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GLOBAL STABILITY OF SPACETIMES WITH
SUPERSYMMETRIC COMPACTIFICATIONS

LARS ANDERSSON, PIETER BLUE, ZOE WYATT AND SHING-TUNG YAU

This paper proves the stability, with respect to the evolution determined by the vacuum Einstein equations,
of the Cartesian product of higher-dimensional Minkowski space with a compact, Ricci-flat Riemannian
manifold that admits a spin structure and a nonzero parallel spinor. Such a product includes the example of
Calabi–Yau and other special holonomy compactifications, which play a central role in supergravity and
string theory. The stability result proved in this paper shows that Penrose’s instability argument [2003]
does not apply to localised perturbations.

1. Introduction

Let (R1+n, ηR1+n ) be the (1+n)-dimensional Minkowski spacetime, and let (K, k) be a compact, Ricci-flat
Riemannian manifold that has a cover that admits a spin structure and a nonzero parallel spinor. The
spacetime M = R1+n

× K with metric
ĝ = ηR1+n + k (1)

is globally hyperbolic and Ricci flat, i.e, it is a solution to the (1+n+d)-dimensional vacuum Einstein
equations. Such spacetimes play an essential role in supergravity and string theory [Candelas et al. 1985].
In this paper we refer to (M, ĝ) as a spacetime with a supersymmetric (SUSY) compactification and
(K, k) as the internal manifold.

The simplest spacetime with a supersymmetric compactification, which has been studied since the 1920s,
is the Kaluza–Klein spacetime (R1+3

×S1
θ , ηR1+3 +dθ2) [Kaluza 1921; Klein 1926]. As shown by Witten

in an influential paper [1982], this spacetime is unstable at the semiclassical level. Nonetheless in the
same work Witten argued that the spacetime should be classically linearly stable.

By contrast, Penrose has sketched an argument intended to show that spacetimes with supersymmetric
compactifications are generically classically unstable, for every dimension n and all internal manifolds,
except possibly when the internal manifold is a flat d-dimensional torus [Penrose 2003; 2005]. There are
theorems motivated by these considerations that generalise the classical singularity theorems to trapped
surfaces of arbitrary codimension [Cipriani and Senovilla 2019; Galloway and Senovilla 2010]. However,
the results of the present paper show that for spacetimes with supersymmetric compactifications the
instability argued by Penrose does not hold for n ≥ 9, and we conjecture here that in fact stability holds for
n ≥ 3. The nonnegativity of the spectrum of the Lichnerowicz Laplacian on symmetric 2-tensors, which
holds for the internal spaces by the result of Dai, Wang, and Wei [Dai et al. 2005], plays a crucial role
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in our stability proof. In fact, this nonnegativity, which is conjectured to hold for all compact Ricci-flat
manifolds, is sufficient for our result. See Section 2A for details.

In order to state our main theorem, we need to introduce some notation. For the product spacetime
R1+n

× K we denote spacetime indices by α, µ, ν, . . . , Minkowski indices by i, j, k, . . . , and internal
indices by A, B, C, . . . . For a general pseudo-Riemannian metric g, let ∇[g] denote its Levi-Civita
connection, Riem[g] its Riemann curvature tensor, Ric[g] its Ricci curvature, and dµg its volume form.
Define the contraction

(R[g] ◦ u)µν = Rµρνλ[g]uρλ, (2)

which acts on symmetric (0, 2)-tensors uµν . Given the supersymmetric spacetime metric ĝ on R1+n
× K ,

let
(gE)µν = ĝµν + 2(dt)µ(dt)ν, (3)

where dt is with respect to the standard Cartesian coordinates on R1+n. On K and R1+n
× K , define the

inner products on (0, 2) tensors, respectively, as

⟨u, v⟩k = k AC k B Du ABvC D and ⟨u, v⟩E = gµν
E gρσ

E uµρvνσ . (4)

Define |u|k = (⟨u, u⟩k)
1/2, and similarly for |u|E .

The following is our main result. The details of some of the concepts appearing in the statement of the
theorem appear in Definitions 2.10, 2.11, 2.12, 2.14 and Theorem 2.15.

Theorem 1.1. Let n, d ∈ Z+ be such that n ≥ 9, and let N ∈ Z+ be sufficiently large. Consider a spacetime
(R1+n

× K, ĝ = ηR1+n + k) with a supersymmetric compactification. Let gS denote the Schwarzschild
metric in the ηR1+n -wave gauge with mass parameter CS ≥ 0.

There is an ϵ > 0 such that if (Rn
× K, γ, κ) is an initial data set satisfying that outside the unit ball

the initial data coincides with the product of Schwarzschild initial data with the unperturbed internal
metric (i.e., γ = gS + k and κ = 0 where |x | ≥ 1) and satisfying∑

|I |≤N

∥∇[γ ]
I (γ − ĝ|t=0)∥

2
L2(Rn×K )

+

∑
|I |≤N−1

∥∇[γ ]
I κ∥

2
L2(Rn×K )

+ C2
S ≤ ϵ, (5)

then there is a solution g of the vacuum Einstein equations on R1+n
× K with initial data (Rn

× K, γ, κ)

and satisfying the ĝ-wave gauge. There is the bound

sup
(t,x i,ω)∈6s×K

t2δ(n)
|g(t, x i, ω)− ĝ(t, x i, ω)|2E ≲ ϵ, (6)

where the decay rate is given by
δ(n) =

1
4(n − 2). (7)

Finally (R1+n
× K, g) is globally hyperbolic and causally geodesically complete.

The stability result obtained in Theorem 1.1 covers a large class of product spacetimes, including
many special holonomy compactifications relevant in supergravity and string theory. Although this
paper succeeds in its goal of providing a counterexample to the dimension-independent argument in
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[Penrose 2003], from a PDE perspective, Theorem 1.1 should be seen as a preliminary result, and we
expect that the assumptions that n ≥ 9 and that the Cauchy data is Schwarzschild near infinity can be
relaxed. In fact we make the following conjecture.

Conjecture 1.2. Spacetimes with a supersymmetric compactification1 and n = 3 are nonlinearly stable.

As explained below, this paper uses a relatively simple vector field argument, while, for example, the
proof of global stability for the coupled Einstein–Klein–Gordon system in (1+3)-dimensions [LeFloch
and Ma 2016] has required combining vector field arguments with estimates arising from control on the
fundamental solution for the wave equation. Such detailed analysis is beyond the scope of this paper, but
we intend to explore this in future work. Note that our current method can be easily used to show linear
stability as far as n = 3.

The decay rate of |h| ≲ t−δ(n) arises essentially as a linear estimate. The linearisation of the Einstein
equation is

(□η + 1k + 2R[ĝ] ◦ )hµν = 0. (8)

To study conservation properties of the linear equations we introduce a novel stress-energy tensor

T [h]
µ

ν = ĝµα
⟨∇[ĝ]αh, ∇[ĝ]νh⟩E −

1
2 ĝαβ

⟨∇[ĝ]βh, ∇[ĝ]αh⟩Eδµ
ν + ⟨R[ĝ] ◦ h, h⟩Eδµ

ν , (9)

which is specifically adapted to the tensorial operator appearing in (8). The conditions on (K, k) imply
(see Section 2A) that the energy integral derived from (9) is nonnegative.

The conditions on (K, k) imply that the operator −(1k +2R ◦) has a nonnegative discrete spectrum, so
a spectral decomposition can be applied to solutions h of the linearised Einstein equation (8). The spectral
component corresponding to the zero eigenvalue satisfies an effective wave equation □η(h0)µν = 0,
and the components corresponding to positive eigenvalues λ satisfy effective Klein–Gordon equations
(□η −λ)(hλ)µν = 0. A decomposition of this type has been used in the analysis of wave guides, where K
is replaced by a compact subset of Rd with Neumann boundary conditions; see e.g., [Metcalfe and Stewart
2008; Metcalfe et al. 2005]. When applying the vector field method to the wave and Klein–Gordon
equations, there is a unified approach using a basic energy of the form

∫ ∑n
i=0 |∂i h|

2
+ λ|h|

2 dµ that
can be strengthened by commuting the equation with 0, the set of generators of translations, rotations,
and boosts. The use of this set of vector fields in the vector field method, with particular application to
Klein–Gordon equations, goes back to [Klainerman 1985].

This unified approach then bifurcates: the Klein–Gordon equation does not admit any further commuting
first-order operators but the energy has a nonvanishing lower-order term λ|h|

2; in contrast, the wave
equation allows for commutation with the generator of dilations, S = t∂t + r∂r , but the lower-order term
in the energy vanishes. For the quasilinear Einstein equation, we refrain from performing a spectral
decomposition into wave and Klein–Gordon components. Thus, we use only the unified part of the
approach (following especially the treatment of quasilinear Klein–Gordon equations in [Hörmander 1997]),

1Recall that the definition of a spacetime with a supersymmetric compactification, as introduced in the opening paragraph of
this paper, includes the assumption that the spacetime is a fibre bundle with base space (R1+n, ηR1+n ). Stability for a certain
class of cosmological spacetimes as base spaces is proved in [Branding et al. 2019].
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leaving us with a decay rate that is far from the sharp decay rates of the wave and Klein–Gordon equations.
In particular, the vector field method can be used to prove decay rates, for the wave and Klein–Gordon
equations, of t−(n−1)/2 and t−n/2, respectively.

In light of this, it seems likely that some novel refinement should allow for a significantly better decay
rate than t−δ(n) with δ(n) =

1
4(n − 2). This paper contains two types of refinement. First, the decay rate

is shown to be s−2δ(n), where s2
= t2

− x2 inside light cones. The exponent 2δ(n) =
1
2(n − 2) is much

closer to the decay rate for the wave and Klein–Gordon equations. Second, the same decay rates are
proved for 0 I h as for h, but, since the 0 contain t- and x-dependent weights, with respect to a translation
invariant basis in Minkowski space, derivatives decay faster than the field h itself.

Having obtained a linear estimate that improves with increasing n, we take n large enough that
2δ(n)−2 > 1, so that the nonlinear terms decay sufficiently fast for the linear estimates to remain valid. In
particular, we take n large enough that we can ignore all nonlinear structure in the Einstein equation. It is
well known that global existence results for semilinear equations in (1+3)-dimensions depend delicately
on the nonlinearities, for example the null condition [Klainerman 1986]. Christodoulou and Klainerman
[1993] used the vector field method to prove the stability of Minkowski spacetime. One of the major
advances in the simplified vector field argument in [Lindblad and Rodnianski 2003; 2005; 2010] was the
introduction of the weak null condition and the observation that the Einstein equations in the harmonic
gauge satisfy this condition. LeFloch and Ma [2016] identified the relevant nonlinear structures for
Klein–Gordon equations coupled to the (1+3)-dimensional Einstein equation.

The dimension of the compact manifold only appears in the required regularity of the initial data,
which is given explicitly in Theorem 5.1. The restriction to initial data which is exactly Schwarzschild
outside of a compact set mirrors the proof of Minkowski stability in (1+3)-dimensions by Lindblad and
Rodnianski [2005].

Background and previous work. Theories of higher-dimensional gravity are of great interest in super-
gravity and string theory as possible models of quantum gravity. Many of these theories are built around
the spacetimes with supersymmetric compactifications discussed above.

The background spacetimes considered in this paper are of the form Rn+1
× K , with K compact

and Ricci flat, and are hence anisotropic. Among the first stability results for anisotropic spacetimes
of a related form was the proof of future stability of flat cosmological spacetimes of the form M3

× S1,
where M3 is a flat (2+1)-dimensional Milne spacetime with metric −dt2

+ t2 H 2 and H 2 is a hyperbolic
surface, was considered by Choquet-Bruhat and Moncrief [2001]. See also [Andersson 2014; Reiris 2010].

Until now, the only nonlinear stability results for spacetimes with supersymmetric compactification
have concerned the simplest Kaluza–Klein case when the internal space is the circle S1, or in slightly
more generality, the flat d-dimensional torus. It was shown by one of the authors [Wyatt 2018] that this
spacetime is classically stable to toroidal-independent perturbations. A model problem to remove this
restriction with toroidal internal space has recently appeared [Huneau and Stingo 2021]. We remark that in
the physics literature, these are known as zero-mode perturbations. An analogous result for cosmological
Kaluza–Klein spacetimes, where the Minkowski spacetime is replaced by the four-dimensional Milne
spacetime, has also recently been shown [Branding et al. 2019].
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The spacetimes of importance in supergravity and string theory involve a nontrivial (i.e., nontoroidal)
internal manifold with parallel spinors, such as a Calabi–Yau, G2 or Spin(7) manifold. Note that a
solution of the 10- or 11-dimensional vacuum Einstein equations can be considered as a particular solution
of the supergravity equations. Local-in-time existence results are known for both the vacuum Einstein
equations [Choquet-Bruhat 1952; Choquet-Bruhat and Geroch 1969] and for the supergravity equations
[Choquet-Bruhat 1985]. Furthermore, global-in-time existence and decay results for a nonlinear wave
equation for 3-form fields, on a fixed background spacetime with compact internal dimensions have
been shown in [Ettinger 2015]. The field equation studied in that paper is modelled on the supergravity
equations with the gravitational interaction turned off. In our present work, we consider the stability of
spacetimes with supersymmetric compactifications as solutions to the vacuum Einstein equations. In
future work we intend to study their stability under the supergravity equations.

In addition to determining the dynamics, the Einstein equations also imply that any initial data set must
satisfy the constraint equations, which are themselves an important topic of study and have important
consequences. A positive mass theorem holds for initial data (6, γ, κ) provided that 6\60 for some
compact 60 is topologically (Rn

\B) × K for some ball B, that the dimension of the base space is at
least n ≥ 3, that the initial data (6, γ, κ) is asymptotically flat in the sense that the metric (including
its derivatives) converges to δ + k sufficiently fast and that κ converges to zero sufficiently rapidly, that
the background internal space (K, k) is a simply connected Calabi–Yau manifold, and that the scalar
curvature is nonnegative [Dai 2004]. Recent work has shown the existence of such solutions in the case
(K, k) = (Td , δ) [Huneau and Vâlcu 2021].

L2 stability and L∞ instability. Several people have suggested that the instability argument of Penrose
[2003; 2005] should be interpreted as a statement with respect to perturbations that are not localised.2

This unlocalised interpretation could be stated as saying that SUSY compactifications are unstable against
perturbations of the initial data that depend only upon the position in the internal space K but are
independent of x ∈ Rn. Considering the behaviour of the initial data in x ∈ Rn, this distinction can be
interpreted as a being between unlocalised perturbations that merely have a small supremum (for the
metric and a suitable number of derivatives) and localised perturbations that have finite and small norms
based on the square integral of the perturbation (again including a suitable number of derivatives), such
as we use in (5) of Theorem 1.1. We view this as a distinction between, on the one hand, instability in
L∞-based Sobolev spaces and, on the other, stability in L2-based Sobolev spaces.

Although it is true that SUSY compactifications are unstable against perturbations in L∞-based Sobolev
spaces, this instability does not arise from the presence of the internal space but is already present in
Minkowski space for n ≥ 3. In particular, there is the explicit Kasner solution

g = − dt2
+ (1 + ϵt)4/3 d(x1)2

+ (1 + ϵt)4/3 d(x2)2
+ (1 + ϵt)−2/3 d(x3)2.

This is typically considered with (x1, x2, x3) being taken as coordinates on the torus T3, but it applies
equally well on R3. By taking a tensor product with (Rn−3, δRn−3) or (Rn−3

× K, δRn−3 + k) one can

2We thank the first reviewer for emphasising this perspective.
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extend this example to show L∞ instability also for higher-dimensional Minkowski space and for SUSY
compactifications.

The L∞ instability of Minkowski space and SUSY compactifications can be viewed as part of a
broader set of instability phenomena. The L∞ instability of Minkowski space can be viewed as essentially
equivalent to the instability of (R × Tn, −dt2

+ δTn ). Bartnik [1988] has conjectured that a globally
hyperbolic spacetime with compact Cauchy surface and satisfying the strong energy condition is either
causally incomplete or split as a metric product (and hence flat in the (3+1)-dimensional case). See also
[Galloway 2019]. One heuristic justification for this conjecture follows a contradiction argument, which
begins by considering what would happen if there were not some major divergence from the original
solution. In this case, the metric perturbations would satisfy something close to energy conservation,
would exhibit something close to Poincaré recurrence, and would eventually be found in any configuration
compatible with the bound on the initial energy. However, just as it is possible to imagine black holes
of arbitrarily small mass, it is possible to form trapped surfaces with arbitrarily small energy. Thus, the
Poincaré recurrence would imply the eventual formation of trapped surfaces and hence of singularities.
This would imply instability, which concludes the contradiction argument. There is a further extension
of this belief that if a spacetime with a compact hypersurface does not expand sufficiently rapidly, then
metric perturbations will not decay sufficiently rapidly and singularities will form. It is essential to make
the distinction between L∞ and L2 perturbations when making PDE estimates.

Outline of paper. In Section 2 we introduce: the Lichnerowicz Laplacian, the foliation by hyperboloids,
the gauge condition, and the higher-dimensional Schwarzschild-product spacetime. In Section 3 we prove a
Sobolev estimate on hyperboloids with respect to wave-like energies. In Section 4 we define an energy func-
tional adapted to the internal manifold and to hyperboloids. Finally in Section 5 we prove the main theorem.

There are four key elements that we add to the standard energy-estimates framework to prove the
stability of SUSY compactifications. First, we observe that we can obtain arbitrarily rapid decay by
going to sufficiently high dimension and that this decay allows us to control nonlinear terms. Second,
the new Sobolev estimates in Section 3 give decay estimates that do not require decomposing metric
perturbations into massive and massless parts. Following an argument of Hörmander, the Sobolev estimate
in Lemma 3.2 holds on hyperboloids to exploit the fact that the initial data is essentially trivial outside
the unit ball. Third, it is possible to introduce an energy that simultaneously enjoys several desirable
properties. Namely, the energy introduced in Definition 4.1 is not merely the energy constructed from the
energy-momentum tensor (9) for the linearised Einstein equation (8), but we show it is positive using
known results on Ricci-flat compact manifolds with special holonomy which we review in Section 2A,
and it is the basis for the Sobolev norms in Section 3. Fourth, in defining pointwise norms of derivatives
(e.g., Definition 2.4), we commute the equation with the second-order 1k rather than just first-order vector
fields, which are sufficient in Minkowski space. The higher-order Sobolev estimate in Corollary 4.7 has to
use separate indices to count the Minkowski and internal derivatives, because our L∞-norms use only an
even number of derivatives in internal directions, while our L2-norms use integer number of derivatives.
Once we have used these four elements, it is possible to control the nonlinear (including quasilinear)
terms in the Einstein equation using standard energy-estimate techniques.
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2. Preliminaries

2A. Parallel spinors and the Lichnerowicz Laplacian. Our main theorem has been stated for an internal
manifold that has a cover that admits a spin structure and a nonzero parallel spinor. In this subsection we
detail how this condition relates to a linear stability condition involving the eigenvalues of an operator
closely related to the Lichnerowicz Laplacian.

Definition 2.1 (Riemannian linear stability). Define 1k = k AB
∇[k]A∇[k]B to be the standard Laplacian

on (K, k). Let u AB be a symmetric (0, 2) tensor defined on K . Define L to act on such tensors by

(Lu)AB = −1ku AB − 2(R[k] ◦ u)AB . (10)

We define a Ricci-flat manifold (K, k) to be Riemannian linearly stable if and only if∫
K
⟨Lu, u⟩k dµk ≥ 0, (11)

for all symmetric (0, 2)-tensors u AB .

The operator L is closely related to the Lichnerowicz Laplacian 1L , which acts on symmetric tensors by

(1Lu)AB = (Lu)AB + Ric[k]AC uC
B + Ric[k]

C
Bu AC . (12)

Clearly on a Ricci-flat space these operators are equivalent. The operator L is self-adjoint and elliptic,
and consequently by the compactness of K and spectral theory, it has a discrete set of eigenvalues of
finite multiplicity. Hence definition (11) amounts to a condition λmin ≥ 0 on the lowest eigenvalue λmin

of L. For further details see, e.g., [Besse 1987].
Our main Theorem 1.1 in fact applies more generally to internal manifolds which are Riemannian lin-

early stable. For the purposes of this paper, the crucial relation between spacetimes with a supersymmetric
compactification and with an internal space that is Riemannian linearly stable is the following.

Theorem 2.2 [Dai et al. 2005, Theorem 1.1]. If a compact, Ricci-flat Riemannian manifold (K, k) has a
cover which is spin and admits a nonzero parallel spinor then it is Riemannian linearly stable.

Note that some of the ideas established in [Dai et al. 2005] date back to work of Wang [1991] on the
deformation theory of parallel and Killing spinors. A spin manifold (K, k) with a nonzero parallel spinor is
Ricci flat and has special holonomy; see [Wang 1989] for a classification. It is not known if any hypotheses
on the internal space beyond Ricci flatness are necessary for stability to hold, as all known examples of
compact Ricci-flat manifolds admit a spin cover with nonzero parallel spinors. The problem of constructing
Ricci-flat manifolds including ones with nonspecial holonomy has been widely studied. A few relevant
references on the topic are [Biquard 2013; Brendle and Kapouleas 2017; Tian and Yau 1990; 1991].

The spatial equivalent of the ĝ-wave gauge was used in the proof of Milne stability [Andersson
and Moncrief 2011]. This led to terms involving L appearing in their PDEs, which were treated using
Riemannian linear stability properties specific to the Milne spacetime. Further results on Riemannian
linear stability for Einstein manifolds can be found in [Kröncke 2015].
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2B. Cartesian, hyperbolic, and hyperbolic polar coordinates.

Definition 2.3 (Minkowski space). Let n ≥ 1 be an integer, let (x0, x1, . . . , xn) = (t, x1, . . . , xn) = (t, x⃗)

be Cartesian coordinates parametrising R1+n, and define

ηR1+n = − dt2
+

n∑
i=1

(dx i )2. (13)

Define, for i ∈ {1, . . . , n}, the translation vector fields T and X i so that, in the Cartesian coordinates, they
are given by

X i = ∂x i , T = X0 = ∂t . (14)

Define, for i, j ∈ {0, . . . , n}, the vector fields Zi j so that, in the Cartesian coordinates, they are given by

Zi j = (ηR1+n )jk xk∂i − (ηR1+n )ik xk∂j . (15)

Define the collection of Lorentz generators by

Z = {Zi j , T, X i }. (16)

Define |x |
2
=

∑n
i=1(x i )2 and define, in the region t ≥ |x |, the hyperboloidal coordinates to be

s = (t2
− |x |

2)1/2, y = x . (17)

Define, for i ∈ {1, . . . , n}, the vector fields Yi so that, in the hyperboloidal coordinates, they are given by

Yi = ∂yi . (18)

For s0 ≥ 0, define the spacelike hyperboloidal hypersurface

6s0 = {(t, x) ∈ R1+n
: t > 0, s = s0}. (19)

Note that, because (ηR1+n )00 = −1, we have Z0i = t∂x i + xi∂t . Furthermore the collection Z is closed
under commutation and forms a basis for the Poincaré Lie algebra.

Definition 2.4 (pointwise derivative norms based on commuting operators). On R1+n
× K , define,

for i ∈ {0, . . . , n}, X i , Yi , and Zi j to be as in R1+n. Let primed roman letters denote spatial indices
i ′, j ′

∈ {1, . . . , n + d + 1}. Define the following collection of vector fields

0 = Z ∪ {1k}. (20)

Note that [Z , 1k] = 0. Define N = {0, 1, 2, . . . }. We will now define {Zi }
(n+1)(n+2)/2
i=1 to be a reindexing

of {X i }
n
i=0 ∪ {Zi j }0≤i< j≤n , define a multi-index to be an ordered list of arbitrary length of elements

from
{
1, . . . , 1

2(n + 1)(n + 2)
}
, and for a multi-index I = (i1, . . . , ik) define the length |I | = k and the

differential operator Z I
= Zik ◦ · · · ◦ Zi1 . For I ∈ N and uµν a tensor defined on R1+n

× K , define the
generalised multi-index notation

|0 I u|
2
E =

∑
I1:|I1|+2 j=|I |

|Z I11
j
k u|

2
E , (21)

where the sum is taken over all multi-indices I1 of length |I1| = k and integers j such that k + 2 j = |I |.
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Definition 2.5 (Sobolev norms). Let uµν be a tensor defined on R1+n
× K and let j ∈ N. Define

|∇[k]
j u|

2
E = k A1 B1 · · · k Aj Bj gµν

E gρσ
E (∇[k]Aj · · · ∇[k]A1uµρ)(∇[k]Bj · · · ∇[k]B1uνσ ). (22)

For ℓ ∈ N, define the norms

∥u( · , · , ω)∥H ℓ(K ) =

(∫
K

∑
0≤ j≤ℓ

|∇[k]
j u( · , · , ω)|2E dµk

)1/2

, (23)

∥u(t, x, ω)∥L2(6s×K ) =

(∫
6s×K

|u(t, x, ω)|2E dx dµk

)1/2

, (24)

where dx = dx1
· · · dxn is defined to be the flat Euclidean volume form.

Lemma 2.6. Yi = X i + (xi/t)T, Z0i = tYi , Zi j = yi Yj − yj Yi .

Proof. Since t =
√

s2 + y2, by the chain rule, for j ∈ {1, . . . , n},

∂

∂y j =
∂x i

∂y j

∂

∂x i =
∂

∂x j +
∂t
∂y j

∂

∂t
=

∂

∂x j +
yj

t
∂

∂t
,

which gives the first result. The second follows from multiplying both sides of the first by t . The third
follows from

Zi j = xi X j − x j X i = xi (X j + x j t−1T ) − x j (X i + xi t−1T ). □

The following two lemmas relate the t coordinate to the s coordinate.

Lemma 2.7. Let s ≥ 1. Suppose (t0, x0)∈6s and (t, x)∈6s with |x −x0|≤
1
2 t0. In this case, 1

2 t0 ≤ t ≤ 2t0.

Proof. For the graph t =
√

s2 + |x |2, the gradient∣∣∣∣ ∂t
∂x

∣∣∣∣ =

∣∣∣∣ x√
s2 + |x |2

∣∣∣∣ ≤ 1, (25)

so the change from t to t0 is less than the change from |x | to |x0|. □

Lemma 2.8. There is a constant C > 0 such that for all s > 1, in the portion of 6s where |x | ≤ t −1, one
has 2t − 1 ≤ s2

≤ t2.

Proof. Observe that t2
= s2

+ |x |
2
≥ s2. Since |x |

2
≤ t2

− 2t + 1, one has s2
= t2

− |x |
2
≥ 2t − 1. □

The following are standard elliptic estimates; see for example [Besse 1987, Appendix H].

Lemma 2.9 (elliptic estimates on (K, k)). For ℓ ∈ N and uµν a sufficiently regular tensor defined on
R1+n

× K , there exist constants c1, c2, c3 > 0 such that

∥u∥H2ℓ(K ) ≤ c1∥(1k)
ℓu∥L2(K ) + c2∥u∥L2(K ) ≤ c3∥u∥H2ℓ(K ). (26)

In Lemma 2.9, if u is orthogonal to the kernel of 1k , then there is a c1 such that the first estimate holds
with c2 = 0.
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2C. The Einstein equations. The theory of the Einstein equations is well known. In this section, we
review this theory, for the sake of providing a self-contained presentation in this paper, and in particular
to provide a self-contained statement of our main Theorem 1.1.

Definition 2.10 (geometric initial data set). Let m ∈ N+. An m-dimensional initial data set is defined
to be a triple (6, γ, κ) such that 6 is an m-dimensional manifold, γi ′ j ′ is a Riemannian metric on 6,
κi ′ j ′ is a symmetric 2-tensor on 6, and the following equations (the constraint equations) are satisfied:

R[γ ] − |κ|
2
+ (tr(κ))2

= 0, ∇[γ ]i ′ tr(κ) − ∇[γ ]
j ′

(κ)i ′ j ′ = 0, (27)

where tr(κ) = γ i ′ j ′

κi ′ j ′ .

Definition 2.11 (solution of the Einstein equations with specified initial data). Let M be a manifold. A
Lorentzian metric g on M is defined to be a solution of the vacuum Einstein equations if and only if its
Ricci curvature vanishes,

Ric[g]µν = 0. (28)

Let (6, γ, κ) be a geometric initial data set. A solution to the (geometric) Einstein equations with
initial data (6, γ, κ) is defined to be a Lorentzian metric g on I ×6 for some interval I where one has:
0 ∈ I , g is a solution of the Einstein equations (28), {0}×6 and g restricted to vectors in T ({0}×6) are
isometric in the category of Riemannian manifolds to (6, γ ), and, with the identification given by this
isometry, the second fundamental form of the embedding of {0} ×6 into I × 6 is κ .

As is well known, Definition 2.11 is stated in a more restrictive form than necessary. In Definition 2.11,
for convenience, we have required that the initial data be specified at t = 0. This may initially appear more
restrictive than definitions that are stated in other sources. By a translation in the t variable, Definition 2.11
could be stated on any level set of t . Furthermore, because of the freedom to introduce new coordinate
systems on the manifold I × 6, Definition 2.11 is actually equivalent to definitions that allow initial data
to specified on more general spacelike hypersurfaces.

2D. The reduced Einstein equations. To obtain a well-posed evolution problem for the Einstein equations
we choose a gauge with respect to a fixed Lorentzian metric êµν defined on M.

Definition 2.12 (ê-wave gauge). For Lorentzian metrics g and ê defined on some manifold M, let ∇[g]

and ∇[ê] be the Levi-Civita connections with corresponding Christoffel symbols 0[g] and 0[ê] in local
coordinates. Define the vector field V γ in local coordinates by

V γ
= gαβ(0

γ

αβ[g] −0
γ

αβ[ê]). (29)

Define also Vλ = gλβ V β. The ê-wave gauge condition is given by

V γ
= 0. (30)

Recall that the difference of two Christoffel symbols is a tensor, and so V γ is in fact a well-defined
vector field on M.
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Definition 2.13 (reduced Einstein equations). Let M be a manifold with Lorentzian metric ê. A Lorentzian
metric g on M is defined to be a solution of the reduced Einstein equations if and only if

gαβ
∇[ê]α∇[ê]βgµν − gγ δ(gµλêλρ Riem[ê]ργ νδ + gνλêλρ Riem[ê]ργµδ) = Qµν[g](∇[ê]g, ∇[ê]g), (31a)

where we have defined

Qµν[g](∇[ê]g, ∇[ê]g) = gγ δgαβ
(
∇[ê]νgδβ∇[ê]αgµγ + ∇[ê]µgγα∇[ê]βgνδ −

1
2∇[ê]νgδβ∇[ê]µgγα

+ ∇[ê]γ gµα∇[ê]δgνβ − ∇[ê]γ gµα∇[ê]βgνδ

)
. (31b)

2E. The higher-dimensional Schwarzschild spacetime. In this subsection, the higher-dimensional
Schwarzschild solution is considered and its relationship to the initial data for the Einstein equations (28)
and the reduced Einstein equations (31) is discussed. The form of the metric follows.

Definition 2.14. Let n ∈ Z be such that n ≥ 5, and let CS ∈ [0, ∞). In Schwarzschild coordinates, the
Schwarzschild metric is defined, for (t, r̄ , ω) ∈ R × (C1/(n−2)

S , ∞) × Sn−1, to be

gS = −

(
1 −

CS

r̄n−2

)
dt2

+

(
1 −

CS

r̄n−2

)−1

dr̄2
+ r̄2σSn−1 . (32)

The above metric can also be written in the wave gauge. For n = 3, it is sufficient to replace

(t, r̄ , ω) ∈ R × (C1/(n−2)

S , ∞) × Sn−1

by (t, x) = (t, rω) with r = r̄ − M ; the resulting explicit metric can be found in [LeFloch and Ma 2016;
Lindblad and Rodnianski 2005]. Although the case n = 4 leads to complicated terms involving logarithms,
for n ≥ 5, there is the following theorem.

Theorem 2.15 [Choquet-Bruhat et al. 2006, Section 5.2]. Let n ∈ Z be such that n ≥ 5, and let CS ∈ [0, ∞).
There are coordinates (t, x) related to those in Definition 2.14 by (x i )n

i=0 = (t, r(r̄)ω) with

r(r̄) = r̄ −
CS

2r̄n−3 + O(r̄5−2n),

such that the (x i )n
i=0 satisfy the harmonic gauge, that is, the ηR1+n -wave gauge. Furthermore, there exist

functions h00(R), h(R), and ĥ(R), defined on an interval around R = 0, that are analytic and bounded
by a multiple of CS near R = 0, and such that

gS = −

(
1 −

h00(r−1)

rn−2

)
(dx0)2

+

n∑
i, j=1

[(
1 +

h(r−1)

rn−2

)
δi j

+
ĥ(r−1)

rn−2

x i x j

r2

]
dx i dx j. (33)

In particular, the difference between the components of gS with respect to the harmonic coordinates and
the corresponding components of the Minkowski metric are such that any ∂ I derivative decays at least as
fast as CSr−(n−2)−|I |.

Note a result in [Dai 2004] ensures that CS ≥ 0 for the spacetimes of interest in our main Theorem 1.1.
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3. Sobolev estimates on hyperboloids

We begin in Lemma 3.1 by recalling Hörmander’s proof of a Sobolev estimate on hyperboloids. This
allows us to introduce some of the key ideas that appear in our proof of the main result of this section,
Lemma 3.2. The use of the vector field method to prove Sobolev estimates on hyperboloids originates in
[Klainerman 1985].

Lemma 3.1 (Sobolev estimate for compactly supported functions on hyperboloids in Minkowski space
[Hörmander 1997, Lemma 7.6.1]). Let ν be the smallest integer greater than 1

2 n, and let v ∈ Cν(R1+n)

have support in |x | < t − 1. There is a constant C such that

sup
6s

tn
|v(t, x)|2 ≤ C

∑
|I |≤ν

∫
6s

|Z I v|
2 dx . (34)

Proof. Consider a point (t0, x0) ∈ 6s with |x0|
2
≤ t2

0 −1. Set r0 =
1
2 t0 and y0 = x0. Set 6 to be the portion

of 6s on which |x − x0| ≤ r0. Let (t, x) ∈ 6. This implies |t − t0| ≤ r0, which implies 1
2 t ≤ t0 ≤ 2t . Thus,∑

|I |≤ν

∫
6s

|Z I v(t, x)|2 dx ≥ C
∑
|I |≤ν

∫
6s

|t |I |
0 Y I v(t, y)|2 dy.

The right side can be rewritten, by introducing rescaled coordinates

ỹ = 2t−1
0 (y − y0) and ṽ(ỹ) = v(t, y).

One can now decompose the portion of 6s where |x | ≤ t − 1 into many subregions where t does not vary
by more than a factor of 2. Let χ(ỹ) be a smooth cut-off such that χ is 1 on a neighbourhood of 0 and
is 0 for |ỹ| ≥

1
2 , it can further be bounded from below. A Sobolev estimate can then be applied to give a

further lower bound on v. Combining these yields∑
|I |≤ν

∫
6s

|t |I |
0 Y I v(t, x)|2 dy =

∑
|I |≤ν

∫
|ỹ|≤1

|∂ I
ỹ ṽ(ỹ)|2tn

0 dỹ

≥ Ctn
0

∑
|I |≤ν

∫
|ỹ|≤1

|∂ I
ỹ ((χṽ)(ỹ))|2 dỹ

≥ Ctn
0 |ṽ(0)|2

= Ctn
0 |v(t0, x0)|

2,

which completes the proof. □

In the following lemma we obtain a Sobolev estimate for functions supported on product spacetimes
with specified properties outside a compact set. In particular we obtain a pointwise estimate (36) in terms
of the hyperboloidal time s, as well as a t-weighted pointwise estimate on a fixed hyperboloid (37).

Lemma 3.2 (Sobolev estimate for eventually prescribed functions on hyperboloids foliating product
spacetimes). Let n ≥ 4, let d̃ be the smallest even integer larger than 1

2 d , and let ν̃ be the smallest integer
greater than 1

2 n + d̃. Let uµν and fµν be tensors on R1+n
× K with f depending only on the Minkowski
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coordinates x i. Let u ∈ C ν̃(R1+n
× K ) satisfy u = f for |x | ≥ t − 1. Let f ∈ C∞(R1+n

× K ) be smooth
and be such that, for all I ∈ N, there is a C I such that3

|∇[ĝ]
I f |E ≤ C|I ||x |

−(n−1)/2−|I |. (35)

Let δ(n) =
1
4(n − 2). There is a constant C such that

sup
(t,x i,ω)∈6s×K

s4δ(n)
|u(t, x i, ω)|2E ≤ C

∑
|I |≤ν̃

n∑
i=1

∫
6s×K
|x |≤t−1

|Yi Z I u|
2
E dx dµk + C

∑
|I |≤ν̃−1

C2
I . (36)

Furthermore there is a constant C such that

sup
(t,x i,ω)∈6s×K

t2δ(n)
|u(t, x i, ω)|2E ≤ C

∑
|I |≤ν̃

n∑
i=1

∫
6s×K
|x |≤t−1

|Yi Z I u|
2
E dx dµk + C

∑
|I |≤ν̃−1

C2
I . (37)

Proof. Lemma 2.9 and the standard Sobolev estimate imply

sup
ω∈K

|u( · , · , ω)|E ≤ ∥u∥H d̃ (K )
≤ ∥(1k)

d̃/2u∥L2(K ) + ∥u∥L2(K ),

for d̃ the smallest even integer greater than 1
2 d . This choice of d̃ being even is simply to make the elliptic

estimate cleaner. Note the trivial estimate∑
|I |≤ν̃−d̃

(|Yi Z I (1k)
d̃/2u|

2
E + |Yi Z I u|

2
E) ≤

∑
|I |+2 j≤ν̃

|Yi Z I (1k)
j u|

2
E .

It is thus sufficient to prove in Minkowski space that

sup
6s

sn−2
|u(t, x)|2E ≤ C

∑
|I |≤ν̃−d̃

n∑
i=1

∫
6s

|Yi Z I u|
2
E dx + C

∑
|I |≤ν̃−1

C2
I , (38)

since this would then imply

sup
6s×K

sn−2
|u(t, x i, ω)|2E ≲

∑
|I |≤ν̃−d̃

n∑
i=1

∥ sup
K

(Yi Z I u)∥2
L2

x
+ C

∑
|I |≤ν̃−1

C2
I

≲
∑

|I |≤ν̃−d̃

n∑
i=1

∥Yi Z I (1k)
d̃/2u∥

2
L2

x L2
K

+ C
∑

|I |≤ν̃−1

C2
I .

For |x | ≥ t − 1 and (t, x) ∈ 6s , one has t ∼ |x |, and so

sn−2
|u(t, x)|2E ≤ tn−2

|u(t, x)|2E ≤ C |x |
n−2

|u(t, x)|2E ≤ C |x |
n−2

| f (x)|2E ≤ CC2
0 .

Thus, it remains to prove (38) for |x | ≤ t − 1.

3The exponent on f is set to match that corresponding to the exponent arising from the pointwise estimate (36) on u in the
region |t − r | ≤ C . The limiting factor on the exponent in (36) arises from estimates on the hyperboloid, not from the decay of
the prescribed function f . If a faster decay rate t−β could be proved (using similar methods) on hyperboloids for compact data,
then a similar t−β decay could be proved for prescribed functions satisfying f ≤ r−β.
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Consider the region |x | ≤ t − 1. Set tmax =
1
2(s2

+ 1), which is the value of t at which 6s intersects
|x | = t − 1 and which satisfies t ≤ tmax ≤

1
2(t2

+ 1) on the portion of 6s where |x | ≤ t − 1 by Lemma 2.8.
Let χ : R → [0, 1] be a smooth cut-off function such that χ(α) = 1 for α < 1 and χ(α) = 0 for α > 2, and
define the (0, 2) tensor vµν(t, x) = χ(|x |/tmax)uµν(t, x). Observe that uµν = vµν in the region |x | ≤ t −1.

Hormander’s proof of Lemma 3.1 relies on a carefully chosen rescaling of a portion of the hyperboloid,
and the rest of this proof follows the same idea, although the scaling is chosen differently. Recall both
the Cartesian (t, x) and hyperboloidal (s, y) coordinates in Minkowski space, which are related via
(s, y) = (

√
t2 − |x |2, x). Given a choice of s, define ỹ = s−1 y and set ṽ(ỹ) to be the value of v at

hyperboloidal coordinates (s, s ỹ). With this, dn ỹ = s−n dy and ∂ỹi = s∂yi = sYi . Recall that Zi = tYi .
Thus, by a Sobolev estimate that exploits the fact that 1 < 1

2 n < 1
2 n + 1,

sup
6s

|v(t, x)|2E = sup |ṽ(ỹ)|2E ≲
∑

1≤|J |≤
n
2 +1

∫
|∂ J

ỹ ṽ|
2
E dn ỹ.

From rescaling and the facts that s ≤ t and that Z0i = tYi , it follows that

sup
6s

|v(t, x)|2E ≲ s−n
∑

1≤|J |≤
n
2 +1

∫
|(sY )J v|

2
E dn y ≲ s−n+2

∑
0≤|J |≤

n
2

∑
i

∫
s2|J |

|Y J Yiv|
2
E dn y

≲ s−n+2
∑

0≤|J |≤
n
2

∑
i

∫
t2|J |

|Y J Yiv|
2
E dn y ≲ s−n+2

∑
0≤|J |≤

n
2

∑
i

∫
|Yi Z J v|

2
E dn y.

The last integral can be decomposed into the regions where |x | ≤ t −1 and |x | > t −1. Where |x | ≤ t −1,
the integral can be bounded by the integral term on the right-hand side of (38) since ν̃ − d̃ > 1

2 n. Now
consider the region |x | > t − 1. Because of the support of χ , it is sufficient to consider the region
tmax − 1 ≤ |x | ≤ 2(tmax − 1). In this region, v = χ f . When a derivative is applied to v, it is applied to
either χ or to f , in which case one obtains an additional factor of t−1

max or |x |
−1, from the properties of χ

and f , respectively. Since |x |/tmax ∈ [1, 2] in the support of ∂χ , effectively one obtains an extra factor
of |x |

−1 in all cases, so |Yi Z J v|E ≤ CC|J |+1|x |
−(n−1)/2−1, and∫

|x |≥tmax−1
|Yi Z J u|

2
E dx ≤ CC2

|J |+1

∫
Sn−1

∫ 2(tmax−1)

tmax−1
(|r |

−(n−1)/2−1)2
|r |

n−1 dr dn−1ωSn−1 ≤ CC2
|J |+1.

Observing that s ≥ Ct1/2 in the region |x | ≤ t − 1 allows us to obtain

sup
6s×K

t2δ(n)
|u|

2
E ≤ sup

6s×K∩{|x |≤t−1}

t2δ(n)
|u|

2
E + sup

6s×K∩{|x |>t−1}

t2δ(n)
|u|

2
E

≲ sup
6s×K∩{|x |≤t−1}

s4δ(n)
|u|

2
E + sup

6s×K∩{|x |>t−1}

r2δ(n)
| f |

2
E

≲
∑
|I |≤ν̃

n∑
i=1

∫
6s×K
|x |≤t−1

|Yi Z I u|
2
E dx dµk +

∑
|I |≤ν̃−1

C2
I + C0 sup

6s×K∩{|x |>t−1}

r (n−2)/2r−(n−1)/2.

In the final line we applied estimate (36) to the first term and assumption (35) to the second term. □
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4. Energy integrals and inequalities

4A. Basic properties of the energy. The energy introduced in the following definition is related to the
standard energy used to study quasilinear hyperbolic PDEs, albeit with additional terms included in order
to be compatible with the linearised equations (8).

Definition 4.1 (Lichnerowicz-type energy on hyperboloids). Let n ∈ Z+ and let Uµν and uµν be tensors
defined on R1+n

× K . For u, U ∈ C1(R1+n
× K ) and s ≥ 2, define

E[U ; u; s] =

∫
6s×K

(
(s/t)2

|∂t u|
2
E +

n∑
i=1

|Yi u|
2
E + ⟨∇[k]

Au, ∇[k]Au⟩E − 2⟨R[ĝ] ◦ u, u⟩E

− 2Uαβ
⟨∇[ĝ]βu, ∂t u⟩E nα + Uαβ

⟨∇[ĝ]αu, ∇[ĝ]βu⟩E

)
dx dµk, (39)

where n0 = 1 and ni = −xi/t for i ∈ {1, . . . , n} and n A = 0, and dx is the flat Euclidean volume form.

The final terms on the first line could equally well be written as ⟨∇[k]
Au, ∇[k]Au⟩E −2⟨R[k] ◦u, u⟩E ,

since the covariant derivative with respect to ĝ in directions tangent to K are given by the covariant
derivative with respect to k, and similarly for the curvature.

The terms on the second line of (39) are chosen so that, for solutions to the wave equation (42), the
change in energy E[U ; u; s2]− E[U ; u; sa] is given in (43) by an integral which has an integrand with no
terms involving (∇[ĝ]u)(∇[ĝ]∇[ĝ]u). The relevant cancellations to eliminate such terms follow from
the properties of T [U ; u]

µ
ν introduced in the proof of Lemma 4.2.

Note that, following [Hörmander 1997; LeFloch and Ma 2016], we have defined E[U ; u; s] so that it is
not the naturally induced energy associated with the metric ĝ + U . This is because we have endowed 6s

with the flat Euclidean volume form dx , instead of the induced Riemannian volume form (s/t) dx .
The following lemma provides us with an energy functional which allows us to measure the perturbation

of the spacetime. Note that in (40) we require some weighted t-decay on hyperboloids which we recover
from (37) in Lemma 3.2.

Lemma 4.2 (basic properties of the energy). Take the conditions of Definition 4.1.

(i) There is an ϵn > 0 such that if
sup

6s×K
t |U |E ≤ Cϵn, (40)

then for s ≥ 2,
1
2E[U ; u; s] ≤ E[0; u; s] ≤ 2E[U ; u; s]. (41)

(ii) If uµν is a solution of

(ĝ + U )αβ
∇[ĝ]α∇[ĝ]βuµν + 2(R[ĝ] ◦ u)µν = Fµν, (42)

then

E[U ; u; s1] = E[U ; u; s2] +

∫ s2

s1

∫
6s×K

⟨F, ∂t u⟩E(s/t) dy dµk ds

+

∫ s2

s1

∫
6s×K

(−2(∇[ĝ]αUαβ)⟨∇[ĝ]βu, ∂t u⟩E + (∂tUαβ)⟨∇[ĝ]αu, ∇[ĝ]βu⟩E)(s/t) dy dµk ds. (43)
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Proof. We first derive the energy E[U ; u; s] by considering the following nonlinear version of the stress
energy tensor (9)

T [U ; u]
µ

ν = (ĝ+U )µα
⟨∇[ĝ]αu, ∇[ĝ]νu⟩E −

1
2(ĝ+U )αβ

⟨∇[ĝ]βu, ∇[ĝ]αu⟩Eδµ
ν +⟨R[ĝ]◦u, u⟩Eδµ

ν . (44)

We calculate

∇[ĝ]µT [U ; u]
µ

ν = ⟨(ĝ + U )αβ
∇[ĝ]α∇[ĝ]βu, ∇[ĝ]νu⟩E + (ĝ + U )µα

⟨∇[ĝ]αu, ∇[ĝ]µ∇[ĝ]νu⟩E

− (ĝ + U )αβ
⟨∇[ĝ]ν∇[ĝ]βu, ∇[ĝ]αu⟩E + ∇[ĝ]ν⟨R[ĝ] ◦ u, u⟩E

+ (∇[ĝ]µUµα)⟨∇[ĝ]αu, ∇[ĝ]νu⟩E −
1
2(∇[ĝ]νUαβ)⟨∇[ĝ]αu, ∇[ĝ]βu⟩E . (45)

Let Xµ be a vector field on R1+n
× K tangent to R1+n. We have

∇[ĝ]α∇[ĝ]βuγ δ = ∇[ĝ]β∇[ĝ]αuγ δ + Riem[ĝ]αβγ
ρuρδ + Riem[ĝ]αβδ

ρuργ .

Since (R1+n, ηR1+n ) has zero Riemann curvature, and since the Riemann curvature for a product manifold
is given by Riem[ĝ] = Riem[ηR1+n ] + Riem[k], it follows that all components of the Riemann curvature
Riem[ĝ]αβγ

δ vanish unless all the indices α, β, γ, δ correspond to internal directions tangent to K . Thus,
the contraction with a vector tangent to R1+n vanishes, and, in particular,

Riem[ĝ]αβγ δ X δ
= 0. (46)

Consequently
⟨∇[ĝ]α∇[ĝ]βu, ∇[ĝ]νu⟩E Xα

= ⟨∇[ĝ]β∇[ĝ]αu, ∇[ĝ]νu⟩E Xα.

and also
∇[ĝ]ν⟨R[ĝ] ◦ u, u⟩E Xν

= 2⟨R[ĝ] ◦ u, Xν
∇[ĝ]νu⟩E .

This allows us to calculate

∇[ĝ]µ(T [U ; u]
µ

ν Xν) = T µ
ν[U ]∇[ĝ]µXν

+ ⟨F, Xν
∇[ĝ]νu⟩E + (∇[ĝ]µUµα)⟨∇[ĝ]αu, Xν

∇[ĝ]νu⟩E

−
1
2(Xν

∇[ĝ]νUαβ)⟨∇[ĝ]αu, ∇[ĝ]βu⟩E .

Consider the hyperboloidal energy

E[U ; u; s] =

∫
6s×K

−2T [U ; u]
µ

ν(∂t)
νnµ dx dµk

=

∫
6s×K

(
|∂t u|

2
E +

n∑
i=1

|∂i u|
2
E +

n∑
i=1

2(x i/t)⟨∂t u, ∂i u⟩E + k AB
⟨∇[ĝ]Au, ∇[ĝ]Bu⟩E

− 2⟨R[ĝ] ◦ u, u⟩E − 2Uµρ
⟨∇[ĝ]ρu, ∂t u⟩E nµ + Uρλ

⟨∇[ĝ]ρu, ∇[ĝ]λu⟩E

)
dx dµk,

where n0 = 1, ni = −ηi j x j/t for i ∈ {1, . . . , n} and n A = 0. Note that

E[0; u; s] =

∫
6s×K

(
|∂t u|

2
E +

n∑
i=1

|∂i u|
2
E + 2(x i/t)⟨∂t u, ∂i u⟩E

+ ⟨∇[ĝ]
Au, ∇[ĝ]Au⟩E − 2⟨R[ĝ] ◦ u, u⟩E

)
dx dµk, (47)
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which alternatively can be written in hyperboloidal coordinates as

E[0; u; s] =

∫
6s×K

(
(s/t)2

|∂t u|
2
E +

n∑
i=1

|Yi u|
2
E + ⟨∇[ĝ]

Au, ∇[ĝ]Au⟩E − 2⟨R[ĝ] ◦ u, u⟩E

)
dx dµk . (48)

Since the contraction of R[ĝ] with any direction tangent to R1+n vanishes, and since |w|E ≥ |w|k for any
tensor field w, it follows from the definition of L that∫

K
(⟨∇[ĝ]

Au, ∇[ĝ]Au⟩E − 2⟨R[ĝ] ◦ u, u⟩E) dµk ≥

∫
K
(⟨∇[ĝ]

Au, ∇[ĝ]Au⟩k − 2⟨R[ĝ] ◦ u, u⟩k) dµk

=

∫
K
⟨Lu, u⟩k dµk .

Thus, from Theorem 2.2 and the condition of Riemannian linear stability (11), it follows that∫
K
(⟨∇[ĝ]

Au, ∇[ĝ]Au⟩E − 2⟨R[ĝ] ◦ u, u⟩E) dµk ≥ 0. (49)

Thus, E[0, u, s] ≥ 0.
Using our previously calculated expression for the divergence of T [U ; u]

µ
ν Xν , we obtain

E[U ; u; s1] = E[U ; u; s2] +

∫ s2

s1

∫
6s×K

⟨−2F, ∂t u⟩E(s/t) dy dµk ds

+

∫ s2

s1

∫
6s×K

(
−2(∇[ĝ]αUαβ)⟨∇[ĝ]βu, ∂t u⟩E

+ (∂tUαβ)⟨∇[ĝ]αu, ∇[ĝ]βu⟩E
)
(s/t) dy dµk ds

via Stoke’s theorem. This proves equality (43).
Condition (40) combined with s ≥ Ct1/2 implies sup6s×K |U |E(t/s)2

≤ Cεn . For simplicity denote
k AB

⟨∇[ĝ]Au, ∇[ĝ]Bu⟩E by |∂Au|
2
E , then

s2

2t2

(
|∂t u|

2
E

∑
i

+|∂i u|
2
E + |∇[k]u|

2
E

)
≤

(
|∂t u|

2
+

∑
i

|∂i u|
2
+ |∇[k]u|

2
E

)
(1 − |x |/t)

≤ |∂t u|
2
E + |∂i u|

2
E + 2(x i/t)⟨∂t u, ∂i u⟩E + |∇[k]u|

2
E . (50)

Using this and Young’s inequality we find

|E[U ; u; s] − E[0; u; s]| =

∣∣∣∣∫
6s×K

(2Uαβ
⟨∇[ĝ]αu, ∂t u⟩E nβ − Uαβ

⟨∇[ĝ]αu, ∇[ĝ]βu⟩E) dx dµk

∣∣∣∣
≤ CεnE[0; u; s],

and thus the energies are equivalent for sufficiently small εn . This proves estimate (41) and the lemma. □

Having defined the energy involving first-order derivatives, we now introduce higher-order energies.

Definition 4.3 (symmetry boosted energy). Let (R1+n
× K, ĝ) be a spacetime with a supersymmetric

compactification and N ∈ N. For k ≤ N , define the energy of a symmetric tensor field g to be

Ek+1(s) =

∑
|I |≤k

E[g−1
− ĝ−1

; 0 I g; s]. (51)
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We end this section with the following Hardy estimate on hyperboloids. The proof is standard; see for
example [LeFloch and Ma 2016, Lemma 2.4].

Lemma 4.4 (Hardy estimate on hyperboloids). Let uµν be a tensor defined on R1+n. Then one has

∥r−1u∥L2(6s) ≲
n∑

i=1

∥Yi u∥L2(6s). (52)

4B. Preliminary L2 and L∞ estimates. In our nonlinear estimates we will estimate terms of the form

Z I (1k)
j (uv) =

∑
|I1|+|I2|=|I |
|J1|+|J2|=2 j

Z I1∇[k]
J1u · Z I2∇[k]

J2v. (53)

In the following lemma we estimate terms which appear as factors in the right-hand side of (53) in L2 by
using the elliptic estimates of Lemma 2.9 and the Hardy estimate of Lemma 4.4. Note the use of elliptic
estimates allows us to avoid commuting derivatives, such as [∇[k], 1k], which shortens the argument.

Lemma 4.5 (L2 estimate for distributed derivatives). Let uµν be a tensor defined on R1+n
×K. Suppose N

is even, ℓ ∈ N, and ℓ ≤ N + 1, then∑
|I |+|J |≤ℓ

∥t−1 Z I
∇[k]

J u∥L2(6s×K ) ≲ EN+1(s)1/2. (54)

Proof. We prove the estimate by considering separately the cases of |I | = 0 and |I | ̸= 0. Firstly take
|I | ≥ 1, suppose |J | = 2m where m ∈ N, and consider |I |+ |J | = ℓ ≤ N + 1. Using the elliptic estimates
of Lemma 2.9 we find

∥t−1 Z I
∇[k]

J u∥L2(6s×K ) ≲
∥∥∥t−1 Z I u∥H2m(K )

∥∥
L2(6s)

≲ ∥t−1 Z I (1k)
mu∥L2(6s×K ) + ∥t−1 Z I u∥L2(6s×K )

≲
n∑

i=1

∥Yi Z I−1(1k)
mu∥L2(6s×K ) +

n∑
i=1

∥Yi Z I−1u∥L2(6s×K )

≲ E[0; Z I−1(1k)
mu; s]1/2

+ E[0; Z I−1u; s]1/2 ≲ Eℓ(s)1/2.

Next take |I | ≥ 1 and suppose |J | = 2m + 1 where m ∈ N. For |I | + |J | = ℓ ≤ N + 1, again using
Lemma 2.9, we have

∥t−1 Z I
∇[k]

J u∥L2(6s×K )

≲
∥∥∥t−1 Z I u∥H2m+1(K )

∥∥
L2(6s)

≲
n∑

i=1

∥Yi Z I−1u∥L2(6s×K ) +

n∑
i=1

∥Yi Z I−1(1k)
mu∥L2(6s×K ) + ∥∇[k](Z I (1k)

mu)∥L2(6s×K )

≲ E[0; Z I−1u; s]1/2
+ E[0; Z I−1(1k)

mu; s]1/2
+ E[0; Z I (1k)

mu; s]1/2 ≲ Eℓ(s)1/2.

We now turn to the case |I | = 0. Again we split into the cases of |J | being even and odd. Start with
|J | = 2m for m ∈ N. Note that N is chosen to be even so that we have the strict inequality 2m < N + 1.
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Applying the Hardy estimate from Lemma 4.4, and recalling that t ≥ r on the hyperboloid, yields

∥t−1
∇[k]

J u∥L2(6s×K ) ≲
∥∥∥r−1u∥H2m(K )

∥∥
L2(6s)

≲ ∥r−1(1k)
mu∥L2(6s×K ) + ∥r−1u∥L2(6s×K )

≲
n∑

i=1

∥Yi (1k)
mu∥L2(6s×K ) +

n∑
i=1

∥Yi u∥L2(6s×K )

≲ E[0, (1k)
mu; s]1/2

+ E[0, u; s]1/2 ≲ EN+1(s)1/2.

Finally we have the case |I | = 0 and |J | = 2m +1 ≤ N +1 for m ∈ N. Again using Lemma 4.4 we obtain

∥t−1
∇[k]

J u∥L2(6s×K ) ≲
∥∥∥r−1u∥H2m+1(K )

∥∥
L2(6s)

≲ ∥r−1
∇[k](1k)

mu∥L2(6s×K ) + ∥r−1u∥L2(6s×K )

≲ ∥∇[k](1k)
mu∥L2(6s×K ) +

n∑
i=1

∥Yi u∥L2(6s×K )

≲ E[0, (1k)
mu; s]1/2

+ E[0, u; s]1/2 ≲ E|J |(s)1/2.

Adding together the above estimates over all appropriate multi-indices gives the required result. □

Corollary 4.6 (L2 estimate for eventually prescribed functions on hyperboloids foliating product space-
times). Let n ≥ 4. Let uµν and fµν be tensors defined on R1+n

× K with f depending only on the
Minkowski coordinates. Suppose u = f for |x | ≥ t − 1. Let f ∈ C∞(R1+n

× K ) be smooth and such that,
for all I ∈ N, there is a C I such that4

|∇[ĝ]
I f |E ≤ C|I ||x |

−(n+1)/2−|I |. (55)

Suppose N is even, ℓ ∈ N, and ℓ ≤ N + 1, then∑
|I |+|J |≤ℓ

∥(s/t)Z I
∇[k]

J u∥L2(6s×K ) ≲ sEN+1(s)1/2
+

∑
|I |+|J |≤ℓ

C|I |,|J |. (56)

Proof. We will consider separately the regions |x | ≤ t − 1 and |x | > t − 1. The estimate in the region
|x | ≤ t − 1 follows by applying Lemma 4.5 with an additional factor of s. Next consider the region
|x | > t − 1 ≥ t0 − 1, where we let t0 =

1
2(s2

+ 1) be the value of t at which 6s intersects |x | = t − 1.
Using assumption (55) we find

∥(s/t)Z I
∇[k]

J u∥
2
L2(6s×K∩{|x |>t−1})

≤

∫
6s×K∩{|x |>t0−1}

|Z I
∇[k]

J u|
2
E dx dµk ≤ C

∫
6s∩{|x |>t0−1}

|Z I
∇[k]

J f |
2
E dx

≤ CC2
|I |,|J |

∫
Sn−1

∫
6s∩{|x |≥t0−1}

(|r |
−(n+1)/2)2

|r |
n−1 dr dωSn−1

≤ CC2
|I |,|J |

∫
Sn−1

∫
6s∩{|x |≥t0−1}

r−2 dr dωSn−1 ≤ CC2
|I |,|J |

.

Adding together the above estimates over all appropriate multi-indices yields (56). □

4Note that the decay assumption on f is stronger here than the assumption (35) in Lemma 3.2.
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We next use Lemma 3.2 to obtain L∞ estimates for terms which appear as factors in the right-hand
side of (53).

Corollary 4.7 (higher-order Sobolev estimates). Let n ≥ 7. Let d̃ , ν̃, uµν , and fµν be as defined in
Lemma 3.2. Then for |I | + |J | = ℓ ∈ N there is a constant C such that

sup
6s×K

(s4δ(n)
|Z I

∇[k]
J u|

2
E + s4δ(n)−2

|(t/s)Z I
∇[k]

J u|
2
E)

≤ C
∑

|I |+2 j≤ν̃+ℓ+1

E[0; Z I (1k)
j u; s] + C

∑
|I |≤ν̃+ℓ−1

C2
|I |. (57)

Proof. We consider the left-most term in (57) first. Let ȷ̃ be the smallest even integer such that ȷ̃ ≥ |J |.
In particular this means

|I | + |J | ≤ |I | + ȷ̃ ≤ ℓ + 1.

Recall that d̃ is the smallest even integer larger than 1
2 d and ν̃ is the smallest integer greater than 1

2 n + d̃ .
Applying Lemma 2.9 yields

sup
K

|∇[k]
J u|E ≤ ∥u∥H d̃+ȷ̃ (K )

≤ ∥(1k)
(d̃+ȷ̃ )/2u∥L2(K ) + ∥u∥L2(K ).

Thus, using in particular (38), we have

sup
(t,x,ω)∈6s×K

s4δ(n)
|Z I

∇[k]
J u(t, x i, ω)|2E

≲
∑

|I1|≤ν̃−d̃

n∑
i=1

∥ sup
K

(Yi Z I1 Z I
∇[k]

J u)∥2
L2(6s)

+

∑
|I1|≤ν̃−1

C2
I1

≲
∑

|I1|≤ν̃−d̃

n∑
i=1

(∥Yi Z I+I1u∥
2
L2(6s×K )

+ ∥Yi Z I+I1(1k)
(d̃+ȷ̃ )/2u∥

2
L2(6s×K )

) + C
∑

|I1|≤ν̃−1

C2
I1

≲
∑

|I |+2 j≤ν̃+ℓ+1

E[0; Z I (1k)
j u; s] + C

∑
|I |≤ν̃−1

C2
I .

To complete the proof for the second term of (57) we observe that s ≥ Ct1/2 in the region |x | ≤ t − 1
while we only have s ≤ t ≤ r in the region |x | > t − 1. Since n ≥ 7 we have δ(n) ≥ 1 and thus

sup
6s×K

s4δ(n)−2
|(t/s)Z I

∇[k]
J u|

2
E

≲ sup
6s×K∩{|x |≤t−1}

(t2/s4)s4δ(n)
|Z I

∇[k]
J u|

2
E + sup

6s×K∩{|x |>t−1}

s4δ(n)−4r2
|Z I

∇[k]
J f |

2
E

≲
∑

|I |+2 j≤ν̃+ℓ+1

E[0; Z I (1k)
j u; s] +

∑
|I |≤ν̃+ℓ−1

C2
I + C2

I sup
6s×K∩{|x |>t−1}

r (n−2)−2r−(n−1).

Note in the final line we applied (35) and the first estimate of (57). □
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5. Proof of stability

5A. Stability for the reduced Einstein equations. We now restate our main Theorem 1.1 in terms of the
reduced Einstein equations. For convenience we translate the initial data of Theorem 1.1 to {t = 4}.

Theorem 5.1 (stability for the reduced Einstein equations). Let n, d ∈ Z+ be such that n ≥ 9, and let
N ∈ N be an even integer strictly larger than 1

2(n +d +8). Let (R1+n
× K, ĝ = ηR1+n + k) be a spacetime

with a supersymmetric compactification.
Let ({t = 4} × Rn

× K, g0, g1) be Cauchy data for the reduced Einstein equations (31). Assume
that, for |x | ≥ 1 with respect to Minkowski coordinates on R1+n, (g0, g1) = (gS + k, 0) where gS is the
Schwarzschild metric in the ηR1+n -wave gauge with parameter CS ∈ [0, ∞).

There is an ϵ > 0 such that, if the initial data satisfies∑
|I |≤N

∥∇[g0]
I (g0 − ĝ|t=4)∥

2
L2(Rn×K )

+

∑
|I |≤N−1

∥∇[g0]
I g1∥

2
L2(Rn×K )

+ C2
S ≤ ϵ, (58)

then there is a future global solution gµν of the reduced Einstein equations (31) with initial data
(h, ∂t h)|t=4 = (g0, g1). Furthermore, there is the bound

sup
(t,x,ω)∈6s×K

s4δ(n)
|g(t, x i, ω)− ĝ(t, x i, ω)|2E ≲ ϵ, (59)

where δ(n) was defined in (7).

Proof. Let the perturbation and inverse perturbation be denoted, respectively, by

hµν = gµν − ĝµν and Hµν
= gµν

− ĝµν.

Since g is a solution of the reduced Einstein equation (31), it follows that

(ĝαβ
+ Hαβ)∇[ĝ]α∇[ĝ]βhµν + 2(R[ĝ] ◦ h)µν = Qµν[g](∇[ĝ]h, ∇[ĝ]h) + Fµν(H, h), (60)

where Qµν is defined in (31b) and Fµν is defined by

Fµν(H, h) = Hαβ(hαδ Riem[ĝ]
δ
µνβ + hαδ Riem[ĝ]

δ
νµβ) + Hαβ(hµδ Riem[ĝ]

δ
ανβ + hνδ Riem[ĝ]

δ
αµβ).

By commuting the symmetries Z I (1k)
j through the system (60) we obtain

(ĝαβ
+ Hαβ)∇[ĝ]α∇[ĝ]β(Z I (1k)

j hµν) − 2(R[ĝ] ◦ Z I (1k)
j h)µν =

3∑
i=1

F i,I, j
µν , (61)

where
F1,I, j

µν = Z I (1k)
j Qµν[g](∇[ĝ]h, ∇[ĝ]h),

F2,I, j
µν = Z I (1k)

j Fµν(H, h),

F3,I, j
µν = [Z I (1k)

j , Hαβ
∇[ĝ]α∇[ĝ]β]hµν .

(62)

The symmetry boosted energy is given by

Ek+1(s) =

∑
|I |+2 j≤k

E[H ; Z I (1k)
j g; s]. (63)
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From Lemma 4.2 and the Cauchy–Schwarz inequality we obtain

EN+1(s ′)1/2
≤ EN+1(4)1/2

+

∑
|I |+2 j≤N

∫ s′

4

(∫
6s×K

( 3∑
i=1

|F i,I, j
|
2
E + |G I, j

|
2
E

)
dy dµk

)1/2

ds, (64)

where the G I, j terms arise from applying Z I (1k)
j to the terms involving ∇[ĝ]γ or ∂tγ on the right side

of the energy equality (43). In particular, these can be bounded by

|G I, j
|
2
E ≤ C |∇[ĝ]H |

2
E |Z I (1k)

j
∇[ĝ]h|

2
E . (65)

The reduced field equations (60) are a system of quasilinear, quasidiagonal wave equations for the
perturbation hµν of the spacetime metric. The existence of unique local solutions emanating from Cauchy
data is standard [Choquet-Bruhat 2009, Theorem 4.6 Appendix III].

The proof then follows a bootstrap argument (or continuous induction): we prove that there exist C > 0
and ϵ > 0 such that, if EN+1(4) + CS < ϵ and EN+1(s) ≤ Cϵ for all s, then EN+1(s) ≤ ϵ + Cϵ2 for all s
and hence EN+1(s) ≤

1
2Cϵ. We note that there is no loss of generality in placing our initial data at t = 4.

We consider the integral term on the right-hand side in (64) as the sum of integrals over 6s ∩{|x |≤ t −1}

and over 6s ∩ {|x | > t − 1}. Our approach is that, for sufficiently small CS , in the latter exterior region
the solution is identically the product of Schwarzschild with the internal manifold. Thus in the region
|x |≥ t−1 the perturbation hµν is only nonzero on its Minkowski indices and on these indices it is identically
Schwarzschild. We note that sufficiently small compactly supported initial data on {t = 4}∩ {|x | ≤ 1} can
be extended to compactly supported initial data on 64 [LeFloch and Ma 2014, Chapter 39].

Recall from Section 2E that the difference between components of the Minkowski metric and the
Schwarzschild metric in wave coordinates decay as CSr−n+2 and the Christoffel symbols decay as CSr−n+1.
Along a geodesic parametrised by λ, one has

d2x i

dλ2 = 0i
jk

dx j

dλ

dxk

dλ
.

Since CSr−n+1 is integrable in r , there are geodesics along which t and r grow linearly and the dx j/dλ

approach constant values, not all of which are vanishing. In particular, dr/dt asymptotically approaches a
constant, and this constant is 1 for null geodesics. The next-to-leading-order term in the geodesic equation
arises from the metric, so it is of the form Cr−n+2, which is again integrable. Furthermore, the smaller
the mass CS the sooner this asymptotic behaviour comes to dominate. In particular, if CS is sufficiently
small, then any causal curve launched from within 64 ∩ {|x | ≤ t − 2} can never reach the region where
|x | ≥ t − 1. Furthermore, by uniqueness of solutions to quasilinear wave equations, since the initial
data on 64 is identically Schwarzschild for |x | > t − 2, the solution is identically Schwarzschild for
|x | > t −1. In particular, when estimating the components of the solution to (61), we can use the Sobolev
Lemma 3.2 and Corollary 4.6 on hyperboloids with eventually prescribed functions. (The conclusion of
this paragraph is essentially Proposition 2.3 of [LeFloch and Ma 2016].)

The estimate (40) required by Lemma 4.2 is established by combining (37) with the bootstrap as-
sumptions and noting that since n ≥ 9 we certainly have δ(n) > 1. Similarly since n ≥ 9 the decay
assumptions (55) in Corollary 4.6 and (35) in Lemma 3.2 are satisfied.
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We are now in a position to apply the results from Section 4B to the nonlinearities in (64). In general
we will distribute (s/t)(t/s) = 1 across the terms and estimate high-derivative terms with a factor of (s/t)
using Corollary 4.6 and low-derivative terms with a factor of (t/s) using Corollary 4.7. We begin by
estimating the term G I, j. Using (65) we find∑

|I |+2 j≤N

∥G I, j
∥L2(6s×K ) ≲

∑
|I |+|J |≤N

(∫
6s×K

|(t/s)∇[ĝ]H |
2
E |(s/t)Z I

∇[k]
J
∇[ĝ]h|

2
E dy dµk

)1/2

≤ sup
6s×K

(|(t/s)∇[ĝ]h|E)

(∫
6s×K

|(s/t)Z I
∇[k]

J
∇[ĝ]h|

2
E dy dµk

)1/2

≲
1

s2δ(n)−1 (Eν̃+3(s)1/2
+ CS)(sEN+1(s)1/2

+ CS). (66)

The term F1
µν involves the standard quadratic derivative nonlinearities of the Einstein equations. Their

weak null structure is of course not relevant here since the Minkowski dimension is taken so high. We
first look at what type of terms are contained in F1

µν :∑
|I |+2 j≤N

∥F1,I, j
µν ∥L2(6s×K )

≲
∑

|I |+|J |≤N

(∫
6s×K

|(ĝ + H)−1
|
2
E |Z I

∇[k]
J (∇[ĝ]h∇[ĝ]h)|2E dy dµk

)1/2

+

∑
|Ii |+|Ji |≤N
|I1|+|J1|≥1

(∫
6s×K

|Z I1∇[k]
J1h|

2
E |Z I2∇[k]

J2(∇[ĝ]h∇[ĝ]h)|2E dy dµk

)1/2

. (67)

We treat the first term on the right-hand side of (67) since the second term is higher-order and thus easier
to estimate. Once again we estimate high-derivative terms with a factor of (s/t) using Corollary 4.6 and
low-derivative terms with a factor of (t/s) using Corollary 4.7. This yields∑
|I |+|J |≤N

(∫
6s×K

|(ĝ + H)−1
|
2
E |Z I

∇[k]
J (∇[ĝ]h∇[ĝ]h)|2E dy dµk

)1/2

≲
∑

|Ii |+|Ji |≤N
|I2|+|J2|≤N/2+1

(∫
6s×K

C |Z I1∇[k]
J1∇[ĝ]h||Z I2∇[k]

J2∇[ĝ]h|
2
E dy dµk

)1/2

, (68)

where by symmetry we can assume |I2| + |J2| ≤
1
2 N + 1. After using (s/t)(t/s) = 1 we find∑

|Ii |+|Ji |≤N
|I2|+|J2|≤N/2+1

(∫
6s×K

C |(s/t)Z I1∇[k]
J1∇[ĝ]h||(t/s)Z I2∇[k]

J2∇[ĝ]h|
2
E dy dµk

)1/2

≲ sup
6s×K

( ∑
|I2|+|J2|≤N/2+1

|(t/s)Z I2∇[k]
J2∇[ĝ]h|E

)

×

∑
|I1|+|J1|≤N

(∫
6s×K

|(s/t)Z I1∇[k]
J1∇[ĝ]h|

2
E dy dµk

)1/2
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≲
1

s2δ(n)−1

( ∑
|I |+2 j≤ν̃+N/2+3

E[0; Z I (1k)
j u; s]1/2

+ CS

∑
|I |≤ν̃+N/2

C2
I

)
(sEN+1(s)1/2

+ CS)

≲
1

s2δ(n)−2 (Eν̃+N/2+4(s)1/2
+ CS)(EN+1(s)1/2

+ CS). (69)

The term F2
µν involves the new nonlinearities which are only nonzero when both µ, ν ∈ {A, . . . , B}.

This means we can control F2
µν as follows:∑

|I |+2 j≤N

∥F2,I, j
µν ∥L2(6s×K ) ≲ sup

6s×K

( ∑
|I0|≤N

|∇[k]
I0 Riem[k]|

)

×

∑
|Ii |+|Ji |≤N

(∫
6s×K

|Z I1∇[k]
J1h|

2
E |Z I2∇[k]

J2h|
2
E dy dµk

)1/2

. (70)

The Riemann curvature components of k are bounded (since K is compact) which allows us to control the
first factor in (70). To estimate the second factor in (70) we follow the same procedure as in F1

µν , by con-
trolling high-derivatives with a factor of (s/t) using Corollary 4.6 and low-derivatives with a compensating
factor of (t/s) using Corollary 4.7. The result of this procedure leads to a term controlled by (69).

The final term F3
µν is a commutator involving the quasilinear perturbation of the principal part of the

differential operator. Note first the identity∑
|I |+2 j≤N

|F3,I, j
µν |E ≤ C

∑
|Ii |+|Ji |≤N

|I2|+|J2|≤N−1

|Z I1∇[k]
J1 H |E |Z I1∇[k]

J1∇[ĝ]∇[ĝ]h|E . (71)

Once again we distribute the product (s/t)(t/s) = 1 across the two terms appearing here depending on
where the derivatives land. The term with high-derivatives gains a factor of (s/t) and is controlled using
Corollary 4.6 while the term with low-derivatives absorbs a compensating factor of (t/s) and is estimated
using Corollary 4.7. Note that when the term Z I2∇[k]

J2(∇[ĝ]∇[ĝ]h) is estimated in L∞, the Sobolev
inequality will lead to a symmetry boosted energy at order ν̃ +

1
2 N + 5. We eventually obtain∑

|I |+2 j≤N

∥F3,I, j
µν ∥L2(6s×K ) ≲

1
s2δ(n)−2 (Eν̃+N/2+5(s)1/2

+ CS)(EN+1(s)1/2
+ CS). (72)

Putting these all together, inserting the bootstrap assumptions, and using also C2
S < ϵ, we find∑

|I |+2 j≤N

∫ s′

4

(∫
6s×K

( 3∑
i=1

|F i,I, j
|
2
E + |G I, j

|
2
E

)
dy dµk

)1/2

ds ≲ ϵ

∫ s′

4

1
s2δ(n)−2 ds. (73)

For integrability we require 2δ(n) − 2 > 1, which is equivalent to each of the following:

δ(n) > 3
2 and n > 8. (74)

This implies n ≥ 9. For the Sobolev estimates we require

ν̃ +
1
2 N + 4 ≤ N . (75)

Recalling the definition of ν̃ given in Lemma 3.2, this holds provided N > 1
2(n + d + 8) and N is even.
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Consequently for sufficiently small ϵ and by Grönwall’s inequality applied to the energy estimate (64)
we find Eν+1(s) ≤

1
2C1ϵ. We have thus obtained a future global solution hµν = gµν − ĝµν to the reduced

Einstein equations which clearly satisfies the decay bounds given in Theorem 5.1. □

Remark 5.2. The system (60) contains quadratic nonlinearities FAB and Fi A that are new compared to
the weak null terms identified in the proof of Minkowski stability in [Lindblad and Rodnianski 2003;
2010] and the proof of zero-mode Kaluza–Klein stability in [Wyatt 2018].

5B. Proof of Theorem 1.1. We are now in a position to use the results from Theorem 5.1 in order to
prove our main result. Take an initial data set (Rn

× K, γ, κ) as specified in Theorem 1.1 with smallness
conditions (5). We now transform this data into the form required by Theorem 5.1, which is a standard
procedure; see for example [Lindblad and Rodnianski 2005]. We first set ((g0)i ′ j ′, (g1)i ′ j ′) = (γi ′ j ′, κi ′ j ′).
Diffeomorphism invariance allows us the freedom to choose the lapse and shift. We set the shift to be
zero: X i ′ = 0. We choose the lapse to be a smooth function satisfying

N (r) = 1, r ≤
1
2 ,

|N − 1| ≲ CS,
1
2 ≤ r ≤ 1,

N (r) =

(
1 −

h00(r−1)

rn−2

)1/2

, r ≥ 1.

We relate the lapse and shift with the Cauchy data for the reduced equations in Theorem 5.1 by setting
(g0)00 =−N 2 and (g0)0i ′ = X i ′ . The initial data for (∂t N , ∂t X i ′)= ((g1)00, (g1)0i ′) is chosen by satisfying
V γ

= 0. This amounts to solving the following equations on Rn
× K :

N−3((g1)00 + N 2γ i ′ j ′

κi ′ j ′) = g0
i ′ j ′

0[ê]0
i ′ j ′,

−N−2γ i ′ j ′

(g1)0 j ′ − N−1γ i ′ j ′

∂j ′ N + γ j ′k′

0i ′

j ′k′[γ ] = g0
j ′k′

0[ê]i ′

j ′k′ .
(76)

We have now brought the initial data of Theorem 1.1 into the form of Theorem 5.1. It remains to check
that our assumptions on the lapse and shift are compatible with smallness conditions (58). To do this,
recall the final sentence of Theorem 2.15. This implies that∫

{r≥1}∩Rn
|∇[g0]

I (−N 2
− η00)|

2 dx ≤

∫
{r≥1}∩Rn

C2
S(r

−(n−2)−|I |)2rn−1 dr dn−1ωSn−1

≤ C2
S

∫
{r≥1}∩Rn

r−(n−3)−2|I | dr dn−1ωSn−1 ≤ CC2
S.

By inverting the expressions (76) for (∂t N , ∂t X i ′) it is clear that the smallness conditions (58) are satisfied.
Furthermore it is a standard result, see for example [Choquet-Bruhat 2009, Theorem 8.3], that the future
global solution constructed in Theorem 5.1 is in fact also a solution to the full Einstein equations.

Finally, note that the solution found in Theorem 5.1 is only defined to the future t ≥ 4. Nonetheless, by
time translation, we can treat the initial data as being on {t = 0} instead of {t = 4}, so that Theorem 5.1
ensures the existence of a solution for t ≥ 0. By time reversibility for the Einstein equation (and the
reduced Einstein equation), we similarly obtain a solution for t ≤ 0. Thus, we can construct the global
solution required in Theorem 1.1.
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It now remains to prove the causal geodesic completeness of (R1+n
× K, g).

Globally, the metrics g and ĝ are very close, in the sense that, with respect to a basis constructed
from the X i and an orthonormal basis on K , their components vanish to order ϵ globally. Denote from
now onwards T = dt . This is a globally timelike one-form such that |g(T, T ) − 1| ≲ ϵ. Thus, g − 2T T
defines a Riemannian metric. (Note that in the introduction, we used the slightly different Euclidean
metric ĝ − 2T T .) Within this proof, we define, for a vector u, the Euclidean length to be

|u|
2
= uαuβ(gαβ + 2TαTβ). (77)

Note that the fact that g and ĝ are very close implies the equivalence |u|E ∼ |u|.
Consider a causal geodesic γ that is affinely parametrised by λ. For the remainder of this paragraph,

let t = t (λ) denote the value of the Cartesian coordinate t at the point γ (λ). By rescaling, we may assume
that dt/dλ = 1 at t = 0. Let v be the (artificial, Euclidean) speed defined by v ≥ 0 and

v2
=

∣∣∣∣dγ α

dλ

∣∣∣∣2

. (78)

Since g and ĝ are very close, the rate of change in the t direction cannot be (much) greater than the
Euclidean speed, i.e., ∣∣∣∣ dt

dλ

∣∣∣∣ =

∣∣∣∣dγ 0

dλ

∣∣∣∣ ≲ v.

On the other hand, since γ is causal, the component of dγ/dλ in the T direction cannot vanish faster than
the length of the component in the orthogonal spatial directions, and the square of the Euclidean velocity
is the sum of the squares of the lengths of the T components and the orthogonal spatial component (up to
order ϵ multiplicative errors); thus ∣∣∣∣ dt

dλ

∣∣∣∣ =

∣∣∣∣dγ 0

dλ

∣∣∣∣ ≳ v.

In particular, there is the equivalence |dt/dλ| ∼ v.
Since ∇[g]g = 0 and ∇[g]dγ/dλdγ/dλ = 0, the rate of change of the velocity is given by

d
dλ

v2
= 4

(
dγ α

dλ
Tα

)(
dγ β

dλ
∇[g]dγ/dλTβ

)
. (79)

Since the absolute value of (dγ α/dλ)Tα = dt/dλ and the Euclidean length of dγ/dλ are dominated by v,

dv

dλ
≲ |∇[g]dγ/dλT |v. (80)

The ∇[g]T can be expanded in terms of g and ∇[ĝ]g. Both of these have norms that decay as t−δ(n) due
to (74). Thus,

dv

dλ
≲ ϵt−δ(n)v2. (81)

Thus, for ϵ sufficiently small, a simple bootstrap argument shows that v ∼ 1 along all of γ , and hence
dt/dλ ∼ 1. In particular, t is monotone along γ .
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Let tsup be the supremum of the t values that are achieved along γ . For contradiction, suppose tsup < ∞.
Since the length of the spatial component of dγ/dλ is also uniformly equivalent to v, and hence to dt/dλ,
it follows that, as t ↗ tsup, the curve γ has a limit in R1+n

× K . Because of the global bounds on g and
its derivatives, by the standard Picard–Lindelöf theorem for ODEs, the curve γ must smoothly extend
through this limiting point, contradicting the definition of tsup. Thus, tsup = ∞. The only other way in
which γ can be future incomplete is if t diverges to ∞ in a finite λ interval, but this is also impossible,
since dt/dλ ∼ 1. By time symmetry, the same argument holds in the past. Thus, any causal geodesic is
complete.

The previous construction shows that every causal geodesic goes through each level set of t . Thus, the
level sets of t are Cauchy surfaces, and (R1+n

× K, g) is globally hyperbolic.
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