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 2 

Soils contain more carbon than the atmosphere and vegetation, combined. Increased flow 18 

of carbon from the atmosphere into soil pools could help mitigate anthropogenic emissions 19 

of carbon dioxide and climate change. Yet we do not know how quickly soils might respond 20 

because the age distribution of soil carbon is uncertain. Here we use 789 radiocarbon 21 

(∆14C) profiles, along with other geospatial information, to create globally-gridded datasets 22 

of mineral soil ∆14C and mean age. We find that soil depth is a primary driver of ∆14C, 23 

whereas climate (e.g. mean annual temperature) is a major control on the spatial pattern of 24 

∆14C in surface soil. Integrated to a depth of 1-meter, global soil carbon has a mean age of 25 

4830±1730 years, with older carbon in deeper layers and permafrost regions. In contrast, 26 

vertically-resolved land models simulate ∆14C values that imply younger carbon ages and 27 

more rapid carbon turnover. Our data-derived estimates of older mean soil carbon age 28 

suggest that soils will accumulate less carbon than predicted by current Earth system 29 

models over the 21st century. Reconciling these models with the global distribution of soil 30 

radiocarbon will require better representation of the mechanisms controlling carbon 31 

persistence in soils. 32 

 33 

Soils offer promise for carbon sequestration. Elevated atmospheric CO2 concentration, nitrogen 34 

deposition, and improved land management can increase vegetation production1,2, leading to 35 

increased soil carbon storage. Initiatives such as “4 per mille”—0.4% annual growth of soil 36 

organic carbon with improved agricultural practice—depend on this carbon storage potential to 37 

mitigate climate warming3. Land surface models that include CO2 fertilization often predict soil 38 

carbon accumulation even under the highest radiative forcing scenario4. On the other hand, 39 

experimental and chronosequence studies have shown limited soil carbon sequestration despite 40 
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increased carbon input5-7, and soils may lose carbon due to warming and land use change8,9. 41 

Therefore, whether increased plant productivity will increase soil carbon storage in a warming 42 

climate remains uncertain. 43 

 44 

Accurately estimating the age of carbon in soils is critical for evaluating sequestration potential. 45 

To be useful for CO2 emissions mitigation, soil carbon pools must react to increased carbon 46 

inputs on decadal to centennial timescales. Assuming first-order loss rates remain constant, 47 

increases in carbon inputs eventually lead to a proportional increase in carbon stock. To a first 48 

approximation, older carbon pools, with mean ages of thousands to tens of thousands of years, 49 

have substrate inputs and outputs that are small compared to the total amount of carbon stored in 50 

the pool5. With these pools, it can take thousands of years for carbon to accumulate. In contrast, 51 

young carbon pools with mean ages of decades to a few centuries can accumulate new carbon 52 

more quickly. While these pools could sequester carbon on timescales relevant for climate 53 

mitigation, their smaller sizes and higher rates of carbon turnover may limit carbon storage 54 

capacity.  55 

 56 

Radiocarbon measurements can be used to estimate rates of soil carbon cycling on decadal to 57 

millennial timescales10. Fast-cycling soil carbon pools derived from the atmosphere during the 58 

last few decades show a fingerprint of  “bomb” carbon from atmospheric weapons testing11. By 59 

contrast, natural radiocarbon decay provides information about soil carbon cycling on timescales 60 

from centuries to millennia.  61 

 62 
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Leveraging these principles, we analyzed 789 vertical soil profiles from the International Soil 63 

Radiocarbon Database (ISRaD)12. This approach builds on an analysis by He et al.13 in which 64 

earth system models constrained by soil radiocarbon predicted less carbon uptake in response to 65 

rising atmospheric CO2. Their analysis raised questions about the environmental drivers of soil 66 

radiocarbon and how those drivers are represented in earth system models. To address these 67 

questions, we leveraged the new ISRaD database to generate the first global, spatially- and 68 

depth-resolved data product for soil radiocarbon. We used the data product to calculate the mean 69 

age distribution of global soil carbon, analyze the environmental drivers of biome-level 70 

variability in soil radiocarbon, and test predictions from state-of-the-art earth system models. 71 

 72 

We express soil radiocarbon as ∆14C, the difference in 14C/12C ratio between the sample and an 73 

absolute standard expressed in parts per thousand14. Positive ∆14C indicates the presence of bomb 74 

carbon, whereas negative ∆14C indicates that radioactive decay of 14C overwhelms any 75 

incorporation of bomb carbon into the sample. Radiocarbon measurements covered all major 76 

land biomes (Supplementary Fig. 1a) with a wide range of mean annual temperature and 77 

precipitation (Supplementary Fig. 1b). Most of the soil profiles reported in ISRaD were sampled 78 

in the first 100 cm during 1990-2010, and 75% of the profiles included more than one vertical 79 

horizon (Supplementary Fig. 2).  80 

 81 

Relative importance of the environmental drivers 82 

To produce globally-gridded maps of ∆14C and age, we used a machine learning approach that 83 

linked measurements of soil ∆14C with variation in environmental factors (see Methods). 84 

Because soil sampling date affects ∆14C, we used a one-pool model to normalize all the ∆14C 85 
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measurements to the year 2000, around which most of the data were collected (Supplementary 86 

Fig. 2a), before conducting the statistical analysis (see Methods). A random forest model showed 87 

that depth was the primary control on soil ∆14C, followed by mean annual temperature and 88 

precipitation (Supplementary Fig. 3a). Soil ∆14C decreased with greater soil depth and increased 89 

with greater mean annual temperature and precipitation (Supplementary Fig. 4). Mechanisms 90 

driving the decline in ∆14C with depth could be changes in microbial activity, smaller carbon 91 

substrate inputs from plants, and increased carbon stabilization by mineral sorption15,16. Soil 92 

depth and clay content may be important proxies for physical protection as suggested in previous 93 

studies17. However, the minor role of clay content in our analysis suggests that other depth-94 

dependent variables such as the type of clay, cation exchange capacity18, and mineral 95 

chemistry19,20 may be more important determinants of soil ∆14C. Further investigation into these 96 

mechanisms would advance our predictive understanding of soil carbon dynamics. 97 

 98 

For surface soils (0 – 30 cm), mean annual temperature was a dominant control on the spatial 99 

variation of ∆14C (Supplementary Fig. 3b). Mechanistically, warmer temperatures may allow for 100 

a longer growing season, higher levels of net primary production, greater soil carbon inflows, 101 

and more rapid decomposition of labile carbon pools that are not closely bound to mineral 102 

surfaces. The importance of this variable is consistent with previous work showing that climate 103 

regulates the global spatial pattern of turnover times for ecosystem carbon21 and soil carbon22. 104 

For deeper soils (with a depth greater than 30 cm), ∆14C was mainly controlled by depth, but also 105 

by temperature, precipitation, and clay content (Supplementary Fig. 3c). Depth may have 106 

emerged from the model as a more important factor than temperature in this layer because of a 107 
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greater vertical range that includes more variation in soil mineral content, vertical transport 108 

processes, and carbon inputs from root turnover.  109 

 110 

Global soil radiocarbon ∆14C   111 

Based on the relationships with environmental drivers in our random forest model, we scaled up 112 

∆14C measurements from individual soil profiles to create global maps (Methods). Soils had less 113 

negative (or more positive) values of carbon-weighted ∆14C in tropical regions than in temperate 114 

and boreal regions (Fig. 1, a to c; Supplementary Fig. 5). Carbon in subsurface soils consistently 115 

had more negative ∆14C than carbon in surface soils (Fig. 1, b and c). Most surface soils in the 116 

tropics had a ∆14C greater than 0‰ (Fig. 1b), whereas all subsurface soils had negative ∆14C 117 

values (Fig. 1c). The carbon-weighted ∆14C was -244±48‰ globally, with values of -97±24‰ in 118 

surface soil and -391±56‰ in subsurface soil (Table 1).  119 

 120 

Mean annual temperature structured the spatial variation of ∆14C in our global maps, with a sharp 121 

increase near -4°C and then further, more gradual increases between 0 and 25°C (Supplementary 122 

Fig. 6a). Among different biomes, tundra had the most negative ∆14C, with median values of -123 

249‰ and -624‰, respectively, for surface and subsurface soils. Tropical forests had the 124 

greatest ∆14C in surface soils with a median value of 7‰, and intermediate values in subsurface 125 

soils, with a median of -250‰. Permafrost soils had considerably more negative ∆14C than non-126 

permafrost soils (Table 1). In addition to temperature, mean annual precipitation also influenced 127 

∆14C at a regional scale. For example, drier grasslands and shrublands, and wetter boreal and 128 

temperate forests had more negative ∆14C (Supplementary Fig. 6b).  129 

 130 
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The depth profiles of soil ∆14C also differed among biomes (Supplementary Fig. 7). Tundra and 131 

boreal forest ecosystems had much stronger depletion of radiocarbon in deeper soil layers where 132 

sub-zero temperatures and permafrost processes regulate carbon cycling23. In deep tropical forest 133 

soils, the random forest model was not able to fully capture low observed ∆14C values—which 134 

occur despite warm temperatures—suggesting that more detailed information about vertical 135 

transport and mineral stabilization mechanisms is needed in future modeling efforts. 136 

 137 

Mean age of global soil carbon  138 

To convert ∆14C into mean soil carbon age, we fit a one-pool carbon model to the ∆14C estimate 139 

in each grid cell and depth interval using the time series of atmospheric ∆14C over the past 50 140 

ky24 (Methods). Globally, the carbon-weighted mean age of mineral soil carbon was 4830±1730 141 

(mean ± standard deviation) years between 0 and 100 cm depth (Table 1). Surface soils (0 – 30 142 

cm) had a younger mean age (1390±310 years) than subsurface soils (8280±2820 years; 30 – 100 143 

cm). Use of a two-pool model to estimate mean age yielded similar but slightly older estimates 144 

(Supplementary Fig. 8). Mean age varied as a function of latitude (Fig.1, d to f and 145 

Supplementary Fig. 9), mean annual temperature (Supplementary Fig. 10a) and among biomes 146 

(Table 1, Supplementary Fig. 10b). Our estimated age distribution for soil carbon in tropical 147 

forests was comparable to another independent estimate derived from 13C25. In permafrost 148 

regions, soil carbon ages were considerably older than in other regions, ranging from about 2800 149 

years for the surface layer to over 15,000 years for the subsurface layer (Table 1, Fig. 1, e and f, 150 

and Fig. 2). To a depth of 100 cm, about 24% (450 Pg out of 1848 Pg) of global soil carbon was 151 

younger than 1000 years (Fig. 2), with nearly all of this carbon confined to the 0 – 30 cm surface 152 

layer (Figs. 1e and 2). In contrast, nearly all subsurface soil carbon (1005 Pg out of 1008 Pg) was 153 
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older than 1000 years (Figs. 1F and 2), meaning that it is probably unresponsive to changes in 154 

carbon inputs from 21st century global environmental change.  155 

 156 

Comparisons between models and data  157 

The global three-dimensional structure of soil ∆14C provides a new way to constrain land surface 158 

models that resolve soil carbon vertically. We compared our gridded ∆14C dataset with two state-159 

of-the-art global land models, version 5 of the Community Land Model (CLM5)26 and version 160 

1.0 of the land model within the Energy Exascale Earth System Model (ELM v1.0)27. Compared 161 

to the gridded dataset, the land surface models overestimated ∆14C in both surface and 162 

subsurface soil layers (Fig. 3, and Supplementary Figs. 11-13), and in each biome 163 

(Supplementary Tables 1-2). In surface soils, over 60% of carbon in each of the models had 164 

positive ∆14C values compared to only about 14% of carbon in the global gridded dataset (Fig. 3, 165 

a, c and e). The two models also predicted that about 50% of subsurface soil carbon had ∆14C 166 

more positive than -200‰ (Fig. 3, d and f), whereas this amount was less than 10% in the data-167 

derived product (Fig. 3b). The over-estimation in the two models occurred in all biomes, with 168 

larger positive biases in tropical biomes and smaller positive biases in boreal forest and tundra 169 

biomes.  170 

 171 

The over-estimation of ∆14C in the two models is likely a consequence of positive biases in fresh 172 

carbon inflows at depth, vertical substrate diffusion28, and carbon turnover in slow and passive 173 

carbon pools13. The two models employ a similar decomposition cascade whereby plant litter 174 

passes through pools with successively longer turnover times. Moreover, aboveground litterfall 175 

is distributed throughout the soil column following rooting depth profiles for each plant 176 
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functional type29, and this parameterization may provide a larger than expected input of modern 177 

soil carbon to deeper soil horizons. 178 

 179 

Differences in other model parameters result in distinct spatial distributions of soil carbon stocks 180 

and ages. Specifically, ELM uses a smaller value for zt, the e-folding depth that reduces the 181 

intrinsic decomposition rate for soil carbon in deeper soil horizons29, whereas CLM5 has higher 182 

zt, but applies stronger soil moisture limitations on decomposition26,30. Globally, the ELM 183 

parameterization provides more negative ∆14C values, especially in deeper soils (Supplementary 184 

Figs. 11, 13; and Tables 1-2), albeit not for mechanistically satisfying reasons. To match the 14C 185 

observations, our analysis suggests the models should retain a smaller fraction of fresh litter 186 

inputs in soil carbon pools with long turnover times. Also, the turnover times of these ‘slow’ or 187 

‘passive’ pools that comprise the majority of soil carbon should be much greater. In developing 188 

improved models, however, a mechanistic representation of carbon cycling is needed that 189 

recognizes the potential vulnerability of key reservoirs, including carbon stored in permafrost 190 

soils8,23. 191 

 192 

Although soil carbon is heterogeneous, consisting of multiple fast- and slow-cycling pools, our 193 

∆14C data provide a key constraint on the slow pools that make up the bulk of soil organic 194 

carbon. Previous estimates of turnover based on the ratio of carbon stocks to inputs22,30 imply 195 

faster cycling and younger ages of soil carbon compared to our results. The discrepancy arises 196 

because most net primary production cycles through relatively small soil carbon pools on 197 

timescales of years to decades. Such a “leaky” response to increased carbon input is also 198 

supported by empirical studies5-7. The bulk of soil carbon, in contrast, is supplied by a very slow 199 
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trickle of inputs that are stabilized on millennial timescales. However, CLM5 and ELM both 200 

assume that a larger fraction of recent photosynthate is retained in the soil system as indicated by 201 

their positive biases in ∆14C (Fig. 3). Due to these biases, the global models may be too 202 

responsive to new carbon inputs and may over-estimate the effect of CO2 fertilization on 203 

productivity and potential soil carbon sequestration13. The millennium-scale mean age of global 204 

soil carbon, coupled with limited retention of bomb carbon over the past 70 years, implies that 205 

soil carbon is unlikely to increase as much as predicted in land surface models with CO2 206 

fertilization over the next few decades. Nevertheless, the depth-resolved models are better at 207 

predicting soil carbon age compared to models that omit soil depth31, and a clear path now exists 208 

for improving these models using observations from ISRaD12.  209 

 210 

Despite its old age, soil carbon in many ecosystems may still be vulnerable to climate and land 211 

use change. For example, permafrost thaw in tundra and boreal forest may allow for the rapid 212 

decomposition and release of previously protected deep soil carbon8. Similarly, disturbance 213 

associated with the expansion of global agriculture accelerates decomposition through the 214 

physical destruction of soil aggregates and by exposing deep soil carbon to microbial decay9,32. 215 

More frequent and severe fire disturbance can also contribute to losses of soil carbon33. 216 

 217 

For more than 25 years, soil science has upheld a paradigm that mineral soil carbon mainly 218 

consists of pools with decadal and centennial turnover times. Despite a growing awareness of old 219 

soil carbon stabilized in deep soils, expert assessments and influential models such as Century 220 

have considered carbon with millennium turnover times to be a relatively small fraction of bulk 221 

soil organic matter34,35. Yet we show that in deeper soils, which represent more than half of the 222 
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global soil carbon stock, pools with multi-millennium ages are dominant, yielding a global mean 223 

deep-soil age over 8000 years. Even in surface soils from 0-30 cm, our mean age estimate of 224 

over 1300 years suggests that millennial-scale carbon pools may equal or exceed centennial 225 

pools. Future work could further constrain the distribution of turnover times by combining data 226 

(such as respiration36) that constrain faster C pools with bulk soil isotopic measurements25. 227 

 228 

Our study shows that old soil carbon pools identified in site-level studies extend to the global 229 

scale and that soil carbon is older than predicted by state-of-the-art earth system models. 230 

Radiocarbon age can serve as a critical, independent benchmark that will improve model 231 

predictions of soil carbon turnover and storage as climate changes. Such improvements will 232 

require that models represent mechanisms consistent with radiocarbon measurements, 233 

particularly the stabilization of deep, old soil carbon. In addition, the spatial patterns revealed in 234 

our analyses should catalyze new research to uncover fundamental mechanisms of soil carbon 235 

preservation and loss around the globe. 236 

 237 
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Fig. 1. Global distribution of soil ∆14C and mean carbon age. Carbon-weighted average ∆14C 337 

and mean age in the top 1 meter (a and d), surface soil (0 – 30 cm; b and e) and subsurface soil 338 

(30 – 100 cm; c and f) are shown at a 0.5° × 0.5° spatial resolution, derived from a random forest 339 

model trained with 789 soil radiocarbon profiles. 340 

 341 

Fig. 2. Age distribution of global soil carbon. The histogram shows the distribution of mean 342 

carbon ages derived from the global gridded ∆14C dataset for surface (0-30 cm, blue) and 343 

subsurface (30-100 cm, green) layers. Soil carbon content was estimated from the mean of two 344 

global databases, the Harmonized World Soil Database and SoilGrids. 345 

 346 

Fig. 3. Comparison of land surface model predictions of soil ∆14C with the data-derived 347 

product developed here for different depths and biomes. Histograms show the distribution of 348 

soil carbon proportion in each biome as a function of ∆14C for the data-derived product (panels a 349 

and b) and for the two global land models (ELM and CLM; c – f) for the two depth intervals. 350 

Comparisons for surface soils (0-30 cm) are shown for panels in the left column and 351 

comparisons for subsurface soils (30-100cm) are shown in the right column. 352 

 353 

 354 

 355 

 356 

 357 

 358 
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Table 1. Summary statistics of soil carbon, Δ14C in year 2000, and mean carbon age in each biome. The values of Δ14C and mean 359 

age for each biome (and for permafrost and non-permafrost regions) are the median and 5% to 95% range (in parentheses). Global 360 

mean and standard deviation (mean ± sd) estimates of Δ14C and mean age were weighted by soil carbon content in each biome and soil 361 

layer. Mean and standard deviation of soil carbon content for each biome were derived from two global carbon datasets (Harmonized 362 

World Soil Database and SoilGrids) described in the methods. 363 

 Surface soil (0 – 30 cm) Subsurface soil (30 – 100 cm) 

Biome 
Soil carbon 

(Pg C) 

∆14C 

(‰) 

Age 

(years) 

Soil 

carbon 

(Pg C) 

∆14C 

(‰) 

Age 

(years) 

Boreal Forest 192±99 -86 (-228, -36) 1020 (650, 2750) 251±166 -385 (-652, -291) 5920 (3740, 22250) 

Temperate Forest 46±11 -9 (-72, 46) 440 (200, 920) 42±12 -229 (-334, -157) 2710 (1680, 4670) 

Tropical Forest 93±15 7 (-48, 35) 390 (260, 770) 102±37 -250 (-325, -166) 2970 (1790, 4310) 

Grassland 75±14 -102 (-218, -16) 1200 (500, 2640) 75±27 -361 (-585, -253) 5380 (3050, 14690) 

Cropland 114±19 -58 (-171, 7) 770 (380, 1850) 124±31 -287 (-383, -167) 3690 (1820, 5940) 

Shrubland 29±4 -49 (-108, -23) 680 (490, 1240) 26±7 -258 (-384, -147) 3180 (1550, 6080） 

Savanna 103±13 -20 (-144, 24) 510 (270, 1620) 107±25 -241 (-439, -119) 2860 (1240, 7960) 

Tundra 188±112 -249 (-295, -142) 3490 (1660, 4310) 282±215 -624 (-706, -424) 16890 (6820, 28470) 

Permafrost 322±176 -217 (-287, -75) 2770 (940, 4200) 443±320 -603 (-698, -358) 15440 (5150, 28270) 

Non-permafrost 517±104 -42 (-150, 25) 660 (290, 1660) 565±184 -274 (-391, -149) 3420 (1590, 6190) 

Global mean* 840±280 -97±24 1390±310 1008±505 -391±56 8280±2820 

* Global weighted ∆14C was -244±48‰ and mean age was 4830±1730 years for mineral soil carbon down to 1 m depth364 
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Methods 365 

1. Data source and processing 366 

We analyzed soil ∆14C measurements from the International Soil Radiocarbon Database 367 

(ISRaD). ISRaD is an open community repository for soil radiocarbon data12. The ∆14C we used 368 

is from soil organic carbon, and not total carbon, which would include carbonates.  369 

 370 

We retrieved ∆14C measurements from ISRaD v1.0.0 on September 24, 2019 (doi: 371 

https://doi.org/10.5281/zenodo.2613911; ISRaD_extra data product, v1-2019-09-24). The dataset 372 

consisted of 789 mineral soil profiles (organic horizons were not included) from around the 373 

world for the major land cover types we used in our analysis (Supplementary Fig. 1). Each 374 

profile had on average 4 individual samples representing different depths, yielding a total of 375 

3335 unique ∆14C measurements. Metadata were also collected along with each profile, 376 

including climate (mean annual temperature and precipitation), land cover type, soil properties 377 

(soil depth, soil order, and clay content at different depth), sampling year, and location 378 

(longitude, latitude). We note that peatland and desert soil profiles are under-represented and 379 

were excluded from the dataset. 380 

 381 

We processed the radiocarbon data in the following steps. 382 

i. We standardized the radiocarbon reporting nomenclature. In some studies, 14C activity 383 

was reported as fraction modern (Fm). In such cases, we converted Fm to Δ14C (equation 384 

1) and used Δ14C as the common unit.  385 

Δ14C = [Fm × eλ(1950−Yc) − 1] × 1000                                     (1) 386 
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Where λ is 1/ (true mean-life) of radiocarbon = 1/8267 = 0.00012097. Yc is the year of 387 

collection.  388 

When uncalibrated radiocarbon ages were reported, they were converted to fraction 389 

modern values using  390 

  Fm = e(-age/8033)                        (2) 391 

and Fm was converted to Δ14C using equation 1. Data reported as calibrated dates were 392 

not included. These calculations were performed within the ISRaD_extra data product. 393 

ii. When the sampling year was not reported, we assumed it was the publication year minus 394 

3 based on the mean interval from articles reporting both sampling and publication year.  395 

iii. When the mean annual temperature and precipitation were not reported, we extracted ten-396 

year average temperature and precipitation data (1990 – 2000) from a global-gridded 397 

database (Climatic Research Unit, Harris et al. 2014) using the geographic coordinates of 398 

each site location. 399 

iv. We assigned one of 8 land cover types using the site description when available. Land 400 

cover types were tundra, boreal forest, temperate forest, tropical forest, grassland, 401 

shrubland, savanna and cropland (Supplementary Fig. 14). See section 2 for details on 402 

categorizing the land cover types. 403 

v. When soil clay content was not reported, we extracted it from the SoilGrids database37 404 

using the geographic coordinates of each site location and depth. Note that the SoilGrids 405 

database has been updated (December 24th, 2018) and data are available at 406 

https://landgis.opengeohub.org. 407 

vi. For soil order, we used the USDA soil taxonomy system38. Missing soil order data were 408 

extracted from Global Soil Regions Map database with a resolution of 2 minutes (FAO-409 
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UNESCO, 410 

https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/use/?cid=nrcs142p2_054013). 411 

vii. Soil depth was calculated as the midpoint between the top and bottom of the reported 412 

depth interval. For example, if the soil sample was from the depth interval 10-20 cm, the 413 

soil depth was calculated as (10+20)/2 = 15 cm. 414 

viii. Each ∆14C measurement was normalized to the year 2000 using a steady state one-pool 415 

model and the observed time series of atmospheric ∆14C. Past atmospheric ∆14C records 416 

were obtained from the Intcal13 calibration curve (50kyr – 0 BP)24. Modern data from 417 

1950 were obtained from Vermunt and Schauinsland stations39 extended through 418 

201240,41. To normalize ∆14C to year 2000, we first constructed the relationship between 419 

turnover time and ∆14C (shown in Supplementary Fig. 15) to derive turnover time for 420 

each ∆14C value. Then we normalized the original ∆14C by running the one-pool model 421 

with the respective turnover time to year 2000. Supplementary figure 16 shows the 422 

comparison between the original and normalized ∆14C.  423 

 424 

2. Statistical modeling, prediction, and sources of uncertainty 425 

Statistical modeling to identify key factors that influence vertical and spatial variability in soil 426 

∆14C was accomplished using machine learning techniques implemented in the Python 427 

environment for statistical computing (Scikit-Learn). We used a suite of algorithms including 428 

three generalized linear models, support vector regression, and two bagging and boosting 429 

ensemble methods. For model fitting, we used all soil profiles with predictors including mean 430 

annual temperature and precipitation, land cover type, soil depth, soil order, and soil clay 431 

content. Land cover type and soil order are categorical variables and were converted to binary 432 
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variables for each class. A 5-fold cross validation based on soil profiles showed that random 433 

forest performed the best, accounting for about 69% of the variation in the profile dataset 434 

(Supplementary Table 3). Therefore, we used the random forest algorithm for our main analysis.  435 

 436 

The random forest algorithm used 300 decision trees, with the maximum depth of 18. The 437 

learned hyperparameter values were derived using the grid search cross validation method from 438 

the sklearn library. With the random forest algorithm, importance scores for each predictor were 439 

calculated using the feature_importances function from Scikit-Learn. These scores reflect how 440 

important each predictor is in determining the fitted values of ∆14C.  441 

 442 

Finally, we used the predictive model to extrapolate D14C across the land surface at each 1 cm 443 

vertical increment to a soil depth of 1 meter. First, we trained the random forest machine learning 444 

algorithm with the observational data. The model features in the dataset included mean annual 445 

temperature and precipitation, land cover type, soil depth, soil order and clay content. Then, we 446 

applied the trained model to global databases of mean annual temperature, mean annual 447 

precipitation, land cover type, soil clay content, soil order and soil depth to generate a global 448 

dataset of soil ∆14C (Supplementary Table 4). The gridded driver variables used for global 449 

extrapolation were all regridded to a spatial resolution of 0.5º × 0.5º. Specifically, we calculated 450 

10-year average annual temperature and precipitation during 1990-2000 from the Climate 451 

Research Unit (CRU) v. 3.2342 as the climate driving data. The land cover map was obtained 452 

from MODIS Land cover MCD12Q1 product 43. Note that 16 land cover types from MODIS 453 

were combined into 10 types for consistency with reported observations (Supplementary Fig. 454 

14). Soil order data were extracted from the Global Soil Regions Map database38. Soil clay 455 
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content was obtained from the SoilGrids database37. There are four depth intervals in the first 456 

meter (0-10cm, 10-30cm, 30-60cm and 60-100cm) for soil clay content in SoilGrids. The trained 457 

model was then used to predict mineral soil Δ14C at each 1 cm increment to a depth of 1 m. 458 

 459 

Note that the data-derived global gridded ∆14C is subject to uncertainties from the machine 460 

learning algorithm, errors in the predictors of climate, soil properties, and land cover type, as 461 

well as uncertainty in the soil carbon content for the weighted ∆14C estimates. We quantified 462 

these main uncertainty sources at both grid scale (Supplementary Fig. 17) and biome levels 463 

(Supplementary Table 5). To estimate the uncertainty from the algorithm, we calculated the 464 

absolute differences in global-gridded ∆14C in each regression tree and our gridded product 465 

(baseline); to estimate the uncertainty by each of the key drivers, we first computed global 466 

gridded ∆14C by holding out the given driver, and then calculated the absolute difference 467 

between the ∆14C predictions and the baseline estimate. We found that uncertainties caused by 468 

excluding temperature were always greater than those caused by excluding precipitation, 469 

followed by those caused by excluding soil clay content (Supplementary Fig. 17). These results 470 

are consistent with our analysis of relative importance of different variables (Supplementary 471 

Figure 3).  472 

 473 

In addition to uncertainties at the level of individual grid points, we have further quantified the 474 

uncertainties of ∆14C at the biome level and for our global estimates (Supplementary Table 5). 475 

Weighting ∆14C by different soil carbon datasets created the largest uncertainty in our global 476 

estimates of ∆14C, and including or excluding temperature and precipitation generated the largest 477 

uncertainty at a biome level. In addition, it is important to note that uneven sampling of soils in 478 
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the ISRaD database, including relatively few sites in tundra and boreal forests, represents an 479 

important source of uncertainty and influences some of the breakpoints that emerge near -4°C in 480 

projections of ∆14C and age shown in Supplementary Figs. 6 and 10. To reduce uncertainties in 481 

future work, more ∆14C profile measurements are needed in high latitude ecosystems, peatlands, 482 

deserts, and along precipitation and temperature gradients in Africa and other sparsely sampled 483 

areas of the tropics (Supplementary Materials Fig. 1). In terms of improving our ability to model 484 

the age distribution of global soil carbon, more accurate gridded maps of soil carbon content and 485 

other soil properties are essential, as well as an improved understanding of mechanisms 486 

regulating carbon stabilization in mineral soils.   487 

 488 

3. Mean age calculation 489 

Interpretation of carbon dynamics from radiocarbon data requires the use of models. The most 490 

effective way to use ∆14C as a constraint on carbon cycling is to directly simulate this tracer 491 

within a land surface model within each ecosystem pool and soil layer and compare these 492 

predicted values to radiocarbon measurements. This is the approach we take to evaluate carbon 493 

cycling within CLM5 and ELM1.0. However, we also used the ∆14C dataset directly to estimate 494 

global three-dimensional structure of the mean age of soil carbon. This approach, while requiring 495 

simplifying assumptions, can help with building an intuitive understanding of the processes 496 

regulating soil carbon dynamics at a global scale. 497 

 498 

We estimated mean age as the turnover time in a one-pool, homogeneous, steady state model that 499 

was fit to the ∆14C value in each 1-cm soil layer. Specifically, we assumed a steady state of soil 500 

carbon and radiocarbon at the beginning of the model run (i.e., 50 ky BP) and ran the model until 501 
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the year 2000 with the atmospheric history of ∆14C. Then we determined the relationship 502 

between turnover time and ∆14C in year 2000 (Supplementary Fig. 15). This relationship was 503 

used to derive the mean age for each layer. Note that when ∆14C is greater than about 85‰, the 504 

calculation generates two mean turnover times (Supplementary Fig. 15a). We selected the longer 505 

one in our analysis, as measurements of bulk radiocarbon emphasize the carbon in mineral-506 

associated organic matter that dominate total soil C content. In studies that applied multi-pool 507 

modeling to soil that had been divided into fractions according to density, the mineral-associated 508 

organic matter was associated with the longer turnover times44-46.  509 

 510 

This approximation of mean age is justified because the ∆14C of the bulk soil carbon is primarily 511 

determined by pools of the most slowly cycling carbon. It is well known that soil carbon is not 512 

homogeneous, so our assumption of a single pool is simplistic but still informative. In theory, the 513 

mean age of material within a reservoir with multiple carbon residence times can be computed 514 

by using an impulse response approach47. The temporal integral of the product of the fractional 515 

mass remaining in the system with the time since entry of the impulse provides a direct measure 516 

of mean age. In practice this approach requires perfect knowledge of the different components 517 

that are cycling through the reservoir and their individual turnover times. Nonetheless, we tested 518 

a two-pool model constrained by bulk ∆14C and estimated its mean carbon age. The mean carbon 519 

age (MCA) in the two-pool model is calculated using !"# =	 &'( +
&
'*
− &

,×'(.'*
 48, where K1 520 

and K2 are the turnover rates of the two carbon pools and a is carbon transfer coefficient from the 521 

first pool to the second pool. We found that the mean carbon age estimated in the one-pool 522 

model was within the uncertainty of mean age in the two-pool model, especially for young soil 523 

carbon (Supplementary Fig. 8). For comparison with carbon cycle models, we recommend 524 
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directly simulating the three-dimensional structure of the gridded ∆14C data set, following our 525 

approach described in section 5.  526 

 527 

4. Carbon-weighted ∆14C and mean age along depth and across land cover types 528 

For each grid cell, we calculated carbon-weighted ∆14C and mean age in the three depth intervals 529 

(0 – 100 cm, 0 – 30 cm, and 30 – 100 cm) using soil carbon datasets from SoilGrids37 and the 530 

Harmonized World Soil Database (HWSD)49. Note that soil carbon content in SoilGrids has been 531 

updated (December 24th, 2018) and is available at https://landgis.opengeohub.org. Both datasets 532 

were re-gridded to 0.5° to match the resolution of our ∆14C maps. There are four soil layers (0 – 533 

10 cm, 10 – 30 cm, 30 – 60 cm and 60 – 100 cm) in the SoilGrids database and two soil layers (0 534 

– 30 cm and 30 – 100 cm) in HWSD. To calculate the vertical, carbon-weighted ∆14C and mean 535 

age for 0 – 100 cm at each grid cell we used SoilGrids with equation 3 and HWSD with equation 536 

4:  537 

Xw, 0–100 = C0–10 / C0–100 × Xuw, 0–10 + C10–30 / C0–100 × Xuw, 10–30 + C30–60 / C0–100 × Xuw, 30–60  538 

+ C60–100 / C0–100 × Xuw, 60–100     (3) 539 

Xw, 0–100 = C0–30 / C0–100 × Xuw, 0–30 + C30–100 / C0–100 × Xuw, 30–100  (4) 540 

Where w stands for weighted, uw is unweighted, X is ∆14C or mean age, and C is soil carbon 541 

content. Due to lack of depth resolution in HWSD, we only used soil carbon from SoilGrids for 542 

the weighting within the depth intervals of 0 – 30 cm and 30 – 100 cm (equations 5 and 6).  543 

Xw, 0–30 = C0–10 / C0–30 × Xuw, 0–10 + C10–30 / C0–30 × Xuw, 10–30   (5) 544 

Xw, 30–100 = C30–60 / C30–100 × Xuw, 30–60 + C60–100 / C30–100 × Xuw, 60–100  (6) 545 

To calculate the global mean of ∆14C and mean carbon age in the three depth intervals we 546 

describe in the main text (0 – 30 cm, 30 – 100 cm, and 0 – 100 cm), we weighted ∆14C or mean 547 
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age from each land cover type based on the carbon content of that biome according to equation 548 

7:  549 

											/012341 = 	5( "17,9:;<=	>?<:@A41"<2<41,9:;<=	>?<:@A41
× /17)

C

>D&
																																							 (7) 550 

where Xglobal is the globally weighted soil ∆14C or mean age for each of the three depth intervals; 551 

Clc is total carbon content in each of the 8 land cover types; and Xlc is ∆14C or mean age 552 

bootstrapped randomly 1000 times from its distribution in each land cover type. We then 553 

computed the mean and standard deviation of the global weighted ∆14C and mean age. Note that 554 

we created an average of Xglobal by weighting spatially across different land cover types by both 555 

HWSD and SoilGrids. 556 

 557 

We also provided the median and 5% to 95% range for the ∆14C and mean age within each land 558 

cover type and permafrost versus non-permafrost regions. The permafrost map was generated by 559 

the National Snow and Ice Data Center50 and is accessible at 560 

https://neo.sci.gsfc.nasa.gov/view.php?datasetId=PermafrostNSIDC&date=2002-02-01.  561 

 562 

5. Global land surface models 563 

Soil radiocarbon content, ∆14C in year 2000, simulated in global land models were compared 564 

with our gridded dataset at 0 – 30 and 30 – 100 cm depth intervals. Two depth-resolved global 565 

land models were used, the land model from the Energy Exascale Earth System Model version 566 

1.0 with the Equilibrium Chemistry Approximation (ELMv1-ECA)27 and the Community Land 567 

Model version 5.0 (CLM5)26. Both simulate global terrestrial carbon and radiocarbon cycles with 568 

explicit representation of soil depth and both models were based on similar initial structure and 569 

parameterization29. These two models are among a handful of published global models with 570 
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explicit depth and radiocarbon modules for soil carbon cycling. In addition, both models have 571 

been assessed using the International Land Model Benchmarking (ILAMB) system51.  572 

 573 

For the ELMv1-ECA simulation, we initialized the model with a 500-year spin-up simulation, 574 

with the first 300 years using the accelerated decomposition procedure, followed by a transient 575 

simulation from 1901 to 2010 with Global Soil Wetness Project Phase 3 climate forcing and 576 

observed atmospheric CO2, nitrogen deposition, and 14C, without land use change. The spin-up 577 

used 1850 (pre-industrial) conditions for land cover and atmospheric chemistry (CO2, aerosols, 578 

and nitrogen deposition), and a constant atmospheric 14C of zero per mil. The model simulated 579 

vertical profiles of SOC 14C globally on 1.9° × 2.5° grids with ten soil layers from 0-3.5 m 580 

depth29. 581 

 582 

For CLM5, the initial conditions were also generated by spinning up the model to steady state for 583 

1850 conditions. As with ELM, atmospheric chemistry and land cover were for the year 1850 but 584 

climate forcing was for 1901-1920. The transient simulation spanned the period 1850-2014 with 585 

Global Soil Wetness Project Phase 3 climate forcing at about a 1° resolution. Land use and land-586 

cover change, atmospheric CO2 and 14C concentration, and nitrogen deposition were specified 587 

from transient datasets52, which are consistent with the second generation land-use 588 

harmonization (LUH2) and CMIP6 protocols53. CLM5 simulates vertical profiles of soil 14C with 589 

variable soil depth (0-8.5 m) and up to 20 soil layers54. Relative to the parameterization used in 590 

ELM and previous versions of CLM, CLM5 applies a lower e-folding depth for soil carbon 591 

decay in deeper soil horizons and applies a stronger soil moisture constraint on decomposition 592 

rates30. 593 
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 594 

For comparison with our data product, we integrated ∆14C in the two models for the two depth 595 

intervals (0 – 30 cm and 30 – 100 cm) weighted by soil carbon. Because this method assumes 596 

uniform density throughout each model layer, it may underestimate the contribution of the lowest 597 

layer (82 – 138 cm), but we believe it is a fairly small difference. We did not regrid the spatial 598 

resolutions in the two models to the same resolution as the data. Because both models use similar 599 

land cover types as our data product, we overlaid the same MODIS-derived map on the two 600 

model grids to obtain the biome-level estimates from the models.   601 

 602 

Data availability  603 

The gridded maps of soil ∆14C and mean carbon age are archived at Zenodo 604 

(https://doi.org/10.5281/zenodo.3823612). Other data that support the findings of this study are 605 

publicly available. soil ∆14C measurements are available at 606 

https://zenodo.org/record/2613911#.XsNtQi-z124. Global soil carbon and soil clay content in 607 

SoilGrids are available at https://landgis.opengeohub.org. Soil carbon content in Harmonized 608 

World Soil Database is available at http://www.fao.org/soils-portal/soil-survey/soil-maps-and-609 

databases/global-soil-organic-carbon-map-gsocmap/en/. Global soil order data are available at 610 

https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/use/?cid=nrcs142p2_054013. The climate 611 

data used can be downloaded from https://crudata.uea.ac.uk/cru/data/hrg/. The land cover map 612 

can be obtained from MODIS Land cover MCD12Q1 product 613 

(https://lpdaac.usgs.gov/products/mcd12q1v006/). The permafrost map was generated by the 614 

National Snow and Ice Data Center 615 

(https://neo.sci.gsfc.nasa.gov/view.php?datasetId=PermafrostNSIDC&date=2002-02-01).  616 
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 617 

Code availability  618 

All code relating to this study is available from the corresponding author upon request. 619 
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 669 

 670 
 671 
Fig. 1. Global distribution of soil ∆14C and mean carbon age. Carbon-weighted average ∆14C 672 

and mean age in the top 1 meter (a and d), surface soil (0 – 30 cm; b and e) and subsurface soil 673 

(30 – 100 cm; c and f) are shown at a 0.5° × 0.5° spatial resolution, derived from a random forest 674 

model trained with 789 soil radiocarbon profiles.  675 
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 676 

Fig. 2. Age distribution of global soil carbon. The histogram shows the distribution of mean 677 

carbon ages derived from the global gridded ∆14C dataset for surface (0-30 cm, blue) and 678 

subsurface (30-100 cm, green) layers. Soil carbon content was estimated from the mean of two 679 

global databases, the Harmonized World Soil Database and SoilGrids. 680 

 681 
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 682 
 683 
Fig. 3. Comparison of land surface model predictions of soil ∆14C with the data-derived 684 

product developed here for different depths and biomes. Histograms show the distribution of 685 

soil carbon proportion in each biome as a function of ∆14C for the data-derived product (panels a 686 

and b) and for the two global land models (ELM and CLM; c – f) for the two depth intervals. 687 

Comparisons for surface soils (0-30 cm) are shown for panels in the left column and 688 

comparisons for subsurface soils (30-100cm) are shown in the right column. 689 
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Supplementary figures:  706 
 707 

 708 
 709 
 710 
Supplementary Fig. 1. Location and climate of soil radiocarbon measurements. (a) A total of 711 
789 soil profiles span all major land cover types and climate zones. (b) Climate of the soil profiles 712 
varies widely in mean annual temperature and mean annual precipitation. Black lines delineate 713 
Whittaker’s biomes1 according to mean annual temperature and precipitation. The biomes are: 1, 714 
tropical rainforest; 2, tropical seasonal rainforest/savanna; 3, subtropical desert; 4, temperate 715 
rainforest; 5, temperate seasonal forest; 6, woodland/shrubland; 7, temperate grassland/desert; 8, 716 
boreal forest; and 9, tundra. 717 
 718 
 719 
  720 
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 721 

 722 
Supplementary Fig. 2. Frequency distribution of soil profiles. (a) The distribution of sample 723 
years. One archived soil profile sampled in 1900 is not shown here. (b) The distribution of 724 
maximum mineral soil depth (relative to the top of mineral soil). One soil profile with maximum 725 
depth of 600 cm is not shown here. (c) The distribution of number of layers in each soil profile. 726 
Not shown are 10 soil profiles that have more than 20 layers.  727 
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 728 
Supplementary Fig. 3. Relative variable importance from the random forest algorithm for 729 
explaining the global three-dimensional structure of soil ∆14C profile measurements. Three 730 
soil depth intervals include the total soil column (a), surface soil (0 – 30 cm; b), and deeper soil 731 
(greater than 30 cm; c). Mean annual temperature is abbreviated as MAT and mean annual 732 
precipitation as MAP. 733 
 734 

 735 

 736 

 737 
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 738 

Supplementary Fig. 4. Relationships between measured ∆14C and soil depth, mean annual 739 
temperature, and mean annual precipitation (MAP). ∆14C decreases with soil depth, but 740 
increases with temperature and precipitation. Note that the ∆14C measurement of each soil layer is 741 
the value normalized to the year 2000. 742 
 743 
  744 
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 745 
 746 
Supplementary Fig. 5. Latitudinal distribution of global gridded ∆14C in surface (0–30 cm) 747 
and subsurface (30–100 cm) soils. Lines and shaded area are median and the 5th–95th percentiles, 748 
respectively. The negative ∆14C excursions in low- and mid-latitudes were mainly caused by the 749 
dry regions close to the Sahara and Taklamakan deserts. 750 
  751 
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 752 

 753 
Supplementary Fig. 6. Distribution of soil radiocarbon ∆14C as a function of mean annual 754 
temperature and precipitation. ∆14C (0 – 100 cm) varies with climatic space (a) and biome type 755 
(b). Black lines delineate Whittaker’s biomes according to mean annual temperature and 756 
precipitation. See Supplementary Fig. 1b for the definition of how biome types map into climatic 757 
zones. 758 
  759 
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 760 
 761 
Supplementary Fig. 7. Depth distribution of ∆14C (‰) in different land cover types. Black 762 
circles and error bars are soil profile observations with mean and standard deviation binned over 763 
10 cm depth intervals. Note that there were no observations within 90 – 100 cm in the tundra biome. 764 
Shaded areas are the 5th–95th percentiles in each biome at 1-cm depth intervals from the global 765 
gridded ∆14C maps described in the main text and methods. 766 
 767 
  768 
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 769 
Supplementary Fig. 8. Comparison of estimates of mean carbon age derived from ∆14C using 770 
either one-pool or two-pool carbon cycle box models. The blue dots are the mean age estimated 771 
using the one-pool model, and the box plots (whiskers are 5%-95% confidence interval) are the 772 
mean age estimated from the two-pool model. The uncertainty stems from variation in turnover 773 
time of the two pools (1/K1 and 1/K2) and the transfer coefficient (F) between the two pools. The 774 
mean carbon age (MCA) is calculated using !"# =	 &'( +

&
'*
− &

,×'(.'*
. 775 
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 777 
 778 
Supplementary Fig. 9. Latitudinal distribution of global gridded soil carbon mean age. Panel 779 
a shows the mean age distribution for surface soils (0–30 cm) and panel b shows the mean age 780 
distribution for subsurface soils (30–100 cm). Lines and shaded area are median and the 5th–95th 781 
percentiles, respectively.   782 
 783 
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 784 
Supplementary Fig. 10. Distribution of mean carbon age. Mean carbon age (0 – 100 cm) varies 785 
as a function of climate zone (a) and biome type (b). Black lines delineate Whittaker’s biomes 786 
according to mean annual temperature and precipitation. See Supplementary Fig. 1b for the 787 
definition of how biome types map into climatic zones. 788 
 789 
 790 
  791 
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 792 

 793 
Supplementary Fig. 11. Latitudinal distribution of ∆14C predicted by two state-of-the-art 794 
land surface models. (a) ∆14C predicted by the Community Land Model (CLM) for surface (0 – 795 
30 cm; blue line) and subsurface (30 – 100 cm; red orange line) soil layers. (b) ∆14C predicted by 796 
the E3SM Land Model (ELM) for surface and subsurface soils. Lines and shaded area are median 797 
and the 5th–95th percentiles, respectively. In both models, ∆14C becomes very negative in the 798 
Sahara Desert (near 20°N) because low soil moisture levels reduce rate constants for 799 
decomposition and because of challenges in spinning up the models in regions with low carbon 800 
inputs. These variations do not appreciably modify carbon cycling in the model because levels of 801 
NPP and carbon storage are also very low in this region. 802 
 803 
 804 
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 805 

 806 
Supplementary Fig. 12. Comparison of the ∆14C distribution of total global soil carbon 807 
between land surface models and our data-derived product. Histograms show the distribution 808 
of carbon mass binned by ∆14C for our data products (a, b) and the two global land models (ELM: 809 
c, d and CLM: e, f) at the biome level in the two depth intervals.   810 
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 811 
Supplementary Fig. 13. Global maps of soil ∆14C predicted by two land surface models and 812 
compared with the data-derived maps developed here. Our data-derived product is shown in 813 
panel (a) for surface soils (0– 30 cm) and in and in panel (b) for subsurface soils (30 – 100 cm).   814 
Predictions for similar depth ranges are shown for ELM in panels c and d, and for CLM in panels 815 
e and f.   816 
  817 
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 818 
 819 

Supplementary Fig. 14. Land cover (a) and soil order (b) data used in this study. The land 820 
cover map was modified from MODIS Land cover MCD12Q1 product2. The 16 land cover types 821 
from MODIS were combined into 10 types for consistency with biome types reported in the 822 
observations. All forests and woody savanna cover types were re-categorized based on latitude as 823 
boreal (>50°N), temperate (> 23° and < 50°N and S) or tropical forests (< 23° N and S); open and 824 
closed shrubland were combined as shrubland (<50° N and S) or tundra (>50° N). The rest were 825 
unchanged. Note that desert and peatland were not included in the analysis due to small sample 826 
sizes. 827 
 828 

 829 
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 833 

 834 
Supplementary Fig. 15. Relationship between turnover time and ∆14C in year 2000 generated 835 
by a one-pool steady state carbon cycle model. The relationships are for ∆14C and turnover time 836 
up to 300 years (a), 3000 years (b), and 50000 years (c). Panel A shows the two possible solutions 837 
(red X’s) for ∆14C values greater than about 85‰. Turnover time and mean age are equivalent for 838 
a one-pool model. The simple carbon model was forced with constant NPP carbon inputs and ∆14C 839 
inputs that tracked the atmospheric observations over the past 50 ky. 840 

841 
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 842 
Supplementary Fig. 16. Comparison between the original ∆14C and the ∆14C after 843 
normalization to year 2000. Negative ∆14C values are linearly related to normalized ∆14C, 844 
whereas there was a strong nonlinear relationship for positive ∆14C values. 845 
  846 
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 847 

 848 
Supplementary Fig. 17. Uncertainty of ∆14C. We quantified uncertainty as the absolute 849 
difference with the data-derived global ∆14C (0 – 100 cm). The absolute differences were 850 
calculated for each regression tree (algorithm). differences introduced by each driver was 851 
calculated while holding out either temperature, precipitation, or soil clay content variables, 852 
respectively. Absolute differences were also calculated for global-gridded ∆14C weighted by the 853 
two different soil carbon datasets (HWSD and SoilGrids). The uncertainties associated with use of 854 
different algorithms or soil carbon datasets were lower when compared to those associated with 855 
inclusion or exclusion of temperature. We did not quantify the uncertainties associated with 856 
vegetation and soil order because these variables were identified as having a lower overall 857 
importance in the random forest model (Supplementary Fig. 3). 858 
 859 
 860 
 861 
  862 



 53 

Supplementary Table 1 Summary statistics of soil carbon and Δ14C in the year 2000 for the global land surface model CLM5. 863 
The estimates of Δ14C for each biome are the median and 5% to 95% range (in brackets). Global mean and standard deviation (mean ± 864 
sd) of Δ14C and mean age is weighted by soil carbon content in each biome and soil layer.  865 
 866 

 Surface soil (0 – 30 cm) Subsurface soil (30 – 100 cm) 
Biome Soil carbon (Pg C) ∆14C (‰) Soil carbon (Pg C) ∆14C (‰) 

Boreal Forest 113 5 (-108, 58) 72 -174 (-371, -81) 

Temperate Forest 33 64 (8, 108) 17 -54 (-143, -5) 

Tropical Forest 70 64 (44, 77) 30 -12 (-66, 2) 

Grassland 41 66 (-41, 134) 22 -104 (-274, -21) 

Cropland 85 80 (33, 121) 38 -68 (-172, -8) 

Shrubland 18 69 (-1, 108) 9 -67 (-169, -10) 

Savanna 63 77 (4, 103) 32 -31 (-167, 12) 

Tundra 122 -202 (-520, 40) 184 -416 (-632, -149) 

Global mean* 545 -10±46 404 -231±81 

*: Global weighted ∆14C was -104±65‰ for the soil column to a 1 m depth.  867 
  868 
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Supplementary Table 2 Summary statistics of soil carbon and Δ14C in year 2000 for global land surface model ELM1.0. The 869 
estimates of Δ14C for each biome are the median and 5% to 95% range (in brackets). Global mean and standard deviation (mean ± sd) 870 
of Δ14C and mean age is weighted by soil carbon content in each biome and soil layer.  871 
 872 

 Surface soil (0 – 30 cm) Subsurface soil (30 – 100 cm) 
Biome Soil carbon (Pg C) ∆14C (‰) Soil carbon (Pg C) ∆14C (‰) 

Boreal Forest 71 -29 (-241, 35) 75 -291 (-499, -160) 

Temperate Forest 22 50 (-32, 85) 21 -123 (-272, -48) 

Tropical Forest 76 80 (31, 94) 64 -49 (-115, -13) 

Grassland 38 9 (-173, 97) 34 -255 (-532, -102) 

Cropland 84 51 (-28, 99) 73 -125 (-298, -30) 

Shrubland 13 48 (-48, 95) 11 -172 (-350, -84) 

Savanna 44 65 (-24, 105) 37 -88 (-238, -12) 

Tundra 76 -289 (-787, -22) 119 -523 (-750, -301) 

Global mean* 424 -55±61 434 -285±60 

*: Global weighted ∆14C -169±65‰ for the soil column to a 1 m depth.  873 
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Supplementary Table 3 Statistical model performance with five-fold cross validation. Using 874 
the assembled ∆14C measurements, we applied generalized linear models (ordinary least square, 875 
ridge regression and lasso regression), support vector machines (e.g. support vector regression) 876 
and ensemble methods (e.g. random forests and gradient boosted regression tree). R2 and mean 877 
absolute error were calculated from 5-fold cross-validation to assess model performance. 878 
  879 

Models R2 
Mean absolute error 

(‰) 

Random forest 0.69±0.08 140.6±19.5 

Gradient boosted regression tree 0.67±0.06 146.4±11.0 

Support vector regression 0.58±0.12 163.1±22.1 

Ordinary least square 0.56±0.11 168.1±22.7 

Ridge regression 0.55±0.11 170.5±22.4 

Lasso regression 0.54±0.10 172.0±22.2 

 880 
 881 
  882 
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Supplementary Table 4 Variables and data sources used in the random forest model 883 

Variable Product name Original 
resolution Reference 

Mean annual temperature Climatic Research Unit 
TS v. 3.23 0.5° Harris et al. 2014 3 

Mean annual 
precipitation 

Climatic Research Unit 
TS v. 3.23 0.5° Harris et al. 2014 3 

Land cover MODIS Land cover 
MCD12Q1 500 m Friedl et al. 2010 2 

Soil order Global Soil Regions 
map 2' FAO-UNESCO 4 

Soil clay content* Global Soil Grids 250m Hengl et al. 2017 5 
 884 

*: Note that the SoilGrids database has been updated (December 24th, 2018) and data are 885 

available at https://landgis.opengeohub.org 886 

  887 
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Supplementary Table 5 Comparisons of ∆14C at the biome level for different sensitivity 888 
scenarios. Biome-level median ∆14C (0 – 100 cm) was computed for each scenario. Baseline is 889 
our data-derived global ∆14C reported in Table 1 in main text. The scenarios of temperature, 890 
precipitation, and clay content were estimated by holding out each variable, sequentially, in the 891 
random forest algorithm. For the algorithm scenario we estimated the mean of 300 ensemble 892 
trees. HWSD and Soil Grids are the estimates when excluding these datasets from the weighting 893 
scheme (units are ‰). 894 
 895 

 Boreal 
Forest 

Temperate 
Forest 

Tropical 
Forest Grassland Cropland Shrubland Savanna Tundra Global 

Baseline -237 -106 -116 -226 -171 -140 -122 -437 -244 

Temperature -216 -131 -174 -254 -186 -266 -152 -443 -269 

Precipitation -250 -109 -65 -205 -152 -124 -86 -468 -256 

Clay content -242 -98 -95 -234 -177 -136 -110 -445 -251 

Algorithm -223 -105 -118 -233 -174 -190 -123 -428 -250 

HWSD -230 -111 -114 -222 -172 -163 -124 -411 -205 

Soil Grids -245 -103 -118 -230 -170 -115 -120 -462 -280 

 896 
 897 
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