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Theoretical frameworks used to qualitatively and quantitatively describe nuclear dynamics in
solids are often based on the harmonic approximation. However, this approximation is known to
become inaccurate or to break down completely in many modern functional materials. Interestingly,
there is no reliable measure to quantify anharmonicity so far. Thus, a systematic classification of
materials in terms of anharmonicity and a benchmark of methodologies that may be appropriate
for different strengths of anharmonicity is currently impossible. In this work, we derive and discuss
a statistical measure that reliably classifies compounds across temperature regimes and material
classes by their “degree of anharmonicity”. This enables us to distinguish “harmonic” materials,
for which anharmonic effects constitute a small perturbation on top of the harmonic approxima-
tion, from strongly “anharmonic” materials, for which anharmonic effects become significant or
even dominant and the treatment of anharmonicity in terms of perturbation theory is more than
questionable. We show that the analysis of this measure in real and reciprocal space is able to shed
light on the underlying microscopic mechanisms, even at conditions close to, e.g., phase transitions
or defect formation. Eventually, we demonstrate that the developed approach is computationally
efficient and enables rapid high-throughput searches by scanning over a set of several hundred binary
solids. The results show that strong anharmonic effects beyond the perturbative limit are not only
active in complex materials or close to phase transitions, but already at moderate temperatures in
simple binary compounds.

I. INTRODUCTION

In condensed-matter physics and materials science, the
dynamics of nuclei plays a decisive role for many ma-
terials properties. At the lowest level of theory, these
vibrations are commonly described in the harmonic ap-
proximation, in which the potential-energy surface V(R)
is approximated by V(2)(R), a second-order Taylor ex-
pansion in the atomic displacements, {∆RI}, about a
minimum energy configuration, {R0

I}, in terms of force

constants, ΦI,Jα,β [1]. The dynamical properties are deter-
mined by the model Hamiltonian

H(2) =
∑
I

P2
I

2MI
+

1

2

∑
I,J
α,β

ΦI,Jα,β ∆RαI ∆RβJ (1)

for the nuclear momenta, PI , and positions, RI = R0
I +

∆RI . Since this Hamiltonian separates into 3N uncou-
pled harmonic oscillators, called phonons, both the clas-
sical equations of motion and the quantum-mechanical
Schrödinger equation can be solved analytically. This al-
lows for the computation of thermodynamic properties
such as the harmonic free energy and the heat capac-

ity [1, 2]. Since computing ΦI,Jα,β from first principles is a

straightforward and computationally affordable task [3–
5], the harmonic approximation is a popular tool in ma-
terials science.

Material properties and phenomena that are described
inaccurately or not at all within such a harmonic model
are generally referred to as anharmonic effects. These
effects include i) the temperature dependence of equilib-
rium properties like thermal lattice expansion, ii) thermal
shift of vibrational frequencies and linewidth broadening,
iii) phase transitions, and iv) heat transport. All of these

properties either diverge or vanish in the harmonic ap-
proximation [2, 6–8].

In recent years, significant advances in modeling an-
harmonic effects were achieved, especially in the field
of thermal transport. To date, anharmonic effects can
be addressed either exactly via non-perturbative ab ini-
tio Molecular Dynamics (aiMD) [9, 10], or, more com-
monly, with approximate, perturbative models [11–18].
In the latter case, the Taylor expansion of the poten-
tial V(R) is extended beyond the second order and the
additional terms are treated as a perturbation of the har-
monic model. Yet, there is a fundamental question about
the applicability of perturbative approaches: The relia-
bility of any perturbation expansion is controlled by the
strength of the perturbation, which has to be “small”
with respect to the reference [19]. However, no mea-
sure exists to date to reliably quantify the strength of
anharmonic effects. First, this lack prevents the system-
atical and quantitative exploration of the applicability
limits of perturbative techniques. Second, this hinders
a systematic classification of materials across tempera-
ture regimes by anharmonicity. Given that anharmonic
effects may influence or even determine macroscopic ma-
terial properties, understanding qualitative trends that
govern anharmonicity across material space is a challenge
of growing importance.

In this work, we address this open issue by deriving
and validating the required anharmonicity measure. As
discussed below, it (a) allows for a systematic and quan-
titative classification of compounds across material space
from systems with only mild anharmonic contributions,
to strongly anharmonic systems where the phonon pic-
ture is invalid, (b) establishes a link between the actuat-
ing microscopic mechanisms and macroscopic properties,
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and (c) requires a fraction of the computational cost of
either perturbative or aiMD calculations and thus paves
the way for high-throughput anharmonicity classification
of materials. After presenting and discussing the un-
derlying theory, definitions, and the numerical aspects
for two exemplary materials in Sec. II-V, we show how
our anharmonicity measure can be incorporated into an
ab initio high-throughput screening of material space in
Sec. VI. We discuss our findings and their implications
for theoretical solid-state physics and materials science
in Sec. VII.

II. DEFINITION OF ANHARMONICITY

In the Born-Oppenheimer approximation [20], the dy-
namics of a nuclear many-body system is described by the
Hamiltonian determined by the potential energy V(R),

H(R,P) =
∑
I

P2
I

2MI
+ V(R) , (2)

where R = {R1, . . . ,RN} denotes the atomic coordi-
nates and P = {P1, . . . ,PN} the respective momenta.
Treating the nuclei as classical particles, the Hamiltonian
generates equations of motion for each atom I,

MI R̈I(t) = FI(t) = −∇IV (R(t)) , (3)

with atomic mass MI , acceleration R̈I , and the force FI .
As mentioned in the introduction, the harmonic ap-

proximation replaces the many-body potential V(R) by
a second-order Taylor expansion around equilibrium R0,

V(2)(R = R0 + ∆R) =
1

2

∑
I,J
α,β

ΦI,Jα,β ∆RαI ∆RβJ , (4)

in terms of the force constants

ΦI,Jα,β =
∂2V

∂RαI ∂R
β
J

∣∣∣∣∣
R0

. (5)

Accordingly, the forces are approximated as

F
(2)
I,α = −

∑
J,β

ΦI,Jα,β ∆RβJ . (6)

On this approximated potential-energy surface, the equa-
tions of motion can be solved analytically [2]. Differences
between the actual and the harmonic nuclear dynam-
ics arise from the difference between the exact poten-
tial V(R) and the harmonic potential V(2)(R), i. e., from
anharmonic contributions. Consequently, we define the
anharmonic contribution to the potential as

VA(R) ≡ V(R)− V(2)(R) . (7)

Analogously, the anharmonic contributions to the
forces that enter the equations of motion are given by

FA
I,α(R) = FI,α(R)− F (2)

I,α(R) , (8)

FIG. 1. Left: Sketch of a one-dimensional potential-
energy surface V(R) (solid black), its harmonic approxima-

tion V(2)(R) (dashed blue), and the anharmonic contribu-
tion VA(R) (solid red). Right: The force F (R) given by the

derivative of the potential energy V(R) (black), the force F (2)

stemming from the harmonic potential V(2)(R) (blue), and

the anharmonic contribution FA = F −F (2) (red), cf. Eq. (8).

with F
(2)
I obtained from Eq. (6). The construction is

qualitatively depicted in Fig. 1. Compared to the poten-
tial V(R), working with the forces has the advantage that
they naturally decompose into 3N components, hence
giving straightforward access to a real-space per-atom
and a reciprocal-space per-mode analysis. For the latter
purpose, we construct the dynamical matrix

DĨ,J̃
α,β(q) =

1√
MIMJ

∑
L

eiq·RL Φ
Ĩ,J(J̃,L)
α,β . (9)

Here, Ĩ labels the atoms in the primitive unit cell, L
denotes the Bravais lattice points, J(J̃ , L) labels the pe-

riodic images of J̃ , and q is the phonon wave vector [1].
Diagonalizing D(q) yields the harmonic eigenfrequen-
cies ωn(q) and eigenmodes en(q). For readability, we
use the generalized index s = (q, n) in the following. In
this notation, the mode-resolved forces are

Fs =
∑
I

1√
MI

esI · FI . (10)

III. QUANTIFYING ANHARMONICITY

Two prototypical materials are used as examples in
the following to elucidate the concepts developed in this
work: Silicon (fcc-diamond) serves as example for a
largely harmonic material, whereas the low-temperature
structure of the perovskite KCaF3 (Pnma [22], cf. Fig. 2),
is used as example for a complex, strongly anharmonic
material. As shown in Fig. 3 and 4, both materials ex-
hibit vibrational spectra of roughly the same frequency
range in the harmonic approximation. The perovskite
KCaF3 features an anion octahedral tilting (a−b+a− in
the Glazer notation [25, 26]) which reduces with temper-
ature, finally leading to a dynamically stabilized cubic
crystal at 560 K [26, 27]. We will discuss this phase tran-
sition and the implications for anharmonicity quantifica-
tion in more detail in Sec. IV.
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T < 550 K: Pnma T > 560 K: Cubic

F

K

Ca

FIG. 2. KCaF3 in the low-temperature Pnma (left) and
high-temperature aristotype phase (right). Both structures
are viewed along the long b-axis. [21]

Γ X U|K Γ L
0
2
4
6
8

10
12
14
16

ω
(T

H
z)

D
O

S
(arb.units)

FIG. 3. Phonon bandstructure of fcc-diamond silicon ob-
tained for a supercell with 216 atoms. Open circles denote
experimental reference data from inelastic neutron scattering
at room temperature [23].

Γ X S Y Γ Z U R T Z
0

2

4

6

8

10

12

14

16

ω
(T

H
z)

D
O

S
(arb.units)

FIG. 4. Phonon bandstructure of KCaF3 in the Pnma struc-
ture obtained from a supercell with 160 atoms. Open circles
denote experimental reference data from Raman scattering at
40 K [24].

We investigate both compounds at room temperature
via ab initio molecular dynamics (aiMD) simulations [28]
at the GGA level of theory using the PBEsol exchange-
correlation functional [29], light default basis sets [30],
and a Langevin thermostat [31] to perform canonical

sampling in supercells of 216 atoms (Si) and 160 atoms
(KCaF3), respectively. The aiMD is performed with a
time step of 5 fs for an initial thermalization period of
2 ps and a sampling period of 8 ps. The chosen numer-
ical settings ensure that all quantities of interest, i.e.,
structural parameters such as lattice constants, dynami-
cal properties such as vibrational frequencies, as well as
thermodynamic averages such as the σA measure intro-
duced below are converged within ±1 %.

All the necessary calculations and tools used for per-
forming the calculations and investigating the results are
implemented in our python package FHI-vibes [32]. It
builds on top of the Atomistic Simulation Environment
(ASE) [33], interfaces with phonopy for building har-
monic force constants [4], and integrates tightly with the
all-electron, numeric atomic orbitals code FHI-aims for
performing ab initio calculations of energy, forces, and
stress [30, 34].

A. Normalization of Forces

A prerequisite for comparing forces acting in different
systems under various thermodynamic conditions is that
these forces are normalized. For this purpose, we charac-
terize each force component FI,α(t) observed during the
simulation by the probability-density function pI,α(F ),
and use the definition of the thermodynamic average to
obtain

〈FI,α〉 =

∫ ∞
−∞

F pI,α(F ) dF , (11)

pI,α(F ) =
1

Nt

∑
t

δ (F − FI,α(t)) , (12)

where δ(F ) denotes the delta distribution. To charac-
terize the whole system, we use the mixture probability
distribution

p(F ) =
1

3NI

∑
I,α

pI,α(F ) , (13)

i. e., the weighted sum of probability distributions for
each force component FI,α. Since the average of the
individual force components vanishes in the absence of
an external force, 〈FI,α〉 = 0, the distribution p(F ) has a
mean of zero. However, the width of p(F ) depends on the
actual material, as shown in plots of p(F ) for silicon and
KCaF3 in Fig. 5 a) and b). We evaluate the width of the
force distribution by computing its standard deviation,

σ[F ] =

√∫ ∞
−∞

F 2 p(F ) dF =

√
1

3NI

∑
I,α

〈
F 2
I,α

〉
, (14)

with the thermodynamic average

〈F 2
I,α〉 =

1

Nt

Nt∑
t=1

F 2
I,α(t) . (15)
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FIG. 5. Distribution of forces p(F ) observed during
aiMD simulations at 300 K before (left) and after normal-
ization (right) for silicon (upper) and KCaF3 (lower row).
Dashed lines denote the standard deviation of the distribu-
tion.

The analysis reveals that the distribution of forces in sil-
icon exhibts a width of σ[FSi] = 0.60 eV/Å, while KCaF3

features a width of σ[FKCaF] = 0.38 eV/Å. This is con-
sistent with the phonon dispersions in Fig. 3 and 4, since
KCaF3 features more low-energy states, resulting, on av-
erage, in smaller restoring forces compared to silicon.
We take σ [F ] as a measure for the average magnitude
of forces acting in a material in thermodynamic equilib-
rium, including harmonic and anharmonic contributions.
The average force σ[F ] therefore defines a scale in which
the forces can be given and compared independent of the
system by defining the normalized force

FI(t) −→ FI(t) / σ [F ] . (16)

As shown in Fig. 5 c) and d), the mixture distributions
of these normalized forces, p (F/σ[F ]), exhibit the same
unit width for both Si and KCaF3. This normalization
thus allows to perform a meaningful comparison between
the two materials.

B. Anharmonicity Measure

To compute the anharmonic contribution to the forces,
we use the aiMD forces FI(t) and obtain their har-

monic contribution F
(2)
I (t) by evaluating Eq. (6) using

the displacements ∆R(t) = R(t) − R0 observed along
the MD trajectory. The anharmonic force is then given

by FA
I (t) = FI(t) − F

(2)
I (t), as defined in Eq. (8). In

close analogy the previous section, we use the proba-
bility distribution pI,α(FA) and the mixture probability
distribution p(FA) to characterize the statistical behav-
ior of FA. Likewise, we normalize FA

I,α with respect to

the force scale σ[F ]. Accordingly, FA
I (t) / σ [F ] describes

the anharmonic contribution to the force on atom I with
respect to the average magnitude of the total forces FI .

−1.0−0.5 0.0 0.5 1.0
F/σ [F ]

−1.0

−0.5

0.0

0.5

1.0

F
A
/σ

[F
]

Si

−1.0−0.5 0.0 0.5 1.0
F/σ [F ]

KCaF3
Probability

density

FIG. 6. Joint probability densities p(F, FA) to find a force
component F and its anharmonic contribution FA in units
of σ[F ]. Dashed lines denote the respective standard devia-
tions. The color intensity increases linearly from zero to the
maximum value of the respective distribution.

For both silicon and KCaF3 at 300 K, the distribu-
tions p(FA/σ [F ]) are plotted together with p(F/σ [F ])
in Fig. 6 as joint probability plots. Given that the force
scale σ [F ] introduced above is used, the normalized
forces are similarly distributed in x-direction for both ma-
terials as discussed earlier. On the y-axis, however, the
distribution of the rescaled anharmonic forces FA/σ[F ]
is significantly different for the two materials. In sili-
con, the distribution is sharply peaked around 0 with
a width of 0.15 σ [FSi]. From the distribution, we can
quantify that only 15 % of the forces stem from anhar-
monic contributions on average and the probability of
finding anharmonic force contributions of 0.5 σ [FSi] or
larger is < 0.01 %. This confirms the general understand-
ing that silicon is largely harmonic and strong anhar-
monic contributions are essentially absent. Conversely,
the distribution of anharmonic forces for the perovskite
KCaF3 in Fig. 6 (right) is much broader, featuring a
width of 0.36 σ [FKCaF], i. e., 36 % of the forces acting
on the nuclei stem from anharmonic effects on average.
More importantly, finding strongly anharmonic force con-
tributions of 0.5 σ [FKCaF] or larger is ' 16.5 %, thus sev-
eral orders of magnitude more probable than in silicon.
This means that these contributions are indeed signifi-
cant in this compound, as argued above in the introduc-
tion of Sec. III.

In spirit of this discussion, we define the following mea-
sure for the quantitative estimation of the degree of an-
harmonicity in a material:

σA(T ) ≡
σ
[
FA
]
T

σ [F ]T
=

√√√√√√√
∑
I,α

〈(
FA
I,α

)2〉
T∑

I,α

〈
(FI,α)

2
〉
T

, (17)

with the thermodynamic ensemble average 〈·〉T obtained
according to Eq. 15. σA(T ) measures the standard de-
viation of the distribution of anharmonic force compo-
nents FA

I,α obtained from the ab initio forces F and their
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FIG. 7. Joint probability densities to find a force component
F and its anharmonic contribution FA in units of σ[F ] for
each atom type in KCaF3 at 300 K. σA

K = 0.54, σA
Ca = 0.28,

σA
F = 0.38. The color saturation increases linearly from zero

to the maximum value.

harmonic approximation F(2) according to Eq. (8), nor-
malized by the standard deviation of the ab initio force
distribution in the absence of external forces. This is
mathematically equivalent to the root mean square error
(RMSE) of the harmonic model divided by the standard
deviation of the force distribution.

C. Atom- and Mode-Resolved Anharmonicity

To estimate the degree of anharmonicity in a specific
subset of the available degrees of freedom, denoted by X,
we evaluate

σA
X(T ) =

√√√√√√√
∑
x∈X

〈(
Fx − F (2)

x

)2〉
T∑

x∈X

〈
(Fx)

2
〉
T

, (18)

where X can be, e. g., a specific atom I, a group of atoms,
or a vibrational mode s. It is important to note that in
Eq. (18), we normalize by the width of the force com-
ponents of interest, σ [FX ], and not by the force scale

σ [F ] =
√∑

X σ[FX ]2 that averages over all available
components, as in Eq. (17). By this means, we assess the
relative importance of anharmonicity in the degree(s) of
freedom of interest. As an example, Fig. 7 shows the
species-resolved anharmonicities for KCaF3. This anal-
ysis reveals that the forces acting on the K atoms have
the largest anharmonic contribution, while the Ca and F
atoms are more harmonic. This is a result of the K atoms
moving in a relatively shallow potential that allows them
to participate significantly in the octahedral tilt, whereas
the calcium atoms occupy the relatively stable vertices of
the unit cell and its center, cf. Fig. 2.

To estimate the importance of anharmonicity in a spe-
cific vibrational mode s, we evaluate Eq. (18) for the
mode resolved forces Fs obtained from the eigenvectors
es as given by Eq. (10). The mode-resolved degree of
anharmonicity σA

s is plotted in Fig. 8 as a function of
the mode frequency ωs for silicon and KCaF3 at 300 K.
Across the whole vibrational spectrum, silicon exhibits

FIG. 8. Mode resolved degree of anharmonicity σA
s vs. fre-

quency ωs. Red squares: KCaF3. Blue dots: Silicon. The
black lines denote moving averages with a window of 50 data-
points. Inset: Joint probability density plot for the Gamma-
point optic mode ω(0, 11) = 2.81 THz with σA

s > 1.

almost the same mild anharmonicity of σA
s . 0.2. Con-

versely, KCaF3, exhibits larger values of σA
s with a sig-

nificantly increasing magnitude and width for frequen-
cies below 7 THz. Below frequencies of 5 THz, the an-
harmonic contributions make up for roughly 50 % of the
forces, with several modes approaching or even exceed-
ing σA

s = 1, as one of the Γ-point optical modes with
ωs = 2.81 THz. This implies that the harmonic model
predicts forces that are not even qualitatively correct.
They may have a significantly incorrect value and even a
wrong sign. In the joint probability density shown in the
inset, the anharmonic distribution p(FA

s ) is thus broader
than the force distribution for this particular mode.

Qualitative insight into the microscopic mechanism un-
derlying anharmonicity can be obtained by inspecting the
displacements associated with the modes of interest. For
example, the Γ-point mode with σA

s > 1 highlighted in
the inset of Fig. 8 participates in the phase transition
to the cubic structure above ' 550 K [26]. This shows
that the system begins to “feel” the onset of the phase
transition already at 300 K, well below the actual phase
transition temperature. This aspect, i.e., the relation be-
tween σA

s and phase transition temperatures, is discussed
further in more detail and for a broad set of systems in
Secs. IV and VI B. Accordingly, the proposed measure is
not only a valuable quantification and classifcation tool,
but it is also sheds light on the microscopic mechanisms
driving anharmonicity.

IV. APPLICATION TO DYNAMICALLY
STABILIZED SYSTEMS

As mentioned before, KCaF3 undergoes a second-order
phase transition to the cubic aristotype structure above
560 K [26]. This structure, which corresponds to an align-
ment of the octahedra (see Fig. 2), is not a local minimum
of the potential-energy surface, but a saddle point. This
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can be seen from the respective phonon dispersion, which
features several imaginary modes, as shown in Fig. 9.
We use this aristotype phase of KCaF3 to exemplify the
meaning of σA for dynamically stabilized systems, since
this is a commonly observed stabilization mechanism in
strongly anharmonic materials [35–37], especially in per-
ovskites [38, 39].
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FIG. 9. Phonon dispersion of cubic aristotype KCaF3 with
significant imaginary modes.

Imaginary phonon frequencies as observed in Fig. 9 im-
ply a breakdown of the harmonic approximation, since
displacements from equilibrium are not energetically
bounded. Accordingly, imaginary modes cannot be used
to assess a physically meaningful dynamics and are thus
typically neglected in standard perturbative methods.
With respect to the potential-energy surface, however,
a parabolic expansion around the cubic equilibrium and
the evaluation of force constants is still possible. Ac-
cordingly, the proposed definition of the σA-measure re-
mains meaningful, as demonstrated in the following. For
this purpose, we compare σA

cubic(T ), computed with the
force constants of the cubic structure, to σA

Pnma(T ), com-
puted using the force constants of the low-temperature
orthorombic Pnma phase, as shown in Fig. 10. At
low temperatures, at which the Pnma phase is stable,
σA
Pnma starts from 0.28 and increases roughly linearly up

to σA
Pnma(400 K) = 0.47. Between 400 and 600 K, a super-

linear increase of σA
Pnma up to a value around ' 1 above

600 K is observed. Essentially, this means that forces ob-
tained from the harmonic Pnma model are irrelevant for
the nuclear dynamics at T > 600 K. This is in line with
the finding that the material undergoes a phase transi-
tion to the cubic phase at these temperatures, as also
observable in the MD simulations.

For the exact same reason, the σA
cubic values obtained

using the harmonic model of the cubic structure are very
high > 0.9 below the phase transition temperature, since
the orthorombic Pnma structure and not the cubic one is
thermodynamically stable at these conditions. The fact
that σA

cubic and σA
Pnma cross each other at ≈ 500K (σA =

0.79) indicates that the measure σA is not only able to
quantify the strong anharmonic effects active under these

0.28

0.92 0.92

0.80
0.78 0.77 0.77 0.78

0.36

0.47

0.80 0.97 1.00 0.98

FIG. 10. σA as a function of temperature, computed with re-
spect to the stable orthorombic configuration (Pnma) and the
dynamically stabilized cubic configuration. The shaded areas
denote where the average atomic positions observed during
the simulation correspond to the Pnma or cubic phase. The
experimental phase transition from Pnma to cubic takes place
at 550-560 K [26].

conditions, but that it is also able to qualitatively capture
the underlying phase transition.

V. ACCELERATING ANHARMONICITY
QUANTIFICATION

In the previous sections, accurate but computation-
ally involved aiMD simulations were used to explore the
potential-energy surface for performing anharmonicity
quantification. For scanning through material space in
a high-throughput fashion, it is desirable to obtain reli-
able estimates for σA at a more moderated cost, i.e., by a
fast computation in order to decide whether a full aiMD
calculation is necessary to model the nuclear dynamics,
or if the harmonic approximation (with or without fur-
ther perturbative corrections) might suffice.

For this purpose, we note that the thermodynamic
averages entering the anharmonicity metric given in
Eq. (17) and (18) can be evaluated approximately by
sampling with the harmonic Hamiltonian, i. e.,

〈O〉T =
1

ZV

∫
dR e−βV(R) O(R) (19)

≈ 〈O〉(2)T =
1

ZV(2)

∫
dR e−βV

(2)(R) O(R) , (20)

with β = 1/kBT . For the practical evaluation of Eq. (20),
we generate atomic configurations via [40]

∆RαI =
1√
MI

∑
s

ζs 〈As〉 eαsI , (21)

in which es are the harmonic eigenvectors, 〈As〉 =√
2kBT/ωs is the mean mode amplitude in the classi-

cal limit [2], and ζs is a normally distributed random
number [40].
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FIG. 11. Convergence of the anharmonicity measure σA

with respect to number samples obtained from Eq. (21). Dots:
σA[Rn] for individual samples; Red line: Cumulative average.
Black dashed line: σA from aiMD. Shadowed region: Conver-
gence estimated by standard error.

To estimate the convergence of σA with respect to the
number of samples generated by Eq. (21), we evaluate σA

as defined in Eq. (17) for each individual sample Rn and
denote this value by σA[Rn]. The values are plotted in
Fig. 11 for a total of 30 samples. For silicon, each of the
individual samples is sufficient to obtain an estimation of
σA within more than 99 % accuracy, given that the har-
monic approximation in Eq. (21) holds in this case. In
the case of KCaF3, where the harmonic approximation is
not expected to yield a reliable dynamics, the described
approach yields a value of σA = 0.38 that differs from
the one obtained by aiMD (σA = 0.36) by 5 %, as shown
in Fig. 11. Furthermore, we find that a good estimate
of σA = 0.39 ± 0.09 can be obtained with less than 10
samples, thus with a computational cost that is reduced
by up to two orders of magnitude with respect to a full
aiMD. Note that the estimated value of σA obtained via
sampling also allows to judge how reliable the sampling
itself is, as reflected by the fact aiMD and harmonic sam-
pling coincide for Si, but differ in the case of KCaF3.

Exploiting this rational allows to speed up this statis-
tical approach even further by assigning ζs = (−1)s−1,
which generates a single, deterministic sample from the
most probable part of the random distribution [41]. In
the classical limit explored in this work, this essentially
implies evaluating σA(T ) at the turning point of the oscil-
lation estimated by the harmonic model. This allows one
to reliably single out very harmonic materials (σA ≤ 0.2)
within a single force evaluation, thus saving a further
order of magnitude in computational cost. Most impor-
tantly, one can exclude that highly-anharmonic materials
are misclassified when σA

OS ≤ 0.2, given that the anhar-
monicity is that small even at the turning point. We
compare the temperature dependence of σA(T ) for this
one-shot sampling technique and aiMD in Fig. 12. For
silicon, the one-shot sampling is found to be sufficient to
obtain σA, as expected. Interestingly, also for KCaF3,

200 400 600 800
Temperature T (K)

0.0

0.2

0.4

0.6

0.8

1.0

σ
A
(T

)

Si one-shot

KCaF3 MD

KCaF3 one-shot

Si MD

FIG. 12. σA as a function of temperature obtained from
MD simulations (black circles) and one-shot sampling (trian-
gles connected by dashed curves) according to Eq. (21).
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FIG. 13. Comparison of σA calculated from molecular dy-
namics and one-shot sampling for 25 rock salt, 21 zincblende,
7 wurtzite, and 10 orthorhombic perovskite materials at 300
K.

the one-shot sampling is able to estimate σA at low tem-
peratures, but no longer yields quantitatively reliable es-
timates at elevated temperatures, at which the actual
dynamical behavior of KCaF3 deviates significantly from
the harmonic reference as discussed in the previous sec-
tion. Over the whole temperature range, the one-shot
approach does however detect that strongly anharmonic
effects are active and that aiMD simulations are neces-
sary to reliably treat its dynamics.

This is further substantiated in Fig. 13 for a wider
set of materials discussed in more detail in the following
section. Here, we compare the values of σA at 300 K ob-
tained by using the one-shot and molecular dynamics ap-
proaches with each other for 63 materials. As expected,
σA
OS and σA

MD are in good agreement with each other for
Si like materials with a σA < 0.2, while deviations are
observed for larger values of σA

OS, whereby the errors are
more pronounced the larger σA

OS becomes. In particular,
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we observe that σA
OS can yield qualitatively wrong results

for σA
OS > 0.4. For this reason, σA

OS is used in the follow-
ing to pre-screen the materials and to single out materials
with σA < 0.2, whereas aiMD is used to obtain reliable
values of σA whenever σA

OS > 0.2.

VI. APPLICATION TO MATERIAL SPACE

To substantiate and generalize the insights obtained
for the two example materials in the previous section,
we compute σA for two distinct groups of materials at
multiple temperatures: simple binary compounds (rock
salts, zincblende and wurtzites) and perovskites. For
both cases, we perform symmetry-preserving geometry
optimization for the structures using parametric con-
straints in FHI-aims until all forces are converged to a
numerical precision better than 10−3 eV/Å [42]. From
there, we calculate a converged harmonic model of each
material’s vibrational properties and then generate ther-
mally displaced supercells using either molecular dynam-
ics or the one-shot approach according to Eq. (21). All
calculations use the PBEsol functional to calculate the
exchange-correlation energy and an SCF convergence cri-
teria of 10−6 eV/Å and 5 × 10−4 eV/Å for the density
and forces, respectively. Relativistic effects are included
in terms of the scalar atomic ZORA approach and all
other settings are taken to be the default in FHI-aims.
For all calculations we use the light basis sets and nu-
merical settings in FHI-aims. These settings ensure a
convergence in lattice constants of ±0.1 Å and a relative
accuracy in phonon frequencies of 3%.

A. Rock salts, Zincblende, and Wurtzites

To understand how prevalent harmonic, Si-like mate-
rials are across a broader chemical space, we use σA

OS
to screen over an initial test set that includes 97 rock
salt (RS), 67 zincblende (ZB), and 45 wurtzite (WZ) bi-
nary and elemental solids, as summarized in Figure 14.
At 300 K only 35% of all 209 materials tested can be
classified as highly harmonic with a σA

OS < 0.2. At el-
evated temperatures anharmonic effects get significantly
stronger. At 500 K only 10% of the materials have a
σA
OS < 0.2, while 34% feature a σA

OS value > 0.4. For
both temperatures, zincblende and wurtzite materials are
more harmonic on average, while the majority of rock
salts has a σA

OS value indicative of more complicated dy-
namical processes. These results are in line with experi-
mental and theoretical studies that show materials with
a higher coordination number have longer bond lengths
and softer lattices leading to stronger anharmonic inter-
actions [43, 44]. This screening demonstrates that anhar-
monic effects are more prevalent in material space than
previously thought, particularly at technologically rele-
vant temperatures.

One of the most anharmonic subclasses in the initial

%
M

at
er

ia
l

¾A
OS

0

15

30

45

0.1 0.5 0.9
0

15

30

45

0.1 0.5 0.9

)g K003,llA

%
M

at
er

ia
l

A
OS

0

15

30

45

0.1 0.5 0.9
¾A

OS

9.05.01.0 9.05.01.0

)h K005,llA

A
OS

0.1 0.5 0.9

RS 300 K RS 500 K

ZB 300 K ZB 500 K

WZ 300 K WZ 500 K

a) b)

c) d)

e) f)

FIG. 14. a-f) Pie charts representing the number of materials
with a σA

OS ≤ 0.2 (blue and left), 0.2 < σA
OS < 0.4 (yellow and

center), and σA
OS ≥ 0.4 (red, right) for a set of 97 rock salt

(a, b), 67 zincblende (c, d), and 45 wurtzite (e, f) materials,
at 300 K (a, c, e) and 500 K (b, d, f). The histogram for the
entire set at g) 300K and h) 500 K.

set of materials is noble metal halides, seven of which are
among the eleven most anharmonic materials at 300 K,
with only one of the remaining three materials having a
σA
OS < 0.4. In order to analyze the suspected high anhar-

monicity of this class, we use aiMD 1 to accurately calcu-
late σA for all stable noble metal halide zincblende and
rock salt materials at 300 K, as summarized in Table I.
In all cases, the aiMD calculations confirm (σA

MD ≥ σA
OS)

the strong anharmonicity indicated qualitatively by the
one-shot approach. Quantitatively, the aiMD reveals the
the actual values of σA can be even substantially higher.
A closer inspection of the dynamics reveal that this is re-
lated to spontaneous defect formation, which we observe
for every material except zincblende CuI. In these cases,
the noble metal ions move into the the metastable inter-
stitial sites of the lattice forming metallic clusters within
the material, as illustrated in the inset of Figure 15b
for rock salt AgBr. Similar effects have been observed
in earlier aiMD studies of cuprous halides [45, 46] and
have been debated extensively in literature [47–49]. Al-

1 These calculations are performed using a 64 atom supercell, the
Langevin thermostat, a time step of 5 fs, and trajectory lengths
of 10 ps.
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FIG. 15. a) The value of σA at each time step of the aiMD
trajectory for rock salt AgBr. b) structure of defect (individ-
ual unitcell defects shown in the outset. c) Structure of the
defect.

though a discussion of these defect-related aspects goes
beyond the scope of this work, we note that large jumps
in σA (i.e. σA approaches or exceeds 1.0) are correlated
with the formation of defects. The jumps are a result
of the harmonic model obviously failing to account for
the occupation of interstitial sites, as can be seen in Fig-
ure 15a. The actual magnitude of these σA-jumps is de-
termined by the number of defects formed in the struc-
ture and by the magnitude of the distortion from the
pristine structure, whereby the occurrence of such jumps
leads to strong fluctuations in σA, as also summarized in
Tab. I. This data reveals that these defects are particu-
larly pronounced for zincblende CuCl, CuBr, and AgBr,
leading to σA values much greater than 1.0. In this con-
text, we would like to stress that neither the employed
trajectory length nor the used supercell size is sufficient
for an accurate description of defect formation in ther-
modynamic equilibrium. Nevertheless, the metric σA is a
useful indicator for where interesting, highly-anharmonic
lattice dynamical phenomena occur.

B. Perovskites

As discussed in Section IV and shown in Figure 10 as
KCaF3 approached the cubic phase transition σA quickly
rose to ∼ 1.0. To see how general this behavior is we cal-
culate σA at 300 K and 600 K for a set of ten orthorhom-
bic perovskites with phase transition temperatures span-

TABLE I. σA at 300 K values for noble metal halides in the
test set as calculated from the one-shot method and aiMD.
The standard deviation of σA in aiMD trajectory is given in
the last column.

Material
Space

Group
σA
OS σA

MD std
[
σA [R (t)]

]
AgBr 216 0.68 2.64 0.96

AgI 216 0.41 0.80 0.21

CuCl 216 0.55 1.90 0.22

CuBr 216 0.52 2.78 0.45

CuI 216 0.37 0.41 0.06

AgCl 225 0.50 0.85 0.12

AgBr 225 0.48 0.75 0.13

AgI 225 0.52 0.62 0.09

ning three orders of magnitude and summarize the results
in Table II. As the data in Table II illustrates once the
perovskites are around or above their respective transi-
tion temperatures, σA tends to go above 0.45, with its
overall magnitude determined by the extent of deforma-
tion away from the harmonic reference structure. These
results combined with the data from the previous sec-
tions indicate that σA could be useful as an indicator for
phase transitions or defect formation in material.

TABLE II. σA at 300 K and 600 K for several perovskites
along with their experimental phase transition temperatures.

Material σA (300 K) σA (600 K)
Transition

Temperature (K)

CaZrO3 0.22 0.31 2023 [50]

CsCaBr3 0.65 0.63 143 [51]

CsSnBr3 0.75 0.88 247 [52]

CsSnI3 0.49 0.78 351 [53]

KCdF3 0.42 1.17 460 [54]

MgNaF3 0.26 0.37 1038 [55]

NaTaO3 0.25 0.73 700 [56]

RbCaF3 0.49 0.50 <50 [57]

RbCdF3 0.48 0.54 124 [58]

SnSrO3 0.22 0.32 905 [59]

To get a better understanding of how individual modes
behave at different points near transition temperatures
we illustrate the mode resolved σA

s values for CaZrO3,
NaTaO3, KCdF3, and CsSnI3 at 300 and 600 K using
violin plots in Figure 16. When the material is far from
the phase-transition temperature the mode projection is
similar to what was seen for Si in Figure 8 with the
relative anharmonicity grouped together in a band cen-
tered around the average σA value for the material, as
seen for CaZrO3. As a material approaches a transi-
tion (e.g. NaTaO3 at 600 K or KCdF3 and CsSnI3 at
300 K) the cloud broadens with a few highly anharmonic
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modes present. Finally as the temperature further in-
creases, many more modes become anharmonic as the
harmonic model fails to even qualitatively describe the
system. These results demonstrate the potential of this
measure to not only predict when a potential phase tran-
sition will happen, but also which vibrational modes are
responsible for that transition.

CsSnI3
(351 K)

KCdF3
(460 K)

NaTaO3
(700 K)

CaZrO3
(2023 K)

Material
(Phase Transition Temperature)

0

0.25

0.5

0.75

1

1.25

1.5

σ
A s

Temperature
300.0
600.0

FIG. 16. Violin plots of the mode resolved σA for CaZrO3,
NaTaO3, KCdF3 and CsSnI3 at 300 K (blue and left) and 600
K (red and right). The lighter colored circles (bottom 300 K
and top 600 K) represent the median of the mode distribution
at a given temperature.

VII. CONCLUSION AND OUTLOOK

In this work, we present a measure for the degree of
anharmonicity, σA(T ) that quantifies the importance of
anharmonic effects in a crystalline material. In practice,
this is done by statistically analyzing the ab initio in-
teractions in thermodynamic equilibrium. This measure
allows for a rapid scan through material space for the
purpose of ranking materials by anharmonicity. Our re-
sults indicate that materials whose properties are signifi-
cantly affected by anharmonic effects are not uncommon
at all. Rather, largely harmonic materials like silicon and
diamond with σA < 0.2 are the exception to the rule.
In fact, only 35% of the binary compounds and none of
the perovskites we screened over were that harmonic at
room temperature. At more elevated temperatures, an-
harmonic effects are even more prevalent.

The proposed metric gives access to key aspects of an-
harmonicity itself, since σA(T ) is rigorously based on the
actual interactions driving the dynamics in a material.
As demonstrated for the phase transitions occurring in
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FIG. 17. Comparison of σA with experimental lattice thermal
conductivities of 6 wurtzite, 19 zincblende, and 22 rock salt
materials (defect forming noble metal halides were excluded)
with thermal conductivity values taken from Ref. [60]. Values
of σA < 0.2 are obtained by one-shot sampling, values > 0.2
by aiMD. The diagonal gray dashed line is a power law fit of
κ300 with respect to σA. The horizontal dashed line separates
materials with κL < 10 W/mK and the vertical line denotes
the intercept with the fit at σA = 0.28.

perovskites, analyzing the per-mode contributions to σA

sheds light on the microscopic origin of anharmonic ef-
fects that determine the macroscopic properties of mate-
rials in thermodynamic equilibrium.

As an outlook, we present an additional finding in
Fig. 17, in which the experimental lattice thermal con-
ductivity κL at 300 K is plotted against σA(300 K) for
those RS/ZB/WZ compounds with reliable measure-
ments of κL [60].

Fitting the data on log-log scale to a linear model,
we get a slope of -4.79, implying an inverse power law
between κL and σA, with an average factor difference
(AFD) of 1.48. AFD was introduced by Miller and
coworkers to measure the accuracy of a model via

AFD = 10x, x =
1

N

N∑
i=1

|log κL,exp − log κL,model| , (22)

where N is the number of samples in the test set [43].
The strong inverse correlation between these two prop-
erties shown in Fig. 17 illustrates that σA is a good de-
scriptor for anharmonicity by itself because as a mate-
rial’s vibrational properties become more anharmonic,
its phonon lifetimes, and therefore κL, decrease. It is
remarkable that even without explicitly including any
of the other material properties that influence κL, such
as group velocities or heat capacities, we get a similar
AFD as other semi-empirical models [43, 60]. Clearly,
this calls for future, more extensive research on more ex-
haustive datasets. Along these lines, we like to stress
again that the scope of the presented method goes beyond
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thermal transport and phase transition mechanisms, and
potentially applies to any phenomenon governed by an-
harmonic effects such as free energies [61], thermal stabil-
ity [62], thermal expansion [63], defect formation [64, 65],
ferroelectricity [66], and electron-phonon coupling [67].

Besides these practical aspects, these findings call for
a systematic analysis and scrutiny of the validity of per-
turbative techniques, which are commonly used, e. g., for
computing lattice thermal conductivities. In these ap-
proaches, anharmonic effects are treated by perturbation
theory, starting from the harmonic approximation and
assuming the perturbation to be small VA � V. This
assumption seems to be justified for materials like sil-
icon with σA < 0.2, in which anharmonic effects are
responsible for 20% of the interatomic interactions at
most. However, this assumption becomes highly ques-
tionable for the majority of materials, which, as shown
in this work, exhibit σA > 0.2. Especially thermal insu-
lators generally feature large values of σA, cf. Fig. 17.
The formalism developed in this work is ideally suited to
single out and classify well-defined test systems with dif-
ferent anharmonic strength and character, ranging from
simple harmonic materials (σA ≤ 0.20) up to complex
materials featuring phase transitions (σA ≥ 1). Across
this anharmonicity range, non-perturbative methodolo-
gies such as non-equilibrium techniques [68–71] and equi-
librium Green-Kubo approaches [9, 10] can provide re-
liable benchmarks, against which the various perturba-

tive techniques at different degrees of sophistication [11–
18, 72–78] need to be validated. This comparison will
allow to identify up to which strength of anharmonic-
ity σA these different techniques work reliably and above
which threshold of σA perturbation theory breaks down
completely.
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[39] W. A. Saidi, S. Poncé, and B. Monserrat, Journal of
Physical Chemistry Letters 7, 5247 (2016), 1612.01530.

[40] D. West and S. K. Estreicher, Phys. Rev. Lett. 96, 115504
(2006).

[41] M. Zacharias and F. Giustino, Phys. Rev. B 94, 075125
(2016).

[42] M. O. Lenz, T. A. Purcell, D. Hicks, S. Curtarolo,
M. Scheffler, and C. Carbogno, npj Comput. Mater. 5
(2019), 10.1038/s41524-019-0254-4.

[43] S. A. Miller, P. Gorai, B. R. Ortiz, A. Goyal, D. Gao,
S. A. Barnett, T. O. Mason, G. J. Snyder, Q. Lv, V. Ste-
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