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De Giovannini4,6, Angel Rubio4,6, Mauro Nisoli1,2

1Department of Physics, Politecnico di Milano, 20133 Milano, Italy
2Institute for Photonics and Nanotechnologies, IFN-CNR, 20133 Milano, Italy

3Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
4Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany

5Institute for Photonics and Nanotechnologies, IFN-CNR, 35131 Padova, Italy
6Nano-Bio Spectroscopy Group, Universidad del Paı́s Vasco, 20018 San Sebastian, Spain

∗To whom correspondence should be addressed; E-mail: matteo.lucchini@polimi.it.

Materials and Methods

1 Experimental apparatus

The setup used for the experiment reported in the main manuscript is described in detail in

Ref. [1]. Infrared (IR) pulses with a duration of 25 fs, central wavelength of 800 nm, repetition

rate of 10 kHz and energy of 2 mJ are compressed with a hollow-core fiber setup [2] to 6 fs. The

compressed pulses follow an evacuated beamline where they are first divided by a 70-30 beam

splitter. The more intense part is focalized onto a gas cell, filled with Ar, to generate extreme-

ultraviolet (XUV) attosecond pulses via high-order harmonic generation process. Since the
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laser system is CEP-stabilized (shot-to-shot standard deviation of 320 mrad [3]), it is possible to

apply the ionization gating technique [4] to generate single attosecond pulses (SAPs, hereafter

probe) centered around 42 eV and with a spectrum extending over the Mg L2,3 edge, located

around 56 eV [5, 6]. The weaker part of the IR beam (hereafter pump), follows a separate path

where the delay is controlled with a translation stage. After adjustment of the beam divergence,

the pump beam is collinearly recombined with the probe by means of a drilled mirror. An Al

metallic filter placed on the probe path, before the drilled mirror, allows efficient removal of

the residual IR radiation after SAP generation. Both beams are then focused by a gold-plated

toroidal mirror onto a gas target, located in the focal spot of a time-of-flight (TOF) spectrometer.

A second toroidal mirror refocuses both beams onto the MgF2 single crystal (see Sec. 2) placed

into a reflectometer. Precise alignment of the sample in the focal position is achieved through

a motorized sample holder which allows translation in the three spatial directions and rotation

around the vertical axis [1]. The reflected part of the XUV radiation is finally collected by a

gold-plated mirror and sent to an XUV spectrometer at the end of the line to measure the sample

reflectivity (see Secs. 4 and 5). Due to the sequential double-foci geometry of our beamline,

we can perform at the same time a photoelectron experiment in the first focus and a transient

reflection experiment in the second. In this way, we can retrieve the temporal characteristics

of pump and probe pulses with an attosecond streaking experiment [7, 8] and set a precise

reference for the zero of the pump-probe delay axis of the simultaneous attosecond transient

reflectivity experiment [1]. Thanks to this unique feature, we can access the energy-dependent

attosecond phase delay of the observed transient features in the sample optical response with

respect to the IR instantaneous pump field (see Sec. 7).
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2 Sample description

The sample used for the experiment is a commercially available single crystal of magnesium

fluoride (MgF2), from SurfaceNet GmbH. The sample is 6-mm wide, 12-mm high and has a

thickness of 1 mm. The single crystal has a rutile-type structure oriented with the front face

corresponding to the (001) crystal plane, whereas the edge orientation in the plane of incidence

is identified by the crystal direction [010], as depicted in Fig. 1.

Figure 1: Schematic of the MgF2 sample used in the experiment. The size of the sample is
12×6×1 mm3. The front face is parallel to the (001) crystal plane, whereas the edge orientation
in the plane of incidence is aligned to the [010] crystal direction. The gold layer is 2-mm wide
and has a thickness of 50 nm, deposited by vapour deposition.

The front side is treated with a top-grade chemo-mechanical polishing procedure, typically

used for epitaxial application, with a residual surface roughness that is nominally better than

the lattice constant.

Before running the experiment, we deposited a layer of gold on one side of the front face of

the sample, to unlock the possibility to measure reference spectra, useful for static experiments,

minimizing the sample holder movements. This reduces the uncertainty in the alignment of

the optical elements and prevents any artifact that may arise in the measurement of the static

reflectance (Sec. 4). The Au layer is 2 mm in width, 50-nm thick and was deposited by vapour
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deposition in thermal mode. With this procedure, a high-purity amount of gold is melted in

a ceramic heater and a metal vapour forms. Since the procedure is done in high vacuum, the

vaporized gold particles have a long mean free path and travel straight to the target, where they

condense. By means of a mask, gold deposition is limited to a precise region. The thickness

is controlled by measuring the tiny variations in the weight of the sample and controlling the

speed of evaporation.

3 Evaluation of MgF2 critical angle

To choose the incidence angle for the experiment (called critical angle), we followed the ap-

proach of Kaplan and coworkers [9, 10]. We define ñ as the complex refractive index of MgF2:

ñ = n+ ik (1)

where i is the imaginary unit and n and k are, respectively, the real and the imaginary part of the

complex refractive index. The reflectivity for s-polarized incident radiation can be computed

using the Fresnel equations:

Rs = |rs|2 =

∣∣∣∣∣cos(θ)−
√
ñ2 − sin2(θ)

cos(θ) +
√
ñ2 − sin2(θ)

∣∣∣∣∣
2

(2)

where rs is the reflection coefficient for s-polarized light and θ is the incidence angle with

respect to the surface normal. The reflectivity in the photon energy range between 25 and 65 eV

and for an incidence angle θ between 60◦ and 85◦ is shown in Fig. 2(a). The values for ñ have

been taken from Hanson et al. [6]. A strong variation in the reflectivity can be observed around

∼ 54.6 eV, where the excitonic feature is present, independently from the value of the incidence

angle θ.

By definition, the sample dielectric constant ε can be written as the sum of its real and

imaginary part:

ε = ñ2 = ε1 + iε2 (3)
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The derivative of the reflectivity with respect to ε1 and ε2 thus become:

∂Rs

∂ε1
= 2<

{
r∗s ·

∂rs
∂ε1

}
,

∂Rs

∂ε2
= 2<

{
r∗s ·

∂rs
∂ε2

}
= −2=

{
r∗s ·

∂rs
∂ε1

}
(4)

Furthermore, following the definition of rs given in Eq. (2):

∂rs
∂ε1

= − cos(θ)√
ñ2 − sin2(θ) ·

[
cos(θ) +

√
ñ2 − sin2(θ)

]2 = −i∂rs
∂ε2

. (5)

Therefore we can define the sensitivity of the reflectivity to the real and imaginary part of the

dielectric constant as:

Sε1 =
ε1
Rs

· ∂Rs

∂ε1
, Sε2 =

ε2
Rs

· ∂Rs

∂ε2
. (6)

The values of Sε1 and Sε2 computed in the same energy-angle space as before are reported in

Figs. 2(b) and 2(c). Also in this case, for any incidence angle, we observe strong variations at

∼ 54.6 eV. For those points where Sε2 = 0, marked by the dashed curves in Figs. 2(c) and 2(d),

the dependence of the reflectivity on the imaginary part of the complex dielectric function of

MgF2 is minimized.

An alternative approach consists in considering the total external reflection. Since the real

part of the complex refractive index of MgF2 is smaller than one in the XUV spectral region, it

is possible to define the critical angle for total external reflection [11] as:

θc = arcsin(n). (7)

At the critical angle, the radiation is completely reflected from the surface and its absorption is

minimized. The critical angle, reported in Fig. 2(d) as a solid line, closely tracks the zeros of

the sensitivity to the imaginary dielectric function ε2 in the region of the excitonic feature.

Summarizing the above findings, we chose an incidence angle of 73.5◦ to perform the tran-

sient reflection experiments reported in the main manuscript. This value is equal to the critical

angle at the energy of the excitonic feature (∼ 54.6 eV). Moreover, at this angle the sensitivity
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Figure 2: (a) Reflectivity of MgF2 for s-polarized light. (b) Sensitivity Sε1 to the real part of the
dielectric constant. (c) Sensitivity Sε2 to the imaginary part of the dielectric constant of MgF2.
The green dashed curve marks the points where the sensitivity is zero. (d) Incidence angle at
which Sε2 = 0 as a function of photon energy (green dashed curve), compared to the critical
angle for total external reflection (red solid curve). In all panels the black dotted horizontal line
identifies the experimental incidence angle (73.5◦).
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to the imaginary part of the dielectric function is close to zero and it is one order of magnitude

smaller than the sensitivity to the real part of the dielectric function, thus assuring an easier

interpretation of the reflectivity data. It is worthy to stress that at the critical angle the static

reflectivity still depends on the imaginary part of the dielectric function (refractive index). As

the reflectivity is more sensitive to variations of <{n} around 1, a dispersive profile in <{n}

translates into a less dispersive and more peak-like structure for Rs, in agreement with what

reported by Hanson et al. [6].

4 Static reflectivity measurements

The static reflectivity R0(E) of MgF2 as a function of the XUV photon energy E can be de-

termined by comparing the same XUV photon spectrum as reflected by the sample and by a

known reference material. In this experiment, we choose as a reference material a 50-nm gold

layer directly deposited on the sample, as described in Sec. 2.

If I(E) indicates the intensity of the incoming XUV radiation, R0(E) the reflectivity of the

MgF2 sample and RM(E) the reflectivity of the folding gold mirror used to send the beam into

the spectrometer, upon reflection on the sample the SAP spectrum measured at the end of the

line will be equal to:

IMgF2(E) = RM(E)R0(E) I(E). (8)

Moving the gold layered part of the sample onto the beam path, we will instead measure an

intensity given by:

IAu(E) = RM(E)RAu(E) I(E), (9)

where RAu(E) is the reflectivity of the gold layer deposited directly onto the sample. From the

two previous expressions, it is therefore possible to derive the reflectivity R0(E) of MgF2 as:

R0(E) =
IMgF2(E)

IAu(E)
·RAu(E). (10)
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Since the reflectivity RAu(E) of gold can be computed from Eq. (2) starting from the known

optical constants of gold [12], Eq. (10) shows that it is possible to determine R0(E) by mea-

suring the same SAP spectrum reflected first by the sample IMgF2 and then by the gold layer

IAu.

To minimize the error stemming from any experimental instability, the measurement is per-

formed as follows. At first we measure the spectrum IAu,1(E) after reflection onto the gold

layer. The sample is then placed in position to measure IMgF2(E). The sample is finally moved

in the initial position in order to measure a second spectrum IAu,2(E). The total reference

spectrum is computed as the average between the two acquired spectra as reflected by the gold

layer:

IAu(E) =
IAu,1(E) + IAu,2(E)

2
, (11)

and used to obtain R0(E) through Eq. (10).

To acquire a spectrum, the acquisition system collects 100 independent measurements, with

an integration time of 100 ms each. The final spectrum is given by the average of all independent

acquisitions, while the measurement uncertainty can be estimated with the standard deviation:

σX =

√∑N
i=1(xi − x̄)2

N − 1
(12)

where in our case xi is the single intensity measurement, x̄ is the average of all the intensity

measurements and N is the number of measurements (in this case, N = 100). The measured

spectrum IMgF2(E) after sample reflection and obtained following the procedure above is re-

ported in Fig. 3(a) as a red solid curve. The red shaded area represents twice its standard

deviation σMgF2(E) obtained with Eq. (12).

For the reference spectrum IAu, the total uncertainty is given by the sum of standard devia-

tions the two independent measurements:

σAu(E) =
√
σ2
Au,1(E) + σ2

Au,2(E). (13)
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Figure 3: (a) Black dashed line: reference spectrum IAu(E) reflected by the gold layer deposited
directly onto the MgF2 sample. Red solid line: intensity spectrum IMgF2(E) reflected by the
MgF2 sample. Shaded areas represent twice the standard deviation over repeated measurements.
(b) Black dashed line: theoretical reflectivity RAu(E) of gold [12]. Blue solid line: measured
reflectivity RMgF2(E) of the MgF2 sample. The shaded area represents twice the standard
deviation computed propagating the error.

An example of IAu obtained with this procedure is shown by the black dashed curved and

shaded area in Fig. 3(a).

As mentioned above, Eq. (10) can be directly used to compute the average experimental

reflectivity of MgF2 R0(E). Propagating the measurement errors, the associated standard devi-

ation is finally given by:

σR0(E) = |R0(E)| ·

√(
σMgF2(E)

IMgF2(E)

)2

+

(
σAu(E)

IAu(E)

)2

. (14)

TheR0(E) obtained starting from the spectra in Fig. 3(a) and evaluating the uncertainty with

the above equation is shown in Fig. 3(b) by the blue curve and shaded area. The dashed black

curve represents instead the RAu(E) adopted, as computed from the optical constants reported

by Werner et al. [12]. A detailed discussion of the features observed in R0(E) is reported in the

main manuscript.
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5 Transient reflection measurements

The main experiment consists in the assessment of the effect of the IR pulse on the sample

differential reflectivity ∆R/R defined as:

∆R(E, t)

R(E)
=
RIR(E, t)−R0(E)

R0(E)
(15)

where E is the XUV photon energy, t is the delay between the IR and XUV pulses, RIR(E, t)

is the XUV reflectance in the presence of the IR light and R0(E) is the static unperturbed re-

flectance (Sec. 4). As described in the previous section, the sample reflectivity is proportional to

the measured XUV spectrum after reflection. Therefore, we can evaluate ∆R/R by computing

IIR(E, t)− I0(E)

I0(E)
, (16)

where IIR(E, t) is the XUV spectrum measured at a precise pump-probe delay t when the IR

pulse is on, I0(E) is the XUV spectrum without the pump pulse, which is measured by blocking

the IR path with a mechanical shutter [1]. The shutter acts synchronously with the rest of the

acquisition system, to make sure that the signals with IR on and off are correctly separated, and

commutes with a frequency of about 1 Hz. In a typical measurement, we collect 120 spectra

with and 120 without the IR pulses per delay, each one measured with an integration time of

100 ms, corresponding to 1000 lasers shots. We span a delay range of 30 fs, in steps of 250 as,

whereas the mean energy resolution in the vicinity of 45 eV is about 30 meV. With this approach,

one can measure the transient reflectance without knowing the incoming XUV intensity. For

each transient reflection scan, we acquire a simultaneous streaking trace [7] used to calibrate

the pump-probe delay as described in the main manuscript and in Ref. [1]. Synchronization

between photon and photoelectron acquisition at each delay is obtained through a software

which controls the value of the pump-probe delay and moves to the next data point only when

both acquisitions are done.
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To ensure that different measurements are taken under the same experimental conditions, we

adjust the IR pump parameters prior starting each acquisition. For such purpose, we measure

the pump average power with a powermeter, while the spatial properties onto the target position

are retrieved with a beam profiler. The temporal characteristics of the IR pulse can instead be

measured with an attosecond streaking experiment [7] in the first focus of the beamline [1].

Figure 4: Upper panel: extended data from Fig. 1d of the main manuscript. Lower panel:
differential reflectivity profile extracted at 54.4 eV, marked by the horizontal black dashed line
in the top panel. The residual signal at negative delays goes to zero before -15 fs, becoming
comparable with the measurement noise.

6 Imperfect IR pulse contrast

The non-zero signal observed at negative delays in Fig. 1d of the main manuscript comes from a

non-perfect IR pulse contrast. We note that this signal, smaller than 4%, goes to zero for delays

smaller than -15 fs (see Fig. 4) and does not influence the data analysis and conclusions of this
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work.

7 Phase delay extraction

To extract the phase delay between the fast transient features in the sample differential reflectiv-

ity ∆R/R and the square of the IR pump electric field E2
IR(t), we first need to evaluate the IR

vector potential from the simultaneous streaking trace. Since, at each delay, the photoelectron

spectrum is streaked by a quantity proportional to the instantaneous IR vector potential, the

easiest way to obtain AIR(t) is to evaluate the center of mass of the spectrogram [13]. Never-

theless, the presence of a satellite in the attosecond radiation and the measurement noise can

alter the center of mass and cause a deviation from AIR(t) (see Fig. 5(a) and black curve in

Fig. 5(c)). In order to minimize these effects we decided to follow a different approach and

use a 2D fitting procedure based on an analytical model [14]. In this way, if needed, we can

isolate the trace generated by the main attosecond pulse (Fig. 5(b)) and obtain a more reliable

prediction for the center of mass (blue curve in Fig. 5(c)) and AIR(t) (Fig. 5(d))). We note

that the fitting procedure assumes a perfect IR pulse contrast, cleaning any possible pedestal or

prepulse. This has no influence on the phase extraction procedure.

To evaluate the energy dependent phase delay τ we take the transient reflectivity spectro-

gram ∆R/R measured simultaneously with the streaking trace (Fig. 6(a)) and perform a line-

by-line Fourier transform (Figs. 6(b), 6(c)). Following the method used in Refs. [15, 13], τ can

be directly evaluated by multiplying the Fourier transform of ∆R/R with the complex conju-

gate of the Fourier transform of the associated squared IR vector potential. The product of the

two Fourier transforms, P (E,ω), indeed peaks at the common frequency (black dashed vertical

lines in Figs. 6(b) and 6(c)) and its phase yields directly the phase difference between ∆R/R

and A2
IR(t).

From the 2D phase of P (E,ω) we estimate the behavior of the phase difference ϕ(E)
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Figure 5: (a) Experimental streaking spectrogram characterized by the presence of a weak
satellite pulse. (b) Result of the 2D fitting procedure, extracting the streaking trace associated
only to the main attosecond pulse. (c) Comparison between the raw center of mass (black curve)
and the center of mass extracted with the fitting procedure (blue curve). (d) IR vector potential
AIR(t) as retrieved with the fitting procedure.

Figure 6: (a) Example of differential reflectivity spectrogram ∆R/R. (b), (c), Spectral intensity
and phase, respectively, of the line-by-line Fourier transform of the data in (a). In (b) the color
scale represents the logarithm of the spectral intensity. In (c) the phase is plotted in units of π
and only for those points which are intense enough to be above the noise level. In both panels
the vertical black dashed line marks the common frequency with the IR pulse.
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through a weighted average were the weight is represented by the spectral intensity of the prod-

uct between the Fourier transforms (modulus square of P (E,ω)):

ϕ(E) =

∫
|P (E,ω)|2 angle {P (E,ω)} dω∫

|P (E,ω)|2 dω
(17)

In order to reduce the effect of noise over the extraction of ϕ(E), the integrals in the above

equation run over the those Fourier frequencies, ω, for which |P (E,ω)|2 is higher than 50% of

its maximum value.

In the same fashion, the uncertainty associated with the evaluation of ϕ(E) can be estimated

with the second momentum:

σ2
ϕ(E) =

∫
|P (E,ω)|2 [angle {P (E,ω)} − ϕ(E)]2 dω∫

|P (E,ω)|2 dω
(18)

The phase delay τi(E) can then be obtained dividing ϕ(E) by 2ωIR and subtracting the propa-

gation delay τprop measured by placing a second TOF spectrometer at the solid target position

in order to perform a double-RABBITT measurement [1]. τprop accounts for any phase dif-

ference between the first and the second focus of the beamline, originating from alignment

imperfections or unavoidable geometrical factors [16]. Indeed, an inhomogeneous delay across

the sample surface can induce errors in the calibration of the absolute delay. As the Gouy phase

changes its sign across the laser focus, its effect is minimized by the spatial average performed

during detection. Finally, since the TOF used for the calibration experiment in the solid target

region integrates over a focal region comparable to the interaction area on the solid sample, any

asymmetric effect along the focus can also be compensated. It is worth noticing that our pro-

cedure does not account for a non-zero attosecond chirp, which may give an energy dependent

propagation delay and therefore alter the absolute phase delay extracted on the solid sample.

This effect is minimized choosing the thickness of the Al filters used to remove the residual IR

light, in order to compensate the attochirp. A typical value of the measured attochirp for our

pulses is of the order of −0.3 as2, therefore any distortion due to a non-flat attosecond spectral
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phase will be smaller than the experimental error bars on the extracted phase delay.

The total uncertainty of a single measurement is given by σ2
τ,i = σ2

ϕ(E)/2ω2
IR + σ2

prop. Fig-

ure 7 shows an example of phase delay τi superimposed to the associated transient reflectivity

spectrogram. In order to directly compare τi with ∆R/R, we set the pump-probe delay zero,

t = 0 fs, to coincide with a zero of the IR vector potential Air(t), or, equivalently, a maxiumum

of the IR electric field EIR(t).

Figure 7: Upper panel, IR vector potential extracted with the 2D fit. Middle panel, associated
electric field. Lower panel, comparison between the transient reflectivity trace (color plot) and
the associated phase delay τi (black solid line), extracted following the procedure described in
the text. The thinner black lines visualize twice the standard deviation.

The τ reported in Fig. 3c of the main manuscript is the result of an average over 4 inde-

pendent transient reflection measurements conducted under similar conditions, and obtained by

weighing each τi by the inverse of its uncertainty στ,i:

τ =

∑
τi
σ2
τ,i∑
1
σ2
τ,i

(19)

The associated error takes into account both for the mean measurement error and for the statis-

15



tical deviation between the independent measurements:

σ2 = σ2
τ + δτ 2, (20)

where:

στ =

∑
1
στ,i∑
1
σ2
τ,i

, δτ 2 =
1

N − 1

∑ [τi−τ ]2
σ2
τ,i∑
1
σ2
τ,i

. (21)

The results are reported in Fig. 8 (same as in Fig 4C of the main manuscript) where the region

between 54.6 and 55.4 eV has been omitted because the associated oscillation amplitude in

∆R/R is too weak to justify a reliable delay extraction.

Figure 8: Phase delay τ obtained with Eq. (19). The error bars indicate the total uncertainty
estimated with Eq. (20). The vertical black-dashed lines limit the energy region where the am-
plitude of the transient oscillation in ∆R/R is too weak to consider the extracted τ meaningful.

8 Decomposition in slow and fast component

To study the different mechanisms underlying the transient features observed in ∆R/R, we

decompose the pump-probe spectrogram in a slow and a fast component. To extract the slow

component we first Fourier transform differential reflectivity spectrogram as done in Fig. 6(b).

We then apply a low-pass frequency filter which is constant for frequencies below a cut-off
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frequency fc and decays with a supergaussian a profile e

(
f−fc
2σf

)n
with coefficient n = 16 and

width σf = 0.01 PHz. Since the fastest feature observed oscillates at twice the IR frequency

2fIR ' 0.75 PHz, we decided to set fc to 1.5fIR = 0.5621 PHz. Finally we back-transform

in order to return to the time domain. Once the slow component has been extracted, the fast

component of ∆R/R is simply obtained by subtracting the slow component from the total

spectrogram.

In the case of the experimental data, a high-frequency filter centered at 5fIR = 1.8737 PHz is

used to remove the fast noise from the data prior to slow and fast decomposition.

9 Stark-shift extraction and dipole deconvolution

As discussed in the main manuscript, the femtosecond transient features of ∆R/R originate

from the optical Stark effect (OSE) induced by the IR electric field. To extract the Stark shift

ε from the experimental data, at each delay t, we fitted the sample reflectivity at the pres-

ence of the IR pump, RIR(E, t) (Fig. 9) with six Gaussian bells. Two Gaussians describe the

background. Their parameters are derived from the static reflectivity R0(E). The other four

Gaussians are used to fit the bright and dark exciton features, doubled because of the Mg 2p

spin-orbit splitting [17]. As discussed in the main text, the dark excitonic state is responsible

for an increase of RIR(E, t) around t = 0 fs (marked with B in Fig. 9), which appears next to

the bright excitonic peak, on the low energy side [18], thus overlapping with the bright exciton

signal which originates from 2p3/2 state. Due to the energy overlap, it is not possible to fit ac-

curately the contribution of the 2p1/2-dark state transition as well as all the transitions involving

the 2p3/2 state. Therefore we can obtain a reliable estimation of ε(t) only for the bright-exciton

- 2p1/2 transition (white curve in Fig. 9(a) and black curve with error bars in Fig. 9(b)), which

is found to follow the delay-dependent energy position of the maximum of ∆R/R around the

A feature (red curve in Fig. 9(b)). As the values extracted from the fitting procedure may
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depend on the choice of the basis function used (Gaussians, Lorentzian, etc.), we decided to

estimate ε(t) with the shift of the ∆R/R maximum. We note that a more sophisticated 2D

fitting procedure [19, 20, 18] could help to disentangle all the different excitonic contributions.

Nevertheless, due to the complexity of the system under investigation and the short exciton life

time, comparable to the IR pulse duration, the 2D-fitting model cannot be applied without an

a-priori knowledge of the exciton-phonon coupling or exciton-Auger life time, necessary to re-

duce the number of active fitting parameter. Indeed, without an educated initial guess, the 2D

fitting procedure can visually converge to the same RIR(E, t) with very different parameters. A

detailed description of the exciton decay process, capable to accurately disentangle the different

decaying mechanisms therefore requires specific modeling and additional measurements with

shorter IR pulses, and hence goes beyond the scope of this work. Nevertheless, we can obtain a

first estimation the exciton lifetime even without the need for complex fitting procedures.

Figure 9: (a) Pumped sample reflectivity RIR(E, t) associated with the data in Fig. 2a of the
main text. The white line tracks the reflectivity maximum around the excitonic feature A as
a function of the delay, showing an evident Stark-shift in the region of pump-probe temporal
overlap.(b) Delay-dependent optical Stark-shift ε(t) extracted from (a). Black curve, ε(t) of
the bright exciton transition involving the Mg 2p1/2 state and extracted with the fitting proce-
dure. The error bars represent the 95%-confidence interval of the fit. Red curve, maximum of
the pumped reflectivity RIR(e, t) evaluated around the excitonic feature at 54.6 eV. (c) Dipole
decay (light-blue dots) obtained by deconvolution of the experimental Stark-shift in (b) (ε(t),
black squares) with the experimental IR intensity profile (IIR, red curve).The shaded blue area
represents the 95% confidence interval of the fitting.
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We concentrate only on the main bright exciton feature coming from the Mg 2p1/2 state and

extract the excitonic dipole d(t) by deconvoluting the delay-dependent Stark shift ε(t) with the

envelope of the IR electric field [18], directly extracted from the simultaneous streaking trace,

as described in Sec. 7. The results are reported in Fig. 9(c).

According to the previous works by Moulet et al. [19] and by Mahan [21], in order to extract

the Auger decay time and the phonon coupling to the excited state, it is possible to model the

temporal evolution of the dipole moment d(t) as follows:

d(t) ∝ e−γte−φ(t) (22)

where γ is the Auger decay rate and the complex term φ(t) represent the effect of the phonons,

in the following form

φ(t) =
M2

0

ω2
0

[(2N + 1)(1− cos ω0t)− i(ω0t− sin ω0t)] (23)

with N the phonon population, ω0 the phonon frequency and M0 the phonon coupling. If we

limit our analysis to the real part of φ(t), thus considering only the effect of the phonons on the

modulus of the dipole moment d(t) and therefore only on the population, the above-mentioned

expression can be simplified. If we now consider the phonon dynamics in the limiting case of

ω0t � 1, corresponding to a period of the phonons much longer than the Auger decay time

ta = 1
γ

, Eq. (23) can be simplified further as follows:

φ(t) ≈ M2
0 (2N + 1)

2
t2 (24)

Therefore we can fit d(t) with a function f(t) = Ae−t/tae−M
2t2 where ta denotes the Auger

decay time and the positive term M , that we define such that M2 =
M2

0 (2N+1)

2
, represents the

effective coupling with the phonons. The former probably originates from an L2,3(exciton)-V V

decay process where the 2p Mg hole recombines with a valence electron, transferring energy

to another valence electron which is further excited [22]. For the dipole reported in Fig. 9(c),
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we found ta = 2.35 ± 0.3 fs and M2 = 0.072 ± 0.011 fs2. Therefore, the exciton decays

within few femtoseconds, in agreement with what reported in literature for other core excitons

in insulators [19, 18]. It is important to stress that regardless of the exact decaying mechanism,

on a first approximation the slow component of ∆R/R can be explained with the same three-

level system which describes a non-isolated atom whose temporal decay is partially influenced

by the interaction with the environment (phonons). No dispersive states or band structure are

necessary, on contrary to what observed for the attosecond dynamics.

Theoretical methods

To investigate the microscopic mechanism of the observed transient reflection signal, we employ

quantum electron dynamics simulation based on the Wannier-Mott model [23, 24, 25]. The

parameters of the model are determined by the ab-initio density functional calculation, or by

fitting the experimental static reflectivity (see Sec. 4). Then, we simulate the pump-probe

experiments and evaluate the transient reflection signal. As demonstrated in the main text, the

model shows an excellent performance in comparison with the experimental results. Based on

this fact, we further analyze the simulation results in order to obtain a microscopic insight into

the light-induced exciton dynamics. In the following we will describe the model used in details.

10 Wannier-Mott model and electron dynamics under laser fields

Here, we first briefly describe the Wannier-Mott model [23, 24, 25]. Then, we further explain

the theoretical approach used to compute the electron dynamics under IR and XUV laser fields.

In the Wannier-Mott model, electronic excited states of a semiconductor are described by a

linear combination of electron-hole states,

|Ψ〉 =
∑
vck

cvc,kâ
†
c,kâv,k|Φgs〉, (25)
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where v (c) denotes the valence (conduction) band index, |Φgs〉 is the ground state wavefunc-

tion of the semiconductor, âv,k is the annihilation operator for the valence state v at the Bloch

wavevector k, and â†c,k is the corresponding creation operator for the conduction band c. Note

that this ansatz corresponds to the Tamm-Dancoff approximation for electronic excited states.

In the Wannier-Mott model, the electron-hole states are simply approximated by the single

parabolic band dispersion, and the corresponding electron-hole Hamiltonian is given by

Hk,k′ = δk,k′

[
Eg +

~2k2

2µ

]
− Vk,k′ , (26)

where Eg is the electron-hole gap (direct gap), µ is the reduced electron-hole mass, and Vk,k′

is the interaction between electron-hole pairs. For simplicity, we consider the one-dimensional

model in this work. The one-dimensional approximation has been widely employed to investi-

gate the exciton dynamics, the attosecond electron dynamics as well as the strong field physics

[26, 27, 19, 28]. We note that the physical mechanisms discussed in this work, the optical

Stark effect (OSE) and the dynamical Franz-Keldysh effect (DFKE), are not very sensitive to

the dimensionality of the model: the OSE can be described by a few-level system without the

explicit treatment of the dimensionality, and the DFKE shows the same qualitative behavior

in one, two and three-dimensional systems (see Fig. 13 and Refs. [29, 30]). Furthermore, the

excellent agreement between the theoretical and experimental results reported in the main text

clearly indicates the validity of the one-dimensional approximation.

For the electron-hole interaction, we employ the soft-Coulomb interaction as

Vk,k′ =
V0
Ω

∫
dx
ei(k−k

′)·x
√
x2 + 1

= V0
∆k

2π
2K0(|k − k′|), (27)

where V0 is the strength of the electron-hole interaction, Ω is the crystal volume, K0(x) is the

modified Bessel function of the second kind. For the numerical simulation, the Bloch wavevec-

tor k is discretized by uniform grids with the spacing ∆k. In this work, the spacing ∆k is set to
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2× 10−3a−10 , and the wavevector k is truncated with the maximum wavevector kmax as

−kmax ≤ k ≤ kmax. (28)

The maximum wavevector is determined by the maximum electron-hole energy, Emax =

~2k2max/2µ, and we set Emax to 15 eV.

As described above, the theoretical model consists of a number of parameters. In this work,

we set the reduced electron-hole mass µ to 0.24me according to the result of the ab-initio density

functional calculation with Becke-Johnson meta-GGA functional [31]. The interaction strength

V0 is set to V0 = 0.187 a.u. so that the exciton binding reproduces the previously reported

experimental value, 1.4 eV [5]. The electron-hole gap Eg is set to 55.8 eV to reproduce the

exciton peak position in the static reflection (see Sec. 3). The Hamiltonian of the Wannier-Mott

model is now given by Eq. (26). By diagonalizing the Hamiltonian, the excitonic states can be

obtained as bound states of electron-hole pairs. The ground (bright) and the first excited (dark)

excitonic states are evaluated with the above parameterization, and the computed energy levels

are described in Fig. 1c in the main text.

Next, we describe the theoretical scheme to compute the laser-induced electron dynamics

with the Wannier-Mott model. For this purpose, we extend the Hamiltonian of Eq. (26) by

including laser fields as

Hk,k′(t) = δk,k′

[
Eg +

1

2µ

(
~k +

e

c
AIR(t)

)2]
− Vk,k′ , (29)

where AIR(t) is a vector potential corresponding to the IR laser pulses. Furthermore, we con-

sider the following ansatz for the time-dependent wavefunction under an intense femtosecond-

IR laser pulse and the weak attosecond-XUV laser pulse,

|Ψ(t)〉 = |ΦGS〉+
∑
k

ck(t)â
†
c,k+AIR(t)/~câv,k+AIR(t)/~c|Φgs〉, (30)
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where ck(t) is an expansion coefficient. Here, the expansion coefficient for the ground state

wavefunction |ΦGS〉 is fixed to 1, assuming that the excitation from the ground state is weak

enough. By assuming that the weak attosecond-XUV laser pulse can only weakly excite the

electronic ground state to electron-hole states by the dipole interaction, the equation of motion

for the coefficient ck(t) is given by

i~ċk(t) =

[∑
k′

Hk,k′(t)ck′(t)

]
+ EXUV (t) ·Dk+eA(t)/~c, (31)

where EXUV (t) is the electric field of the attosecond-XUV laser pulse, and Dk(t) is the transi-

tion dipole moment corresponding to the transition between the electronic ground state |ΦGS〉

and the electron-hole state â†c,k+AIR(t)/~câv,k+AIR(t)/~c|Φgs〉. In this work, we employ the follow-

ing parametrization for the transition dipole moment [32, 33]

Dk = i
pmom

Eg + ~2k2
2µ

, (32)

where pmom is the uniform transition momentum matrix. For simplicity, we set pmom to 1 a.u.

However, we note that the value of pmom does not affect the results because this degree of

freedom is absorbed by the parameter optimization in the next fitting procedure in Sec. 11.

11 Static reflectivity and parameter optimization

Here, we describe a numerical scheme to evaluate the static optical property of the material

based on the Wannier-Mott model. Then, we introduce the fitting parameter optimization based

on the comparison of the computed optical property and the experimental data.

To evaluate static optical properties, we first compute the electron dynamics under a weak

XUV field, EXUV (t). Then, based on the time-evolving wave function |Ψ(t)〉 in Eq. (30), the

induced current is evaluated as

JXUV (t) =
1

Ω
〈Ψ(t)|Ĵ |Ψ(t)〉 = −2

e · pmom
me

∆k

2π

∑
k

Re [ck(t)] . (33)
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Furthermore, based on the induced current dynamics, the optical conductivity can be evalu-

ated as

σexc(ω) =
J̃(ω)

ẼXUV (ω)
, (34)

where J̃(ω) and ẼXUV (ω) are the Fourier transform of the current J(t) and the XUV laser field

EXUV (t), respectively. The Fourier transform is defined with the damping function as

J̃(ω) =

∫ ∞
−∞

dteiωtJ(t)e
− t
τd , (35)

ẼXUV (ω) =

∫ ∞
−∞

dteiωtEXUV (t)e
− t
τd , (36)

where τd is the decay constant and it is set to 2.6 fs according to the experimental observation

(see the main text). Moreover, based on the computed optical conductivity, the linear suscepti-

bility can be evaluated as

χexc(ω) = i
σexc(ω)

ω
, (37)

In order to analyze the experimental reflectivity, we model the dielectric function of MgF2

with the excitonic susceptibility χexc(ω) in Eq. (37), assuming the following form

εMgF2(ω) = εvalence(ω) + 4πc

[
χex(ω) +

1

3
χex(ω + ∆SO)

]
, (38)

where εvalence is a complex dielectric function modeling the valence electron response, the pa-

rameter c determines the strength of the excitonic contribution. The effect of the spin-orbit

splitting is taken into account by the linear combination of the shifted excitonic susceptibility

χexc(ω) with the spin-orbit split ∆SO according to previous works [15]. We set the spin-orbit

split ∆SO to 0.44 eV and the ratio of the two contributions to 1/3, according to what reported

in Ref. [17]. Furthermore, we assume the following form for the valence contribution

εvalence(ω) = α + i
β

ω − ω0

, (39)
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where α, β, and ω0 are fitting parameters. We determine the fitting parameters, c, α, β, ω0 so as

to minimize the deviation from the experimental static reflectivity in the range between 51 eV

and 55 eV. More precisely, we compute the theoretical reflectivity Rtheo(ω) from the dielectric

function of Eq. (38) and compute the deviation from the experimental result

∆error =

∫ ωf=55 eV

ωi=51 eV

dω |Rexp(ω)−Rtheo(ω)| . (40)

Then, we optimize the fitting parameters, c, α, β, ω0 so as to minimize the error ∆error. As

shown in Fig. 1b in the main text, the model dielectric function with the optimized parameters

shows very good agreement with the experimental result. Here, we obtained the following

optimized parameters: α = 0.85, β = 2.3 eV/~, c = 0.014, and ω0 = 45.6 eV/~. Note that,

since the characteristic frequency ω0 of εvalence(ω) is substantially smaller than the photon-

energy range of interest (50-60 eV), the structures in the static reflectivity in Fig. 1b purely

originate from the excitonic contribution χexc(ω) based on the Wannier-Mott model.

12 Transient reflectivity with numerical pump-probe simulation

We next describe a theoretical scheme to investigate the transient optical property of MgF2 with

the model introduced in the previous section, 11. For this purpose, we employ the numerical

pump-probe simulation [34]. Here, we compute the electron dynamics under both the IR vector

potential AIR(t) and the XUV electric field EXUV (t), and the induced current is evaluated by

Eq. (33). Based on the induced current JXUV (t), we evaluate the transient dielectric function

with Eq. (38) through the Fourier transform of Eq. (35) and Eq. (36). Furthermore, the transient

reflectivity is evaluated with the transient dielectric function. We repeat the numerical pump-

probe simulation while changing the time-delay between the IR and XUV laser pulses. For the

IR laser field, we employ the following form

AIR(t) = −cEIR,0
ωIR

[
cos

(
πt

TIR

)]2
sin (ωIRt) , (41)
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in the domain −TIR/2 < t < TIR/2 and zero outside. Here, EIR,0 is a peak field strength of

the IR pulse, ωIR is a mean frequency of the pulse, and TIR is its full duration. We set ωIR to

1.55 eV/~, and TIR to 16 fs. The corresponding full width at half maximum is 6 fs, close to

the value used in the experiment. As a corresponding attosecond XUV pulse, we employ the

following form

EXUV (t) = EXUV,0

[
cos

(
π(t+ τdelay)

TXUV

)]4
cos (ωXUV (t+ τdelay)) , (42)

in the domain −TXUV /2 < t + τdelay < TXUV /2 and zero outside. Here, τdelay is the delay

between the IR laser pulse and the XUV laser pulse. We set the mean frequency of the XUV

pulse ωXUV to 55 eV/~, and the full duration TXUV to 1 fs. The corresponding full width at half

maximum is 260 as.

We perform the above numerical pump-probe simulation by setting the IR field strength

EIR,0 to 12.3 MV/cm inside the sample. The corresponding incident laser intensity in the vac-

uum is 1012 W/cm2 under the incident angle of 73.5◦ and the MgF2 refractive index of 1.375

at the photon energy of 1.55 eV [35]. Figure 10 presents the differential reflectivity as a func-

tion of photon energy and pump-probe delay as obtained with the full model described above.

The ∆R/R reported in Fig. 10(a) shows a slow (Fig. 10(b)) and a fast (Fig. 10(c)) component,

Figure 10: (a) Calculated ∆R/R spectrogram for the full model described in Sec. 11 and
Sec. 12. (b), (c), associated slow and fast components, respectively.

described in detail in the main manuscript. In addition, it is possible to separate the upper and
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lower transitions of the L2,3 Mg edge (Fig. 11) by freezing the other contribution of χexc in

Eq. (38), showing that the stronger contribution comes from the 2p1/2 state, which alone can

describe all the main features of the full calculations.

Figure 11: (a) Calculated ∆R/R spectrogram for the full model described in Sec. 11 and
Sec. 12. (b), (c), associated contribution of the Mg 2p1/2 and Mg 2p3/2 states, respectively.

13 Pure exciton calculations

In order to investigate the atomic nature of the exciton in the transient reflection signal, we

construct a pure exciton model based on the above Wannier-Mott model. The pure exciton

model consists of the three levels: one is the electronic ground state |ΨGS〉, the second state is

the excitonic ground state (bright exciton state), and the third state is the excitonic first excited

state (dark exciton state) in Fig. 1c in the main text. The bright and dark excitonic states are

computed by diagonalizing the Hamiltonian of the Wannier-Mott model, Eq. (26). Hence the

pure exciton model is described by the following 3-by-3 Hamiltonian matrix

Hex(t) =

 0 −e · dc · EXUV (t) 0
−e · dc · EXUV (t) εb −e · dexc · EIR(t)

0 −e · dexc · EIR(t) εd

 , (43)

where εb and εd are the energy levels of the bright and dark excitonic states, respectively. Note

that the energy level of the electronic ground state |ΦGS〉 is set to zero. The transition dipole

moment matrix between the electronic ground state and the bright exciton states is denoted as
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dc while that between the bright and dark excitonic state is denoted as dexc. Here, the XUV

laser pulse EXUV (t) excites the electronic system from the electronic ground state to the bright

exciton state while the IR laser pulse EIR(t) causes the transition between the bright and dark

excitonic states. Since the model is constructed by the above Wannier-Mott model, the param-

eters of the Hamiltonian, Eq. (43), can be extracted from the model. The extracted parameters

are as follows: εb = 54.4 eV, εc = 55.7 eV, and dexc = 3.5 a.u. For simplicity, we set dc to

1 a.u., but the choice of dc does not affect the result because this degree of freedom is absorbed

by the parameter optimization explained in Sec. 11.

The time evolution of the pure exciton model is described by the following quantum master

equation

d

dt
ρ(t) =

[Hex, ρ(t)]

i~
− 1

τd

 0 ρ12(t) 0
ρ21(t) 0 0

0 0 0

 , (44)

where ρ(t) is the density matrix of the system, and ρij(t) is the i-j component of the density

matrix. Here, we employ the simple relaxation time approximation for the coherence of the elec-

tronic ground state and the bright exciton state in order to naturally introduce the line broaden-

ing of the excitonic peak in the optical property. To be consistent with the above Wannier-Mott

model analysis as well as the experimental finding, we set the relaxation time τd to 2.6 fs.

The optical property of the pure exciton model can be evaluated by a similar procedure as the

full Wannier-Mott model described in the section 11. First we evaluate the induced polarization

dynamics under the XUV laser field as

Pex(t) = Tr

ρ(t)

 0 −e · dc 0
−e · dc 0 0

0 0 0

 . (45)

Then, we compute the susceptibility χexc(ω) with the Fourier transform of the polarization and

the XUV laser field as

χexc(ω) =
P̃exc(ω)

Ẽexc(ω)
. (46)
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Note that we do not employ the damping function in the Fourier transform since the decoherence

effect has been taken into account in the quantum master equation, Eq. (44). Finally, we model

the dielectric function with Eq. (38). Here, we repeated the parameter optimization for the

pure exciton model with the same procedure explained in Sec. 11, and we obtain the following

optimized parameters: α = 0.84, β = 2.3 eV/~, c = 1.9× 10−2, and ω0 = 43.6 eV//~.

Based on the above pure exciton model, one can further evaluate the transient optical prop-

erty under the presence of IR fields with the numerical pump-probe simulation (see Sec. 12).

The results are reported in Fig. 12(a), together with the temporal decomposition in femtosecond

and attosecond components (Figs. 12(b) and 12(c), respectively). It is possible to notice that,

Figure 12: (a) Calculated ∆R/R spectrogram considering only the excitonic contribution. (b),
(c), associated slow and fast components, respectively.

while the slow component of Fig. 12(b) is in good qualitative agreement with the slow compo-

nent of the full results (Fig. 10(b)), the fast component differs significantly and fails to reproduce

the V-shaped structure observed in the experiments (compare Fig. 12(c) and Fig. 10(c)).

14 Pure crystal calculations

Here, we investigate a bulk nature in the transient reflection signal. For this purpose, we evaluate

the pure bulk contribution by eliminating the excitonic contribution from the full Wannier-Mott

model described in Sec. 12. To eliminate the excitonic contribution, we set the electron-hole

29



interaction V0 in Eq. (27) to zero. Then, we perform the same numerical pump-probe simulation

with the parameterization in the section 12. The results are reported in Fig. 13(a), together with

the temporal decomposition in femtosecond and attosecond components (Figs. 13(b) and (c),

respectively). The pure crystal calculations show opposite behavior than the pure exciton results

Figure 13: (a) Calculated ∆R/R spectrogram considering only the crystal without exciton
formation. (b), (c), associated slow and fast components, respectively. In all the panels the
color scales are kept the same as for Figs. 10 and 12.

described in the previous section. In this case indeed, the fast component (Fig. 13(b)) shows

the same V-shaped structure, but shifted upwards in energy. The slow component (Fig. 13(c)),

instead, cannot reproduce the dispersive profiles observed in the experimental results (see Fig. 2

in the main manuscript). Note that once the electron-hole interaction V0 is set to zero in the

Wannier-Mott model, the model is reduced to the parabolic two-band model used in Refs. [29,

15]. Hence, the transient response is dominated by the DFKE.

15 Real time dynamics of exciton dipole moment

To obtain further insight into the microscopic exciton dynamics, we evaluate the IR-induced

dipole moment dynamics of the exciton. For this purpose, we compute the electron dynamics

under the IR laser pulse by setting the initial wavefunction |Ψ(t = −∞)〉 to the excitonic

ground state (bright exciton state). To evaluate the dipole moment, we first define the IR-

30



induced current with the Wannier-Mott model. Here, the current operator ĴIR is given by

ĴIR = −c∂Hk,k′(t)

∂AIR
. (47)

Then, one can evaluate the IR-induced current as

J(t) = 〈Ψ(t)|Ĵ |Ψ(t)〉. (48)

Furthermore, the corresponding polarization can be evaluated by the time-integration as

P (t) = Dexc(t) =

∫ t

−∞
dt′J(t′). (49)

Note that, in the Wannier-Mott model, the induced polarization can be seen as the induced

dipole moment of the exciton in the real-space expression. Thus, we treat it as the exciton

dipole moment hereafter.

In order to evaluate the phase delay between the IR electric field and the exciton dipole

oscillations Dexc(t) we proceeded as indicated in Sec. 7. We concentrate on the time window

of temporal overlap (between -8.5 and +8.5 fs) and perform the Fourier transform of the dipole

only in this region. Furthermore, we squared both EIR and the excitonic dipole in order to

evaluate the phase difference at the same frequency 2ωIR used in the case of ∆R/R. Figure 14

shows the results which are summarized in Figs. 4D and 4E of the main manuscript.

16 Spin-orbit splitting

As discussed in the previous sections, the spin-orbit splitting of the Mg 2p state is responsible

for the double peak observed in the static reflectivity. As a results, the transient reflectivity

trace is composed by two partially overlapping signals, one involving the promotion of a 2p1/2

electron and the other a 2p3/2 electron. Figure 15 shows the phase delays extracted from the

full model calculations (crystal plus exciton) and considering only the 2p1/2 contribution (blue

curve), the 2p3/2 contribution (green curve), or both (red curve). Since the signal from the 2p1/2
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Figure 14: (a) blue curve, excitonic dipole for the full calculations. Red curve, IR electric field
squared. The distance between two maxima, underlined by the vertical black dashed and blue
solid lines, visualizes the phase delay. (b) Same as in (a) but for the exciton-only calculations.

Figure 15: Phase delays calculated with the full model (crystal plus exciton, same as Fig. 3c
of the main manuscript) and separated in the upper (green curve) and lower (blue curve) state
contribution. As it is possible to observe the full calculations resemble the strongest transition
(2p1/2)
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state is stronger than the one involving the 2p3/2 state, the full response is largely dominated by

the former. We notice that the phase delay which involves a different 2p hole is not identical,

but the difference is too little to be observed with our current experimental setup. Therefore,

the exact description of the spin-orbit coupling is not fundamental to our analysis, as both the

green and blue curve of Fig. 15 fall within the experimental uncertainty. The main effect of

considering the spin orbit splitting is to achieve a better agreement between the experimental

2D maps and the calculated ones, without changing the Physics under examination.

17 IR intensity dependence

In order to verify the robustness of our results against the IR pulse intensity we performed

the calculations for four values of maximum electric field inside the sample, 2.9, 9.26, 12.3

and 34.7 MV/cm, corresponding to an IR intensity outside the sample of 5.7× 1010, 5.7× 1011,

1×1012 and 8×1012 W/cm2. The differential reflectivity spectrograms calculated for increasing

IR peak intensity are reported in Fig. 16. We found ∆R/R to be mostly in the linear regime,

showing appreciable modifications only for the strongest intensity IIR = 8× 1012 W/cm2. The

same behavior is observed in the phase delay τ . Figure 17 shows the phase delay extracted

for the calculations reported in Fig. 16 considering the full model (Fig. 17(a)), only the exciton

(Fig. 17(b)) or the crystal (Fig. 17(c)) contribution. The curves are nearly identical, with small

deviations only for IIR = 8× 1012 W/cm2 (orange curve). This demonstrates that the observed

features and the attosecond and femtosecond dynamics discussed in the main manuscript are

robust with the respect to a wide range of IR intensities.

18 Binding energy dependence

In order to investigate the role of exciton localization, we used the full model of Sec. 12 to

calculate ∆R/R while changing the exciton binding energy Eb between 0.7 and 4.2 eV by ma-
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Figure 16: Differential reflectivity spectrograms calculated for different IR intensities. The
first raw presents the full calculations. Second and third rows are the associated slow and fast
components. Each column corresponds to a different IR peak intensity, reported in the relative
title.

Figure 17: Phase delay τ , calculated for the full system (a), the pure quasi-particle (b) or the
pure crystal (c). In all panels, black, violet, red and orange curves correspond to an IR peak
intensity IIR equal to 5.7 × 1010, 5.7 × 1011, 1 × 1012 and 8 × 1012 W/cm2. The legend is
reported in (c).
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nipulating the electron-hole interaction strength V0. The results calculated for an IR intensity

of 1 × 1012 W/cm2 are displayed in Fig. 18. As it is possible to notice, ∆R/R is strongly af-

Figure 18: (a) Transient reflectivity spectrogram calculated with the full model described in
Sec. 12 using an exciton binding energy Eb = 0.7 eV. The horizontal blue dash-dotted line
marks the conduction band bottom, the black dashed line indicates instead the excitonic transi-
tion. (b)-(f), same as in (a), but with Eb equal to 1.4, 2.1, 2.8, 3.5, 4.2 eV, respectively.

fected by the value of Eb, which modifies the amplitude and shape of the femtosecond transient

features. The effect on the attosecond dynamics is described and summarized in Fig 4 of the

main manuscript: the phase delay τ exhibits an almost rigid energy shift, moving towards lower

photon energies for an increasing Eb. In order to study the relation between Eb and the energy

shift experienced by τ , we calculated the quantity ∆E which minimized the distance between

the energy dependent phase delay of the pure crystal τcry(E) and the energy dependent phase

delay of the full system with a given value of Eb, τEb(E), defined as follows:

∆τ(E,∆E) =

√∫ E2

E1
|τcry(E)− τEb(E −∆E)|2 dE

E2 − E1

(50)

The results for E1 = 46 eV and E2 = 63 eV are reported in Fig. 19. One can notice that even if
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Figure 19: (a) Behavior of the calculated phase delay τ as a function of the exciton binding
energy Eb (legend in (b)). The vertical dash-dotted lines mark the exciton position. Same data
as in Fig. 4c of the main manuscript. (b) Phase delays from (a) (same color coding) shifted
in energy by a quantity ∆E, in order to minimize the distance from the pure crystal response
(dashed gray curve). (c) ∆E as a function of Eb (Bohr radius a0), showing a deviation from
the linear behavior (black dot-dashed line). Same data as in Fig. 4e of the main manuscript.
(d) Distance between the energy dependent phase delay of the pure crystal τcry(E) and the
energy dependent phase delay of the full system with a given value of Eb, defined in eq. (50)
and calculated for the energy shifts ∆E reported in (c).

the overall V shape of the phase delay τ is preserved for all the values of Eb considered, we are

not observing a rigid shift of the bare crystal curve. The energy shift ∆E which minimizes the

residual distance between the translated curves does not scale linearly with the binding energy

(Fig. 19(c)) and the distance between the curves is not constant (Fig. 19(d)).

It is worth noting that the exciton binding energy is related to its degree of localization.

Indeed, for an hydronic quasi-particle, there is a precise relation between its Bohr radius, a0

and its binding energy Eb, given by the following formula [36, 37]:

Eb = − ~2

2µa20
, (51)

where µ is the reduced mass of the electron-hole system. For the case of MgF2, expressing the

binding energy in eV and the Bohr radius in Ångströms, we obtain:

Eb =

[
1.952

a0

]2
. (52)
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19 MgF2 valence exciton

The physical mechanisms based on intra-band motion which defines the sub-fs optical response

of the system is not an exclusive characteristic of core excitons, but is expected to happen also

in technologically more relevant valence excitons, as long as they are Wannier-Mott excitons

[36]. Whether an experimental investigation of the attosecond response of valence excitons is

demanding, they can be theoretically studied using the model reported here. In this respect,

MgF2 is a perfect candidate as it exhibits a strong excitonic feature close to its conduction band,

associated with a valence exciton [38]. Compared to the core exciton, the valence exciton is

characterized by a weaker binding energy (about 500 meV) and longer life times (in the ps/ns

regime [39]). Therefore an analysis of the slow component of the transient optical properties

will show an almost constant signal in the pump-probe time window under examination (about

30 fs). The sub-fs response is instead in agreement with what found for core excitons. Figure

20 shows a comparison between the phase delay as extracted from the imaginary part of the

differential conductivity ∆σ calculated for the core exciton (Fig. 20(a)) and a valence exciton

characterized by a binding energy of 500 meV (Fig. 20(b)) or 1 eV (Fig. 20(c)). To model the

valence exciton we assumed the CB bottom to be located 12.17 eV above the VB [38].

At first we observe that the phase delay of Im{∆σ} is strictly related to the phase delay

observed in the differential reflectivity trace (compare Fig. 20(a) with the Fig. 4c in the main

manuscript). Furthermore, also for the valence exciton, the full system response has a V-shaped

dispersion which is closely related to the pure crystal contribution (DFKE) and which is not

correctly reproduced by an atomic-like model where the field interaction is dominated by the

optical Stark shift (pure exciton case). Furthermore, also in case of valence excitons the phase

delay evaluated at the exciton transition, τex, or at the CB position, τCB, change with the exciton

binding energy Eb. Figure 21 shows the equivalent of Fig. 4f of the main manuscript, but

extracted from the valence exciton calculations reported in Figs. 20(b) and 20(c).
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Figure 20: (a) Phase delays extracted from the sample differential conductivity, ∆σ, calculated
with the full model (blue), the pure exciton (orange) and the pure crystal (gray). (b), (c), Same
quantities calculated for a valence exciton with 500 meV or 1 eV binding energy, respectively.
In the three panels, the black dashed vertical line indicates the CB position while the red dot-
dashed line indicates the excitonic resonance.

Figure 21: (a) Value of the phase delay τ evaluated at the valence exciton vertical transition
(τex, red open circles), or at the bottom of the CB (τCB, black open squares) for the two values
of Eb considered.
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We note that the absolute values of τCB and τex reported in Fig. 21 cannot be directly com-

pared with the values reported in Fig. 4f of the main manuscript since they have been extracted

from the differential conductivity and not from the differential reflectivity. Nevertheless, we ob-

serve the same qualitative behavior: τCB and τex can be controlled acting on the exciton binding

energy.

Summarizing the above considerations, we can conclude that our results are not limited

to core excitons, but can hold also for valence excitons, under the assumption that the quasi-

particle can be described by the Wannier-Mott model. The situation could be different for

Frenkel excitons, which have a different physical origin and for which we expect the intra-band

contribution to be less dominant. As a consequence, the full system response might not follow

the V-shaped dispersion.
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