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SUMMARY
Neuromodulation permits flexibility of synapses, neural circuits, and ultimately behavior. One neuromodula-
tor, dopamine, has been studied extensively in its role as a reward signal during learning andmemory across
animal species. Newer evidence suggests that dopaminergic neurons (DANs) can modulate sensory percep-
tion acutely, thereby allowing an animal to adapt its behavior and decision making to its internal and behav-
ioral state. In addition, some data indicate that DANs are not homogeneous but rather convey different types
of information as a heterogeneous population.We have investigatedDANpopulation activity and how it could
encode relevant information about sensory stimuli and state by taking advantage of the confined anatomy of
DANs innervating themushroom body (MB) of the flyDrosophilamelanogaster.Using in vivo calcium imaging
and a custom 3D image registrationmethod, we found that the activity of the population ofMBDANs encodes
innate valence information of an odor or taste as well as the physiological state of the animal. Furthermore,
DAN population activity is strongly correlated with movement, consistent with a role of dopamine in
conveying behavioral state to the MB. Altogether, our data and analysis suggest that DAN population activ-
ities encode innate odor and taste valence, movement, and physiological state in a MB-compartment-spe-
cific manner. We propose that dopamine shapes innate perception through combinatorial population coding
of sensory valence, physiological, and behavioral context.
INTRODUCTION

Behavioral and internal states and past and current experience

shape animal perception and behavior. Neuromodulators

convey these states and contexts across brain regions and be-

tween body and brain [1–3]. Dopamine is among the most

intensely studied signals that modulate neural processing and

govern plasticity of synaptic connections [4–6]. In the mamma-

lian brain, dopaminergic neurons (DANs) are located in clusters

in several brain regions, including the mesencephalon, dien-

cephalon, and olfactory bulb [7]. The most important sources

of dopamine are arguably the substantia nigra and the ventral

tegmental area (VTA), which send projections to the dorsal and

ventral striatum, respectively. Brain dopamine has been impli-

cated in cognitive (e.g., motivation, reinforcement, goal-directed

behavior, motor control and movement, decision making, and

learning) as well as more basic functions (e.g., reproduction

and nausea) [4, 7]. How dopamine contributes to these different

aspects of neural circuit function and behavior is an open ques-

tion. A potential answer could lie in the highly localized and re-

gion-specific release of dopamine, depending on context and

task the animal faces [8].
2104 Current Biology 30, 2104–2115, June 8, 2020 ª 2020 The Autho
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Invertebrates, including the fly Drosophila melanogaster, use

dopamine in highly analogous processes [1, 6, 9]. The exquisite

tools of fly genetics have provided important insights into the role

and molecular and circuit mechanisms of dopamine in associa-

tive learning and memory as well as state-dependent behavior

(e.g., [10–15]). A focus of many studies has been a dense

network of �200 dopaminergic cells innervating the mushroom

body (MB) (Figure 1A), a brain structure organized in 15 intercon-

nected neuronal compartments (i.e., a1–3, a’1–3, b1, b2, b’1,

b’2, and g1–5) (Figure 1B) [11, 16]. MB DANs, through unknown

mechanisms, respond to stimuli of innate value, such as sweet-

ness, heat, and electric shock, consistent with a model where

they convey the ‘‘unconditioned stimulus’’ (US) during learning

to MB intrinsic Kenyon cells (KCs) and their corresponding MB

output neurons (MBONs) [17]. By taking advantage of highly spe-

cific transgenic techniques, recent studies have dissected the

function of small subsets or even of single DANs in behavior

(e.g., [18–27]). For example, the PPL1 subgroup of DANs, which

innervate the a and a’ lobes as well as g1, g2, and a region

referred to as the peduncle, have been implicated in signaling

negative US, such as punishment. In contrast, PAM DANs pro-

jecting to the b, b’, and g (i.e., g4 and g5) compartments appear
r(s). Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. In Vivo Two-Photon Population Imaging of Mushroom Body Dopaminergic Neurons

(A) Scheme showing the mushroom body and innervating two clusters of dopaminergic neurons (PAM and PPL1).

(B) Schematics of the mushroom body lobes with 15 DAN compartments.

(C) Minimal circuit motif of the mushroom body depicting recurrent connections between dopaminergic cells (DANs), Kenyon cells (KCs), and mushroom body

output neurons (MBONs).

(D) A schematic depicting the in vivo fly preparation for imaging at the two-photon microscope.

(legend continued on next page)
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to provide a rewarding signal to KCs and MBONs during asso-

ciative learning [10, 11] (Figure 1A).

As yet, less is known about the role of the different DAN types

and their respective MB compartments during state-dependent

(e.g., physiological states and movement) and innate sensory

perception and behavior. Moreover, given that DANs are part

of a highly interconnected recurrent network, we lack knowledge

regarding their population activity and dynamics as compared to

the numerous studies recording the isolated activity of individual

DAN types. A notable exception, a study by Cohn et al., provided

compelling evidence that relative activities of these neuronsmat-

ter to US perception and behavior of the fly by analyzing simul-

taneous calcium signals of all neurons in a DAN subpopulation

(�40DANs) innervating the g-lobe of theMB [28]. This study sug-

gested that subtypes of DANs of different g-compartments were

highly coordinated or anti-correlated in a behavioral state- and

context-dependent manner.

Interestingly, DANs respond to sensory stimuli, including

odors and temperature changes, and contribute to sensory

valence decisions in naive animals [18, 25, 28–32]. Consistently,

electron microscopic connectomics data from fly larvae and

adults suggest that DANs, especially their axon terminals,

receive odor information by KCs as part of a recurrent circuit

[33–35] (Figure 1C). Moreover, MBONs provide input to several

DANs [34, 36, 37]. It is also conceivable that olfactory pathways

from the lateral horn convey odor information to DANs inner-

vating the MB [38]. These findings motivate the question of

how populations of DANs contribute to sensory perception and

valence decisions and how they convey state-dependent infor-

mation. We have begun to address this complex question by

recording primarily odor responses across all DANs innervating

the fly’s MB. In particular, we analyzed population-wide contri-

butions of DANs to innate valence perception and state changes.

RESULTS

To this end, we setup an in vivo preparation to image calcium

fluctuations in all DANs innervating the MB by using two-photon

microscopy (TH-Gal4,58E02-Gal4;UAS-GCaMP6f) (Figures 1D

and 1E). We recorded from a 210 3 210 pixels area with a reso-

lution of 1 3 1 3 2 mm/pixel covering the entire MB structure in

one hemisphere of the brain and stimulated every animal with

two different odorants (e.g., odor 1 from dorsal to ventral and

odor 2 from ventral to dorsal) (Figure 1F). To minimize bias or

experimental artifacts, we varied odors as well as scanning di-

rection. To average responses of DAN populations over many in-

dividual experiments and animals, we developed a method that

allowed us to segment fluorescence changes into each of the 15-

MB compartments and to align different brains in 3D (Figures

1C–1G and S7; see STAR Methods). In essence, we used the
(E) A confocal projection image showing the expression pattern of TH,58E02 > GC

by anti-discs large (magenta) immunostaining. Dotted yellow line indicates the m

(F) Image showing the imaging planes and scanning directions from dorsal to ve

(G) An imaging plane showing the 3D masks of the mushroom body lobes used f

(H) Mushroom body compartmentwise odor response. All experiments over all o

(I) Correlation matrix of DAN odor responses in different compartments.

(J) Hierarchical clustering dendrogram of different compartments and their odor

Box plots represent the 25th and 75th percentile, with the whiskers at 1.5 of the
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recently published 3D mask as a landmark for all MB compart-

ments [11] to semi-automatically assign fluorescent changes in

DAN axons of individual animals (Figures 1F and 1G). Impor-

tantly, this method enabled us to analyze the responses of the

entire 3D volume and not only of a manually defined 2D region

of interest for a given compartment. Recording from all DANs

at sufficient spatial resolution required imaging the brain over

multiple sections with repeated odor presentations of the same

odor (see STAR Methods). With these caveats in mind, for this

present study, we decided to focus on spatially distinct rather

than temporally dynamic signals of MB DANs.

Using this setup, we imaged DAN responses in a total of 201

adult female flies for two out of 12 odorants (i.e., vinegar [Fig-

ure S1A], yeast, citronella, peppermint, 3-octanol, ethanol, 4-

methylcyclohexanol, geosmin, isoamyl acetate, 1-hexanol, 2-

heptanone, and 11-cis-vaccenyl acetate [cVA]) (Figure S1B).

To allow for potential comparison, we chose an overlapping

odor set to the one used by Hige et al. [39], who analyzed re-

sponses of individual MBONs in naive animals. Moreover, we re-

corded from flies of four different internal states, starved (24 and

48 h starved), fed, virgin, or mated, to assess the impact of hun-

ger or mating state on DANs.

Combining all experiments from all flies and all odor stimuli

and states, we first sought to determine how much of the

observed variance in the recorded GCaMP fluorescence signal

resulted from biological (e.g., odor stimulus, metabolic state,

and MB compartment) as opposed to procedural factors (e.g.,

imaging direction, order or position of odor stimulus, etc.) (Table

1). Using an ANOVA model combining the different factors and

their specific compartment effects, we determined that known

procedural factors only accounted for a small part of the data

variance. In essence, stimulus order (e.g., whether the odor

was the first, second, etc. in a series presented to the animal),

scanning direction (i.e., dorsal to ventral versus ventral to dorsal),

and hence number of previously received olfactory stimuli had a

significant effect and together explained up to 1%of the variance

in the calcium signals (Table 1; Figure S1G). This could be indic-

ative of some, albeit mild, adaptation due to repeated odor deliv-

ery. The highest contribution (�34%) to the observed variance

came, importantly, from known biological factors (Table 1). Spe-

cifically, differences between the individual MB compartments

as well as their response to a specific odorant explained over

30% of the observed variance in the data (Figure 1H; Table 1).

Furthermore, we analyzed odor-stimulation-independent ampli-

tude changes during the pre-stimulus phase (Figures S1C–S1F).

Interestingly, the MB compartments with highest average devia-

tions from zero in the pre-stimulus phase (i.e., a3 and a’1) were

not the same compartments that showed the highest variance

in their odor responses (i.e., a’3, b’1, and g4). This implies that

these variabilities are a biological feature of the respective
aMP6f. GCaMP6f expression was visualized by anti-GFP (green) and neuropil

ushroom body lobes and dotted white square the region imaged.

ntral end covering vertical and horizontal mushroom body lobes.

or compartment segmentation and fluorescence extraction. Scale bar, 10 mm.

dors, states, etc. were pooled.

responses. All odors and conditions were pooled.

interquartile range. See also Figures S1 and S7 and Table 1.



Table 1. ANOVA Table Showing the Variance Associated with

Different Factors

Sum

of Squares

% of Variance

Explained PR(> F)

MB compartment 313a 22.7a 0a

Stimulus 35a 2.5a 1.3E�36a

Compartment: stimulus 117a 8.4a 3.0E�62a

Order presented 1.1 0.08 1.2E�02

Compartment: order_presented 1.5 0.1 8.6E�01

Imaging direction 3.4 0.2 8.3E�06

Compartment: imaging

direction

7.1 0.5 1.4E�04

Starvation state 2.5 0.2 1.2E�04

Compartment: starvation

state

6.4 0.5 6.4E�04

Residual 891 65

R2 = 0.36. See also Figure S7.
aMost significant factors.
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compartments and not a technical artifact that should conceiv-

ably affect baselines and stimulus responses equally in all com-

partments or possibly only in the most dorsal ones (i.e., a3 and

a‘3) (Figures S1D and S1G).

Hence, by considering the known and intended conditions of

the experiments (i.e., odor identity, metabolic state, compart-

ment identity, imaging direction, and position in odor sequence),

we were able to explain �36% of the observed variance in our

data (R2 = 0.36) (Table 1). The highest contribution came from

the differences in activity of different MB lobes, indicating that

distinct MB compartments display characteristic calcium re-

sponses (Table 1).

As mentioned above, DANs form part of a network with other

neurons types, such as MBONs, which also connect them back

to other DANs [11, 34]. In addition, some DANs innervate mul-

tiple compartments [11], suggesting that the activity of some

MB compartment should be correlated. To test this, we first

generated an ‘‘anatomical connectome’’ as a correlation ma-

trix, with the caveat that it likely does not contain all possible

connections between neurons, to be compared with a ‘‘func-

tional connectome.’’ For the anatomical matrix, which was

based on that of Aso et al. [11], we assigned strong connectiv-

ity between compartments innervated by the same DAN and

milder connectivity for compartments with DAN dendrite-

dendrite colocalization, common inputs from KCs or KC

axon-axon connections, and MBON feedback to DANs (see

STAR Methods; Figures S1H and S1I). When comparing this

correlation matrix to the correlation matrix obtained for corre-

lated or anti-correlated activity between MB compartments

(Figures 1I and 1J versus Figures S1H and S1I), we noticed

some obvious similarities, indicating that some of the corre-

lated activity can be explained by known anatomical connec-

tions (e.g., a’1 and g2). Nevertheless, we noticed several highly

correlated compartments that did not appear to share direct

input (e.g., b1 and b’2), indicating the existence of additional

connections or mechanisms coordinating the responses of

these compartments, as indicated by recent higher resolution

connectomics data (e.g., [34]).
We next asked whether and what type of information DAN re-

sponses contain about the odor stimulus and how it might be

perceived by the animal. In order to visually compare responses

to different odors, we plotted averaged odor responses over all

animals that received a given stimulus in a 2D heatmap (Figures

2A and S2). Considering these average response heatmaps, we

wondered whether DANs could help to encode odor identity in

their population activity (Figure 2B). As indicated in Table 1, stim-

ulus identity induced compartment-specific responses and in to-

tal accounted for 10.9% of the observed variance. Of note, the

specific effects of the stimulus on different compartments ex-

plained a larger proportion of the variance than just stimulus

alone (Table 1) (8.4% versus 2.5%), suggesting that different

compartments might respond differentially to different stimuli.

Decoding odor identity from the recorded DAN population activ-

ity by using logistic regression (see STAR Methods) indeed per-

formed at about three times higher accuracy than chance level

(29% versus 8% chance level) (see confusion matrix in Fig-

ure S2B). Consistent with this, odor representation in linear

discriminant analysis (LDA) space (see STAR Methods) was

not homogeneous, and the distance between each odor cluster

was higher than if odor had been randomly shuffled (1.6 versus

0.8 ± 0.06) (see, for example, Figures 2C and 2D). Although

DANs are not very good encoders of odor identity in the fly brain,

these results suggest that their responses might still convey

some potentially useful information about the type of odor that

the animal is smelling. This information could, for instance, be

conveyed by KCs, which possess the complexity to encode

odor specificity [40]. The biological meaning of this is currently

unclear, but it is possible that modulation of MB function through

DANs is influenced by the identity or type of odor the animal

smells.

Humans frequently rate odors, including novel scents, as

pleasant or unpleasant [41]. In flies, DANs have been implicated

in regulating innate olfactory preference behavior (e.g., [13, 15,

18, 42]). We therefore next looked for an innate valence code

for odors in this neuron population. To this end, we focused on

the odors reported to possess an innate valence in behavioral

assays for the animal: the food odors vinegar and yeast were

categorized as positive and citronella, geosmin, and peppermint

as negative [43–46]. Using the same ANOVA model as above for

this dataset but analyzing stimulus valence instead of stimulus

identity (Table S1), we found that valence accounted for 3.6%

of the observed variance as compared with 8.5% for stimulus

identity for this dataset. This difference of 4.9% is consistent

with the interpretation that DANs, in addition to valence, hold

some further information about the nature of an odor stimulus

(e.g., odor type).

Regarding odor valence, by examining post hoc pairwise com-

parisons and regression coefficients for individual compart-

ments, we noticed that DANs innervating the a3, a’1, and g2

compartments responded stronger to aversive odors than they

did to appetitive odors (Figure 3A). Conversely, b2, b’2, and g4

showed higher DAN responses for odors of positive valence

compared with the odor of negative valence (Figure 3A). This di-

vision coincides with the PAM and PPL1 MB innervation bound-

ary and their reported responses to stimuli of opposite innate va-

lences, such as sugar, bitter tastes (see below), or electric shock

[20, 27, 29]. Interestingly, by using logistic regression on the DAN
Current Biology 30, 2104–2115, June 8, 2020 2107
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Figure 2. Dopamine Neuron Population Responses Contain Limited Information about Odor Identity

(A) Heatmaps showing averaged DAN responses to different odors in 15 mushroom body compartments (n = 369 experiments, 185 female flies). Vertical dashed

black lines indicate stimulus delivery time. Horizontal dashed white lines separate the groups of lobes.

(B–D) State space after linear discriminant analysis dimensionality reduction. (B) presents all odors, and (C) and (D) highlight cVA and yeast.

See also Figure S2.
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population activity data, the valence of an odor could indeed be

decoded with significantly higher accuracy than chance level

(70% versus 49%; p = 0.0006), suggesting that odor-evoked ac-

tivity within the DAN network contributes to an animal’s innate

perception of odor valence (Figure 3B). Moreover, LDA loadings

(the weights of the original data points in compartment space

projected onto the LDA direction) were also segregated along

opposite odor valences significantly more than LDA loadings

obtained assigning valence randomly (Figures 3B and S3A)

(d’ = 1.29 compared with 0.60 ± 0.11 for random assignment;
2108 Current Biology 30, 2104–2115, June 8, 2020
p < 0.001). LDA coefficients showed that DANs innervating

different lobes contribute differentially to this segregation. The

most significant contribution to odor valence classification was

found for DANs projecting into the b’2 compartment (Figure 3C).

To test the robustness of the valence signal within the DAN pop-

ulation, we ran the same analysis using the same 5 odors, but

this time included also 3-octanol and 4-methylcyclohexanol, as

these odors were reported to elicit innate aversion in some

behavioral assays, which is, at least in part, dependent on spe-

cific MBONs [44, 47]. These odors are also frequently used to
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Figure 3. Dopamine Neuron Responses Reveal Innate Odor Valence

(A) Lobewise pairwise comparison of response to positive or negative valence odors. Stars represent t test multiple comparison corrected p values. *p < 0.05;

**p < 0.01; ***p < 0.001.

(B) Histogram of loadings of projection on the valence-optimized LDA dimension for odors of high innate valence (vinegar, yeast, citronella, peppermint, and

geosmin). The y axis represents counts per bin.

(C) Lobe coefficients for valence-optimized LDA in color for odors of high innate valence (vinegar, yeast, citronella, peppermint, and geosmin). Boxplots represent

the distribution of coefficients obtained by chance.

(legend continued on next page)
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study learning in flies. The results for the logistic regression of the

DAN population data were very similar to the results without

these two odors (69% classification accuracy versus 55% for

chance; p = 0.008) (Figures 3D and S3B). LDA loadings were

again segregated along opposite odor valences significantly

more than LDA loadings obtained assigning valence randomly

(Figure 3D) (d’ = 1.12 compared with 0.55 ± 0.10 for random

assignment; p < 0.001). Given earlier reports that odors (e.g., vin-

egar) can become less appetitive or even aversive to flies at high

concentrations [46, 48], we next recorded DAN responses of flies

to 32 ppm vinegar and compared them to the already recorded 4

ppm vinegar responses (Figure S3D). Although pairwise compar-

ison of compartment-specific DAN responses revealed a signif-

icant difference in b’1 and g1 (Figure S3D), we did not observe

any significant changes in other compartments, such as b’2 or

g2, suggesting that high and low vinegar concentrations might

not be perceived as different in valence at the level of DANs

but possibly different in intensity. To comprehend these results

better, we analyzed the preference behavior of flies of the

same genotype as used from imaging to these two vinegar con-

centrations in a 4-quadrant olfactory arena [15, 18]. In our hands,

and under the used conditions, when flies were given a direct

choice between the high and the low vinegar concentration, flies

displayed indifference (Figure S3E). Similarly, flies preferred not

only 4 ppm vinegar over humidified air, they also favored 32 ppm

vinegar odor over air. Thus, the DAN population response

matched the animals’ innate attraction to the odors.

Together, these data provide new insights into how the popu-

lation of DANs could contribute to innate valence perception of

odors, as previously observed in behavioral studies [13, 18].

As for odors, animals also have innate preferences for tastes,

and previous work showed that certain DANs respond to sugar

or bitter substances [27].We next carried out DANpopulation im-

aging to analyze (1) which DANs respond to aversive versus

attractive tastes and (2) to compare our odor valence data with

another sensory stimulus. To avoid repeated stimulations with

tastes, because they stick to the fly’s legs and proboscis and

are being ingested, we opted for another microscopy method,

light-field microscopy (see STAR Methods and Figures S4A and

S4B). Light-field imaging captures activity from thewhole flybrain

without the need for layered scanning [49] at a lower but still suf-

ficient spatial resolution to capture the calcium dynamics in

different DAN compartments (Figures S4A and S4B). Tethered

flies expressing GCaMP6f in all DANs were alternatingly stimu-

lated with the bitter taste quinine or sugar (Figure 4A). Remark-

ably, regression analysis revealed a highly similar distribution of

coefficients as seen for odors of different innate valence (Figures

4B andS3A), suggesting that DANs encode valence of odors and

taste in a very similar pattern. The clearest difference in represen-

tation of odor valence as compared to taste valence was seen in

the g-compartments, i.e., g4 and g5 (Figures 4B and S3A).

Although g4 was highly correlated with positive odor valence,

g5 displayed a high correlation for sugar (Figures 4B and S3A),
(D) Histogram of loadings of projection on the valence-optimized LDA dimensi

4-methylcyclohexanol. The y axis represents counts per bin.

(E) Lobe coefficients for valence-optimized LDA in color for vinegar, yeast, citro

represent the distribution of coefficients obtained by chance.

Box plots represent the 25th and 75th percentile, with the whiskers at 1.5 of the

2110 Current Biology 30, 2104–2115, June 8, 2020
consistent with previous reports [27, 28]. These data taken

together, nevertheless, suggest that valence representation in

theMBDANpopulation ismostly independent of the sensorymo-

dality. Furthermore, sugar is highly nutritive and the strong corre-

lation in the g5 compartment could, at least in part, represent the

increased positive valence because of the calorie content of

sugar and its long-lasting post-ingestion effects [50, 51].

Metabolic state is an important determinant in odor perception

for many animals, including humans [52–54]. We thus compared

DAN odor responses of fed with the responses of 24 and 48 h

starved animals (Figure 5A). Metabolic state indeed contributed

significantly, albeit less than stimulus valence, to the variance

explained in the ANOVA analysis on the basis data from all test

odors and all recorded animals (0.7%) (Table 1). Both post hoc

pairwise comparisons and regression coefficients indicated

that not all compartments contributed equally. We detected

the most significant differences in responses in compartments

a1, b1, b’2, and g4 (Figures 5A and S5A). Previous studies that

focused on individual DANs implicated some of these compart-

ments in metabolic-state-dependent choice behavior (i.e., b’2)

[13, 18, 55]. Our present results suggest that other compart-

ments, such as b1, might also contribute in conveying feeding

state to sensory processing. Importantly, decoding the re-

sponses of the entire DAN population allowed us to predict

whether the fly was starved or fed with a 65% accuracy signifi-

cantly higher than chance (65% versus 57%; p = 0.04). LDA pro-

jections as done above for odor valence segregated between

starved and fed animals (Figure 5B) (d’ = 1.01 compared with

0.49 ± 0.09 for random assignment). Interestingly, no single

compartment stood out from chance levels in the LDA coeffi-

cients, suggesting that representation of metabolic state is

distributed in the DAN population (Figure 5C). In addition, we de-

tected a significant modulation of baseline activity (in the

absence of an odor stimulus) by starvation in the g4 compart-

ment (Figures S5B and S5C). Of note, this modulation was not

consistent between 24 and 48 h starved flies, and hence, its pu-

tative biological meaning remains unclear.

Altogether, the results suggest that feeding state modulates

the response of DANs to odors, which in turn convey the animal’s

feeding state to different MB compartments.

One of the odors in our stimuli set was the sex pheromone

cVA. Mating experience changes how males and females

perceive their environments and members of their own species

(e.g., [23, 56–58]). Thus, we compared cVA DAN responses in

mated females with those of virgins. In particular, DANs projec-

ting into compartments a3 and b’1 predicted mating state in a

regression model (Figures S5E and S5F). By contrast, ANOVA

showed that the pre-stimulus deviation from baseline was not

significantly different in mated females as compared with virgins

in the absence of an odor stimulus (Figure S5G). These results

suggest that distributed activity in the DAN population shapes

odor processing in the higher brain in a reproductive-state-

dependent manner.
on for odors vinegar, yeast, citronella, peppermint, geosmin, 3-octanol, and

nella, peppermint, geosmin, 3-octanol, and 4-methylcyclohexanol. Boxplots

interquartile range. See also Figure S3 and Table S1.
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Figure 4. DANs Innervating Different MB

Compartments Respond Differentially to

Sweet and Bitter

(A) Sample traces of responses to quinine (bitter,

blue) and sugar (red) taste collected with the light-

field microscope. Shaded areas represent stim-

ulus presentation. Note that the strong activity

transient when quinine was removed is present in

some datasets, but not all, and could be because

of quinine wetting the legs.

(B) Regression coefficient for specific mushroom

body compartments for tastes of innate valence

(98% confidence interval).

See also Figure S4.
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Given that some DAN responses were shown to be corre-

lated with behavioral activity of the fly, independent of an

external sensory stimulus, we wondered whether and where

movement-related activity was encoded by the MB DAN popu-

lation [28, 49, 59]. To test this, we analyzed another dataset of

tethered flies walking on a ball but which were not stimulated

with odor. These data were obtained by using light-field micro-

scopy, allowing us to image calcium signals induced by walking

at a very high temporal resolution across all compartments [49].

Walking was defined as movement on a ball, excluding behav-

iors such as grooming or proboscis extension. We then used

regression of compartment fluorescence on these behavioral
Current
time series to obtain regression coeffi-

cients. We found that some MB com-

partments were strongly responsive to

walking movement (Figures S6A–S6C).

In particular, regression analysis indi-

cated that calcium signals in compart-

ments b1, b2, b’2, and g3–5 correlated

with walking (Figures S6B and S6C).

The average regression coefficients for

walking ranged from 0.01 to 0.07 (Fig-

ure S6C), which was similar (although

possibly underestimated; see STAR

Methods) to the coefficients observed

for metabolic state (0–0.13) (Figure S5A),

mating (0.01–0.38) (Figure S5F), and

valence (�0.12–0.21) (Figure S3A).

These data imply that movement is en-

coded by the MB DAN population and

might affect an animal’s sensory percep-

tion to, at least, a similar degree as other

internal states. Whether and how

walking speed, direction, intent, or even

flying is represented in DANs will be an

interesting question to be addressed in

the future.

DISCUSSION

Altogether, we find that different DANs

within the population of MB-innervating

neurons respond differentially to

different odors, tastes, and states and
encode information regarding valence and physiological state

in a compartment-specific manner (Figure 6). Different com-

partments show strongest responses during sensory stimula-

tion, although others display highest baseline variability in the

absence of stimuli (Figure 6). Furthermore, some compart-

ments are clearly modulated while the animal is walking (Fig-

ure 6). Similarly, odor or taste valence is encoded more reli-

ably by certain compartments than others when comparing

DAN responses across the entire MB DAN population (Fig-

ure 6). And finally, metabolic and reproductive states modu-

late odor responses of the DAN population; DANs innervating

some compartments again showed significantly higher effects
Biology 30, 2104–2115, June 8, 2020 2111
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Figure 5. Metabolic State Affects Dopa-

mine Neurons in Specific Mushroom Body

Compartments

(A) Lobewise comparison of odor responses in

different starvation states. Stars represent t test

multiple comparison corrected p values. *p < 0.05;

**p < 0.01; ***p < 0.001.

(B) Histogram of loadings of projection on the

starvation-state-optimized LDA dimension. The y

axis represents counts per bin.

(C) Lobe coefficients for metabolic-state-

optimized LDA in color. Boxplots represent

the distribution of coefficients obtained by

chance.

Box plots represent the 25th and 75th percentile,

with the whiskers at 1.5 of the interquartile range.

See also Figure S5.
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of modulation than others (Figure 6). On the basis of our anal-

ysis and modeling, we suggest that valence or the animal’s

state is encoded by a heterogeneous population of DANs,

distributed and interconnected over multiple compartments,

rather than by the activity of single neurons or single

compartments.

A putative caveat in our data was the observed large vari-

ance that cannot be explained with known or controlled vari-

ables (Table 1). This variance, however, could be consistent

with the finding that different individual flies respond differ-

ently to odors and state changes, resulting in the considerable
2112 Current Biology 30, 2104–2115, June 8, 2020
variability typically observed in innate

preference behavioral experiments. Of

note, we saw similar variance in taste

responses by using light-field imaging,

indicating that the level of response

variability is not merely due to technical

factors. It is possible that individual

experience shapes odor responses as

suggested for variance observed in

MBONs of different flies [39]. Alterna-

tively, stochastic processes during

development could lead to different wir-

ing of neurons in individual flies [60], ul-

timately shaping how DANs respond to

a given odor. Similarly, although the an-

imals’ legs were fully restrained in all

imaging experiments (except for the

taste and movement response anal-

ysis), small movements or the intent to

move could conceivably influence DAN

responses. Finally, we cannot exclude

that differences in GCaMP expression

and compartmental localization, as

well as differences in fly preparation,

contribute to the observed differences.

We hope to answer how individuality

shapes odor experience at the level of

DANs in the future by combining higher

throughput imaging methods with

developmental genetics.
Importantly, in spite of putative individual differences, DANs

as a population contain important information that could

contribute markedly to the innate and state-dependent

perception of odors and tastes, and possibly other sensory

modalities, by gauging output pathways of the MB. More spe-

cifically, compartmentalized but population-wide DAN re-

sponses to odor or taste could bias MBON output by acutely

modulating KC-MBON synapses. In this scenario, the odor in-

formation could be received from KC-DAN or MBON-DAN

synapses directly but might also originate from the lateral

horn (LH). In line with this idea, a valence bias has also



Figure 6. Summary Models of the Contribution of Different MB Compartments

Mushroombody compartments are color codedwith the value of the regression coefficient. Different compartments could therefore contribute differentially to the

perception of sensory valence and internal state. Note that panels ‘‘starvation’’ and ‘‘mating’’ display state-dependent modulation of odor responses. Differences

in magnitude of regression coefficients stem from the use of slightly different genotypes (i.e., the graphics ‘‘taste valence’’ and ‘‘walk’’ represent data collected

using flies with two copies of upstream activating sequence [UAS] and GAL4 transgenes, although data for all other graphics were collected with flies with one

copy of each. This likely led to higher baseline fluorescence and thus a lower DF/F). See also Figure S6.
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been observed in MBON responses by Hige et al. [39]. And

similarly, manipulation of MBON or DAN output changes

behavior in naive animals [13, 18, 47]. These innate biases in

the MB network could in turn serve as a teaching signal for

novel odors and change over an animal’s lifetime or even

over evolutionary times to thus contribute to species-specific

behaviors.

In conclusion, we propose that DANs as a population govern

innate perception and behavior by directly and differentially en-

coding the innate valence of a sensory cue and the animal’s cur-

rent physiological and behavioral state.
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d LEAD CONTACT AND MATERIALS AVAILABILITY

d EXPERIMENTAL MODEL AND SUBJECT DETAILS
B Number of experiments

d METHOD DETAILS

B Two-photon in vivo calcium imaging
Current Biology 30, 2104–2115, June 8, 2020 2113



ll
OPEN ACCESS Article
B Odor stimulation

B Image analysis and 3D registration

B In vivo light field imaging experiments

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Statistics and other types of data analysis

B Olfactory arena preference test

d DATA AND CODE AVAILABILITY

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

cub.2020.04.037.

ACKNOWLEDGMENTS

We would like to thank Sebastian Onasch and Ariane Böhm for their help with

data analysis and modeling and Christian Schmid for writing the odor delivery
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Antibodies

Anti-Rabbit Alexa 488 Molecular Probes RRID: AB_2576217

Anti-Mouse Alexa 568 Molecular Probes RRID: AB_141372

Mouse monoclonal anti-discs large DSHB RRID: AB_528203

Rabbit polyclonal anti-GFP Clontech RRID: AB_2336883

Data

2-photon 3D data analysis tool Github https://github.com/portugueslab/

lobe_alignment

Light field data and analysis Github https://github.com/sophie63/Siju2020

Light field imaging data (walking) crcns.org https://doi.org/10.6080/K01J97ZN

Light field data analysis protocol Github https://github.com/sophie63/FlyLFM

All remaining original data are available

upon request.

Experimental Models: Organisms/Strains

D.mel/TH-Gal4 Bloomington DSC FlyBase: FBst0008848

D.mel/GMR58E02-Gal4 Bloomington DSC FlyBase: FBst0041347

D.mel/TH,58E02-Gal4 This paper N/A

D.mel/UAS-GCaMP6f Bloomington DSC FlyBase: FBst0042747

Software and Algorithms

FV10-ASW Olympus olympus-lifescience.com

MATLAB MATLAB mathworks.com

FIJI [61] https://fiji.sc/#

Python For details see method description

GraphPad Prism 8 GraphPad https://www.graphpad.com
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources, code, and reagents should be directed to andwill be fulfilled by the lead contact, Ilona

C. Grunwald Kadow (ilona.grunwald@tum.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experiments were carried out with laboratory-raised Drosophila melanogaster. In order to cover both PPL1 and PAM DANs for

imaging, we recombined two transgenic driver lines, namely the TH-Gal4 (PPL) driver and the 58E02-Gal4 (PAM) driver, onto the third

chromosome. The recombined line was crossed to the UAS-GCaMP6f reporter line for in vivo imaging. For experiments using light

field imaging, the additional data to the dataset from [49] was obtained with flies where the same TH- and 58E02-Gal4 drivers or TH-

and DDC-Gal4 drivers were combined with the UAS-GCaMP6F transgene to obtain a true breeding stock. All fly stocks and crosses

were raised on a standard cornmeal medium and maintained at 25�C and 60% humidity in 12 h light and 12 dark cycle climate

chambers.

Number of experiments
‘N’ indicates the number of flies, and ‘n’ signifies the number of experiments. For two-photon imaging experiments: A total

of 391 in vivo experiments were analyzed from 201 adult female flies of different states stimulated with different odors. (1)

Vinegar: fed: n = 10, N = 8; starved: n = 30, N = 23; (2) Yeast: fed: n = 14, N = 11; starved: n = 30, N = 22; (3) Isoamyl

acetate: fed: n = 12, N = 8; starved: n = 13, N = 10; (4) 1-Hexanol: fed: n = 8, N = 4 ; starved: n = 12, N = 8; (5) 2-Hep-

tanone: fed: n = 9, N = 5; starved: n = 12, N = 8; (6) Ethanol: fed: n = 6, N = 4; starved: n = 7, N = 5; (7) 3-Octanol: fed:

n = 8, N = 6; starved: n = 9, N = 7; (8) 4-MCH: fed: n = 11, N = 5; starved: n = 11, N = 9; (9) Peppermint: fed: n = 12, N = 8;

starved: n = 13, N = 7; (10) Citronella: fed: n = 11, N = 8; starved: n = 38, N = 30; (11) Geosmin: fed: n = 9, N = 5; starved:
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n = 6, N = 4; (12) cVA: mated: n = 38, N = 14; Virgin: n = 30, N = 14; (13) high vinegar: fed: n = 16, N = 8; starved: n = 16,

N = 8. Odor stimulation was semi-randomized for different experiments and animals such that in an initial set of experiments

with citronella, yeast and vinegar only these odors were randomized. In the second set of experiments, these odors and all

remaining odors were presented in a randomized order.

For light field imaging experiments: walking experiments, N = 7; taste experiments, sucrose N = 10, quinine N = 9.

METHOD DETAILS

Two-photon in vivo calcium imaging
4- to 8-day-old female flies were used for all experiments. For starvation experiments, flies of at least 4 days old were transferred to a

starvation bottle with only a wet tissue paper in the bottom and a folded wet Whatman round filter paper as a wick hanging from the

plug. Starvation was carried out for 24 h or 48 h for the experiments.

For in vivo imaging, a fly was restrained in a truncated pipette tip and only a part of the head with antenna and maxillary palp were

protruding (see Figure 1A). Proboscis and legs were kept inside the pipette tip to restrainmovement. Using fine forceps, cuticle on the

dorsal head was removed and the brain was further exposed by removing fat bodies and trachea. The exposed brain was first

washed with imaging saline, and then a drop of 1% low temperature melting agarose (NuSieveGTG, Lonza) diluted in imaging saline

maintained at 37�C was added on top of the brain in order to minimize brain movement. Imaging saline was added on top once the

agarose had hardened. Preparations were imaged with an Olympus 40x 0.8 NA water immersion objective on an Olympus FV1000

two-photon system with a BX61WI microscope. GCaMP6f fluorescence was excited at 910 nm by a mode-locked Ti:Sapphire Mai

Tai DeepSee laser. Time series images were acquired at 210 3 210 pixel resolution with 3 frames per s speed using the Olympus

FV10-ASW imaging software. For each specimen, first the dorsal and ventral ends of mushroom body DANs weremarked in the soft-

ware. The entire volume of the MB from dorsal to ventral was�100 mm. Planes were spaced 1 or 2 mm apart in all experiments. Each

plane was scanned in time series mode for 80 frames with a speed of 3 frames per second to obtain sufficient spatial resolution for

pre-, post- and stimulus phase. On each plane, a 1 s odor pulse was delivered at the 30th time frame by triggering an automated odor

delivery system. After scanning one plane, the focuswas shifted to the next plane and the stimulation protocol was repeated for every

plane. For each fly, the full volume of the MB was first scanned from dorsal to ventral and then from ventral to dorsal. The type and

sequence of odors was randomized over experiments. For instance, in one set of experiments, two different odors were used for the

opposite scanning directions, whereas in another set of experiments, the same odor was used for both scanning directions. In some

cases, if the fly was still fit, a third or even fourth odor was recorded.

Odor stimulation
The following odorants were used in the study: vinegar (Balsamic vinegar, Alnatura, Germany), yeast (Fermipan, Italy; 1g/5ml water),

citronella, peppermint (both from Aura Cacia, USA), 3-octanol, ethanol, 4-methylcyclohexanol (MCH), geosmin (0.01% in paraffin oil),

isoamyl acetate, 1-Hexanol, 2-Heptanone (all from Sigma-Aldrich, Germany), 11-cis-Vaccenyl acetate (cVA) (Pherobanks, the

Netherlands). Odors were diluted in water or paraffin oil to 1% with the exception of yeast and geosmin according to their solubility.

For high vinegar stimulation vinegar was diluted to 80% in water to reach 32 ppm. A custom-made odor delivery system with mass

flow controllers (Natec sensors, Garching) controlled by aMATLAB script were used for odor delivery. Throughout the experiments, a

charcoal filtered continuous air stream of 1,000 mL/min was delivered through an 8 mm Teflon tube positioned 10 mm away from the

fly antenna. Odor was delivered into the main air stream by redirecting 30% of main air flow for 1 s through a head-space glass vial

containing 5 mL of diluted odorant. The odor delivery was automatically triggered by counting the time frame output from the scan-

ning microscope by a custom written MATLAB script.

Image analysis and 3D registration
After acquisition, each imaging plane was first registered in time to correct for within-plane shifts. Then, all the planes were aligned

with each other to maintain between-plane continuity. Both registration steps were performed with standard methods implemented

in the scikit-image Python package (register_translation) [62].

Due to the variability in GCaMP expression between MB compartments and flies and lack of significant landmarks in the region

imaged, automatic registration was not possible. Therefore, to assign activity to lobes, we used a semimanual-procedure. The binary

masks for lobes published by Aso et al. [11] were then converted to meshes and simplified with the vtk toolkit. Next, the Aso et al.

referenceMBwas registered manually to a high-resolution reference volume of the line TH-Gal4/58E02-Gal4;UAS-GCaMP6f used in

this study (Figure S7, step 1).

Since themushroombody is a L-shaped structure, determining the location of three points in three dimensions is enough to specify

the location, rotation, and scale while also allowing for bending between the a, and b and g lobes. Using a custom graphical user

interface tool three points were determined: at the ends of the lobes, and the point where a and g lobes come together. The exact

location of the registration point is not important for the alignment quality, as long as they are located at the same cell, axon bundle or

other landmark feature in both stacks.

Once this correspondence was established, the same procedure was repeated between each imaging experiment and the high-

resolution TH/58E02 reference (Figure S7, step 2). Finally, for each transformed lobe or compartment, time traces of all voxels

belonging to it (determined with a ray-intersection method from the trimesh library (developed by Dawson-Haggerty et al. version
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3.2.0 at https://trimsh.org/) were extracted and saved per plane (each plane being a separate repetition, Figure S7, step 3). The anal-

ysis pipeline can be found at https://github.com/portugueslab/lobe_alignment.

The developed tool provides several advantages over the Longair and Jefferies ImageJ plugin (https://imagej.net/

Name_Landmarks_and_Register): it shows an interactive preview of the segmentation, works with mesh-, instead of voxel-defined

regions and is significantly faster to use. The ease of use was an important issue given the several hundreds of stacks acquired

through the experiments.

For imaging experiments on the light field microscope, landmark registration was performed with FIJI’s landmark_registration plu-

gin (http://imagej.net/Name_Landmarks_and_Register) with the template of MB compartments.

In vivo light field imaging experiments
Flies with two copies of reporter and Gal4 drivers were used in all experiments. Note that this background is likely to increase the

baseline fluorescence compared to the other experiments. If the signal is close to saturation, this could explain the decrease in

DF/F. Light field imaging was carried out as previously described [49]. Briefly, the walking fly and taste response experiments

were performed on a custom-built light-field microscope using a microlens array to separate rays coming from different angles

[63]. The resulting light field images have information about fluorescence at different depths, and deconvolution allowed us to recon-

struct the volume. This thus allowed us to record the whole volume without scanning.

Four of the datasets from walking flies were previously published in Aimon et al. [49] and source data (https://doi.org/10.6080/

K01J97ZN), and the additional three datasets for walk, as well as all the datasets for taste were obtained specifically for this study

(Video S1) (https://github.com/sophie63/Siju2020). Our light field microscope was constituted of a Thorlabs Cerna system with a Le-

ica HC FLUOTAR L 25x/0.95 objective and an MLA-S125-f10 microlens array (RPC photonics) for one walk datasets and one taste

dataset, and MLA-S125-f12 microlens array (RPC photonics) for two walk datasets and four taste datasets. The microlens array was

placed on the image plane, while the camera imaged themicrolens array through 50mm f/1.4 NIKKOR-SNikon relay lenses. The light

field images were recorded at 25 and 50 Hz with a scientific CMOS camera (Hamamatsu ORCA-Flash 4.0). The volumes were recon-

structed offline, using a python program developed by [63] and available on github: https://github.com/sophie63/FlyLFM. Themove-

ment artifacts were removed by 3D registration using the 3dvolreg routine from AFNI, and the voxel time series were transformed to

DF/F by subtracting and normalizing by a moving average over 20 s. Functional regions were then extracted using principal compo-

nent analysis and independent component analysis to highlight landmarks that were used to align bothMB hemisphere to anatomical

masks from Aso et al., 2014 [11]. The average of the whole MB volume was calculated for normalization of the taste response, but, in

cases where some landmarks could not be clearly identified, neighboring compartments were discarded. Walking was scored by

hand as a binary measure of walking on a ball versus non-walking movements or no movement at all.

For taste response experiments, a 24 h starved, one to two days old female was head-fixed (as described in [49]). The base of the

proboscis, but not the legs, was fixed to reduce movement artifacts in this experiment, but it was kept accessible and clean. In some

experiments we removed the front legs or painted the eyes to ensure the specificity of the response. Saturated solutions of sucrose or

quinine were alternatively presented to the proboscis (as drops or using imbibed tissue), with individual stimulus presentation fol-

lowed by water to rinse the proboscis before the next stimulus presentation. Approximately 30% of the datasets did not present

any detectable activity and were therefore discarded.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistics and other types of data analysis
To reduce noise, we averaged responses during four time points after odor onset. Since for the majority of recorded flies, only two

odors per flywere recorded or analyzed, we suspected strongmulticollinearity in the data. Indeed, variance inflating factors were high

and sometimes infinite. After removing the fly identity factor, variance inflating factors were three or less (without considering inter-

actions), indicating lowmulticollinearity.We thus removed fly identity from the analysis (however as described below, we performed a

mixed model to verify that fly identity did not strongly affect regression coefficients).

We next performed ANOVA, using a model considering all remaining factors (stimulus, position in odor sequence, imaging direc-

tion, starvation state), as well as compartment-specific effects (Table 1). As variance explained by position in odor sequence (i.e.,

whether odor was applied first or second in the sequence) was small and non-significant, we removed this factor for further analysis.

We used this model for estimating regression coefficients. Note that we used a strict confidence interval of 98%, to decrease false

positives in comparison of regression coefficients to zero .:

‘‘df_f � lobe*(stimulus+order_presented+dorsal_to_ventral_val)+starved:lobe-1‘‘.

As cross-validation indicated some overfitting (24% instead of 37% of variance explained out of sample data), we also performed

an elastic net regularization. We also used a mixed model with fly identity as group, to account for any fly specific effects. For co-

efficients related to valence, the same models were used but replacing stimulus with valence and restricting the data to

odors with innate valence (vinegar, yeast, citronella, geosmin, and peppermint or vinegar, yeast, citronella, geosmin, peppermint,

3-octanol and 4-methylcyclohexanol). Finally, we estimated coefficients using minimal models for lobe (‘‘df_f � lobe-1’’), starvation

(‘‘df_f� lobe+lobe:starved-1’’), and valence (‘‘df_f� lobe+lobe:valence-1’’). The coefficients for all themodels are in good agreement
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(Figures S1, S3, and S4). As cVA was the only odor recorded in the presence of different mating states, we used a simple model

(‘‘df_f � lobe+lobe:virgin_val-1’’) on this data subset to evaluate coefficients related to mating. For baseline analysis (pre-stimulus

phase), we used the average of the deviation from zero. We also performed post hoc pairwise t tests for lobe specific effects of star-

vation, starvation baseline, odor valence, high and low vinegar, andmating. No pairwise comparison was carried out on the pre-stim-

ulus of the mated versus virgins experiments, because the ANOVA, in contrast to the odor response for mating effect, showed no

significant compartment-specific effects. All p values were pooled and corrected for multiple comparison using a Simes-Hochberg

procedure. Regression coefficients for taste valence were also obtained using a simple model similar to the model used for odor

valence. As the overall response was very variable (possibly due to fly identity or slight differences in the manual stimulus presenta-

tion), we also added the overall averaged activity into the model (‘‘df_f�Mean+lobe+lobe:taste-1’’). For walking experiments, we ob-

tained behavior time series by binary scoring of walking on the ball. Those time series were convolved with a GCaMP6f kernel and the

moving averagewas subtracted tomatch theDF/F of the fluorescence time series. Finally, it was normalized to have an average value

of one during walk (to be able to compare regression coefficients with other factors with 0 or 1 values). We then performed regression

of compartment averaged time series with these behavior time series to obtain regression coefficients. The ANOVA and regression

analysis were performed using statsmodels (http://statsmodels.sourceforge.net/).

To seewhether the fly can theoretically decode compartment activity to get information about stimulus, valence or starvation state,

we trained logistic regression classifiers (lbfgs solvers for all, and balance class weight and multinomial logistic model for stimulus

decoding). We also projected the data to obtain one to three dimensions using linear discriminant analysis. For valence or starvation,

we evaluated separability using the d’, and determined their p values using the distribution obtained by running LDA one thousand

times on data with randomized valence or starvation state. For stimuli identity, we used the three first loadings to construct the odor

space in Figure 2. The LDA and classification were performed using scikit-learn [64].

Olfactory arena preference test
Behavioral experiments with vinegar were conducted using a custom-built 4-arm olfactory choice arena described in Sayin et al. [15].

We used 4-8 days old TH-Gal4,58E02-Gal4;UAS-GCaMP6f flies for all behavioral experiments to match the genetic background of

the flies used for imaging. All flies were starved for 24 h prior to the experiments. In each experiment, 20 to 30 flies of both sexes were

used.We used a protocol consisting of 60 s pre-stimulus period, 90 s stimulus period, 210 s inter-stimulus period followed by another

90 s stimulus period. In one set of experiments, the odor headspace from either a 1% or an 80% vinegar solution was used to fill two

opposite quadrants, and simultaneously the remaining two quadrants were filled with the odor of the solvent water (0% vinegar). In

another set of experiments, two opposite quadrants were filled with 1% vinegar odor and simultaneously the remaining two quad-

rants were filled with 80% vinegar odor. In all the experiments, during the second stimulus phase of the protocol, stimuli were

reversed with respect to the quadrants (see Figure 3E). The preference index was calculated as ((number of flies in Q1+Q3) (number

of flies in Q2+Q4)/ total number of flies). Data were plotted in GraphPad Prism 8.

DATA AND CODE AVAILABILITY

The datasets and codes generated for the current study are either deposited in a public repository or are available directly from the

lead contact on request, Ilona C. Grunwald Kadow (ilona.grunwald@tum.de).
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