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1 Introduction

This article is a continuation of our investigation of the analyticity properties of scattering

amplitude in scalar field theory defined in a manifold R3,1 ⊗ S1. First we consider a

neutral, massive scalar field theory of mass m0 in a flat five dimensional Minkowski space.

Subsequently, one spatial coordinate is compactified on a circle of radius R. The spectrum

of the resulting theory consists of a neutral scalar of mass m0 (same as the mass of the

original uncompactified theory) and a tower of massive Kaluza-Klein (KK) states carrying

the KK charges. We adopt the Lehmann-Symanzik-Zimmermann (LSZ) [1] formalism to

construct the amplitude and to study the analyticity property of the scattering amplitude.

We had proved the forward dispersion relation for scattering of KK states in an earlier

paper [2] (henceforth referred to as I). The present investigation brings our programme to

a completion.

The analyticity properties of scattering amplitude plays a very important role in our

understanding of collisions of relativistic particle in the frame works of general field theories

without appealing to any specific model. The scattering amplitude, F (s, t), is an analytic

function of the center of mass energy squared, s, for fixed momentum transferred squared,

t. The fixed-t dispersion relations in s have been proved when |t| lies within the Lehmann

ellipse in the axiomatic approach in the case of D = 4 field theory, mostly for a single

neutral massive field. These results are derived from the general field theories (axiomatic

field theories) in the axiomatic approach of Lehmann-Symanzik-Zimmenmann (LSZ) [1]

and in the more general frameworks of axiomatic formulation of field theories [3–9, 11–16].

We recall that some of the fundamental principles of such formulations are locality, mir-

cocausality, Lorentz invariance to mention a few. There are very strong reasons to believe

that if the dispersion relations are violated then the validity of some of the axioms of these

generalized relativistic field theories might be in question. The subsequent progress in
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this field has led to several rigorous theorems which impose constraints on experimentally

observable parameters, generally stated as bounds. These bounds have been put to tests

in high energy collision experiments and there is so far no evidence of the violation of

these bounds. Notable among them is the Froissart-Martin bound [17–19] that restricts

the growth of total cross sections at asymptotic energies: σt ≤ 4π
t0

(logs)2 where t0 is de-

termined from the first principles for a given scattering process. The experimental data

respect this upper bound for diverse scattering processes over a wide energy range. In the

event of any experimental violations of the bound, we shall be compelled to reexamine

some of the axioms of the general theories.

The scattering amplitude in nonrelativistic potential scattering exhibit certain ana-

lyticity properties in energy k for a large class of potentials as is known for a very long

time [20–22]. We recall that the analyticity of scattering amplitude in QFT enjoys a very

intimate relationship with the principle of microcausality. In contrast, however, in the con-

text of potential scattering, there is no such deep reason which leads to analyticity of the

corresponding amplitude. We recall that the nonrelativistic theory is invariant only under

Galilean transformations whereas QFT’s are required to be Lorentz invariant. Khuri [27]

encountered a situation, in a nonrelativistic potential model, where the amplitude does not

satisfy analyticity in momentum k. The consequences of such a violation of analyticity

would not the so serious. Whereas, if the amplitude constructed in the frame works of

general field theories based on LSZ or Wightman axioms, does not exhibit analyticity then

it will raise serious concerns.

The roles played by higher spacetime dimensional field theories (D > 4) has become

increasingly important. One of the primary reasons is that our quest to construct unified

fundamental theories have led physicists to explore consistent theories in higher spacetime

dimensions so that the physical phenomena understood in four spacetime dimensions are

through effective theories. It is worth while to recall, in this context, supersymmetric

theories, supergravity theories and the string theories which have been investigated inten-

sively over past several decades, are consistently defined in higher spacetime dimensions.

In order to understand the physics in four dimensions, we adopt the ideas of Kaluza-Klein

compactifications in the modern perspective. Thus it is invoked that some of the extra

spatial dimensions are compactified in order to facilitate construction of four dimensional

theories enabling us to comprehend physical phenomena observed in the present accessible

energies. There are a large class of effective four dimensional theories arising from var-

ious compactification schemes. Moreover, there are proposals, the so called large radius

compactification schemes where the signatures of the extra spatial dimensions might be

observed in current high energy colliders [23, 24]. As a consequence, there has been a lot

of phenomenological studies to investigate and build models for possible experimental ob-

servations of the decompactified dimensions at the present high energy accelerators such as

LHC. Indeed, the scale of the extra compact dimensions is extracted from the LHC experi-

ments and it puts the compactification scale to be more than 2 TeV [25, 26]. The signatures

of models of large radius compactification and the number of extra compactified dimensions

envisaged in a model, go into getting the experimental limits. In some cases, even the limit

could be higher than 2 TeV and we refer the readers to the two papers cited here.
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The large radius compactification ideas motivated Khuri [27], in order to investigate

the analyticity properties of scattering amplitude in a nonrelativistic potential model. He

identified a model where the potential is spherically symmetric as a function of noncom-

pact coordinates and is of short range, on the other hand one extra spatial coordinate is

compctified on S1. Khuri [27] discovered that, under certain circumstances, the amplitude

does not always satisfy the analyticity properties. He also recalled that the analyticity

properties of amplitudes were investigated earlier [21, 22] with noncompact spatial coor-

dinates (for d = 3 case); (when there was no S1 compactification) the amplitude satisfied

the dispersion relations. Khuri [27] provided counter examples for a model with the S1

compactification to demonstrate how the analyticity of the forward scattering amplitude

beaks down in the presence of S1 compactification. This result is based on perturbation

theoretic approach to nonrelativistic potential scattering. We shall very briefly summarize

Khuri’s result in the next section.

It was shown in I that the forward scattering amplitude in a relativistic quantum

field theory (QFT), with a compact spatial coordinate, satisfies forward dispersion relation

unlike what Khuri had has concluded in his potential model [27]. We had considered a

five dimensional massive, neutral scalar field theory in five dimensional Minkowski (flat)

space to start with. Subsequently, one spatial coordinate was compactified on S1. The

LSZ formalism was adopted to derive the scattering amplitude. As mentioned earlier, if

dispersion relations were violated in such a theory then foundations of general relativistic

quantum field theories would be questioned. However, the proof of dispersion relations in

the forward direction does not provide a complete study of analyticity properties of the

theory. It is necessary to prove the nonforward dispersion relations for a general relativistic

QFT. We had discussed the requisite steps necessary in order to accomplish this goal in I.

The purpose of this article is to bring to completion the investigation of the analyticity of

the four point amplitude.

We briefly recall our previous work [28] on study of analyticity in higher dimensional

theories as those results will be quite useful for the continuation to the present investiga-

tion. We proceeded as follows to study high energy behaviors and analyticity of higher

dimensional theories. It was shown, in the LSZ formalism, that the scattering ampli-

tude has desired attributes in the following sense: (i) We proved the generalization of the

Jost-Lehmann-Dyson theorem for the retarded function [29, 30] for the D > 4 case [31].

(ii) Subsequently, we showed the existence of the Lehmann-Martin ellipse for such a the-

ory. (iii) Thus a dispersion relation can be written in s for fixed t when the momentum

transfer squared lies inside Lehmann-Martin ellipse [32, 33]. (iv) The analog of Martin’s

theorem can be derived in the sense that the scattering amplitude is analytic the product

domain Ds ⊗Dt where Ds is the cut s-plane and Dt is a domain in the t-plane such that

the scattering amplitude is analytic inside a disk, |t| < R̃, R̃ is radius of the disk and it

is independent of s. Thus the partial wave expansion converges inside this bigger domain.

(v) We also derived the analog of Jin-Martin [37] upper bound on the scattering ampli-

tude which states that the fixed t dispersion relation in s does not require more than two

subtractions. (vi) Therefore, a generalized Froissart-Martin bound was be proved.

– 3 –



J
H
E
P
0
6
(
2
0
2
0
)
1
3
9

In order to accomplish our goal for a D = 4 theory which arises from S1 compactifica-

tion of a D = 5 theory i.e. to prove nonforward dispersion relations, we have to establish

the results (i) to (iv) for this theory. It is important to point out, at this juncture, that

(to be elaborated in sequel) the spectrum of the theory consists of a massive particle of

the original five dimensional theory and a tower of Kaluza-Klein states. Thus the requisite

results (i)-(iv) are to obtained in this context in contrast to the results of the D-dimensional

theory with a single massive neutral scalar field.

The paper is organized as follows. In the next section (section 2) we recapitulate the

main results of Khuri’s work [27] without details. The interested reader might consult

the original paper of Khuri or section 2 of paper I. This section also contains essential

aspects of the LSZ formulation which are utilized to prove the dispersion relations. The

third section is devoted to investigation of the analyticity of the scattering amplitude. Our

first step is to obtain the Jost-Lehmann-Dyson representation. Consequently, we would

obtain the domain free from singularity in t-plane. Next, we shall outline the derivation

of the Lehmann ellipses in the present context. The derivation needs to account for the

fact that, unlike the case of the usual derivation for single scalar theory, there are the KK

towers and theirs presence is to be considered. Subsequently, we are in a position to write

the nonforward dispersion relations. The spectral representations of retarded function,

advanced function and the causal function play an important role where we have to sum

over complete set of physical intermediate states. A theory with the KK tower is endowed

with an infinite sum (we shall explain this point later). It is natural to ask how to deal with

this problem. We shall argue that as long as s is finite, may be very large, the contributions

of the number of intermediate KK states to the sum is finite once the unitarity constraint

is imposed. One of our important results is that we prove the analog of Martin’s theorem

where the unitarity and positivity properties are invoked. Moreover, Martin’s theorem

leads to constrain the growth properties of partial wave amplitudes. We also derive a

version of the Froissart-Martin bound for a field theory with S1 compactification. Another

important question is to find out how many subtractions are required to write the fixed-t

dispersion relation. This issue is intimately related to the proof of Jin-Martin bound. We

prove that the scattering amplitude requires at most two subtractions. We summarize and

discuss our results in section 5.

2 Analyticity property of scattering amplitude and compact spatial

dimension

In this section, we shall briefly present some of the results which motivated the present

investigation. We enlist important axioms and the relevant kinematical variables. First we

summarize essential results of Khuri’s work [27]. The interested reader on this topic may

go through his paper for details.

2.1 Scattering in nonrelativistic quantum mechanics with a compact

dimension

Khuri [27] studied analyticity property of scattering amplitude in a nonrelativistic potential

model with a compact spatial dimension. The theory is defined as follows: the potential
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is V (r,Φ), where r is the radial coordinate, |r| = r, of the three dimensional space and

Φ is compact coordinate; Φ + 2πR = Φ. The radius of compactification, R, is taken

to be very small, R � 1, compared to the scale available in the potential theory (there

is no Planck scale here). The perturbative Greens function technique is adopted. The

scattering amplitude depends on three variables: the momentum k, the scattering angle

and an integer associated with the periodicity of Φ. The free Greens function satisfies the

free Schrödinger equation:[
∇2 +

1

R2

∂2

∂Φ2 +K2

]
G0(K; x,Φ : x′,Φ′) = δ3(x− x′)δ(Φ− Φ′) (2.1)

The plane wave solution to the Schrödinger equation is Ψ0(x,Φ) = 1
(2π)2

eik.xeinΦ, n ∈ Z

and K2 = k2 + (n2/R2). The closed form expression for the free Greens function has

been derived in [27]. A notable feature is that for (n2/R2) > K2 the Greens function

is exponentially damped as e−
√
n2/R2−K2

. The expression for the scattering amplitude is

extracted from the large |x| limit when one looks at the asymptotic behavior of the wave

function,

Ψk,n → ek.xeinΦ +

+[KR]∑
m=−[KR]

T (k′,m : k, n)
eik
′
mn|x|

|x|
eimΦ (2.2)

where [KR] is the largest integer less than KR and

k′mn =

√
k2 +

n2

R2
− m2

R2
(2.3)

Khuri [27] identifies a conservation rule: K2 = k2 +(n2/R2) = k′2 +(m2/R2). Moreover, it

is argued that the scattered wave has only (2[KR] + 1) components and those states with

(m2/(R2) > k2 + (n2/R2) are exponentially damped for large |x| and consequently these

do not appear in the scattered wave. Now the scattering amplitude is extracted by Khuri

using the standard prescriptions. It takes the following form

T (k′, n′; k, n) = − 1

8π2

∫
d3x′

∫ 2π

0
dΦ′e−k

′.x′e−in
′Φ′V (x′,Φ′)Ψk,n(x′,Φ′) (2.4)

Note that the condition, k′2 + n′2/R2 = k2 + n2/R2 is to be satisfied. Thus the scattering

amplitude describes the process where incoming wave |k, n > is scattered to final state

|k′, n′ > with the above constraint.

Khuri proceeds further to extract the scattering amplitude starting from the full Greens

function. It satisfied the Schrödinger equation in the presence of the potential. The equa-

tion assumes the following form

T (k′, n′; k, n)− TB = − 1

8π2

∫
. . .

∫
d3xd3x′dΦdΦ′e−i(k

′.x′+n′Φ′)V (x′,Φ′)

G(K; x′,x; Φ′,Φ)V (x,Φ)ei(k.x+nΦ) (2.5)

Here TB is the Born term given by

TB = − 1

8π2

∫
d3x

∫ 2π

0
ei(k−k

′).xV (x,Φ)ei(n−n
′)ΦdΦ (2.6)
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The perturbative Greens function technique is utilized to extract the scattering amplitude

order by order. The crucial observation of Khuri [27] is that when he considers the forward

amplitude for the case of n = 1, to second order, the amplitude does not satisfy analyticity

property in k, whereas for n = 0 he does not encounter any such problem. He had

considered a general class of potentials of the type

V (r,Φ) = u0(r) + 2

N∑
m=1

um(r)cos(mΦ) (2.7)

where um(r) = λm
e−µr

r and the potential is short range in nature. Khuri drew attention

to an important fact that in absence of any compactified coordinates, when analyticity of

scattering amplitude was investigated in a theory in the 3-dimensional space with same

type of potential as above the amplitude did respect analyticity [21, 22].

Remarks.

(i) Khuri [27] noted that, in the context of large radius compactification scenario, if the

amplitude exhibits such a nonanalytic behavior in k, there will be serious implications

for the physics at LHC energies.

(ii) Moreover, it is to be noted that in the frameworks of nonrelativistic quantum me-

chanics, the analyticity of scattering amplitude is not so intimately connected with

causality compared to a close relationship between the two as in relativistic quantum

field theory. In other words, the analyticity of the scattering amplitude in nonrel-

ativistic quantum mechanics is not so sacred as in QFT since analyticity is deeply

related with a fundamental principle like microcausality. Recall that the nonrelativis-

tic theory is only invariant under Galilean transformations i.e. they are not required

to be Poincaré invariant. The relativistic quantum field theories (QFT) are Poincaré

invariant. The principle of microcausality plays a very crucial role in local field the-

ories. Furthermore, microcausality and analyticity are very intimately related. Thus

the proof of dispersion relations in QFT very critically depends on microcausality. A

violation of dispersion relation would necessarily lead to questioning the foundations

of general quantum field theories.

(iii) In view of above remarks, we are led to investigate the analyticity property of scat-

tering amplitude in a quantum field theory with a compactified spatial dimension.

2.2 Quantum field theory with compact spatial dimensions

We have shown in I that the forward scattering amplitude of a theory, defined on the

manifold R3,1 ⊗ S1, satisfied dispersion relations. This result was obtained in the frame

works of the LSZ formalism. We summarize, in this subsection, the starting points of I as

stated below.

We considered a neutral, scalar field theory with mass m0 in flat five dimensional

Minkowski space R4,1. It is assumed that the particle is stable and there are no bound

states. The notation is that the spacetime coordinates are, x̂, and all operators are denoted

– 6 –
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with a hat when they are defined in the five dimensional space where the spatial coordinates

are noncompact.The LSZ axioms are [1]:

A1. The states of the system are represented in a Hilbert space, Ĥ. All the physical

observables are self-adjoint operators in the Hilbert space, Ĥ.

A2. The theory is invariant under inhomogeneous Lorentz transformations.

A3. The energy-momentum of the states are defined. It follows from the requirements

of Lorentz and translation invariance that we can construct a representation of the or-

thochronous Lorentz group. The representation corresponds to unitary operators, Û(â, Λ̂),

and the theory is invariant under these transformations. Thus there are Hermitian oper-

ators corresponding to spacetime translations, denoted as P̂µ̂, with µ̂ = 0, 1, 2, 3, 4 which

have following properties: [
P̂µ̂, P̂ν̂

]
= 0 (2.8)

If F̂(x̂) is any Heisenberg operator then its commutator with P̂µ̂ is[
P̂µ̂, F̂(x̂)

]
= i∂̂µ̂F̂(x̂) (2.9)

It is assumed that the operator does not explicitly depend on spacetime coordinates. If

we choose a representation where the translation operators, P̂µ̂, are diagonal and the basis

vectors |p̂, α̂ > span the Hilbert space, Ĥ,

P̂µ̂|p̂, α̂ >= p̂µ̂|p̂, α̂ > (2.10)

then we are in a position to make more precise statements:

• Existence of the vacuum: there is a unique invariant vacuum state |0 > which has the

property

Û(â, Λ̂)|0 >= |0 > (2.11)

The vacuum is unique and is Poincaré invariant.

• The eigenvalue of P̂µ̂, p̂µ̂, is light-like, with p̂0 > 0. We are concerned only with massive

stated in this discussion. If we implement infinitesimal Poincaré transformation on

the vacuum state then

P̂µ̂|0 >= 0, and M̂µ̂ν̂ |0 >= 0 (2.12)

from above postulates and note that M̂µ̂ν̂ are the generators of Lorentz transforma-

tions.

A4. The locality of theory implies that a (bosonic) local operator at spacetime point x̂µ̂

commutes with another (bosonic) local operator at x̂′µ̂ when their separation is spacelike

i.e. if (x̂ − x̂′)2 < 0. Our Minkowski metric convention is as follows: the inner product

of two 5-vectors is given by x̂.ŷ = x̂0ŷ0 − x̂1ŷ1 − . . . − x̂4ŷ4. Since we are dealing with a

– 7 –
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neutral scalar field, for the field operator φ̂(x̂): φ̂(x̂)
†

= φ̂(x̂) i.e. φ̂(x̂) is Hermitian. By

definition it transforms as a scalar under inhomogeneous Lorentz transformations

Û(â, Λ̂)φ̂(x̂)Û(â, Λ̂)−1 = φ̂(Λ̂x̂+ â) (2.13)

The micro causality, for two local field operators, is stated to be[
φ̂(x̂), φ̂(x̂′)

]
= 0, for (x̂− x̂′)2 < 0 (2.14)

It is well known that, in the LSZ formalism, we are concerned with vacuum expectation

values of time ordered products of operators as well as with the retarded product of fields.

The requirements of the above listed axioms lead to certain relationship, for example, be-

tween vacuum expectation values of R-products of operators. Such a set of relations are

termed as the linear relations and the importance of the above listed axioms is manifested

through these relations. In contrast, unitarity imposes nonlinear constraints on ampli-

tude. For example, if we expand an amplitude in partial waves, unitarity demands certain

positivity conditions to be satisfied by the partial wave amplitudes.

We summarize below some of the important aspects of LSZ formalism as we utilize them

through out the present investigation. Moreover, the conventions and definitions of I will

be followed for the conveniences of the reader.

(i) The asymptotic condition: according to LSZ the field theory accounts for the asymp-

totic observables. These correspond to particles of definite mass, charge and spin etc.

φ̂in(x̂) represents the free field and a Fock space is generated by the field operator.

The physical observable can be expressed in terms of these fields.

(ii) φ̂(x̂) is the interacting field. LSZ technique incorporates a prescription to relate the

interacting field, φ̂(x̂), with φ̂in(x̂); consequently, the asymptotic fields are defined

with a suitable limiting procedure. Thus we introduce the notion of the adiabatic

switching off of the interaction. A cutoff adiabatic function is postulated such that

this function controls the interactions. It is 1 at finite interval of time and it has a

smooth limit of passing to zero as |t| → ∞. It is argued that when adiabatic switching

is removed we can define the physical observables.

(iii) The fields φ̂in(x̂) and φ̂(x̂) are related as follows:

x̂0 → −∞ φ̂(x̂)→ Ẑ1/2φ̂in(x̂) (2.15)

By the first postulate, φ̂in(x̂) creates free particle states. However, in general φ̂(x̂) will

create multi particle states besides the single particle one since it is the interacting

field. Moreover, < 1|φ̂in(x̂)|0 > and < 1|φ̂(x̂)|0 > carry same functional dependence

in x̂. If the factor of Ẑ were not the scaling relation between the two fields (2.15), then

canonical commutation relation for each of the two fields (i.e. φ̂in(x̂) and φ̂(x̂)) will

be the same. Thus in the absence of Ẑ the two theories will be identical. Moreover,

the postulate of asymptotic condition states that in the remote future

x̂0 →∞ φ̂(x̂)→ Ẑ1/2φ̂out(x̂). (2.16)

– 8 –
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We may as well construct a Fock space utilizing φ̂out(x̂) as we could with φ̂(x̂)in.

Furthermore, the vacuum is unique for φ̂in, φ̂out and φ̂(x̂). The normalizable single

particle states are the same i.e. φ̂in|0 >= φ̂out|0 >. We do not display Ẑ from now

on. If at all any need arises, Ẑ can be introduced in the relevant expressions.

We define creation and annihilation operators for φ̂in, φ̂out. We recall that φ̂(x̂) is not a free

field. Whereas the fields φ̂in,out(x̂) satisfy the free field equations [�5+m2
0]φ̂in,out(x̂)=0,

the interacting field satisfies an equation of motion which is endowed with a source cur-

rent: [�5 + m2
0]φ̂(x̂) = ĵ(x̂). We may use the plane wave basis for simplicity in certain

computations; however, in a more formal approach, it is desirable to use wave packets.

The relevant vacuum expectation values of the products of operators in LSZ formalism

are either the time ordered products (the T-products) or the retarded products (the R-

products). We shall mostly use the R-products and we use them extensively throughout

this investigation. It is defined as

R φ̂(x̂)φ̂1(x̂1) . . . φ̂n(x̂n) = (−1)n
∑
P

θ(x̂0 − x̂10)θ(x̂10 − x̂20) . . . θ(x̂n−10 − x̂n0)

[[. . . [φ̂(x̂), φ̂i1(x̂i1)], φ̂i2(x̂i2)] . . .], φ̂in(x̂in)] (2.17)

note that Rφ̂(x̂) = φ̂(x̂) and P stands for all the permutations i1, . . . in of 1, 2 . . . n. The

R-product is hermitian for hermitian fields φ̂i(x̂i) and the product is symmetric under

exchange of any fields φ̂1(x̂1) . . . φ̂n(x̂n). Notice that the field φ̂(x̂) is kept where it is

located in its position. We list below some of the important properties of the R-product

for future use [6]:

(i) R φ̂(x̂)φ̂1(x̂1) . . . φ̂n(x̂n) 6= 0 only if x̂0 > max {x̂10, . . . .̂xn0}.

(ii) Another important property of the R-product is that

R φ̂(x̂)φ̂1(x̂1) . . . φ̂n(x̂n) = 0 (2.18)

whenever the time component x̂0, appearing in the argument of φ̂(x̂) whose position

is held fix, is less than time component of any of the four vectors (x̂1, . . . x̂n) appearing

in the arguments of φ̂(x̂1) . . . φ̂(x̂n).

(iii) We recall that

φ̂(x̂i)→ φ̂(Λ̂x̂i) = Û(Λ̂, 0)φ̂(x̂i)Û(Λ̂, 0)−1 (2.19)

Under Lorentz transformation Û(Λ̂, 0). Therefore,

R φ̂(Λ̂x̂)φ̂(Λ̂x̂i) . . . φ̂n(Λ̂x̂n) = Û(Λ̂, 0)R φ(x)φ1(x1) . . . φn(xn)U(Λ, 0)−1 (2.20)

And

φ̂i(x̂i)→ φ̂i(x̂i + â) = eiâ.P̂ φ̂i(x̂i)e
−iâ.P̂ (2.21)

under spacetime translations. Consequently,

R φ̂(x̂+ â)φ̂(x̂i + â) . . . φ̂n(x̂n + â) = eiâ.P̂R φ̂(x̂)φ̂1(x̂1) . . . φ̂n(x̂n)e−iâ.P̂ (2.22)
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Therefore, the vacuum expectation value of the R-product dependents only on differ-

ence between pair of coordinates: in other words it depends on the following set of

coordinate differences: ξ̂1 = x̂1 − x̂, ξ̂2 = x̂2 − x̂1 . . . ξ̂n = x̂n−1 − x̂n as a consequence

of translational invariance.

We may define ‘in’ and ‘out’ states in terms of the creation operators associated with ‘in’

and ‘out’ fields as follows

|k̂1, k̂2, . . . k̂n in > = â†in(k̂1)â†in(k̂2) . . . â†in(k̂n)|0 > (2.23)

|k̂1, k̂2, . . . k̂n out > = â†out(k̂1)â†out(k̂2) . . . â†out(k̂n)|0 > (2.24)

We can construct a complete set of states either starting from ‘in’ field operators or the

‘out’ field operators and each complete set will span the Hilbert space, Ĥ. Therefore, a

unitary operator will relate the two sets of states in this Hilbert space. This is a heuristic

way of introducing the concept of the S-matrix. We shall define S-matrix elements through

LSZ reduction technique in subsequent section.

We shall not distinguish between notations like φ̂out,in or φ̂out,in and therefore, there

might be use of the sloppy notation in this regard.

We record the following important remark en passant. The generic matrix element

< α̂|φ̂(x̂1)φ̂(x̂2) . . . |β̂ > is not an ordinary function but a distribution. Thus it is to be

always understood as smeared with a Schwarz type test function f ∈ S. The test function

is infinitely differentiable and it goes to zero along with all its derivatives faster than any

power of its argument. We shall formally derive expressions for scattering amplitudes and

the absorptive parts by employing the LSZ technique. It is to be understood that these

are generalized functions and such matrix elements are properly defined with smeared out

test functions.

We are in a position to study several attributes of scattering amplitudes in the five

dimensional theory such as proving existence of the Lehmann-Martin ellipse, give a proof

of fixed t dispersion relation to mention a few. However, these properties have been derived

in a general setting recently [28] for D-dimensional theories. The purpose of incorporating

the expression for the VEV of the commutator of two fields in the 5-dimensional theory

is to provide a prelude to the modification of similar expressions when we compactify the

theory on S1 as we shall see in the next section.

The compactification of scalar field theory: R4,1 → R3,1⊗S1. We compile below

the relevant materials necessary to proceed further in order to prove the fixed-t dispersion

relations. The details are presented in I. One spatial dimension of the 5-dimensional theory

is compactified on S1. If y is the compact coordinate and xµ are spacetime coordinates,

defined on R3,1, then x̂µ̂ = (xµ, y). The asymptotic field in D = 5 satisfy the free field

equation [�5 + m2
0]φ̂in,out(x̂) = 0. Due to the periodicity of y, y + 2πR = y, R being the

radius of S1, φ̂in,out(x̂) admit KK mode expansion.

φ̂in,out(x̂) = φ̂in,out(x, y) = φin,out0 (x) +
+n=∞∑

n=−∞,n 6=0

φin,outn (x)e
iny
R (2.25)
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The equation of motion is

[�4 −
∂

∂y2
+m2

n]φin,outn (x, y) = 0 (2.26)

where φin,outn (x, y) = φin,outn e
iny
R and n = 0 term has no y-dependence being denoted as

φ0(x); from now on �4 = � here and everywhere; and m2
n = m2

o+
n2

R2 . Thus we have tower of

massive states. The momentum associated in the y-direction is qn = n/R and is quantized

in the units of 1/R. It is an additive conserved quantum number and designated as the

Kaluza-Klein (KK) charge. The interacting field φ̂(x̂), admits a similar KK expansion;

however, the equation motion contains a source current, ĵ(x, y). This current is expanded

in KK modes: {j0(x), Jn(x)einy/R} where n takes values from −∞ to +∞ and n = 0 is

excluded from Jn. Note that j0(x) and Jn(x)einy/R are source associated with φ0 and

φn(x)einy/R respectively. The mode expansion, analogous to (2.25) is

ĵ(x, y) = j0(x) +

n=+∞∑
n=−∞,n 6=0

Jn(x)einy/R (2.27)

and each current carries the KK charge n.

Let us consider the set of asymptotic fields, {φin0 , φinn }. We can construct the Fock

spaces associated with each of these fields from their corresponding creation operators.

Let a†(k) and A†(p, qn) be creation operators for φ0(x) and φn(x) respectively. The latter

is endowed with the KK charge qn. Now each set of operator will create Hilbert spaces

Hn, n = 0,±1, . . .. The same construction can be carried out with the set of out field. The

spectrum of the compactified theory is: a field of mass m0, associated with φ0 and tower of

Kaluza-Klein (KK) states characterized by mass and discrete ‘charge’, (m2
n = m2

o+ n2

R2 , qn),

respectively. The Hilbert space, Ĥ, of D = 5 theory is decomposed as a direct sum of

Hilbert spaces where each one is characterized by its quantum number qn

Ĥ =
∑
⊕Hn (2.28)

Thus H0 is the Hilbert space constructed from φin0 with qn = 0 and Hn are constructed

from the KK fields. Therefore, vectors belong to two spaces with different KK charges are

orthogonal to one another

< p, qn|p′, qn′ >= δ3(p− p′)δn,n′ (2.29)

Remark. Note also that n ∈ Z; if there is an additional ‘parity’ invariance under y → −y
we need only to sum over positive set of integers {n} in the KK expansions. We introduce

the notion of an antiparticle. If a ‘particle’ carried charge qn > 0 its ‘anti-particle’ has

negative charge −qn; however, it must have positive energy. Thus an intermediate state

|qn, q−n > has vacuum quantum number and so on.

2.3 Definitions and kinematical variables

In order to investigate the analyticity of an amplitude and determine its analyticity domains

we have to define kinematical variables and mass thresholds. There are three different class
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of scattering processes: (i) scattering of states with qn = 0, i.e. scattering of zero modes.

(ii) The scattering of a zero mode state with a KK state i.e. qn 6= 0. The reactions (i) and

(ii) have been dealt in I for forward scattering. The study of the nonforward scattering of

reactions (i) and (ii) is a straight forward generalization. It is omitted in this work.

The states carrying qn 6= 0 are denoted by χn (from now on a state carrying charge

is defined with a subscript n and momenta carried by external particles are denoted as

pa, pb, . . .). Moreover, we shall consider elastic scattering of states carrying equal charge;

the elastic scattering of unequal charge particles is just the elastic scattering of unequal

mass states due to mass-charge relationship for the KK states.

Let us consider a generic 4-body reaction (all states carry non-zero n)

a+ b→ c+ d (2.30)

The particles (a, b, c, d) (the corresponding fields being χa, χb, χc, χd) respectively carrying

momenta pa, pb, pc, pd. The Lorentz invariant Mandelstam variables are

s = (pa + pb)
2 = (pc + pd)

2, t = (pa− pd)2 = (pb− pc)2, u = (pa− pc)2 = (pb− pd)2 (2.31)

and
∑
p2
a + p2

b + p2
c + p2

d = m2
a + m2

b + m2
c + m2

d. The independent identities of the four

particles will facilitate the computation of the amplitude so that we keep track of the fields

reduced using LSZ procedure. We list below some relevant (kinematic) variables which will

be required in future

M2
a , M2

b , M2
c , M2

d (2.32)

These correspond to lowest mass two or more particle states which carry the same quantum

number as that of particle a, b, c and d respectively. We define below six more variables

(Mab,Mcd), (Mac,Mbd), (Mad,Mbc) (2.33)

The variable Mab carries the same quantum number as (a and b) and it corresponds to

two or more particle states. Similar definition holds for the other five variables introduced

above. We define two types of thresholds: (i) the physical threshold, sphys, and sthr. In

absence of anomalous thresholds (and equal mass scattering) sthr = sphys. Similarly, we

may define uphys and uthr which will be useful when we discuss dispersion relations. We

assume from now on that sthr = sphys and uthr = uphys. Now we outline the derivation of

the expression for a four point function in the LSZ formalism. We start with |pd, pc out >
and |pb, pa in > and considers the matrix element < pd, pc out|pb, pa in >. Next we subtract

out the matrix element < pd, pc in|pb, pa in > to define the S-matrix element.

< pd, pc out|pb, pa in > = 4p0
up

0
bδ

3(pd − pb)δ
3(pa − pc)−

i

(2π)3

∫
d4x

∫
d4x′e−i(pa.x−pc.x

′)×

K̃xK̃x′ < pd out|R̄(x′;x)|pb in > (2.34)

R(x, x′) = −iθ(x0 − x′o)[χa(x), χc(x
′)] (2.35)
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We have reduced fields associated with a and c in (2.34). In the next step we may reduce

all the four fields and in such a reduction we shall get VEV of the R-product of four fields

which will be operated upon by four K-G operators. However, the latter form of LSZ

reduction (when all fields are reduced) is not very useful when we want to investigate the

analyticity property of the amplitude in the present context. In particular our intent is to

write the nonforward dispersion relation. Thus we abandon the idea of reducing all the

four fields.

Remark. Note that on the right hand side of the equation (2.34) the operators act on

Rχa(x)χ(x′)c and there is a θ-function in the definition of the R-product. Consequently,

the action of KxKx′ on Rχa(x)χc(x
′) will produce a term RJa(x)Jc(x

′). In addition the op-

eration of the two K-G operators will give rise to δ-functions and derivatives of δ-functions

and some equal time commutators i.e. there will terms whose coefficients are δ(x0 − x′0).

When we consider Fourier transforms of the derivatives of these δ-functions they will be

transformed to momentum variables. However, the amplitude is a function of Lorentz in-

variant quantities. Thus one will get only finite polynomials of such variables, as has been

argued by Symanzik [38]. His arguments is that in a local quantum field theory only finite

number of derivatives of δ-functions can appear. Moreover, in addition, there are some

equal time commutators and many of them vanish when we invoke locality arguments.

Therefore, we shall use the relation

KxKx′Rχ(x)χc(x
′) = RJa(x)Jc(x

′) (2.36)

keeping in mind that there are derivatives of δ-functions and some equal time commuta-

tion relations which might be present. Moreover, since the derivative terms give rise to

polynomials in Lorentz invariant variables, the analyticity properties of the amplitude are

not affected due to the presence of such terms. This will be understood whenever we write

an equation like (2.36).

3 Nonforward elastic scatting of n 6= 0 Kaluza-Klein states

We envisage elastic scattering of two equal mass, m2
n = m2

0 + n2

R2 , hence equal charge KK

particles and we take n positive. Our first step is to define the scattering amplitude for

this reaction (see (2.34))

< pd, pc out|pb, pa in > = 4p0
up

0
bδ

3(pd − pb)δ
3(pa − pc)−

i

(2π)3

∫
d4x

∫
d4x′e−i(pa.x−pc.x

′)×

K̃xK̃x′ < pd out|R̄(x′;x)|pb in > (3.1)

where

R̄(x′;x) = −iθ(x0 − x′0)[χa(x), χc(x
′)] (3.2)
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and K̃x = (�+m2
n). We let the two KG operators act on R̄(x;x′) in the VEV and resulting

equation is

< pd, pc out|pb, pa in >= < pd, pc in|pb, pa in > −
1

(2π)3

∫
d4x

∫
d4x′e−i(pa.x−pc.x

′)×

< pd|θ(x′0 − x0)[Jc(x
′), Ja(x)]|pb > (3.3)

Here Ja(x) and Jc(x
′) are the source currents associated with the fields χa(x) and χb(x

′)

respectively. We arrive at (3.3) from (3.1) with the understanding that the r.h.s. of (3.3)

contains additional terms; however, these terms do not affect the study of the analyticity

properties of the amplitude as alluded to earlier. We shall define three distributions which

are matrix elements of the product of current. The importance of these functions will be

evident in sequel

FR(q) =

∫ +∞

∞
d4zeiq.zθ(z0) < Qf |[Ja(z/2), Jc(−z/2)]|Qi > (3.4)

FA(q) = −
∫ +∞

∞
d4zeiq.zθ(−z0) < Qf |Ja(z/2), Jc(−z/2)]|Qi > (3.5)

and

FC(q) =

∫ +∞

−∞
d4zeiq.z < Qf |[Ja(z/2), Jc(−z/2)]|Qi > (3.6)

Moreover,

FC(q) = FR(q)− FA(q) (3.7)

|Qi > and |Qf > are states which carry four momenta; these momenta are held fixed

and treated as fixed parameter. Let us focus attention on the matrix element of the causal

commutator defined in (3.6). The prescription is to open up the commutator of the currents

and introduce a complete set of physical states. Let us assign KK charge n to initial and

final states. Thus the conservation of KK charge dictates which intermediate physical

states are permitted consistent under the KK charge conservation law. The complete

set of physical states are:
∑

n |Pnα̃n >< Pnα̃n| = 1 and
∑

n′ |P̄n′ β̃n′ >< P̄n′ β̃n′ | = 1.

Here {α̃n, β̃n′} stand for quantum numbers that are permitted for the intermediate states.

The momenta Pn, P̄n′ ∈ V +; V + is the forward light cone. The matrix element defining

FC(q), (3.7), assumes the following form∫
d4zeiq.z

[∑
n

(∫
d4Pn < Qf |Ja

(z
2

)
|Pnα̃n >< Pnα̃n|Jc

(
−z

2

)
|Qi >

)

−
∑
n′

(∫
d4P̄n′ < Qf |Jc

(
−z

2

)
|P̄n′ β̃n′ >< P̄n′ β̃n′ |Ja

(z
2

)
|Qi >

)]
(3.8)

In order to derive the spectral representation for (3.8) following steps are used. We imple-

ment judicious translation operations to get rid of the z-dependence of the currents. Then

carry out the integration
∫
d4z which leads to a δ-function. The details of the derivations

are given in I. Finally, FC(q) is expressed as

FC(q) =
1

2
(Au(q)−As(q)) (3.9)
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where

2As(q) =
∑
n′

(
< Qf |j(0)a|P̄n′ =

(Qi +Qf )

2
+ q, β̃n′ > ×

< β̃′n,
¯̃Pn =

(Qi +Qf )

2
+ q|jc(0)|Qi >

)
(3.10)

and

2Au =
∑
n

(
< Qf |jc(0)|Pn =

(Qi +Qf )

2
− q, α̃n > ×

< α̃n,Pn =
(Qi +Qf )

2
− q|jl(0)|Qi >

)
(3.11)

Consequences of microcausality. The Fourier transform of FC(q), F̄C(z), vanishes

outside the light cone. Moreover, FC(q) will also vanish as function of q wherever, both

As(q) and Au(q) vanish simultaneously. Furthermore, since (
Qi+Qf

2 +q) ∈ V + and (
Qi+Qf

2 −
q) ∈ V + we arrive at the following conclusions(

Qi +Qf
2

+ q

)2

≥ 0,

(
Qi +Qf

2

)
0

+ q0 ≥ 0 (3.12)

and (
Qi +Qf

2
− q
)2

≥ 0,

(
Qi +Qf

2

)
0

− q0 ≥ 0 (3.13)

The above two conditions, for nonvanishing of Au(q) and As(q) implies the existence of the

minimum mass parameters for the nonvanishing of Au(q) and As(q): (i) (
Qi+Qf

2 + q)2 ≥
M+

2 and (ii) (
Qi+Qf

2 − q)2 ≥M−2.

Let us discuss how the theory with KK states differs from the one with a single scalar

field. In the spectral represents of Au(q) and As(q) we sum over all physical intermediate

states which means the sum includes the KK states as long as their quantum numbers

are such that KK charge conservation is satisfied (depending on the charges of |Qi > and

|Qf >). On the other hand, for theory with a single scalar field the intermediate states

correspond to physical multiparticle states. Naturally, it begs an answer to the question

whether the entire KK tower (infinite number of them) contributes. This issue cannot be

resolved in the ‘linear program’ to study analyticity in the frameworks of axiomatic field

theory. We shall return to this question and provide a resolution in the next section.

In order to derive a fixed-t dispersion relation we have to identify a domain which

is free from singularities in the t-plane. The first step is to obtain the Jost-lehmann-

Dyson representation for the causal commutator, FC(q), for the case of equal mass elastic

processes with n 6= 0. Therefore, the technique of Jost and Lehmann [29] is quite adequate.

We do not have to resort to more elegant and general approach of Dyson [30]. We present

the results concisely and refer to [28] for details. As noted in (3.12) and (3.13), FC(q) is

nonvanishing in those domains. We designate this region as R̄,

R̄ :

{
(Q+ q)2 ≥M+

2, Q+ q ∈ V + and (Q− q)2 ≥M−2, Q− q ∈ V +

}
(3.14)
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where Q =
Qi+Qf

2 and V + being the future light cone. There is no need to repeat the

derivation of Jost-Lehmann representation here. The present case differs from the single-

field case in the following way. Here we are looking for the nearest singularity to determine

the singularity free region. For the case at hand, the presence of the towers of KK states

is to be envisaged in the following perspective. Since we consider equal mass scattering

the location of nearest singularity will be decided by the lowest values of M+ and M−.

Let us elaborate this point. We recall that there is the tower of KK states appearing as

intermediate states (see (3.10) and (3.11)). Thus each new threshold could create region

of singularity of FC(q). We are concerned about the identification of the singularity free

domain. Thus the lowest threshold of two particle intermediate state, consistent with

desired constraints, control the determination of this domain of analyticity. Therefore, for

the equal mass case, the Jost-Lehmann representation for FC(q) is such that it is nonzero

in the region R̄,

FC(q) =

∫
S
d4u

∫ ∞
0

dχ2ε(q0 − u0)δ[(q − u)2 − χ2)]Φ(u,Q.χ2) (3.15)

Note that u is also a 4-dimensional vector (not the Mandelstam variable u). The domain

of integration of u is the region S specified below

S :

{
Q+u ∈ V +, Q−u ∈ V +, Max [0,M+−

√
(Q+ u)2,M−−

√
(Q− u)2] ≤ χ

}
(3.16)

and Φ(u,Q.χ2) arbitrary. Here χ2 is to be interpreted like a mass parameter. Moreover,

recall the assumptions about the features of the causal function stated above. Since the

retarded commutator involves a θ-function, if we use integral representation for it (see [29])

we derive an expression for the retarded function,

FR(q) =
i

2π

∫
d4q′δ3(q′ − q)

1

q′0 − q0
FC(q′), Im q0 > 0 (3.17)

Moreover, for the retarded function, FR(q), the corresponding Jost-Lehmann representation

reads [29]

FR(q) =
i

2π

∫
S
d4u

∫ ∞
0

dχ2 Φ(u,Q, χ2)

(q − u)2 − χ2
(3.18)

Note that these integral representations are written for the case where the integral con-

verges. It is well known, in the LSZ framework, that the integrand will, at most, have

polynomial growth. It follows from the fact that the matrix elements are tempered distri-

butions. In any case, the aforementioned properties of the integrand in the representation

does not affect the analyticity of FR(q). One important observation is that the singularities

lie in the complex q-plane.1 We provide below a short and transparent discussion for the

sake of completeness. The locations of the singularities are found by examining where the

denominator (3.18) vanishes,

(q0 − u0)2 − (q1 − u1)2 − (q2 − u2)2 − (q3 − u3)2 = χ2 (3.19)

1See Itzykson and Zuber [5] and Sommer [8] for elaborate discussions.
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We conclude that the singularities lie on the hyperboloid give by (3.19) and those points

are in domain S as defined in (3.16). There are points in the hyperboloid which belong to

the domain S. These are called admissible. Moreover, according to our earlier definition,

the domain R̄ is where FC(q) is nonvanishing (see (3.14)). Then there is a domain which

contains a set of real points where FC(q) vanishes, call it R and this is compliment to real

elements of R̄. From the above arguments, we arrive at the conclusion that FC(q) = 0 for

every real point belonging to R (the compliment of R̄). Thus these are the real points in the

q-plane where FR(q) = FA(q) since FC(q) = 0 there. Recall the definition of R̄, (3.14). A

border is defined by the upper branch of the parabola given by the equation (Q+q)2 =M+
2

and the other one is given by the equation for another parabola (Q − q)2 = M−2. Now

we identify the coincidence region to be the domain bordered by the two parabolae. It

is obvious from the above discussions that the set S is defined by the range of values u

and χ2 assume in the admissible parabola. Now we see that those set of values belong

to a subset of (u, χ2) of all parabolas (recall equation (3.19)) [8] and [29, 30]. In order

to transparently discuss the location of a singularity, let us go through a few short steps

as the prescription to illustrate essential points. We discussed about the identification of

admissible parabola. The amplitude is function of Lorentz invariant kinematical variables;

therefore, it is desirable to express the constraints and equations in terms of those variables

eventually. Let us focus on Q ∈ V + and choose a Lorentz frame such that four vector

Q = (Q0,0) where 0 stands for the three spatial components of Q. Next step is to choose

four vector q appropriately to exhibit the location of singularity in a simple way. This is

achieved as follows: choose one spatial component of q in order to identify the position of the

singularity in this variable and treat q0 and the rest of the components of q as parameters

and hold them fixed [8]. We remind the reader that all the variables appearing in the Jost-

Lehmann representation for FC(q) and FR(q) are Lorentz invariant objects. Thus going

to a specific frame will not alter the general attributes of the generalized functions. If we

solve for q2
1 in (3.19) after obtaining an expression for q2

1

q1 = u1 ± i
√
χ2
min(u)− (q0 − u0)2 + (q2 − u2)2 + (q3 − u3)2 + ρ, ρ > 0 (3.20)

We remind that the set of points {u0, u1, u2, u3;χ2
min = min χ2} lie in S. The above

exercise has enabled us to identify the domain where the singularities might lie with the

choice for the variables Q and u we have made. We are dealing with the equal mass case

and note that the location of the singularities are symmetric with respect to the real axis.

We now examine a further simplified scenario where the coincidence region is bounded by

two branches of hyperboloids so that M2
+ =M2

− =M2. Now the singular points are

q1 = u1 ± i
√
Min [χ2

min − u2
0 + u2

2 + u2
3] + ρ, ρ > 0 (3.21)

For the case under considerations: (Q+ q)2 = (Q− q)2 =M2, and

q1 = u1 ± i
√

(M−
√
Q2 − u2

1)2 + ρ, ρ > 0 (3.22)

The above result paves the way to prove the existence of the Lehmann ellipses. It is

important to recognize the essential difference between the present investigation (i.e. the
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presence of the KK towers) and the results derived for a single massive scalar field. We

have to deal with the appearance of several thresholds for identification of the coincidence

regions. These thresholds are the multiparticle states in various channels as discussed

earlier and introduced earlier in this section through the two equations (2.32) and (2.33).

Their relevance is already reflected in the spectral representations, (3.10) and (3.11), when

we introduced complete set of intermediate states. We remark that the presence of the

excited KK states do not shrink the singularity free regions. Therefore, the domain we

have obtained is the smallest domain of analyticity; nevertheless, we feel that in order to

arrive at this conclusion the entire issue had to be examined ab initio.

The Lehmann Ellipses. Our goal is to derive fixed-t dispersion relations. Noted that as

s→ sthr, cosθ goes out of the physical region −1 ≤ cosθ ≤ +1, (θ being the c.m. scattering

angle) when we wish to hold t fixed. We choose the following kinematical configuration

in order to derive the Lehmann ellipse for the case at hand i.e. elastic scattering of equal

(nonzero) charge KK states, hence particles of equal mass. Here (a, b) and (c, d) are re-

spectively the incoming and outgoing particles. They are assigned the following energies

and momenta in the c.m. frame:

pa = (Ea, k), pb = (Eb,−k), pc = (Ec, k′), pd = (Ed,−k′) (3.23)

k is the c.m. momentum, |k|= |k′|, Ea =
√

(m2
a+k2), Eb =

√
(m2

c+k2), Ec =
√

(m2
c+k′2)

and Ed =
√

(m2
d+k′2). Although all the particles, (a,b,c,d), are identical, we keep labeling

them as individual one for the purpose which will be clear shortly. Thus Ea =Eb and

Ec =Ed and k̂.k̂′= cosθ. It is convenient to choose the following coordinate frame for the

ensuing discussions.

pa = (
√
s,+k, 0), pb = (

√
s,−k, 0) (3.24)

0 is the two spatial components of vector k and

pc = (
√
s,+kcosθ,+ksinθ, 0) pd = (

√
s,−kcosθ,−ksinθ, 0) (3.25)

with k = |k| = |k′|. Thus, s = (pa + pb)
2 = (pc + pd)

2

q =
1

2
(pd − pc) = (0,−kcosθ,−ksinθ, 0), P =

1

2
(pa + pb) = (

√
s, 0, 0, 0) (3.26)

With these definitions of q and P , when we examine the conditions for nonvanishing of the

spectral representations of As and Au we arrive at

(P + q)2 >M+
2, for As 6= 0, (P − q)2 >M−2, for Au 6= 0 (3.27)

Thus the coincidence region is given by the condition

(P + q)2 <M+
2, (P − q)2 <M−2 (3.28)

We are dealing with the equal mass case; therefore, M+
2 = M−2 = M2. We conclude

from the energy momentum conservation constraints (use the expressions for P and q)
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that p2
c = (P − q)2 < M2

c and p2
d = (P + q)2 < M2

d in this region. Moreover, (pa − pc)2 =

(P − q − pa)
2 < Mac

2 and (pa + pd)
2 = (P − q − pa)

2 < Mad
2. We also note that

(P − q) ∈ V + and (P + q) ∈ V +. The admissible hyperboloid is (q− u)2 = χ2
min + ρ, ρ > 0

with (pa+pb
2 ± u) ∈ V +. χ2

min assumes the following form for the equal mass case,

χ2
min = Max

{
0,M−

√(
(pa + pb)

2
+ u

)2

,M−

√(
(pa + pb)

2
− u
)2}

(3.29)

Notice thatM appearing in the second term of the curly in (3.29) is the mass of two or more

multiparticle states carrying the quantum numbers of particle c; whereas M appearing in

the third term inside the curly bracket is the mass of two or more multiparticle states

carrying the quantum numbers of particle d. In the present caseM has the same quantum

number as that of the incoming state carrying KK charge n. Thus, in this sector, we can

proceed to show the existence of the small Lehmann Ellips (SLE). It is not necessary to

present the entire derivation here. The extremum of the ellipse is given by

cosθ0 =

(
1 +

(M2
c −m2

c)(M
2
d −m2

d)

k2(s−M2
c −M2

d )

)1/2

(3.30)

We note that Mc =
√
m2
n +m2

0 is the mass of the lowest multiparticle state (one particle

with KK charge n and another with KK charge zero); moreover, Mc = Md. Thus the

denominator is k2s.

cosθ0 =

(
1 +

9m4
0

k2s

)1/2

(3.31)

It will be a straightforward work to derive the properties of the large Lehmann Ellipse

(LLE) by reducing all the four fields in the expression for the four point function as is the

standard prescription; also note that the value of cosθ(s) depends on s.

Important remark. The first point to note is that in the presence of the other states of

KK tower, we have to carry out the same analysis as above for each sector. Notice, however,

each multiparticle state composed of KK towers has to have the quantum numbers of c

(same as d since we consider elastic channels of equal mass scattering). Thus if c carries

charge n, then a possible KK state could be q+ l+m = n since KK charges can be positive

and negative. The second point is when we derive the value of cosθ0, for each such case,

it is rather easy to work out that value will be away from original expression (3.30). Thus

the nearest singularity in cosθ plane is given by the expression (3.31) although there will

be Lehmann ellipses associated with higher KK towers.

We expand the scattering amplitude in partial waves (in the Legendre polynomial

basis) in the domain of convergence. This domain of analyticity is enlarged (earlier it was

only physically permitted values of cosθ) to a region which is an ellipse whose semimajor

axis is given by (3.31). Moreover, the absorptive part of the scattering amplitude has a

domain of convergence beyond cosθ = ±1; it converges inside the large Lehmann ellipse

(LLE). Therefore, we are able to write fixed-t dispersion relations as long as t lies in the

following domain

|t|+ |t+ 4k2| < 4k2cosθ0 (3.32)
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The absorptive parts As and Au defined on the right hand and left hand cuts respectively,

for s′ > sthr and u′ > uthr are holomorphic in the LLE. Thus, assuming no subtractions

F (s, t) =
1

π

∫ ∞
sthr

ds′ As(s
′, t)

s′ − s
+

1

π

∫ ∞
uthr

du′ Au(u′, t)

u′ + s− 4m2 + t
(3.33)

We shall settle the important issue of number of required subtraction in the dispersion

relations in the next section. Although we have not proved the crossing symmetry explicitly,

it will not be hard to provide a proof following the arguments of [28]. Essentially, either

one follows the procedures which employed the techniques of Bremmermann, Oehme and

Taylor [34] or those of Bross, Epstein and Glaser [35].

4 Asymptotic behavior of the amplitude

We intend to derive the asymptotic behavior of the amplitude in this section. It serves two

purposes: (i) To determine the growth properties of the amplitude with energy which is

related to the issue of subtractions. (ii) And to derive analog of the Froissart-Martin bound.

Let us first resolve the issue of sum over intermediate states in the spectral representations.

We shall only indicate the steps followed in I and the interested reader may consults I for

the details.

We have not investigated the consequences of unitarity so far. It is a nonlinear relation

and imposes strong constraints. Let us define the T-matrix from the S-matrix: S = 1− iT.

The unitarity of S implies: (T† − T) = iT†T. Let us consider the matrix element

< pd, pc, in|T† −T|pb, pc, in > and look at the matrix element < pd, pc, in|T†T|pb, pc, in >.

We introduce a complete set of physical states
∑
|N >< N| = 1. Here the set of states

|N > correspond to all admissible physical states consistent with energy-momentum con-

servation and KK-charge conservation. Thus, at this stage, entire KK tower is to be

included. After going to through a series of steps, we arrive the following expression (see I

for details)

T (pd, pc; pb, pa)− T ∗(pd, pc; pb, pa) =
∑
N

[
δ(pd + pc − pn)×

T (pd, pc;n)T ∗(n; pb, pa)−
δ(pa − pc − pn)×

T (pd,−pc;n)T ∗(pd,−pc;n)

]
(4.1)

The essential point to note is the presence of the δ-functions in the r.h.s. The presence of

the δ-function implies (pc + pd = pn) Thus (pc + pd)
2 = M2

n, where M2
n is the intermediate

physical state mass-squared and (pc+pd)
2 = s. Therefore, unitarity constrains the number

of KK towers that can contribute to the sum; not the entire infinite tower is allowed.

Similarly, it is easy to see that the second term corresponds to the cross channel. To recall,

the linear program is unable to cut off contributions of the entire KK tower; however,

unitarity, the nonlinear relation, resolves the issue. In other words, the entire KK tower does
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not contribute to the spectral representation (3.10) and (3.11). An analogous argument

holds for the ‘crossed channel’ contribution as detailed derivations showed in I.

Let us turn the attention to the partial wave expansion of the amplitude and the power

of the positivity property of absorptive part of the amplitude. We recall that the scattering

amplitude admits a partial wave expansion

F (s, t) =

√
s

k

∞∑
l=0

(2l + 1)fl(s)Pl(cosθ) (4.2)

where k = |k|, the c.m. momentum and θ is the c.m. scattering angle. The expansion

converges inside the Lehmann ellipse with focii at ±1 and semimajor axis 1+ const
2k2

. Unitarity

leads to the positivity constraints on the partial wave amplitudes

0 ≤ |fl(s)|2 ≤ Im fl(s) ≤ 1 (4.3)

As is well known, the semimajor axis of the Lehmann ellipse shrinks as s grows. Recall

that derivation of the Lehmann ellipse is based on the linear program. Martin [33] has

proved an important theorem. It is known as the procedure for the enlargement of the

domain of analyticity. He demonstrated that the scattering amplitude is analytic in the

topological product of the domains Ds ⊗Dt. This domain is defined by |t| < R̃, R̃ being

independent of s and s is outside the cut sthr + λ = 4m2
n + λ, λ > 0. In order to recognize

the importance of this result, we briefly recall the theorem of BEG [36]. It is essentially

the study of the analyticity property of the scattering amplitude F (s, t). It was shown that

in the neighborhood of any point s0, t0; −T < t0 ≤ 0, s0 outside the cuts, the amplitude,

F (s, t), is analytic in s, and t in a region

|s− s0| < η0(s0, t0), |t− t0| < η0(s0, t0) (4.4)

Note the following features of BEG theorem: it identifies the domain of analyticity; how-

ever, the size of this domain may vary as s0 and t0 vary. Furthermore, the size of this

domain might shrink to zero; in other words, as s → 0, η(s) may tend to zero. The im-

portance Martin’s theorem lies in his proof that η(s) is bounded from below i.e. η(s) ≥ R̃

and R̃ is s-independent. It is unnecessary to repeat the proof of Martin’s theorem here.

The interested reader may consult [28]. Instead, we shall summarize the conditions to be

satisfied by the amplitude as stated by Martin [33].

Statement of Martin’s Theorem. If following requirements are satisfied by the elastic

amplitude

I. F (s, t) satisfies fixed-t dispersion relation in s with finite number of subtractions

(−T0 ≤ t ≤ 0).

II. F (s, t) is an analytic function of the two Mandelstam variables, s and t, in a neigh-

borhood of s̄ in an interval below the threshold, 4m2
n−ρ < s̄ < 4m2

n and also in some

neighborhood of t = 0, |t| < R(s̄). This statement hold due to the work of Bros,

Epstein and Glaser [35, 36].
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III. Holomorphicity of As(s
′, t) and Au(u′, t): the absorptive parts of F (s, t) on the right

hand and left hand cuts with s′ > 4m2
n and u′ > 4m2

n are holomorphic in the LLE.

IV. The absorptive parts As(s
′, t) and Au(u′, t), for s′ > 4m2

n and u′ > 4m2
n satisfy the

following positivity properties∣∣∣∣( ∂

∂t
As(s

′, t)

)n∣∣∣∣ ≤ ( ∂

∂t

)n
As(s

′, t)

∣∣∣∣
t=0

, − 4k2 ≤ t ≤ 0 (4.5)

and ∣∣∣∣( ∂

∂t
Au(u′, t)

)n∣∣∣∣ ≤ ( ∂

∂t

)n
Au(u′, t)

∣∣∣∣
t=0

, − 4k2 ≤ t ≤ 0 (4.6)

where k is the c.m. momentum. Then F (s, t) is analytic in the quasi topological

product of the domains Ds ⊗ Dt. (i) s ∈ cut-plane: s 6= 4m2
n + ρ, ρ > 0 and

(ii) |t| < R̃, there exists some R̃ such that dispersion relations are valid for |t| <
R̃, independent of s. We may follow the standard method to determine R̃. The

polynomial boundedness, in s, can be asserted by invoking the simple arguments

presented earlier. Consequently, a dispersion relation can be written down for F (s, t)

in the domain Ds⊗Dt. The importance of Martin’s theorem is appreciated from the

fact that it implies that the η of BEG is bounded from below by an s-independent

R̃. Moreover, value of R̃ can be determined by the procedure of Martin (see [8] for

the derivations).

We outline proof of a few more results as corollaries without providing detailed com-

putations:

(I) The amplitude, F (s, t), satisfies following properties: (i) Polynomial boundedness

i.e. |F (s, t)| < sN ; N is a finite integer. This follows from the fact that the LSZ

reduced amplitudes are tempered distributions. It is necessary that |t| lies within

the Lehmann-Martin ellipse. (ii) The partial wave expansion converges inside the

Lehmann-Martin ellipse and the positivity conditions are satisfied by partial wave

amplitudes (4.3). Then the Froissart-Martin bound is proved. We sketch a pedagog-

ical proof of the Froissart-Martin bound on the total cross section, σt, of our interest.

Let us consider the absorptive part of the scattering amplitude, As(s, t) = Im F (s, t).

It admits a partial wave expansion which converges inside the large Lehmann ellipse.

As(s, t) =

√
s

k

l=∞∑
l=0

(2l + 1)Im fl(s)Pl

(
1 +

t

2k2

)
(4.7)

Consider As(s, t) at the right extremity value of t, i.e. t = t0, on the ellipse of

convergence. Notice the properties: (i) As(s, t) < sN ; the polynomial boundedness

for t inside the ellipse and Pl(x) > 1 for x > 1. (iii) 0 ≤ Imfl(s) ≤ 1 from partial

wave unitarity. Furthermore, since each term in the partial wave expansion (4.7) is

positive it is also bounded as

(2l + 1)Im fl(s)Pl

(
1 +

t0
2k2

)
< sN

k√
s

(4.8)
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We recall that for x > 1, Pl(x) > c̃
(2l+1)(1 + (2x − 2)1/2)l. Since Pl(x) grows expo-

nentially with x for x > 1, Im fl(s) would damp exponentially beyond some cut off

value of l

Im fl(s) < C ′e
Nlogs−l

√
t0
2k2 (4.9)

if the polynomial boundedness (4.8) is to be respected. Thus the effective cut off

value is L0 =
√
s(log s). We can split the partial wave expansion into two parts: a

sum from 0 to L0 and the rest is L0 + 1 to ∞. Now consider the imaginary part of

forward amplitude, F (s, t = 0); we have been considering, so far, the absorptive part

at t = t0. It is bounded as

Im F (s, t = 0) ≤
L0∑
0

(2l + 1) +O(e−Nlog s) (4.10)

We have used the unitarity bound on Im fl(s) and set Im fl(s) = 1; Pl(1) = 1 any

way. The last term on the r.h.s is the sum of the terms from L0 + 1 to ∞ and it is

negligible for large s. Therefore,

Im F (s, t = 0) ≤ L2
0 = Cslog2s (4.11)

C = 4π
t0

fixed from the first principles. Therefore, from the optical theorem

σt ≤ Clog2s (4.12)

This is a quick derivation of the Froissart bound. In our case, t0 is the lowest threshold

for t-channel process and it is t0 = 4m2
0. Thus the constant, C, also gets fixed.

(II) We have proved the analog of the Jin-Martin bound [37]. The arguments are as

follows: the scattering amplitude, F (s, t) is polynomially bounded for |t| lying inside

the ellipse of convergence. F (s, t) admits the partial wave expansion (4.2). Note that

|F (s, t)| ≤
√
s

k

∞∑
l=0

(2l + 1)|fl(s)|Pl
(

1 +
|t|

2k2

)
(4.13)

since Pl(1 +x) ≤ Pl(1 + |x|) and the Legendre polynomial are positive for arguments

greater than 1. Utilizing partial wave unitarity and positivity (i.e. 0 ≤ |fl(s)|2 ≤
Im fl(s) ≤ 1), it follows that |F (s, t)| ≤ slog2s The above inequality is for the r.h.s

cut and it also holds for the l.h.s cut. Therefore, by invoking Phragman-Lindelof

theorem [39], one arrives at the conclusion that |F (s, t)| is bounded as constant slog2s

in the complex s-plane. Therefore, the fixed-t dispersion relations do not need more

than two subtractions as long as |t| lies inside the Lehmann ellipse.

We would like to draw the attention of the reader to the fact that a field theory defined

on the manifold R3,1⊗S1 whose spectrum consists of a massive scalar field and a tower of

Kaluza-Klein states satisfies nonforward dispersion relations. This statements begs certain

clarifications. The theory satisfies LSZ axioms. The analyticity properties can be derived

in the linear program of axiomatic field theory which leads to the proof of the existence of

the Lehmann ellipses. The role of the KK tower is to be assessed in this program. Once

we invoke unitarity constraint stronger results follow and the enlargement of the domain

of analyticity in s and t variables can be established.
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5 Summary and discussions

We summarize our results in this section and discuss their implications. The objective of

the present work is to investigate the analyticity property of the scattering amplitude in

a field theory with a compactified spatial dimension on a circle i.e. the so called S1 com-

pactification. We were motivated to undertake this investigation from work of Khuri [27]

who considered potential scattering with a compact spatial coordinate. He showed the lack

of analyticity of the forward scattering amplitude under certain circumstances. Naturally,

it is important to examine what is the situation in relativistic field theories. As has been

emphasized by us before, lack of analyticity of scattering amplitude in a QFT will be a

matter of concern since analyticity is derived under very general axioms of QFT. Thus

a compactified spatial coordinate in a theory with flat Minkowski spacetime coordinates

should not lead to unexpected drastic violations of fundamental principles of QFT. In this

paper, initially, a five dimensional neutral massive scalar theory of mass, m0, was consid-

ered in a flat Minkowski spacetime. Subsequently, we compactified a spatial coordinate on

S1 leading to a spacetime manifold R3,1 ⊗ S1. The particles of the resulting theory are a

scalar of mass m0 and the Kaluza-Klein towers. In this work, we have focused on elastic

scattering of states carrying nonzero equal KK charges, n 6= 0, to prove fixed-t dispersion

relations. We have left out the elastic scattering of n = 0 states as well as elastic scattering

of an n = 0 state with an n 6= 0 state for nonforward directions. These two cases can be

dealt with without much problem from our present work. Moreover, our principal task is

to prove analyticity for scattering of n 6= 0 states and thus complete the project we started

with in order to settle the issue related to analyticity as was raised by Khuri [27] in the

context of potential scattering. We showed in I that forward amplitude satisfies dispersion

relations. However, it is not enough to prove only the dispersion relations for the forward

amplitude but a fixed-t dispersion relation is desirable. We have adopted the LSZ axiomatic

formulation, as was the case in I, for this purpose. Our results, consequently, do not rely

on perturbation theory whereas, Khuri [27] arrived at his conclusions in the perturbative

Greens function techniques as suitable for a nonrelativistic potential model. Thus the work

presented here, in some sense, has explored more than what Khuri had investigated in the

potential scattering.

We have gone through several steps, as mentioned in the discussion section of I, in order

to accomplish our goal. The principal results of this investigations are as follows. First

we obtain a spectral representation for the Fourier transform of the causal commutator,

Fc(q). We discussed the coincidence region which is important for what followed. In

order to identify the singularity free domain, we derived analog of the Jost-Lehmann-

Dyson theorem. A departure from the known theorem is that there are several massive

states, appearing in the spectral representation, and their presence has to be taken into

considerations. Thus, we identified the singularity free region i.e. the boundary of the

domain of analyticity. Next, we derived the existence of the Lehmann ellipse. We were

able to write down fixed-t dispersion relations for |t| lying within the Lehmann ellipse.

We have proceeded further. It is not enough to obtain the Lehmann ellipse since the

semimajor axis of the ellipse shrinks as s increases. Thus it is desirable to derive the
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analog of Martin’s theorem [33]. We appealed to unitarity constraints following Martin

and utilized his arguments on the attributes of the absorptive amplitude and showed that

indeed Martin’s theorem can be proved for the case at hand. As a consequence, the analog of

Froissart-Martin upper bound on total cross sections, for the present case, is obtained. The

convergence of partial wave expansions within the Lehmann-Martin ellipse and polynomial

boundedness for the amplitude, F (s, t) for |t| within Lehmann-Martin ellipse, lead to the

Jin-Martin upper bound [37] for the problem we have addressed here. In other words, the

amplitude, F (s, t), does not need more than two subtractions to write fixed t dispersion

relations in the domain Ds ⊗Dt.

We have made two assumptions: (i) existence of stable particles in the entire spectrum

of the theory defined on R3,1⊗S1 geometry. Our arguments are based on the conservation

of KK discrete charge qn = n
R ; it is the momentum along the compatified direction. (ii) The

absence of bound states. We have presented some detailed arguments in support of (ii).

To put is very concisely, we conveyed that this flat space D = 4 theory with an extra

compact S1 geometry results from toroidal compactification of five dimensional defined in

flat Minkowski space. In absence of gravity in D = 5, the lower dimensional theory would

not have massless gauge field and consequently, BPS type states are absent. It is unlikely

that the massive scalars (even with KK charge) would provide bound states. This is our

judicious conjecture.

Another interesting aspect needs further careful investigation. Let us start with a

five dimensional Einstein theory minimally coupled to a massive neutral scalar field of

mass m0. We are unable to fulfill requirements of LSZ axioms in the case of the five

dimensional theory in curved spacetime. Furthermore, let us compactify this theory to

a geometry R3,1 ⊗ S1. Thus the resulting scalar field lives in flat Minkowski space with

a compact dimension. We have an Abelian gauge field in D = 4, which arises from S1

compactification of the 5-dimensional Einstein metric. The spectrum of the theory can be

identified: (i) There is a massive scalar of mass m0 descending of D = 5 theory accompanied

by KK tower of states. (ii) A massless gauge boson and its massive KK partners. (iii) If

we expand the five dimensional metric around four dimensional Minkowski metric when we

compactify on S1, we are likely to have massive spin 2 states (analog of KK towers). We

may construct a Hilbert space in D = 4 i.e with geometry R3,1 ⊗ S1. It will be interesting

to investigate the analyticity properties of the scattering amplitudes and examine the high

energy behaviors. Since only a massless spin 1 particle with Abelian gauge symmetry

appears in the spectrum, it looks as if the analyticity of amplitudes will not be affected.

However, there might be surprises since a massive spin 2 particle is present in the spectrum.

Khuri [27] was motivated by the large extra dimension scenario to undertake the problem.

He had raised the question what will be the consequences of his conclusions (in the potential

scattering model) if indeed the dispersion relation is not valid at LHC energies. However,

the field theory we have considered here, the dispersion relations are proved for fixed t. It

will be worthwhile to undertake phenomenological analysis to check if there are Froissart-

Martin bound violation at extremely high energies. We have noticed that, so far, the issue

of the validity of Froissart-Martin bound has not received adequate attention. The data on

σt is accumulating from the LHC experiments. If the experiments unambigously confirm
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that energy dependence of the total cross sections show a clear deviation from the (ln s)2

behavior then we have to resolve an important problem. The important question would

be whether the Froissart bound violation is a challenge to question the axioms of local

quantum field theories. Alternatively, one might propose that the violation of the bound

is an indication that, at the LHC energies, the extra dimensions are decompactified as

envisaged in the large radius extra compact dimension scenario. If there would be evidences

in favor of the latter scenario we would witness emergence of new physical phenomena.
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