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The Role of p38 MAPK in Rhinovirus-Induced Monocyte
Chemoattractant Protein-1 Production by Monocytic-Lineage
Cells'

David J. Hall,>* Mary Ellen Bates,” Lasya Guar,” Mark Cronan,* Nichole Korpi,” and
Paul J. Bertics'

Viral respiratory infections are a major cause of asthma exacerbations and can contribute to the pathogenesis of asthma. Major
group human rhinovirus enters cells by binding to the cell surface molecule ICAM-1 that is present on epithelial and monocytic
lineage cells. The focus of the resulting viral infection is in bronchial epithelia. However, previous studies of the cytokine dys-
regulation that follows rhinovirus infection have implicated monocytic lineage cells in establishing the inflammatory environment
even though productive infection is not a result. We have determined that human alveolar macrophages and human peripheral
blood monocytes release MCP-1 upon exposure to human rhinovirus 16 (HRV16). Indeed, we have found p38 MAPK activation
in human alveolar macrophages within 15 min of exposure to HRV16, and this activation lasts up to 1 h. The targets of p38 MAPK
activation include transcriptional activators of the MCP-1 promoter. The transcription factor ATF-2, a p38 MAPK substrate, is
phosphorylated 45 min after HRV16 exposure. Furthermore, IkBa, the inhibitor of the transcription factor NF-«B, is degraded.
Prevention of HRV16 binding was effective in blocking p38 MAPK activation, ATF-2 phosphorylation, and MCP-1 release. This
is the first report of a relationship between HRV16 exposure, MCP-1 release and monocytic-lineage cells suggesting that MCP-1

plays a role in establishing the inflammatory microenvironment initiated in the human airway upon exposure to rhinovirus. 7The

Journal of Immunology, 2005, 174: 8056-8063.

irus infections of the upper respiratory tract are among
P\ / the most common causes of asthma exacerbations.
Therefore, an understanding of the mechanisms under-
lying virus infection and the associated exacerbations are expected
to open up new avenues for therapeutic intervention. There are
numerous viruses that can affect the upper respiratory tract includ-
ing influenza A, coronaviruses, adenoviruses, and parainfluenza
viruses (1-5). However, the most common virus detected in the
upper airway associated with exacerbations of asthma, is the rhi-
novirus (6). Human rhinoviruses (HRV)? are part of the picorna-
virus family; small, positive strand RNA viruses whose genetic
material is enclosed by an icosahedral protein shell or capsid. The
HRYV life cycle takes roughly 6 h to complete, with new viruses
being detectable after 3 h in a variety of cell types (7, 8). Rhino-
viruses can be classified according to the cellular receptor used for
attachment and cellular entry. Major group rhinoviruses, including
the well studied HRV16, bind to ICAM-1, whereas the minor
group viruses, including HRV1A, bind to members of the low
density lipoprotein receptor family (9).
Infection of the upper respiratory tract by HRV16 has been dem-
onstrated to occur at localized portions of the epithelia and does
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not cause widespread lysis of the infected epithelia (1). This ob-
servation has suggested that the pathology induced by rhinovirus
may be due in part to cytokine dysregulation rather than extensive
epithelial necrosis observed in other viral infections. In general,
changes in cytokines, chemokines, and other factors following vi-
rus infection in asthma subjects are linked to increased bronchial
hyperresponsiveness, extensive thickening of the airways, de-
creased B-adrenergic receptor sensitivity, and dysregulation of the
M2 receptor resulting in an increase in cholinergic responsiveness
(10). With regard to the cytokine profile of nasal lavage fluid taken
during natural and experimental rhinovirus infection, increased
levels of multiple cytokines/chemokines was observed including
IL-8, RANTES, IFN-v, IL-1B, and TNF-« (11-14). Another CC
chemokine that may be important to the pathophysiology of
asthma is MCP-1 (15). MCP-1 is associated with many patholog-
ical states, including asthma, atherosclerosis, pulmonary fibrosis,
arthritis, sepsis, and chronic bacterial infections (16, 17). In vitro,
MCP-1 stimulates recruitment of specific leukocyte subsets, in-
cluding monocytes, memory T lymphocytes, and NK cells through
binding of CCR2 (15). Recent studies have demonstrated that mice
lacking CCR2 have a predominant production of Th2 cytokines
(18, 19). Targeted deletion of MCP-1 gene in mice has been
achieved (20), and it was observed that functional absence of
MCP-1 resulted in impaired monocyte recruitment but not poly-
morphonuclear leukocyte recruitment and rendered the host more
susceptible to infection (21, 22).

The major site of HRV infection is the airway epithelium, and
hence these cells have been the primary focus of research on virus-
induced asthma. However, little work has focused on the partici-
pation of other cell types in HRV-induced exacerbations of asthma
and how these cells may contribute to the cytokine dysregulation
that is observed during virus infection. In fact, monocytic-lineage
cells (macrophages, monocytes, and dendritic cells) are the
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predominant immune cells present in the lumen of the lower air-
way (7, 23), and the activation of these cells represents one of the
first steps in natural immunity toward virus infection. Although
monocytic-lineage cells are known to express ICAM-1 and the low
density lipoprotein receptor, rhinoviruses are unable to initiate a
productive infection. However, it has been observed that rhinovi-
rus exposure elicits a number of responses from peripheral blood
monocytes including the release of IL-8 and IL-10 as well as the
up-regulation of CD14 on the cell surface (7, 23-26).

In the present study, we determined that when alveolar macro-
phages are exposed to HRV16, p38 MAPK is activated, and
MCP-1 is released. Careful dissection of the p38 MAPK signaling
cascade revealed that the transcription factor ATF-2, a known p38
MAPK target, is phosphorylated and that IkBe is degraded after
HRV16 treatment. Preventing HRV16 binding to its receptor or
introduction of a p38 MAPK inhibitor prevented ATF-2 phosphor-
ylation and MCP-1 release. Furthermore, we demonstrated that
both blood monocytes and THP-1 cells can be used as model sys-
tems for the difficult-to-obtain alveolar macrophages with respect
to this HRV16-induced signaling cascade. These results show, for
the first time, that MCP-1 is produced by monocytic lineage cells
exposed to HRV16 suggesting that these cells may play an impor-
tant sentinel role during the initial phase of rhinovirus infection.

Materials and Methods

Reagents

For monocyte preparation, Percoll was purchased from Amersham Bio-
sciences. Sigma-Aldrich was the source for PMA. Protease inhibitor tablets
(Complete) were obtained from Boehringer Mannheim, and p38 inhibitor
SB203580 was obtained from Calbiochem. Immunoblotting reagents were
purchased from a variety of suppliers including Santa Cruz Biotechnology
(HRP-conjugated goat anti-rabbit IgG, anti-IkBa Ab), Pierce (Supersignal
chemiluminescence substrate reagents), Promega (anti-Active p38 MAPK
antisera and anti-ERK antisera), Upstate Biotechnology (anti-Grb2 anti-
sera), and Cell Signaling (anti-phospho-ATF-2 antisera). Anti-CD14 and
anti-ICAM-1 was purchased from BD Biosciences.

Cell culture

Alveolar macrophages, human peripheral blood monocytes, and the human
promonocytic cell line THP-1 were cultured in RPMI 1640 (Sigma-
Aldrich) with 10% FBS (HyClone) and 1% penicillin/streptomycin at 37°C
in a humidified incubator with 5% CO,.

Virus production, purification, inactivation, and tittering

Virus was grown in HeLa cells and subsequently sedimented through a
sucrose step gradient to remove contaminants as previously described (27—
29). Total virus was determined by infectivity assay (30), and four tubes
were inoculated for each 10-fold dilution. Sucrose-purified HRV16 was
exposed to irradiation with a 254-nm UV light placed 10 cm above the
virus solution. The volume of the virus solution was measured before ir-
radiation, and evaporated volume was replaced with sterile water. No viral
infectivity could be detected after irradiation.

Purification of human monocytes

Monocytes were purified from heparinized peripheral blood of volunteer
donors as previously described by centrifugation of buffy coat leukocytes
through a Percoll density gradient (31). Monocytes were then cultured in
12-well Costar tissue culture plates (1 million cells/well) for 2 h, non-
adherent cells were removed by washing the wells with medium, and the
remaining adherent cells were cultured for 24 h before treatment with rhi-
novirus. Purified human blood monocytes were lifted off the plate with Cell
Dissolution solution (Sigma-Aldrich), and the cell population was evalu-
ated for CD14-positive cells and viability (annexin V (32)) by flow cy-
tometry. Cell populations were typically 95% viable and 90% CD14 pos-
itive. The procedure was approved by the University of Wisconsin-
Madison Center for Health Sciences Human Subjects Committee. Informed
consent was obtained from each subject before participation.

8057

Isolation of alveolar macrophages

Bronchoscopy and bronchial lavage (BL) were conducted as previously
described (33, 34). Briefly, one bronchopulmonary segment was identified,
and the fiberoptic bronchoscope was wedged into that segment. The bron-
choscope was held in a wedge position, and lavage (60 ml) was performed.
This volume was selected to obtain a wash of the airway and to be a likely
representative of air space cells and other mediators. The BL fluid return
was centrifuged (400g for 10 min) to sediment cells. BL cells were washed
twice with HBSS containing 2% newborn calf serum. The cell population
was evaluated by flow cytometry showing at least 95% viable (annexin V
(32)) and 70% CD14 positive. Based on morphological examination (Diff-
Quick Scientific Products), the BL fluid cells were typically 87% macro-
phages with contaminating cells being primarily lymphocytes (7%), neu-
trophils (1%), and epithelial cells (2%). Macrophages were cultured in
12-well Costar tissue culture plates (1 million cells/well) for 2 h, non-
adherent cells were removed by washing the wells with medium, and the
remaining adherent cells were cultured for 24 h before treatment with rhi-
novirus. The procedure was approved by the University of Wisconsin-
Madison Center for Health Sciences Human Subjects Committee. Informed
consent was obtained from each subject before participation.

ELISA

Sandwich ELISA for MCP-1 was performed with Abs obtained from En-
dogen as previously described (33, 34). PBS with 0.1% Tween 20 (PBST)
was used for all washes. Absorbances were read at 450 nm. MCP-1 con-
centrations were calculated by interpolation from a standard curve, and all
determinations were done in triplicate. Data were summarized as the
mean = SD of triplicate determinations when a representative is shown and
mean = SEM for summaries of experiments on multiple patient samples.
Statistical significance of differences between cell treatment conditions was
determined by Student’s 7 test.

MCP-1 RNA isolation/quantification

After treating monocytes or macrophages with rhinovirus (or LPS), the
medium was collected and Trizol reagent (Sigma-Aldrich) was added to
the monocytic cells in a 12-well plate. Total RNA isolated as previously
described (35) and concentration was determined by absorbance at 260 nm.
MCP-1 mRNA was quantified by Invader RNA assay according to the
manufacturer’s protocol (Third Wave Technologies).

Monocytes stimulation and immunoblotting

Monocytes were treated with various concentrations of HRV16 for times
between 5 and 60 min in 12-well tissue culture plates. After treatments,
monocytes were suspended in loading buffer and assayed for protein con-
tent by BCA assay (Pierce). The cell lysates were diluted with electro-
phoresis sample buffer, and the proteins were resolved on polyacrylamide
slab gels. The lanes were loaded with samples that represented equal
amounts of protein. The proteins were transferred to polyvinylidene diflu-
oride membranes and immunoblotted using standard methods (32). The
consistency of protein loading in all lanes was confirmed by staining of the
polyvinylidene difluoride membrane with amido black following chemilu-
minography (Supersignal; Pierce) and by subsequent immunoblotting with
anti-ERK-1 or Grb-2 antisera. Quantification of immunoblots was done by
densitometric analysis of digitized immunoblot images using NIH Image]J
software.

Results

As a first step in this study to confirm previous reports that pro-
ductive infection does not take place in alveolar macrophages and
blood monocytes (7), these two cell types were exposed to sucrose-
purified HRV16 at different multiplicities of infection (MOI). The
presence of infectious virus was assayed from supernatants at var-
ious times postinfection (30). Infectious virus, probably represent-
ing unbound inoculum, was detected in virus assays 1 h postin-
fection. Decreasing amounts of virus were detected at 8 and 12 h
postinfection, and no infectious virus was detected in either blood
monocytes or alveolar macrophages 24 h postinfection (data not
shown). However, HeLa cells infected with HRV 16 produced high
titers of infectious virus (see Materials and Methods). Because no
productive infection was detected, we refer to rhinovirus exposure
rather than infection in subsequent portions of this study.
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FIGURE 1. MCP-1 mRNA and protein levels in macrophages and
monocytes after HRV16 exposure. Alveolar macrophages or monocytes
(1 X 10° cells/well) were treated with control vehicle (Ctrl), HRV16 at an
MOI of 10, or 100 ng/ml LPS and MCP-1. mRNA or protein was mea-

RHINOVIRUS EXPOSURE ELICITS MCP-1 PRODUCTION

MCP-1 mRNA accumulation and protein secretion in response
to HRV16 exposure

The release of IL-8, IL-6, RANTES, and GM-CSF by epithelial
cells in response to productive rhinovirus infection was reported
previously by several investigators (1, 10, 27, 36). In addition, IL-8
and IL-10 are reported to be released following monocytic lineage
cell exposure to rhinovirus (24, 25). We sought to determine
whether other cytokines important in immune cell recruitment
were elicited by HRV16 exposure. As a method of screening for
HRV16-induced alterations in gene expression, human peripheral
blood monocytes were treated with HRV16 (MOI of 10) or control
buffer. After 4 h, total RNA was isolated, processed, and analyzed
by oligonucleotide microarrays (Affymetrix HuGeneFL GeneChip,
data not shown). We noted that several transcripts were increased
by at least 5-fold: for example, transcripts encoding IFN« iso-
forms, and several cell surface receptors such as CD44, CD69, and
CD54 (preliminary data not shown). MCP-1 was among the most
highly induced genes and chose to examine this particular chemo-
kine because of its connections to asthma (12, 37, 38). To confirm
the microarray results, total RNA isolated from alveolar macro-
phages or blood monocytes exposed to HRV16 at an MOI of 10
was examined by INVADER assay. The HRV16 was sucrose pu-
rified and tested for the presence of MCP-1 and LPS (data not
shown). An increase of MCP-1 mRNA was detected 4, 8, and 24 h
postexposure in increasing amounts in both alveolar macrophages
and blood monocytes (Fig. 1A). Furthermore, ELISA results indi-
cated secretion of MCP-1 into culture supernatants at 4 h postex-
posure, and peak MCP-1 release was measured 24 h postexposure
for both alveolar macrophages and blood monocytes (Fig. 1B).
After 24 h of incubation, MCP-1 concentrations in tissue culture
supernatants of monocytes were (mean = SEM) 13.6 = 0.7 ng/ml
for HRV16-stimulated cells compared with 0.06 = 0.06 ng/ml for
unstimulated monocytes (n = 9, p < 10~ '°). In supernatants from
alveolar macrophage after 24 h of stimulation with HRV16 (MOI
of 10), MCP-1 concentrations were 16.6 *= 3.1 ng/ml compared
with 1.2 * 0.5 ng/ml without virus addition (n = 9, p < 107°).

Although we had previously observed that release of live virus
from HRV16-exposed alveolar macrophages and blood monocytes
was not detectable, we evaluated whether a virus incapable of rep-
licating (i.e., UV-inactivated virus) would also stimulate MCP-1
release in monocytes and macrophages (Fig. 1B). HRV16 was UV-
inactivated as described in Materials and Methods. Interestingly at
early time points, the release of MCP-1 in response to UV-inac-
tivated virus was similar to that of live virus suggesting that rep-
lication of the virus genome is not necessary for HRV16 to stim-
ulate MCP-1 production.

Effect of p38 kinase inhibitor on MCP-1 protein production

Previous studies have indicated that the p38 MAPK pathway plays
an important role in MCP-1 transcription (39—-41). To evaluate the
importance of p38 MAPK activity in HRV16-stimulated MCP-1
release from alveolar macrophages, we incubated alveolar macro-
phages or blood monocytes with HRV16 (MOI of 10) for 24 h in
the presence or absence of the p38 MAPK inhibitor SB203580 (10

sured. Data are summarized as mean (SD) of triplicate wells. A, MCP-1
mRNA concentrations were determined by the INVADER assay and stan-
dardized against GAPDH mRNA levels (n = 3). B, Tissue culture media
were recovered after 4, 8, and 24 h of incubation with HRV16 or UV-
inactivated HRV16 (UV) and frozen at —20°C. Concentrations of MCP-1
were determined from supernatants by ELISA as described in Materials
and Methods (n = 9).
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FIGURE 2. Effect of p38 MAPK inhibition on HRVI16-stimulated
MCP-1 release. Alveolar macrophages or monocytes (1 X 10° cells/well)
were treated with HRV16 at an MOI of 10 or 100 ng/ml LPS for 24 h. Cells
were pretreated with control buffer or 10 uM SB203580 for 30 min before
HRV16 exposure. Concentrations of MCP-1 were determined from super-
natants by ELISA. Data are representative (SD of triplicate wells) of three
independent experiments.

uM). The p38 MAPK inhibitor effectively blocked MCP-1 pro-
duction, induced by virus or LPS (Fig. 2). This decrease in che-
mokine release was not due to a cytotoxic effect of the inhibitor as
assayed by MTT assay or annexin V staining (>98% viable) (42,
43).

p38 MAPK phosphorylation after monocytic-lineage cell
exposure to HRVI6

Several papers have reported that p38 MAPK is phosphorylated in
response to rhinovirus infection of epithelial cells (13, 36). Fur-
thermore, p38 MAPK activation is a necessary event in multiple
cell types for subsequent secretion of several cytokines including
MCP-1, IL-8, GM-CSF, and IL-6 (13, 36, 44, 45). We hypothe-
sized that HRV16, despite not being able to productively infect
alveolar macrophages, activates p38 MAPK in a manner similar to
a ligand rather than a virus. To test this hypothesis, human alveolar
macrophages, blood monocytes, or THP-1 cells were exposed to
HRV16 at an MOI of 10 for up to 60 min. Indeed, HRV 16-induced
p38 MAPK activation, as determined by immunoblotting with
phosphospecific Abs, with an average of 5-fold p38 MAPK acti-
vation at 30 min postexposure in each of the three cell types based
on densitometry using ImageJ software (Fig. 3). These results con-
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FIGURE 3. Phosphorylation of p38 MAPK in response to HRV16 ex-
posure. Alveolar macrophages, blood monocytes, or THP-1 cells (1 X 10°
cells/well) were treated with control vehicle (Ctrl), HRV16, or LPS (100
ng/ml) for the indicated time periods. Cell lysates were generated and
protein concentrations were quantified by BCA protein assay. Equal
amounts of protein were loaded into each lane and confirmed by immu-
noblotting for Grb2. Activation of p38 MAPK was visualized by immu-
noblotting with antiserum raised against the dually phosphorylated activa-
tion motif of p38 MAPK. A, Lysates of alveolar macrophages, stimulated
for various times with HRV16 (MOI = 10), were immunoblotted with
anti-active p38 MAPK anti-serum. The observed activation pattern was
confirmed in cell lysates from 15 subjects. B, Blood monocyte cell lysates
stimulated for various times with HRV16 (MOI = 10) were immunoblot-
ted with anti-active p38 MAPK anti-serum. The observed activation pattern
was confirmed in 10 subject samples. C, THP-1 cells were stimulated for
various times with HRV16 (MOI = 10), and the resulting lysates were
immunoblotted with anti-active p38 MAPK anti-serum. The observed ac-
tivation pattern was confirmed in four separate experiments.

firm that blood monocytes (Fig. 2B) and THP-1 (Fig. 3C) cells
respond to HRV16 treatment in a manner similar to alveolar mac-
rophages (Fig. 3, lane 4), suggesting both cell types are adequate
model systems for alveolar macrophages when studying the
HRV16-induced p38 MAPK signaling cascade. Furthermore, p38
MAPK activation is stimulated in blood monocytes and THP-1
cells in a dose-dependent manner by HRV 16 further supporting the
hypothesis that HRV functions as a ligand during initial exposure
(Fig. 4, A, lanes 2 and 3, and B, lanes 2-7).

To evaluate the possibility that LPS contamination of the virus
stocks caused p38 MAPK activation, we exploited the fact that
HRV16 is incapable of binding to murine ICAM-1 (46). Murine
RAW 264.7 macrophages exposed to HRV16 failed to activate
ERKI1 and ERK2 whereas LPS-stimulated ERK activation within
15 min thereby suggesting that LPS, dsRNA, and other standard
contaminants were not responsible for the p38 MAPK activation
(data not shown).

Effect of ICAM-1 Ab, pH, and WIN compound on HRV-
stimulated p38 MAPK activation in monocytes

To determine whether p38 MAPK phosphorylation was mediated
by HRV16 interaction with the HRV major group receptor,
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FIGURE 4. Effects of disruption of HRV 16 interaction with ICAM-1 by
prior treatment of cells with anti-ICAM Ab, or pretreatment of the HRV16
at pH 5.0 or with WIN-52035. A, Monocytes (1 X 10° cells/well) were
treated with control buffer (lane 1) or HRV16 at an MOI of 1 or 10 (lane
2 or 3) for 30 min. To reduce the interaction between HRV16 and its
putative receptor, the monocytes were pretreated with 10 or 15 ug of anti-
ICAM-1 Ab (lanes 4 and 5) before HRV 16 exposure. In addition, mono-
cytes were stimulated with HRV 16 that had been pretreated with pH 5.0
buffer to disrupt viral capsid structure or WIN-52035 (20 ug/ml) (lanes 6
and 7). Cell lysates were generated, and protein assays performed. Equal
protein was loaded and immunoblotted. Anti-phospho-p38 Ab detected
dually phosphorylated, active p38 MAPK (n = 5). Densitometry (graphed
in arbitrary units) was performed using ImagelJ software. The control den-
sity was subtracted from each sample lane measured. B, THP-1 cells (1 X
10%/well) were treated with HRV16 at different MOIs for 30 min. Cell
lysates were generated and immunoblotted. Anti-phospho-p38 Ab detected
dually phosphorylated, active p38 MAPK (n = 3). Densitometry (graphed
in arbitrary units) was performed using ImagelJ software. The control den-
sity was subtracted from each sample lane measured.

ICAM-1, several approaches were used. Previous studies have
shown that anti-ICAM-1 Ab can effectively block HRV16 from
binding to the ICAM-1 receptor (47, 48). Monocytes were pre-
treated with two different concentrations of anti-ICAM-1 Ab for 30
min (10 and 15 pug/ml) followed by 30 min of exposure to HRV16
at an MOI of 10, (Fig. 4A, lanes 4 and 5). The anti-ICAM-1 Ab
partially (~50% by densitometry using ImageJ software) attenu-
ated the virus-induced p38 MAPK phosphorylation (Fig. 4A, lane
3). Because receptors are often activated by Ab binding (49, 50),
we sought other means to disrupt interaction between HRV16 and
ICAM-1. These techniques included prevention of the HRV16-
ICAM-1 interaction by degrading the virus capsid at low pH (51,
52) or inhibiting virus binding with the pharmacologic agent
WINS52035 (29). As shown in Fig. 44, HRV 16 that was inactivated

RHINOVIRUS EXPOSURE ELICITS MCP-1 PRODUCTION

by low pH or WIN52035 was unable to activate p38 MAPK in
monocytes. These studies provide evidence that p38 MAPK acti-
vation by HRV16 is mediated by interaction with ICAM-1.

Time-course of IkBa degradation after exposure of alveolar
macrophages and blood monocytes to HRVI16

IkBa is the protein responsible for the retention of the transcrip-
tion factor NF-«B in the cytoplasm. Following stimulus-dependent
degradation of IkBa, NF-kB translocates into the nucleus and pro-
motes the transcription of numerous genes including MCP-1 (53,
54). To determine whether IkBa is degraded following HRV16
exposure, alveolar macrophages and monocytes respectively were
incubated with HRV16 at an MOI of 10 for times ranging from 10
to 60 min and then the mass of IkBa in the cell lysates was eval-
uated by immunoblotting (Fig. 5, A, lanes 2—4, and B, lanes 4-6).
Basal levels of IkBa were visible in lysates from unstimulated
cells (Fig. 5, A and B, lane 1) and a time-dependent degradation
was observed beginning 15 min after HRV 16 exposure with max-
imal degradation (decrease of 90%, n = 5) after 30 to 45 min (Fig.
5, A, lane 3, and B, lane 5). The amount of IkBa degradation is
comparable to that seen following 15 min of stimulation with LPS
(100 ng/ml), a potent activator of NF-kB (Fig. 5A, lane 2).

Exposure of alveolar macrophages, blood monocytes, and
THP-1 cells to HRV16 affects ATF-2 phosphorylation

The family of stress-activated kinases including p38 MAPK and
JNK are serine/threonine kinases known to phosphorylate a mul-
titude of transcription factors including CREB, c-Jun, and ATF-2
(40, 41, 55). Because, ATF-2 phosphorylation was implicated in
MCP-1 transcription in other cell systems (40, 41), the following
experiments were conducted to determine whether ATF-2 is phos-
phorylated in human alveolar macrophages, blood monocytes, or
THP-1 cells following HRV16 stimulation. Each cell type was
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FIGURE 5. Effect of HRV16 exposure on the degradation of IkBa. A,
Alveolar macrophages (1 X 10° cells/well) were treated with HRV16 at an
MOI of 10 or 100 ng/ml LPS for 15-60 min. B, Monocytes (1 X 10°
cells/well) were treated with HRV16 at an MOI of 10 or 100 ng/ml LPS for
5-60 min. Cell lysates were generated, and protein assays performed. Im-
munoblotting detected total IkBa. Cell lysates were generated, and protein
assays performed. Equal protein was loaded and immunoblotted. Equal
protein loading was assured by immunoblotting the same sample with anti-
Grb2 or anti-ERK1 and ERK2 Ab. Data are representative of five inde-
pendent experiments.
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FIGURE 6. Effect of HRV16 exposure on ATF-2 phosphorylation. A,
Alveolar macrophages (1 X 10° cells/well) were treated with HRV16 at an
MOI of 10. Cells were pretreated with control buffer or 10 uM SB203580
(p38 inhibitor) for 30 min before HRV 16 exposure. B, Monocytes (1 X 10°
cells/well) were treated with HRV16 at an MOI of 10. Cells were pre-
treated with control buffer or 10 uM SB203580 for 30 min before HRV16
exposure. C, THP-1 cells (1 X 10° cells/well) were treated with HRV16 at
an MOI of 10. Cells were pretreated with control buffer or 10 uM
SB203580 for 30 min before HRV16 exposure. Cell lysates were gener-
ated, and protein assays performed. Equal protein was loaded and immu-
noblotted with anti-phospho-ATF-2 Ab. Equal protein loading was assured
by immunoblotting the same membrane with anti-Grb2 Ab. Experiments
with each cell type were performed five times with similar results.

incubated (15-60 min) with HRV16 (MOI of 10). For each cell
type, ATF-2 phosphorylation was observed beginning 30 min after
HRV16 exposure with maximal phosphorylation after 60 min (Fig.
6, lanes 3 and 4). In contrast, untreated cells and cells pretreated
for 60 min with the p38 MAPK inhibitor SB203580 (10 uM) (Fig.
6, lane 5) showed little ATF-2 phosphorylation demonstrating the
efficacy of the inhibitor. These data suggest that ATF-2 is a down-
stream substrate of the p38 MAPK pathway following the HRV16
exposure of alveolar macrophages, blood monocytes, or THP-1
cell line.

Discussion

The most numerous immune cells present in the airway lumen are
monocytic-lineage cells (macrophages, monocytes and dendritic
cells). The participation of macrophages and monocytes in rhino-
virus-induced inflammatory responses is incompletely understood.
In this study, we present data demonstrating that MCP-1 mRNA
and protein is produced by both alveolar macrophages and blood
monocytes in response to HRV16 (Fig. 1). These studies also sug-
gest that the mechanism of MCP-1 mRNA transcription incorpo-
rates the activation of p38 MAPK (Fig. 3) and transcription factors
ATF-2 (Fig. 6) and NF-kB. Indeed, we demonstrate that a p38
MAPK inhibitor blocked HRV-induced MCP-1 protein production
(Fig. 2) and ATF-2 phosphorylation (Fig. 6). Furthermore, intact
HRV16 particles capable of binding ICAM-1 contributed to p38
MAPK phosphorylation (Fig. 4A) in a dose-dependent manner
(Fig. 4B). Finally, our findings support the idea that, with respect
to selected aspects of the signaling initiated by HRV16, blood
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monocytes and the cell line THP-1 are reasonable models for al-
veolar macrophages, which are difficult to obtain and often impure.

Other studies have described IkBa degradation and p38 MAPK
activation in response to HRV16 infection of epithelial cells (53,
56, 57). Although, the majority of these former studies focus on a
time frame of 2-12 h postexposure, a couple of studies observed
p38 MAPK activation in the first hour after exposure (13, 44, 58).
In our study, HRV16 activated p38 MAPK within 15 min despite
the fact that there was no productive viral infection. This time
course suggests that HRV16 acts as a ligand of the ICAM-1 mol-
ecule to cause cell activation. We determined that p38 MAPK
activation was dependent on intact virus capsid (Fig. 4A), affected
by the amount of virus used for stimulus (Fig. 4B) and triggered by
replication-deficient UV-inactivated virus (Fig. 1).

In cell types that do support a productive viral infection (HeLa,
A549, BEAS-B2), viral RNA replication is not observed until at
least 1.5 h after initial exposure (7, 8, 59) and virus particle release
is not observed until 2.5 h postexposure. Therefore protein kinase
R, a kinase that is activated by viral dsRNA replication interme-
diate, is often invoked as the kinase responsible for p38 MAPK
phosphorylation (36, 60—63). Because our studies demonstrate
HRV16-induced p38 MAPK activation within 60 min of HRV16
exposure, protein kinase R is probably not the kinase responsible
for p38 MAPK activation, because the endocytosis and release of
HRV16 genomic RNA has been determined to take at least 1 h
(46, 52).

Of the multitude of downstream effectors for the p38 MAPK
pathway, we chose to examine the transcription factor ATF-2 be-
cause it is known to stimulate the transcription of MCP-1 (40, 41).
We demonstrated that ATF-2 is phosphorylated after alveolar mac-
rophage, blood monocyte, and THP-1 cell exposure to HRV16 and
that the p38 inhibitor SB203580 can suppress this phosphorylation
(Fig. 6).

A second important contributor to the transcription of MCP-1 is
NF-«B (64, 65). Indeed, NF-«B activation occurs during respira-
tory syncytial virus exposure through redox-sensitive degradation
of IkBa (66). The present study determined that IkBa was de-
graded within 45 min of alveolar macrophages and blood mono-
cytes exposure to HRV16 (Fig. 5) although it was not a redox-
sensitive mechanism (data not shown). This is the earliest
documented degradation of IkBa by HRV suggesting that viral
replication is not involved and that NF-«B may act as a potential
regulator of MCP-1 transcription.

This particular study is unique because it demonstrates, for the
first time, that MCP-1 is released from monocyte-lineage cells via
rhinoviral-stimulated p38 MAPK activation. Indeed, we demon-
strate that blood monocytes, alveolar macrophages, and THP-1
cells respond in a like manner with p38 MAPK and ATF-2 phos-
phorylation (Figs. 3 and 6). This is significant in understanding
HRV-induced inflammation for two reasons. First, MCP-1 appears
to shift the immune response toward the Thl spectrum (21, 22),
and second, the primary receptor for MCP-1, CCR2, is expressed
on immune cells that do not exhibit a robust chemotactic response
to other cytokines and chemokines released in response to HRV
infection. Indeed, the primary role of MCP-1 is to attract NK cells,
dendritic cells, monocytes, and macrophages. Thus, monocytic-
lineage cells attracted to the site of infection are likely stimulated
by virus through ligand binding, thereby further promoting and
enhancing the inflammatory response. However, future studies are
needed to determine whether MCP-1 is necessary for the quick
resolution of HRV infection as it is for other pathogens (21, 22).
The results present the idea that cell types other than epithelial
cells contribute to viral exacerbations of asthma, as well as causing
the symptoms of the common cold.
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