). To take the brain–
stimulus lag into account, we computed MI at five different lags, ranging
from 60 to 140ms in steps of 20ms, and to exclude strong auditory-
evoked responses to the onset of auditory stimulation in each trial, we
excluded the first 200ms of each stimulus–signal pair. MI values from all
five lags were averaged for subsequent statistical evaluation. We further
concatenated all trials from speech and brain signals to increase the
robustness of MI computation (Keitel et al., 2018). In addition to com-
puting “general” MI (containing information about both phase and
power), we also isolated the part of the Hilbert transform corresponding
to phase and computed “phase MI” values, separately.

Statistical analysis. To test whether the statistical dependency between
the speech envelope and the EEG data as captured by MI was modulated by
the linguistic structure and content of the stimulus, we compared MI values
in all three frequency bands separately. Linear mixed models were fitted to

the log-transformed, trimmed (5% on each end of the distribution) MI val-
ues in each frequency band using lme4 (Bates et al., 2015) in R (R Core
Team, 2018). Models included main effects of Condition (three levels:
Sentence, Wordlist, Jabberwocky) and Direction (two levels: Forward,
Backward), as well as their interaction. All models included by-participant
random intercepts and random slopes for the Condition p Direction inter-
action. For model coefficients, degrees of freedom were approximated
using Satterthwaite’s method, as implemented in the package lmerTest
(Kuznetsova et al., 2017). We used treatment coding in all models, with
Sentence being the reference level for Condition, and Forward the reference
level for Direction. We then computed all pairwise comparisons within
each direction using estimated marginal means (Tukey’s correction for mul-
tiple comparisons) with emmeans (Length, 2018) in R (i.e., comparing
Sentence Forward to Jabberwocky Forward and Wordlist Forward, but
never Sentence Forward to Jabberwocky Backward, because we had no
hypotheses about these comparisons). The same statistical analyses, includ-
ing identical model structures, were further applied to MI values computed
on the isolated phase coefficients.

For the exploratory dimensionality-reduced MI analysis, we performed
the same set of statistical analyses (but only in one single-frequency band).
Specifically, we fitted a linear mixed model including main effects of
Condition (three levels: Sentence, Wordlist, Jabberwocky) and Direction
(two levels: Forward, Backward), as well as their interaction and by-partici-
pant random intercepts and random slopes for the Condition p Direction
interaction to the log-transformed, trimmed MI values. We then computed
estimated marginal means precisely as described in the previous section.

Results
Speech tracking
We computedMI between the Hilbert-transformed EEG time se-
ries and the Hilbert-transformed speech envelopes within three
frequency bands of interest that corresponded to the occurrence
rates of phrases (0.8–1.1Hz), words (1.9–2.8Hz), and syllables
(3.5–5.0Hz) in a cluster of central electrodes.

Specifically, we designed our experiment to assess whether
the brain response is driven by the (quasi-)periodic temporal
occurrence of linguistic structures and prosody, or whether it is
modulated as a function of the linguistic content of those struc-
tures. Using MI allowed us to quantify and compare the degree
of speech tracking across sentences, word lists, and jabberwocky
items.

Our analyses revealed condition-dependent enhanced MI at
distinct timescales for the forward conditions (Fig. 4). In the
phrase frequency band (0.8–1.1Hz), the mixed-effects model
revealed a significant effect of Condition (Sentence = treatment
level; Jabberwocky: b = �0.452, SE= 0.096, p, 0.001; Wordlist:
b = �0.491, SE= 0.116, p, 0.001) and Direction (Forward =
treatment level; Backward: b = �0.885, SE= 0.117, p, 0.001),
as well as Condition p Direction interactions (Jabberwocky p

Backward: b = 0.429, SE=0.152, p=0.008; Wordlist p Backward:
b = 0.523, SE=0.185, p=0.009). The estimated marginal means
corroborated these results, revealing significant pairwise effects only
between the Forward conditions (Sentence–Jabberwocky: D =
0.452, SE=0.098, p, 0.001; Sentence–Wordlist: D = 0.491, SE =
0.118, p, 0.001; all results corrected with Tukey’s test for multiple
comparisons), but not the backward controls. The observation that

Figure 3. Visualization of the phrase-level annotations (inspired by Brodbeck et al., 2018,
their Fig. 2). Across time, the response array takes value 0 for words that cannot (yet) be
integrated into phrases, and value 1 for words that can, resulting in a “pulse train” array.

Figure 2. Modulation spectra of forward and backward stimuli. Green, Sentence; orange,
Jabberwocky; purple, Wordlist. Modulation spectra were calculated following the procedure
and MATLAB script described in the study by Ding et al. (2017b). Note that a cochlear filter
is applied to the acoustic stimuli, but not the brain data. Small deviations between the mod-
ulation spectrum of each forward condition and its backward counterpart are because of nu-
merical inaccuracy; mathematically, the frequency components of forward and backward
stimuli are identical.
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none of the effects was present in the backward speech controls
demonstrates that they were not driven by the acoustic properties of
the stimuli (Table 2).

In the word frequency band (1.9–2.8Hz), the mixed-effects
model revealed a significant effect of Condition (Sentence =
treatment level; Jabberwocky: b =�0.484, SE= 0.121, p, 0.001)
and Direction (Forward = treatment level; Backward: b =
�0.499, SE= 0.136, p, 0.001). The pairwise contrasts further
revealed that this Sentence–Jabberwocky difference was only sig-
nificant for the forward conditions (D = 0.484, SE= 0.123,
p=0.001), not for the backward controls (Table 2). Again, this
finding indicates that the differences we observed were not
driven by differences in the acoustic signals themselves.

In the syllable frequency range (3.5–5.0Hz), the mixed-effects
model revealed no significant effects of Condition (Sentence = treat-
ment level; Jabberwocky: b = 0.001, SE=0.121, p=0.994; Wordlist:
b = 0.104, SE=0.109, p=0.348) or Direction (Forward = treatment
level; Backward: b = 0.034, SE=0.120, p=0.779), and no interac-
tion between the two (Jabberwocky p Backward: b = 0.144, SE=
0.166, p=0.392; Wordlist p Backward: b = �0.069, SE=0.144,
p=0.637).

Together, these findings indicate that neural tracking is
enhanced for linguistic structures at timescales specific to
the role of that structure in the unfolding meaning of the
sentence, consistent with neurophysiologically inspired
models of language comprehension (Martin, 2016, 2020;
Martin and Doumas, 2017).

An almost identical pattern of results emerged when comput-
ing MI over all electrodes (rather than a cluster of central ones).
In the phrase frequency range, the mixed-effects model revealed
significant effects of Condition (Jabberwocky: b = �0.401,
SE= 0.075, p, 0.001; Wordlist: b = �0.418, SE= 0.088, p,
0.001) and Direction (Backward: b = �0.743, SE= 0.087, p,
0.001), as well as significant Condition p Direction interactions
(Jabberwocky p Backward: b = 0.296, SE= 0.099, p= 0.006;
Wordlist p Backward: b = 0.332, SE= 0.134, p= 0.019). In the
word frequency range, the model revealed significant effects of
Condition (Jabberwocky: b = �0.407, SE= 0.093, p, 0.001;
Wordlist: b = �0.179, SE= 0.052, p= 0.002) and Direction (b =
�0.316, SE= 0.090, p=0.002), but not their interaction. For the
forward conditions, the pairwise comparisons further confirmed
significantly higher MI for sentences compared with jabber-
wocky items (Sentence Forward–Jabberwocky Forward: D =
0.407, SE= 0.095, p, 0.001) and sentences compared with word
lists (Sentence Forward–Wordlist Forward: D = 0.179, SE=
0.053, p=0.006). Surprisingly, we also found significantly enhanced
MI for sentences compared with jabberwocky items in the back-
ward conditions in the word frequency (Sentence Backward–
Jabberwocky Backward: D = 0.288, SE=0.083, p=0.005), so we
cannot exclude the possibility that this effect is driven to some
extent by differences in the acoustic signal. Note, however, that the
estimate of this effect is smaller for the backward than the forward
differences.

Again, there were no significant effects in the syllable frequency
range when computingMI over all electrodes (Condition: Sentence =
treatment level; Jabberwocky: b = 0.035, SE=0.106, p=0.743;
Wordlist: b = 0.037, SE= 0.090, p= 0.684; Direction: Forward =
treatment level; Backward: b = 0.147, SE= 0.124, p=0.246;
Jabberwocky p Backward: b = �0.023, SE= 0.131, p=0.859;
Wordlist p Backward: b =�0.045, SE= 0.130, p=0.733).

Phase MI
When computing MI on the isolated phase values from the
Hilbert transform, we again found condition-dependent differ-
ences at distinct timescales (Fig. 5, Table 3).

Table 2. Estimated marginal means for mutual information (log-transformed)
in the phrase and word frequency bands over a subset of central electrodes

Contrast Estimate SE df t p

Phrase frequency band
Direction = Forward

Sentence–Jabberwocky 0.45 0.10 30.0 4.61 ,0.01
Sentence–Wordlist 0.49 0.12 30.0 4.17 ,0.01
Jabberwocky–Wordlist 0.04 0.10 30.1 0.38 0.93

Direction = Backward
Sentence–Jabberwocky 0.02 0.11 30.0 0.20 0.98
Sentence–Wordlist �0.03 0.14 30.0 �0.23 0.97
Jabberwocky–Wordlist �0.06 0.14 30.0 �0.40 0.92

Word frequency band
Direction = Forward

Sentence–Jabberwocky 0.48 0.12 30.0 3.94 ,0.01
Sentence–Wordlist 0.16 0.08 29.9 1.96 0.14
Jabberwocky–Wordlist �0.33 0.14 30.0 �2.40 0.06

Direction = Backward
Sentence–Jabberwocky 0.25 0.11 30.1 2.31 0.07
Sentence–Wordlist 0.08 0.12 30.1 0.62 0.81
Jabberwocky–Wordlist �0.18 0.10 30.0 �1.72 0.21

p-value adjustment: Tukey’s method for comparing a family of three estimates. Note that pairwise contrasts
for the syllable band are omitted here because the linear mixed-effects model showed no significant differ-
ences between conditions.

Figure 4. MI between speech signal and brain response. a, MI for Sentences (green), Jabberwocky items (orange), and Wordlists (purple) for phrase, word, and syllable time-
scales across central electrodes (each dot represents one participant’s mean MI response averaged across electrodes). b, Average scalp distribution of MI per condition and band,
averaged across participants. Raincloud plots were made using the Raincloud package in R (Allen et al., 2019).
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In the phrase frequency band (0.8–1.1Hz), the models
revealed significant effects of Condition (Sentence = treatment
level; Jabberwocky: b = �0.497, SE= 0.097, p, 0.001; Wordlist:
b = �0.402, SE= 0.118, p= 0.002) and Direction (b = �0.805,
SE= 0.106, p, 0.001), as well as their interaction (Jabberwocky p
Backward: b = 0.368, SE= 0.150, p=0.020). For the forward
conditions, the pairwise contrasts further corroborated these
results, with sentences eliciting higher phase MI than jabber-
wocky items (Sentence Forward–Jabberwocky Forward: D =
0.497, SE= 0.099, p, 0.001) and sentences eliciting higher phase
MI than word lists (Sentence Forward–Wordlist Forward: D =
0.402, SE= 0.120, p=0.006; again, all results were corrected by
Tukey’s test for multiple comparisons).

In the word frequency band (1.9–2.8Hz), the mixed-effects
model revealed a significant effect of Condition (Sentence =
treatment level; Jabberwocky: b = �0.380, SE= 0.121, p=0.004)
and Direction (b = �0.474, SE= 0.126, p, 0.001). The pairwise
contrasts further revealed significantly higher MI for forward sen-
tences compared with forward jabberwocky items (Sentence
Forward–Jabberwocky Forward: D = 0.380, SE=0.123, p=0.012),
but not their backward controls. Again, this result demonstrates
that the effect is not driven by the acoustic properties of the stimuli
(see Table 3 for all pairwise contrasts).

Computing phase MI over all electrodes (rather than a cluster of
central ones) revealed a similar pattern of results. In the phrase fre-
quency range, the mixed model revealed significant effects of
Condition (Sentence = treatment level; Jabberwocky: b = �0.356,
SE=0.075, p, 0.001; Wordlist: b = �0.309, SE=0.089, p=0.002),
Direction (Forward = treatment level; Backward: b = �0.662,
SE = 0.076, p, 0.001), and their interaction (Jabberwocky p
Backward: b = 0.185, SE = 0.089, p = 0.047.) The estimated
marginal means showed significant pairwise comparisons only
in forward conditions, with forward sentences showing higher
phase MI than forward jabberwocky items and forward word
lists (Sentence Forward–Jabberwocky Forward: D = 0.356,
SE= 0.076, p, 0.001; Sentence Forward–Wordlist Forward: D =
0.309, SE= 0.091, p= 0.005), and no significant effects for the back-
ward comparisons (Sentence Backward–Jabberwocky Backward:
D = 0.171, SE= 0.102, p=0.227; Sentence Backward–Wordlist
Backward: D = 0.099, SE = 0.110, p = 0.644; Jabberwocky
Backward–Wordlist Backward: D = �0.072, SE = 0.125,
p = 0.833).

In the word frequency band, the mixed-effects model revealed
significant effects of Condition (Sentence = treatment level;

Jabberwocky: b = �0.329, SE= 0.089, p, 0.001; Wordlist: b =
�0.139, SE= 0.045, p=0.005) and Direction (b = �0.351,
SE= 0.091, p, 0.001). The estimated marginal means further
corroborated this finding only in the forward conditions
(Sentence Forward–Jabberwocky Forward: D = 0.329,
SE = 0.091, p = 0.003; Sentence Forward–Wordlist Forward:
D = 0.139, SE = 0.046, p = 0.014). In contrast to the “general”
MI values, we found no significant differences between the
backward controls when computing the isolated phase MI
over the entire head (Sentence Backward–Jabberwocky
Backward: D = 0.209, SE=0.101, p=0.112; Sentence Backward–
Wordlist Backward: D = 0.088, SE=0.087, p=0.577; Jabberwocky
Backward–Wordlist Backward: D = �0.121, SE=0.085, p=0.343).
Again, these findings are consistent with neurophysiologically
inspired models of language comprehension (Martin, 2016, 2020;
Martin and Doumas, 2017).

Tracking of abstract linguistic units
Inspecting the modulation spectra of our stimuli (Fig. 2), it is
apparent that—although carefully designed—the acoustic signals
are not entirely indistinguishable between conditions based on
their spectral properties. Most notably, Sentence stimuli appear
to exhibit a small peak at;0.5Hz (roughly corresponding to the
phrase timescale in our stimuli) compared with the other two
conditions. It is important to note that (1) differences between
conditions are not surprising, given that our stimuli were natu-
rally spoken; and (2) we specifically designed our experiment to
include backward versions of all conditions to control for slight
differences between the acoustic envelopes of the forward stim-
uli. That being said, we conducted an additional, exploratory
analysis to further reduce the potential confound of differences
between the acoustic modulation spectra and to disentangle the
distribution of linguistic phrase representations and the acoustic
stimulus even further. Specifically, we computed MI in the delta–
theta range (0.8–5Hz) between the brain response and abstracted
dimensionality-reduced annotations of all stimuli, containing
only information about when words could be integrated into
phrases (Brodbeck et al., 2018; see Materials and Methods for
detailed descriptions of how these annotations were created).

Table 3. Estimated marginal means for phase MI (log-transformed) in the
phrase and word frequency bands over a subset of central electrodes

Contrast Estimate SE df t p

Phrase frequency band
Direction = Forward

Sentence–Jabberwocky 0.50 0.10 30.0 5.05 ,0.01
Sentence–Wordlist 0.40 0.12 30.0 3.36 ,0.01
Jabberwocky–Wordlist �0.10 0.10 30.1 �0.93 0.63

Direction = Backward
Sentence–Jabberwocky 0.13 0.12 30.0 1.06 0.55
Sentence–Wordlist 0.07 0.13 30.0 0.51 0.87
Jabberwocky–Wordlist �0.06 0.14 30.0 �0.47 0.89

Word frequency band
Direction = Forward

Sentence–Jabberwocky 0.38 0.12 30.1 3.09 0.01
Sentence–Wordlist 0.12 0.07 29.7 1.63 0.25
Jabberwocky–Wordlist �0.26 0.14 30.1 �1.86 0.17

Direction = Backward
Sentence–Jabberwocky 0.21 0.12 30.0 1.73 0.21
Sentence–Wordlist 0.06 0.12 30.0 0.54 0.85
Jabberwocky–Wordlist �0.14 0.10 30.0 �1.42 0.35

p-value adjustment: Tukey’s method for comparing a family of three estimates. Note that pairwise contrasts
for the syllable band are omitted here because the linear mixed-effects model showed no significant differ-
ences between conditions.

Figure 5. MI between the isolated phase of speech signals and brain responses for
Sentences (green), Jabberwocky items (orange), and Wordlists (purple) for phrase, word and
syllable timescales across central electrodes (each dot represents one participant’s mean MI
response averaged across electrodes).
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These annotation-based analyses revealed significant effects
of Condition (Sentence = treatment level; Jabberwocky: b =
�0.326, SE= 0.112, p= 0.007; Wordlist: b = �0.521, SE= 0.120,
p, 0.001), Direction (b = �0.754, SE= 0.115, p, 0.001), and
their interaction (Jabberwocky p Backward: b = 0.352, SE=
0.164, p=0.040; Wordlist p Backward: b = 0.621, SE = 0.156,
p, 0.001). The estimated marginal means further revealed
increased MI for forward sentences compared with forward jab-
berwocky items and forward word lists (Sentence Forward–
Jabberwocky Forward: D = 0.326, SE= 0.114, p=0.021; Sentence
Forward–Wordlist Forward: D = 0.521, SE= 0.123, p, 0.001; all
results were corrected with Tukey’s for multiple comparisons)
and no significant difference among the backward controls
(Table 4).

Again, the same pattern of results also emerged when
computing MI over all electrodes: the mixed-effects model
revealed significant effects of Condition (Jabberwocky: b =
�0.365, SE=0.087, p, 0.001; Wordlist: b = �0.611, SE=0.098,
p, 0.001), Direction (b =�0.813, SE=0.090, p, 0.001), and their
interaction (Jabberwocky p Backward: b = 0.390, SE=0.148,
p=0.014; Wordlist p Backward: b = 0.678, SE=0.131, p, 0.001).
The pairwise contrasts were, again, only significant between the for-
ward conditions (Sentence Forward–Jabberwocky Forward: D =
0.365, SE=0.088, p, 0.001; Sentence Forward–Wordlist Forward:
D = 0.611, SE=0.100, p, 0.001), but not the backward controls
(Sentence Backward–Jabberwocky Backward: D = �0.024,
SE = 0.109, p = 0.973; Sentence Backward–Wordlist Backward:
D = �0.067, SE = 0.097, p = 0.770; Jabberwocky Backward–
Wordlist Backward: D = �0.043, SE= 0.100, p= 0.905). These
results support our previously reported findings, showing that
neural tracking is influenced by the presence of abstract linguistic
information. In other words, this exploratory analysis supports
our earlier finding that the “sensitivity” of the brain to linguistic
structure and meaning goes above and beyond the acoustic signal
and both word-level semantic and prosodic controls.

Discussion
The current experiment tested how the brain attunes to linguistic
information. Contrasting sentences, word lists and jabberwocky
items, we analyzed, by proxy, how the brain response is modu-
lated by sentence-level prosody, lexical semantics, and composi-
tional structure and meaning. Our findings show that (1) the
neural response is driven by compositional structure and mean-
ing, beyond both acoustic-prosodic and lexical information; and
(2) the brain most closely tracks the most structured representa-
tions on the timescales we analyzed. To our knowledge, this is
the first study to systematically disentangle the contribution of
linguistic content from its timing and rhythm in natural speech
by using linguistically informed controls. Additionally, our data

demonstrate cortical tracking of naturalistic language without a
nonlinguistic task such as syllable counting and outlier trial or
target-detection tasks. We show that oscillatory activity attunes
to structured and meaningful content, suggesting that neural
tracking reflects computations related to inferring linguistic rep-
resentations from speech, and not merely tracking of rhythmicity
or timing. We discuss these findings in more detail below.

Using mutual information analysis, we quantified the degree
of speech tracking in frequency bands corresponding to the time-
scales at which linguistic structures (phrases, words, and sylla-
bles) could be inferred from our stimuli. On the phrase
timescale, we found that sentences had the most shared informa-
tion between stimulus and response. Crucially, this is not merely
a chunking mechanism (Bonhage et al., 2017; Ghitza, 2017)—
participants could have “chunked” the word lists (which have
their own naturally produced nonsentential prosody) into units
of adjacent words, and the jabberwocky items into prosodic
units. This is especially interesting given recent work by Jin et al.
(2020), showing that enhanced delta-band activity can be
“induced” in listeners by teaching them to chunk a sequence of
(synthesized) words according to different sets of artificial gram-
mar rules. Conversely, the observed patterns of activity cannot
exclusively be driven by the lexico-semantic content of our stim-
uli (Frank and Yang, 2018)—sentences and word lists contained
the same lexical items, yet MI was enhanced for Sentence stimuli,
where words could be combined into phrases and higher-level
representations. As such, we argue that the dominating process
we observe appears to be processing compositional semantic
structure, above and beyond prosodic chunking and word-level
meaning. We show that the brain aligns more to periodically
occurring units when they contain meaningful information and
are thus relevant for linguistic processing.

On the word timescale, the emerging picture is somewhat
more diverse than on the phrase timescale. Specifically, we found
enhanced tracking for sentences compared with jabberwocky
items. We tentatively take this finding to indicate that, at the
word timescale, the dominant process appears to be context-de-
pendent word recognition—perhaps based in perceptual infer-
ence. This is further corroborated by the results of computing
MI over all electrodes, rather than a subset, with sentences elicit-
ing higher MI than both jabberwocky items and word lists. Note,
however, that we also found enhanced MI on the word timescale
for word lists compared with jabberwocky items in the backward
controls when computing MI over all electrodes. Here, listeners
could not have processed words within the context of phrases or
sentences, which makes it somewhat difficult to integrate these
results. One possible explanation for this surprising finding
might be that there is still some acoustic-prosodic information
available in the backward controls that distinguishes word lists
from jabberwocky items. Future research could address this in
detail, for example by including a control condition with entirely
flat prosody (Ding et al., 2016, 2017a).

There continues to be a vibrant debate about whether lan-
guage-related cortical activity in the delta–theta range is truly os-
cillatory in nature or whether the observed patterns of neural
activity arise as a series of evoked responses (Haegens and
Golumbic, 2018; Rimmele et al., 2018; Zoefel et al., 2018; Obleser
and Kayser, 2019). Our current results cannot speak to this ques-
tion; in fact, we have been careful to refer to our results as “track-
ing” rather than “entrainment” throughout this article. To be
clear, we do not take the observed increased MI for sentences
compared with jabberwocky items and word lists as evidence for
an intrinsic “phrase-level oscillator” or “word-level oscillator.”
Rather, we interpret our findings as a manifestation of the

Table 4. Estimated marginal means for MI (log-transformed) calculated over
abstract phrase representations

Contrast Estimate SE df t p

Direction = Forward
Sentence–Jabberwocky 0.33 0.11 29.8 2.85 0.02
Sentence–Wordlist 0.52 0.12 30.0 4.25 ,0.01
Jabberwocky–Wordlist 0.20 0.13 30.0 1.54 0.29

Direction = Backward
Sentence–Jabberwocky �0.03 0.12 30.0 �0.22 0.97
Sentence–Wordlist �0.10 0.10 30.1 �0.99 0.59
Jabberwocky–Wordlist �0.07 0.11 30.1 �0.69 0.77

p-value adjustment: Tukey’s method for comparing a family of three estimates.
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cortical computations that may occur during language compre-
hension. Here, we observe them in the delta frequency range
because that is the timescale on which higher-level linguistic
units occur in our stimuli.

Many previous studies have shown that attention can modu-
late neural entrainment (Haegens et al., 2011; Ding and Simon,
2012; Golumbic et al., 2013; Lakatos et al., 2013; Calderone et al.,
2014). Importantly, Ding et al. (2018) found that tracking
beyond the syllable envelope requires attention to the speech
stimulus. In our current experiment, participants were instructed
to attentively listen to the audio recordings in all conditions, but
it is possible that “attending to sentences” might be easier than
“attending to jabberwocky items,” and that listeners pay closer
attention to higher-level structures in intelligible and meaningful
speech. Additionally, our study used a block design, which could,
in principle, have encouraged participants to use different atten-
tional resources during the different blocks. As such, we cannot
rule out the possibility that our effects might be influenced by a
mechanism based on attentional control. It is, however, difficult
to disentangle “attention” from “comprehension” in this kind of
argument: meaningful information within a stimulus can argu-
ably only lead to increased attention if it is comprehensible. We
plan to investigate these questions in future experiments.

Overall, the pattern of results is consistent with cue integra-
tion-based models of language processing (Martin, 2016, 2020),
where the activation profile of different populations of neurons
over time encodes linguistic structure as it is inferred from sen-
sory correlates in real time (Martin and Doumas, 2017). The
model of language processing of Martin (2016, 2020) builds on
and extends neurophysiological models of cue integration, where
percepts are inferred from sensory cues through summation and
normalization, both of which have been proposed as canonical
neural computations (Carandini and Heeger, 1994, 2011; Ernst
and Bülthoff, 2004; Landy et al., 2011; Fetsch et al., 2013; for cue
integration-based models of speech and word recognition, see
Norris and McQueen, 2008; Toscano and McMurray, 2010;
McMurray and Jongman, 2011). Martin (2016, 2020) proposed
that, during all stages of language processing, the brain might
draw on these same neurophysiological computations.

Crucially, inferring linguistic representations from speech
sounds requires not only bottom-up sensory information, but
also top-down memory-based cues (Marslen-Wilson, 1987;
Kaufeld et al., 2020). Martin (2016, 2020) therefore suggested
that cue integration during language comprehension is an itera-
tive process, where cues that have been inferred from the acous-
tic signal can, in turn, become cues for higher levels of
processing. The pattern of findings in our current experiment
strongly speaks to cue integration-based models of language
comprehension: we observe that tracking of the speech signal is
enhanced when meaningful linguistic units can be inferred, sug-
gesting that the alignment of populations of neurons might,
indeed, encode the generation of inference-based linguistic rep-
resentations (Martin and Doumas, 2017).

Our results also speak to analysis-by-synthesis-based accounts
of speech processing, more generally (Halle and Stevens, 1962;
Bever and Poeppel, 2010; Poeppel and Monahan, 2011). In an
analysis-by-synthesis model of speech perception, speech recog-
nition is achieved by internally generating (synthesizing) patterns
according to internal rules, and matching (analyzing) them
against the acoustic input signal. Similarly, our findings are in
line with the notion of hierarchical temporal receptive windows
from early sensory to higher-level perceptual and cognitive brain
areas (Hasson et al., 2008; Lerner et al., 2011).

There are, of course, many open questions that arise from our
results. Perhaps most obviously (although presumably limited by
the resolution of time–frequency analysis), it would be interesting
to investigate how “far” cue integration can be traced during even
more natural language comprehension situations (Alday, 2019;
Alexandrou et al., 2020). To what degree are higher-level linguistic
cues, such as sentential, contextual, or pragmatic information,
encoded in the neural response? Another interesting avenue
for future research would be to investigate whether similar
patterns can be observed during language production. Martin
(2016, 2020) suggested that not only language comprehension,
but also language production draws on principles of cue inte-
gration. Finally—and consequentially, if cue integration
underlies both comprehension and production processes—we
would be curious to learn more about cue integration “in
action,” specifically during dialogue settings, where interlocu-
tors comprehend and plan utterances nearly simultaneously.

In summary, this study showed that speech tracking is sensi-
tive to linguistic structure and meaning, above and beyond pro-
sodic and lexical-semantic controls. In other words, content
determines tracking, not just timescale. This extends previous
findings and advances our understanding of spoken language
comprehension in general, because our experimental manipula-
tion allows us, for the first time, to disentangle the influence of
linguistic structure and meaning on the neural response from
word-level meaning and prosodic regularities occurring in natu-
ralistic stimuli.
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