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The growth of bacterial pathogens in plants and disease devel-
opment are determined by genetically encoded bacterial 
virulence and plant immune systems1. Despite the wealth of 

available knowledge concerning these systems in isolation, inter-
actions between the two—especially how plant immunity affects 
bacterial function—are poorly understood2. Previously, it was 
shown that in planta transcriptomics of the bacterial pathogen 
Pseudomonas syringae pv. tomato DC3000 (Pto) can be used to 
identify bacterial messenger RNAs whose expression is influenced 
by plant immune activation3. The study investigated the roles of two 
major forms of plant immunity, pattern-triggered immunity (PTI) 
and effector-triggered immunity (ETI), in affecting the transcrip-
tomes of Pto in Arabidopsis thaliana leaves at an early stage of infec-
tion. ETI was triggered using Pto strains expressing effectors such 
as AvrRpt2 (ref. 4,5). Activation of PTI or ETI dramatically changed 
the transcriptomes of Pto, and the degree of transcriptome changes 
correlated well with bacterial growth in plants. Because the salicylic 
acid (SA) pathways are important components of ETI6, the impact 
of ETI on bacterial transcriptomes was strongly compromised in 
single and double mutants of SID2 and PAD4, key components 
of the SA pathways, as well as the AvrRpt2 receptor mutant rps2 
rpm1. Intriguingly, a bacterial iron-acquisition pathway was com-
monly suppressed by PTI and ETI. In planta transcriptome analysis 
has also been conducted in fungal pathogens. One study profiled 
co-transcriptomes of A. thaliana and a variety of Botrytis cinerea 
isolates to reveal gene co-expression networks of the pathogens that 
underlie virulence mechanisms7. Another study analysed transcrip-
tomes of the fungal pathogen Colletotrichum at multiple stages of 
infection in A. thaliana and maize, revealing transcriptome signa-
tures associated with the lifestyle transition of the fungal pathogens 
in planta8, highlighting that analysis of pathogen responses at differ-
ent infection stages can also be informative.

Although transcriptome analysis is a useful and widely used 
approach for elucidation of cellular function, it has been well estab-
lished that mRNA expression does not always reflect protein expres-
sion and thus it becomes clear that a better understanding of cellular 
behaviour requires direct interrogation of protein expression9,10.  
A previous study showed that proteome analysis of leaf commen-
sal bacteria can reveal metabolic changes in bacteria residing on 
the leaf surface11. However, the capacity of proteomics to describe 
plant-associated bacteria remains limited12. For instance, analysis 
of bacterial responses in the intercellular space (apoplast) of leaves, 
which is an important niche for various commensal and pathogenic 
bacteria, poses a major challenge because the large preponderance 
of plant material relative to bacterial material confounds analysis. 
To date, there is no proteome study of bacterial pathogens in the leaf 
apoplast and, thus, we lack comprehensive knowledge of bacterial 
proteins that are affected by host plants during infection. Moreover, 
due to the lack of comparative analyses spanning different modali-
ties of bacterial responses in planta, little is known about the flow of 
bacterial genetic information (for example, from mRNA expression 
to protein expression) that is important for virulence and how this 
is affected by plant immunity.

Here, we simultaneously profiled bacterial transcriptomes and 
proteomes in planta and identified bacterial processes influenced 
by plant immunity at the mRNA and protein levels at early and late 
stages of infection. Comparative analysis of transcriptomes and pro-
teomes revealed that changes in bacterial mRNA and protein expres-
sion are correlated in general. However, there are functions that are 
selectively changed at the mRNA or protein level. Furthermore, gene 
regulatory network analysis of bacteria showed previously unknown 
gene regulatory modules that mediate bacterial virulence in planta. 
Together, this study reveals the multi-layered regulatory mechanisms 
that underlie interactions between plants and bacterial pathogens.
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results
In planta transcriptome and proteome profiling of P. syringae. 
We profiled the transcriptome and proteome of the bacterial patho-
gen Pto in A. thaliana leaves using RNA-sequencing (RNA-seq) and 
liquid chromatography–mass spectrometry (LC–MS), respectively. 
Bacterial information was enriched by isolating bacterial cells from 
infected plant leaves using a previously established method (Fig. 1a)3. 
Briefly, infected leaves were crushed and incubated in a buffer that 
stops bacterial metabolism and protects bacterial RNA from degra-
dation. After separation of bacterial and plant cells by centrifugation, 
RNA and protein were extracted from isolated bacteria and sub-
jected to RNA-seq and LC–MS analysis, respectively (Fig. 1a). Both 
the transcriptomes and proteomes of Pto were profiled under 15 con-
ditions, including 2 in vitro and 13 in planta (Fig. 1b). Two bacterial 
strains, the virulent Pto and the ETI-triggering Pto AvrRpt2, were 
used. For genetic dissection of the roles of SA pathways and ETI, 
we used the single and double mutants of SID2 and PAD4, and 
rps2 rpm1, which lacks the AvrRpt2 receptor RPS2. In total, 70 and 
45 samples were analysed for transcriptome and proteome, respec-
tively (Extended Data Fig. 1a,b and Supplementary Data 13). Note 
that this is not a time-course study, because the doses of starting 
bacterial inocula are different for the two time points (OD600 = 0.5 
for 6 h post infection (hpi) and OD600 = 0.005 for 48 hpi). A higher 
dose of bacteria was used for 6 hpi, because efficient bacterial isola-
tion requires a large population of bacteria in leaves; and a lower 
dose was used for 48 hpi because inoculation of the higher dose of 
Pto could kill plants at this time point. Pto AvrRpt2 was not used for 
the sampling at 48 hpi, because this strain caused tissue collapse in 
the leaves even under this condition. In the proteome analysis, we 
could detect up to approximately 2,000 proteins in planta (Fig. 1c). 
Regardless of conditions, detected mRNAs/proteins showed protein 
subcellular distribution similar to total proteins encoded in the Pto 
genome (Fig. 1c), suggesting that no obvious bias was introduced into 
mRNA/protein detection during bacterial enrichment processes. Pto 
showed distinct responses under different conditions at both tran-
scriptome (Fig. 1d,e) and proteome (Fig. 1f,g) levels. In vitro bac-
terial transcriptome/proteome patterns were more distinct from in 
planta expression patterns at 6 hpi compared with 48 hpi (Fig. 1d–g), 
suggesting that dynamic transcriptional reprogramming at an early 
stage of infection is crucial for Pto in adapting to the plant apoplas-
tic environment and becoming virulent. Although different doses of 
starting inocula between different time points may explain the dif-
ference, this notion is supported by our previous observation that 
bacterial transcriptome patterns at this early stage of infection can 
predict bacterial growth in plants at a later stage3.

Dynamic regulation of bacterial function across different con-
ditions. We analysed mRNAs and proteins whose expression was 
significantly (|log2[fold change (FC)]| > 1; FDR < 0.01; two-tailed 
Student’s t-test followed by Storey’s q-value) changed between the 
in vitro King’s B medium (KB) and in planta (Col-0) conditions at 
6 or 48 hpi. Gene ontology (GO) enrichment analysis showed that 
mRNAs, as well as proteins related to ‘pathogenesis’, ‘translation’ and 
‘cell wall organization or biogenesis’, were induced at both 6 and 48 hpi 
(Clusters I and II in Fig. 2a and Cluster I in Fig. 2b). Interestingly, in 
the proteome data, transfer RNA synthases and ribosomal proteins, 
both of which are related to protein translation, showed the oppo-
site expression patterns—that is, tRNA synthases were suppressed 
at 48 hpi while ribosomal proteins were induced (Clusters I and III 
in Fig. 2b). Whether bacterial translation efficiency is reduced or 
enhanced at 48 hpi compared with the other conditions remains 
to be elucidated. A substantial number of Pto mRNAs (324) and 
proteins (196) were differentially expressed among different host 
genotypes at 48 hpi (Fig. 2c,d), whereas host genotype effects were 
small at 6 hpi (only 15 mRNAs and one protein were differentially 
expressed, respectively). Pto AvrRpt2 was strongly affected by the 

plant SA pathway at 6 hpi at the transcriptome level3, but not at the 
proteome level (only one protein was differentially expressed). This 
might be because transcriptional changes were not yet reflected in 
protein accumulation at 6 hpi. Thus, we focused on analysis of host 
genotype effects on protein expression in Pto at 48 hpi. There were 
196 proteins whose expression was significantly (|log2[FC]| > 1; 
FDR < 0.01; two-tailed Student’s t-test followed by Storey’s q-value) 
affected in at least one of the SA mutants (Fig. 2d). GO enrichment 
analysis revealed that pathogenesis-related proteins (interaction 
with host) were highly expressed in the SA mutants (Cluster II in 
Fig. 2d), implying that the SA immune pathways suppress expres-
sion of pathogenesis-related proteins. On the other hand, expression 
of translation-related proteins (ribosomal proteins) was reduced in 
the SA mutants (Cluster I in Fig. 2d). Taken together, the SA path-
way affects expression of bacterial proteins related to bacterial viru-
lence and basic metabolism in planta.

As shown in Fig. 2, bacterial functions differentially expressed 
under different conditions could be studied by GO enrichment 
analysis following differential expression analysis. However, this 
analysis is highly dependent on the thresholds applied for selec-
tion of differentially expressed mRNAs or proteins, and thus some 
important information can be lost before GO enrichment analysis. 
Moreover, it is difficult to compare the global expression pattern 
of GO terms across many conditions using this approach. To gain 
insights into biological functions that are differentially regulated in 
various conditions, we grouped Pto genes into GO terms and cal-
culated standardized GO expression scores; GO terms expressed 
in a highly condition-dependent manner were then selected  
(Fig. 3a,b; see Methods). The GO term pathogenesis was one of 
the most dynamically regulated processes at both the transcrip-
tome and proteome levels (Fig. 3a,b). These mRNAs and proteins 
were strongly induced in planta at 6 hpi; their expression remained 
high at 48 hpi, and a clear host genotype effect was observed at this 
time point—that is, expression was higher in the mutants of the 
SA pathway (sid2, pad4, pad4 sid2) compared with the wild-type 
Col-0 (Fig. 3c,d), implying that SA-mediated immunity suppresses 
pathogenesis-related factors at the transcript level at 48 hpi. A 
similar pattern was observed in mRNAs and proteins related to 
the bacterial toxin, coronatine (Extended Data Fig. 3a). We found 
that successful activation of ETI strongly induced mRNAs/proteins 
related to ‘catalase activity’ at 6 hpi (Extended Data Fig. 3b), which 
probably reflects bacterial responses to oxidative burst, a hallmark 
of ETI responses. Interestingly these mRNAs and proteins were 
even more highly expressed in virulent Pto at 48 hpi (Extended Data  
Fig. 3b), suggesting that Pto experiences oxidative stress at later 
infection stages. Taken together, our multi-omic Pto dataset uncov-
ered dynamic regulation of various biological processes across dif-
ferent conditions at the mRNA and protein levels.

Previously, we showed that bacterial genes related to the 
iron-acquisition pathway (‘iron-starvation’ genes) are highly induced 
in susceptible plants and strongly suppressed by the activation of 
PTI and/or ETI at 6 hpi at the mRNA level3 (Fig. 3e). Expression of 
these genes was lower at 48 hpi compared with 6 hpi (Fig. 3e), but still 
higher than under in vitro conditions. Expression of iron-starvation 
genes is known to be regulated by the master regulator protein 
Fur, which typically functions as a transcriptional repressor when 
bound by Fe(II)13. Interestingly, the accumulation of Fur protein was 
negatively correlated with the expression of iron-starvation genes 
in three distinct conditions (in vitro, in planta 6 hpi and in planta 
48 hpi; Fig. 3e,f). This implies a previously unknown mechanism of 
bacterial iron acquisition by which accumulation of the Fur protein 
might also contribute to regulation of iron-starvation genes.

Comparative analysis of bacterial transcriptomes and pro-
teomes. To compare global expression patterns of genes and pro-
teins, the transcriptome and proteome data of all 15 conditions were 

NaTure PlaNTS | www.nature.com/natureplants

http://www.nature.com/natureplants


ResouRceNature PlaNts

RNA-seq

King’s B medium (KB)
Minimal medium (MM)

Col-0, sid2,
pad4, pad4sid2

Pto
AvRpt2

6 hpi
48 hpi

Proteome

CentrifugationFiltering

Sample homogenization and incubation
 in a bacterial isolation buffer 

Harvesting
bacterial cells

Bacteria

Plants

Harvesting
leaves

Bacterial infiltration 

In vitro

In planta Time point

Bacterial
strain

a

b c

In vitro In planta 6 hpi In planta 48 hpi 

Pto AvrRpt2

K
B

M
M

si
d2

pa
d4ps

C
ol

-0

si
d2

pa
d4 ps

C
ol

-0

si
d2

pa
d4 ps

C
ol

-0 rr

K
B

M
M

si
d2

pa
d4 ps

C
ol

-0

si
d2

pa
d4 ps

C
ol

-0

si
d2

pa
d4 ps

C
ol

-0 rr

KB
MM
Col-0 Pto 
sid2 Pto 
pad4 Pto  

ps Pto 

Col-0 AvrRpt2
sid2 AvrRpt2
pad4 AvrRpt2
ps AvrRpt2
rr AvrRpt2

In vitro
In planta 6 hpi
In planta 48 hpi

d

f

2

–2

log
2 [R

E
]

2

–2

log
2 [R

E
]

e

g

0

1,500

50

20

0

–20

–20 –10 10 200

0

–50

–40 0 40 80

PC1 (44.7%)

PC1 (19.7%)

P
C

2 
(3

1.
7%

)
P

C
2 

(1
5.

9%
)

3,000

4,500

6,000

Cytoplasmic Cytoplasmic membrane Extracellular
Outer membrane Periplasmic Unknown

0

25

50

75

100

RNA-seq

Proteome

KB
MM
Col-0 Pto
sid2 Pto 
pad4 Pto  

ps Pto 

Col-0 AvrRpt2
sid2 AvrRpt2
pad4 AvrRpt2 
ps AvrRpt2
rr AvrRpt2

In vitro
In planta 6 hpi
In planta 48 hpi 

In vitro In planta 6 hpi In planta 48 hpi

Pto AvrRpt2

T
ot

al K
B

M
M

C
ol

-0
 6

 h
ps

 6
 h

C
ol

-0
 4

8 
h

ps
 4

8 
h

K
B

M
M

C
ol

-0
 6

 h
ps

 6
 h

C
ol

-0
 4

8 
h

ps
 4

8 
h

RNA-seq Proteome

T
ot

al K
B

M
M

C
ol

-0
 6

 h
ps

 6
 h

C
ol

-0
 4

8 
h

ps
 4

8 
h

K
B

M
M

C
ol

-0
 6

 h
ps

 6
 h

C
ol

-0
 4

8 
h

ps
 4

8 
h

RNA-seq Proteome

Fig. 1 | In planta transcriptomics and proteomics of Pto. a, Schematic workflow of in planta bacterial transcriptome and proteome analysis. b, Bacterial strains, 
plant genotypes and conditions used in this study. In total, 70 and 45 samples were analysed for transcriptome and proteome, respectively. See Extended Data 
Fig. 1 for an overview of the datasets. c, Number (left) and proportion (right) of mRNAs/proteins detected in the RNA-seq/proteome analysis, together with 
protein localization information. Total: all annotated genes of Pto. ps, pad4 sid2; rr, rpm1 rps2. d, Hierarchical clustering of relative expression (RE) of commonly 
detected Pto and Pto AvrRpt2 genes (total, 4,868) in RNA-seq analysis. See Supplementary Data 1 for gene expression data. e, Principle component analysis 
of Pto and Pto AvrRpt2 genes commonly detected in RNA-seq analysis. f, Hierarchical clustering of the relative expression of Pto and Pto AvrRpt2 proteins 
commonly detected in proteome analysis (937 proteins). See Supplementary Data 1 for the expression of proteins detected under at least one condition 
(2,018 proteins). In d,f, valid clusters of samples determined by k-mean clustering are shown in Supplementary Data 14. Light and dark grey sidebars represent 
Pto and Pto AvrRpt2, respectively. Black, orange and brown sidebars represent in vitro (KB), in planta 6 hpi and in planta 48 hpi, respectively. g, Principle 
component analysis of Pto and Pto AvrRpt2 proteins commonly detected in proteome analysis. For d–g, see Supplementary Data 13 for sample sizes.
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in planta 48 hpi, respectively. ps, pad4 sid2; rr, rpm1 rps2. f, Expression of the Fur protein in Pto based on proteome data (log2[normalized iBAQ value]). For 
a–f, see Supplementary Data 13 for sample sizes. In c–f, results are shown as box plots with boxes displaying the 25th–75th percentiles, the centre line 
indicating the median and whiskers extending to the minimum and maximum values no further than 1.5× interquartile range. All individual data points are 
overlaid. Different letters indicate statistically significant differences (adjusted P < 0.01, two-tailed Student’s t-test, Benjamini–Hochberg method).
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standardized and combined, and hierarchical clustering was per-
formed (Fig. 4a). Strikingly, transcriptome and proteome data were 
clustered together in three major conditions (in vitro and in planta 
6/48 hpi) (Fig. 4a), indicating that the global patterns of bacterial 
gene expression and protein expression are similar both in vitro and 
in planta. Since many of the samples used for transcriptome and 
proteome data were prepared independently, the overall agreement 
between transcriptome and proteome data indicates the high accu-
racy of both sets of omics data.

We compared RNA-seq and proteome data under each condi-
tion. Under KB and minimal medium (MM) conditions, transcrip-
tomes and proteomes were moderately correlated (R2 = 0.52 and 
0.43, respectively; Extended Data Fig. 4), which is consistent with 
previous studies in Escherichia coli (R2 = 0.42–0.57)14–16. A similar 
level of correlation was observed in planta, with slightly higher 
correlation at 6 hpi (R2 = 0.51–0.55) than at 48 hpi (R2 = 0.39–0.47; 
Extended Data Fig. 4). Thus, Pto mRNA and protein expression are 
moderately correlated both in vitro and in planta.

We further compared fold changes in RNA-seq and proteome 
data between Pto in  vitro (KB) and each of the other conditions 
(Fig. 4b). In all conditions, expression changes in the transcriptome 
and proteome were moderately correlated (R2 = 0.52–0.63), suggest-
ing that bacterial protein expression changes closely mirror those 
in mRNA levels during infection to both resistant and susceptible 
plants. Of 1,068 mRNAs/proteins detected in both RNA-seq and 
proteome analyses, 111 (10.4%) were significantly (|log2[FC]| > 1; 
FDR < 0.01; two-tailed Student’s t-test followed by Storey’s q-value) 
induced at both transcriptome and proteome levels in planta at 6 hpi 
compared with in KB medium (Fig. 5a). GO analysis showed that 
‘pathogenesis-related process’ was enriched among these mRNAs/
proteins (Fig. 5a), indicating that Pto transcriptionally activates 
pathogenesis programmes following plant infection. On the other 
hand, there were cases where expression of mRNAs and proteins was 
discordant. Interestingly, more proteins were downregulated (168 
proteins) than upregulated (39 proteins) in a protein-specific man-
ner (Fig. 5a). This may be explained by a prominent role of protein 
degradation or translation inhibition in bacteria in planta (Fig. 5a).  
GO analysis showed that ‘cell wall biogenesis’-related proteins were 
suppressed only at the protein level (Fig. 5a). In contrast, more 
mRNAs were upregulated (207 proteins) than downregulated (49 
proteins) in an mRNA-specific manner (Fig. 5a). This implies that 
the upregulation of specific mRNAs is a key response of Pto at an 
early stage of infection, and that the induction of mRNAs is not yet 
reflected in protein abundance at this point. We also compared fold 
changes in the transcriptome and proteome profiles between pad4 
sid2 and Col-0 at 48 hpi. GO enrichment analysis showed that bacte-
rial processes related to ‘chemotaxis’ were highly expressed in pad4 
sid2 at the protein level, but not at the mRNA level (Fig. 5b). This 
suggests that chemotaxis-related processes are suppressed by plant 
SA-mediated immunity at the protein level, and this may be impor-
tant for bacterial growth inhibition. Collectively, genome-wide 
comparisons between mRNA and protein expression illuminate the 
multifaceted control of bacterial gene expression in planta.

Component-specific suppression of the type III secretion system 
by plant SA pathways. Gene Ontology enrichment analysis showed 
that the plant SA pathway suppresses a substantial number of bacte-
rial proteins related to pathogenesis, including those comprising the  
type III secretion system (T3SS) (Fig. 2d). The T3SS is an essential  
component by which Pto translocates effectors into plant cells  
to subvert plant immunity and become virulent17. We found that the  
impact of SA pathways was apparent in proteins comprising the  
tip of the T3SS, namely HrpZ, HrpK and HrpW (Fig. 6a). This sug-
gests that SA pathways target the tip of bacterial T3SS. To confirm 
this observation, we performed immunoblotting using protein 
samples directly extracted from infected leaves without physical 

bacterial isolation. Since bacterial population varies among sam-
ples, protein loading was normalized by expression of HrcC pro-
tein, which showed a high and consistent level of expression across 
conditions in the proteome data. HrpZ accumulated in pad4 sid2 
plants more than in Col-0 plants, indicating the differential effect 
of SA pathways on different components of T3SS (Fig. 6b). This 
also suggests that the bacterial isolation process did not introduce 
artefacts in the proteome data. To test whether differential expres-
sion of HrpZ is due to different bacterial populations in plants, we 
compared HrpZ protein abundance between Col-0 at 48 hpi and 
pad4 sid2 at 24 hpi, time points at which bacterial population den-
sities were comparable (Extended Data Fig. 3c). In this compari-
son, HrpZ protein accumulated to higher levels in pad4 sid2 than 
in Col-0 (Fig. 3c), suggesting that bacterial population does not 
solely explain differences in HrpZ protein expression and thus that 
SA-mediated immunity may directly target this protein. Relative 
mRNA expression (hrpZ/hrcC) was marginally increased in pad4 
sid2 compared with Col-0 at 48 hpi (Fig. 6d), which may partially 
explain the difference in protein accumulation. In the RNA-seq 
data, both hrcC and hrpZ expression was higher in pad4 sid2 com-
pared with Col-0, but hrpZ/hrcC was comparable (1.08-fold differ-
ence) between Col-0 and pad4 sid2 (Extended Data Fig. 5). Taken 
together, we found that accumulation of proteins comprising the tip 
component of T3SS was suppressed by SA pathways. The relative 
contributions of transcriptional and post-transcriptional events to 
this phenomenon remain elusive.

Gene co-expression analysis predicts bacterial gene regulatory 
logic. Despite the distinct regulation of certain specific mRNAs 
and proteins, the overall moderate correlation between transcrip-
tome and proteome patterns of Pto suggests that mRNA expres-
sion can be a good indicator of bacterial functional expression in 
planta. Also, bacterial transcriptome analysis is more sensitive than 
proteome analysis (Fig. 1c) and has access to more diverse datas-
ets from a previous study3. Therefore, we reasoned that investigat-
ing the regulatory network governing bacterial mRNA expression 
would help deepen our understanding of bacterial functional regu-
lation. To deconvolute the gene regulatory network of Pto, we used 
125 transcriptome datasets of Pto profiled in 38 conditions (gener-
ated in a previous study3 and in this study). A correlation matrix 
of 4,765 genes revealed highly correlated gene clusters (Extended 
Data Fig. 6a), some of which were enriched with known functions 
(Fig. 7a). Next, we built a gene co-expression network based on the 
correlation scores and annotated genes with known functions; this 
allowed us to conclude that genes sharing the same functions tend to 
be co-expressed (Fig. 7b). For instance, genes related to pathogen-
esis (mostly T3SS and effector genes), flagellum and iron-starvation 
responses were found in separate and highly co-expressed gene 
clusters (Fig. 7a,b). Intriguingly, genes involved in coronatine and 
alginate biosynthesis were clustered very closely together, implying 
that these processes might share the same regulatory mechanism 
(Extended Data Fig. 6b). On the other hand, genes related to coro-
natine biosynthesis and the T3SS were only mildly correlated with 
each other (Extended Data Fig. 6b), although it has been shown that 
expression of corR, the master regulator of coronatine biosynthesis 
genes, is dependent on HrpL, the master regulator of the T3SS18. 
This suggests that there might be additional regulators that govern 
the expression patterns of genes related to coronatine biosynthesis 
and the T3SS. We also found that some genes annotated as effec-
tors were not co-expressed with the majority of effectors (Extended 
Data Fig. 6b), suggesting that either they function in different con-
texts or they do not function as effectors. Strong anti-correlation 
was observed between ‘siderophore transport’ genes, which are 
iron-repressive, and ‘ferric iron-binding’ genes, which are involved 
in iron-inducible bacterioferritin (Fig. 7c), indicating that this anal-
ysis could capture known expression patterns.
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We anticipated that groups of highly co-expressed genes con-
tain transcriptional regulators (TRs) and their targets. Indeed, hrpL 
and the iron-starvation sigma factor pvdS were co-expressed with 

their targets, T3SS genes and iron-starvation genes, respectively 
(Fig. 6b). To test whether gene co-expression data can predict gene 
regulatory hierarchy, we selected three putative TRs, PSPTO_0384, 
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PSPTO_3050 and PSPTO_3467, whose functions have not been 
previously characterized. These TRs were selected from three clus-
ters of highly correlated genes, with PSPTO_0384 and PSPTO_3467 
being the only genes annotated as putative TR and PSPTO_3050 
being randomly picked from two TRs in the cluster (Supplementary 
Data 10). We generated Pto strains that overexpress each of the TRs. 
We then analysed the expression of predicted target genes that were 
highly co-expressed with individual TRs. Remarkably, for the three 
TRs, all or most of the predicted target genes were highly expressed 
in the TR overexpression lines in vitro (Fig. 8a), supporting the pre-
dicted regulatory hierarchy. This was further confirmed in planta 
at 6 hpi for PSPTO_3050, but overexpression of PSPTO_0384 or 
PSPTO_4908 induced only a small number of the predicted targets 
(Fig. 8b). This is probably explained by the fact that genes highly 
co-expressed with these two TRs are already strongly induced in 
wild-type Pto in planta at 6 hpi (Fig. 8c) and, thus, overexpression 
of these TRs did not lead to further induction of the predicted 
target genes. Notably, all the TR-overexpressing Pto grew signifi-
cantly (adjusted P < 0.01; two-tailed Student’s t-test followed by 
Benjamini–Hochberg method) better than wild-type Pto in Col-0 
plants (Fig. 8d), suggesting that the three TRs and some of their 
regulons play positive roles in Pto growth in plants. Collectively, in 
planta transcriptome data of Pto under diverse conditions enable 
gene co-expression analysis that can be used to identify previously 

unknown bacterial gene clusters contributing to bacterial growth in 
planta, as well as to reveal the regulatory logic in the gene clusters.

Discussion
In this study, we analysed the transcriptome and proteome of the 
bacterial pathogen Pto both in  vitro and in planta under various 
conditions. Integrative multi-omics analysis revealed that bacterial 
mRNA and protein expression were moderately correlated in both 
liquid media and resistant and susceptible plants (Fig. 4). Our data 
indicate that changes in bacterial transcriptomes can serve as a reli-
able predictor of the proteome changes elicited by plant coloniza-
tion. Previous studies using plants, yeasts and mammals showed 
varying degrees of correlation between transcriptomes and pro-
teomes but, in most cases, the correlation was considerably lower 
than for the bacterial pathogen Pto shown in this study19–23. This 
suggests that in Pto, at the population level, mRNAs are faithfully 
translated into proteins in various situations in planta.

Multi-modal measurements of bacterial responses during infec-
tion provide a systematic view of bacterial gene regulation that can-
not be captured by analysis of any single modality alone. By analysis 
of cases in which mRNA and protein expression do not correlate 
with each other, we found that bacterial cell wall biogenesis-related 
function was specifically suppressed at the protein level in Pto at 
an early stage of infection (Fig. 5a). Most of these proteins were 
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enzymes that probably catalyse peptidoglycan biosynthesis. Because 
these proteins localize in the cytosol, it is likely that suppression of 
these proteins in planta is mediated by bacteria themselves and may 
be an adaptive trait for them, because Pto is a virulent pathogen. 
By comparison of Pto in Col-0 and pad4 sid2 at 48 hpi, we found 

that chemotaxis-related function was suppressed by the SA path-
ways of A. thaliana at the protein level (Fig. 5b). Since chemotaxis 
is required for virulence of certain plant bacterial pathogens24, sup-
pression of bacterial motility at the protein level may be a part of 
plant defence strategy. It is possible that bacterial quorum sensing25 
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may explain plant genotype effects observed at 48 hpi, because bac-
terial population density was higher in SA mutants compared with 
Col-0 at this time point.

We found that protein expression of the tip component of the 
T3SS was suppressed by the SA pathway of A. thaliana, while most 
of the other components of the T3SS were not affected (Fig. 6a,b). 
These tip proteins, HrpZ1, HrpW1 and HrpK, were shown to func-
tion redundantly in effector translocation26, and lack of hrpK per se 
compromised the growth of Pto in A. thaliana27. Thus, targeting 
these proteins is sufficient to dampen the virulence of Pto. Our 
results suggest that SA-mediated plant immunity may promote the 

degradation of these proteins to suppress effector translocation into 
plant cells and thus to inhibit pathogen growth, although we do not 
exclude the contribution of transcriptional regulation. It is tempt-
ing to speculate that plant immunity directly targets the tip compo-
nent of the T3SS at the plant cell wall. Because the T3SS must cross 
the cell wall to successfully translocate effectors into plant cells, it 
therefore represents an ideal target for plants to counter bacterial 
virulence. We have recently shown that plant-secreted proteases 
cleave an evolutionary conserved bacterial protein to inhibit growth 
of Pto28. Screening of immune-activated, plant-secreted proteases 
or chemicals for their ability to cleave T3SS components could  
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Fig. 8 | The roles of transcriptional regulators found in bacterial gene regulatory modules. a,b, Two independent Pto strains overexpressing putative TRs 
were generated (ox-1 and ox-2). RT–qPCR analysis of in vitro (a) and in planta (b) mRNA expression fold changes between Pto overexpressing putative TRs 
and wild-type Pto. Asterisks indicate significant differences (|log2[FC]| > 1, P < 0.05; two-tailed Student’s t-test). Pearson’s correlation coefficients between 
each mRNA and TRs are shown in the sidebars on the right. The bottom genes showed low correlation (−0.2 < R2 < 0.2) with each TR, while the other 
genes showed high correlation (R2 > 0.7). n = 3 biological replicates from three independent experiments. See Supplementary Data 11 for the numerical 
value of R2. c, Relative expression (RE) of TRs and genes highly co-expressed with each TR. See Supplementary Data 13 for sample sizes. MM, minimal 
medium. d, Growth of Pto overexpressing putative TRs or an empty vector (EV) (infiltrated at OD600 = 0.001) in Col-0 at 0 hpi (left) and 48 hpi (middle). 
Right: growth of wild-type Pto and Pto overexpressing green fluorescent protein (GFP; infiltrated at OD600 = 0.001) in Col-0 at 48 hpi. n = 12 biological 
replicates from three independent experiments. Different letters indicate statistically significant differences (adjusted P < 0.01; two-tailed Student’s t-test 
followed by Benjamini–Hochberg method). Results are shown as box plots with boxes displaying the 25th–75th percentiles, the centre line indicating the 
median and whiskers extending to the minimum and maximum values no further than 1.5× interquartile range.
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potentially lead to the discovery of how plants target this compo-
nent that is evolutionarily conserved and essential for virulence.

Messenger RNA co-expression analysis identified groups 
of highly co-expressed bacterial mRNAs with both known and 
unknown functions. Using mRNA co-expression data, we could 
predict three pairs of putative TRs and mRNAs whose expression is 
affected by these TRs (Fig. 8a). The TRs and their potential target 
mRNAs are induced in planta at an early and/or a late time point of 
infection (Fig. 8c), and overexpression of TRs led to enhanced bac-
terial growth in planta (Fig. 8d). Therefore, our approach has the 
capability to identify previously unknown gene modules that are 
important for virulence in plants. mRNAs co-expressed with the 
TR PSPTO_0384 are induced in susceptible plants and suppressed 
in those that have engaged PTI (flg22 pre-treatment; Fig. 8c), which 
is similar to known virulence-related genes such as the T3SS and 
effectors3. Thus, the induction of these mRNAs might be impor-
tant for virulence and this could explain the enhanced growth of 
PSPTO_0384-ox strains in planta (Fig. 8d). Interestingly, mRNAs 
co-expressed with either of the other two TRs, PSPTO_0350 and 
PSPTO_3467, were induced by PTI activation while overexpression 
of these TRs led to enhanced bacterial growth (Fig. 8d). It is pos-
sible that these genes are involved in stress adaptation and contrib-
ute to bacterial growth in plants. Previously, we observed that PTI 
activation induces a number of Pto mRNAs (800 mRNAs) whose 
functions are not well understood3. Investigating such genes might 
help us identify previously uncharacterized genes related to bacte-
rial stress adaptation and/or virulence in plants. Taken together, in 
planta bacterial multi-omics represents a new strategy for study-
ing the molecular mechanisms underlying bacterial virulence and 
plant immunity.

Methods
Plant materials and growth conditions. The A. thaliana accession Col-0 was 
the background of all A. thaliana mutants used in this study. A. thaliana mutants 
rpm1–3 rps2–101C (ref. 29), pad4–1 (ref. 30), sid2–2 (ref. 31) and pad4 sid2 (ref. 6) 
were described previously. Plants were grown in a chamber at 22 °C with a 10-h 
light period and 60% relative humidity for 24 d, and then in another chamber at 
22 °C with a 12-h light period and 60% relative humidity. Different genotypes were 
mixed in a pot to randomize the growth condition. For all experiments, 31- to 
33-day-old plants were used.

Bacterial strains. Pto DC3000 carrying an empty vector (pLAFR) or avrRpt2 
expressed from pLAFR32 were described previously. The Pto overexpression 
strains were generated as previously described33. The coding sequences of 
GFP, PSPTO_0384, PSPTO_3050 and PSPTO_3467 were amplified by PCR, 
cloned into the pENTR/D-TOPO vector and then transferred into pCPP5040 
(gentamicin-resistant) by the LR reaction. The Pto overexpression strains were 
generated by a tri-parental mating of the Pto wild-type strain, E. coli carrying 
each construct and an E. coli strain carrying pRK2013 (kanamycin-resistant). 
The transformed Pto strains were selected with 50 µg ml−1 rifampicin, 5 µg ml−1 
gentamicin and 50 µg ml−1 kanamycin.

Accession numbers. The accession numbers for the genes discussed in this 
article are as follows: AtPAD4 (AT3G52430), AtSID2 (AT1G74710), AtRPS2 
(AT3G03600), AtRPM1 (AT3G07040), hrcC (PSPTO_1389) and hrpZ 
(PSPTO_1382).

Preparation of in vitro bacterial samples. Bacteria were grown in either KB or 
type III-inducible medium34 (50 mM KH2PO4, 7.6 mM (NH4)2SO4, 1.7 mM NaCl, 
1.7 mM MgCl2 and 10 mM fructose) at 28 °C until they reached OD600 = 0.65 
(exponential phase). Following harvesting of the bacterial culture, 0.1 volumes 
of 5% phenol and 95% ethanol were added. The culture was then centrifuged to 
harvest the bacterial pellet, followed by total RNA and/or protein extraction.

Bacterial infection of plant leaves and sampling. Pto strains were cultured in KB 
at 28 °C at 200 r.p.m. Bacteria were harvested by centrifugation and resuspended 
in sterile water to OD600 = 0.5 (∼2.5 × 108 colony-forming units (c.f.u.) ml–1) and 
OD600 = 0.005 (∼2.5 × 106 c.f.u. ml–1) for harvesting at 6 and 48 hpi, respectively. 
In total, 80–100 A. thaliana leaves (four leaves per plant) were syringe-inoculated 
with bacterial suspension using a needleless syringe. For each biological replicate, 
the same bacterial suspension was used for different genotypes and infiltration 
was randomized. The infected leaves were harvested at 6 or 48 hpi. Sampling was 
conducted for each plant genotype separately, requiring approximately 5 min per 

genotype. Leaves were immediately frozen in liquid nitrogen and stored at −80 °C. 
The bacterial growth assay was performed as described before35.

In planta bacterial transcriptomics. Sample preparation and RNA-seq. In planta 
bacterial transcriptome analysis was conducted as described previously36. Briefly, 
bacteria-infected leaves were coarsely pulverized and released in the bacterial 
isolation buffer (9.5% ethanol, 0.5% phenol and 25 mM tris(2-carboxyethyl)
phosphine) pH 4.5 adjusted with NaOH) at 4 °C, filtered and centrifuged to 
isolate bacterial from plant cells. RNA was isolated from bacterial cells and 
ribosomal RNA was depleted to enrich mRNA, and complementary DNA libraries 
were prepared. The cDNA libraries were sequenced using an Illumina HiSeq 
3000 system with a 150-base pair, strand-specific, single-end read, resulting in 
∼10 million reads per sample. The resulting reads were mapped onto the Pto 
DC3000 genome/CDS (Pseudomonas Genome Database) using Bowtie2 (ref. 37). 
Mapped reads were counted with the Python package HTSeq38. The RNA-seq data 
used in this study are deposited in NCBI Gene Expression Omnibus database 
(accession no. GSE138901).

Data analysis. Statistical analysis of the RNA-seq data was performed in the 
R environment. Genes with average counts <5 were excluded from the analysis.  
In this filtering, 387 genes whose average count was non-zero were removed. Most  
of the genes showed very low counts across all samples, except for some showing 
high expression under a few conditions, namely 48 hpi (Extended Data Fig. 2a). 
This is probably due to the higher sequence depth of these samples. Because 
bacterial population is higher at 48 hpi in SA mutants, these samples tend to be 
sequenced more deeply than other samples. While three of the pad4 sid2 samples 
showed consistently high counts, there was no clear pattern in sid2 and pad4, 
which also showed a marked difference in transcriptome patterns compared with 
Col-0, suggesting that this count variation is not biological but rather technical 
(that is, sequence depth), and thus removal of these genes is unlikely to lead to 
the loss of biologically relevant information for further analyses. The count data 
were normalized and log-transformed by the function calcNormFactors (trimmed 
mean of M-values (TMM) normalization) in the package edgeR and the function 
voomWithQualityWeights in the package limma, respectively. To each gene, a 
linear model was fitted using the function lmFit in the limma package with the 
following terms: Sgtr = GTgt + Rr + egtr, where Sgtr is the log2 count per million, 
GTgt is the host genotype–Pto strain interaction and the random factors, Rr is 
the biological replicate and egtr is the residual. The eBayes function in the limma 
package was used for variance shrinkage during the calculation of P values. The 
false discovery rate (FDR; Storey’s q-values) was calculated using the qvalue 
function in the qvalue package39. Genes with q < 0.01 and log2[FC] > 1 were defined 
as differentially expressed genes. The prcomp function was used for principal 
component analysis. Hierarchical clustering was performed using either the dist 
and hclust functions in the R environment or Cluster3.0 software40. Heat maps 
were created with the heatmap3 or pheatmap function in the R environment or 
using TreeView41. Enriched GO terms were identified using the BiNGO plugin 
for Cytoscape42. Scatter plots and box plots were generated using the R package 
ggplot2. Correlation matrices were made by cor function, and the correlation 
heatmap was drawn by pheatmap in the R environment. Gene correlation networks 
were created in Cytoscape with the yFiles Layout Algorithm.

Gene co-expression analysis. RNA-seq data obtained in a previous study3 and the 
present study were combined (see Supplementary Data 9 for the full dataset). 
Data were TMM-normalized and voom (log2)-transformed. Pairwise Pearson’s 
correlation coefficients were calculated. Keywords related to particular functions 
were searched for on the gene annotation (available at www.pseudomonas.com) 
to stratify genes for the purpose of visualization (Fig. 7a). Keywords used in this 
analysis were as follows: ‘type III’, ‘alginate’, ‘flagellar’, ‘flagellin’, ‘flagellum’, ‘NADH 
dehydrogenase’, ‘coronamic acid’, ‘coronafacic acid’, ‘ribosomal protein’, ‘phosphate 
transporter’ and ‘PSPTO_B’. Iron-starvation genes were selected based on a 
previous study43.

In planta bacterial proteomics. Bacterial isolation and protein extraction. 
Bacterial isolation was done as described above. The TriFast solution was mixed 
with 0.2 volumes of chloroform, and the organic (lower) phase was isolated by 
centrifugation. The aqueous (upper) phase was isolated for RNA extraction for 
the simultaneous profiling of transcriptomes and proteomes. The organic phase 
was mixed with 4 volumes of MeOH 0.01 M ammonium acetate and incubated at 
−20 °C overnight to precipitate proteins. The precipitated proteins were washed 
twice with MeOH 0.01 M ammonium acetate and then washed once with 80% 
acetone. Proteins were stored in 80% acetone at −20 °C.

Sample preparation and fractionation. Proteins were pelleted and re-dissolved 
in 8 M urea 100 mM Tris-HCl pH 8.5, and then protein mixtures were reduced 
with dithiothreitol, alkylated with chloroacetamide and digested first with Lys-C 
for 3 h and subsequently with trypsin overnight. Samples were submitted to 
styrenedivinylbenzene–reverse phase sulfonated (SDB–RPS) fractionation using a 
protocol adapted from a previous report44. In brief, stage tips were prepared with 
two layers of SDB–RPS membrane and activated with 100 µl of acetonitrile (ACN), 
followed by equilibration with 100 µl of equilibration buffer (30% (v/v) MeOH, 
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1% (v/v) trifluoroacetic acid (TFA)) and 100 µl of 0.2% TFA. Next, peptides were 
immobilized on the membrane and washed with 100 µl of 0.2% TFA. Peptides were 
then eluted into three consecutive fractions using SDB–RPS buffer 1 (100 mM 
NH4HCO2, 40% (v/v) ACN, 0.5% FA), SDB–RPS buffer 2 (150 mM NH4HCO2, 60% 
(v/v) ACN, 0.5% formic acid) and finally SDB–RPS buffer 3 (5% ammonia (v/v), 
80% (v/v) ACN). The collected fractions were evaporated to dryness to remove 
residual ammonia.

Liquid chromatography–tandem mass spectrometry (LC–MS/MS) data acquisition. 
Dried peptides were re-dissolved in 2% ACN and 0.1% TFA for analysis and 
adjusted to a final concentration of 0.1 µg µl–1. Samples were analysed using 
either an EASY-nLC 1200 (Thermo Fisher) coupled to a Q Exactive Plus mass 
spectrometer (Thermo Fisher) or an EASY-nLC 1000 (Thermo Fisher) coupled 
to a Q Exactive mass spectrometer (Thermo Fisher). Peptides were separated on 
16-cm frit-less silica emitters (New Objective, 0.75 µm inner diameter) and packed 
in-house with reversed-phase ReproSil-Pur C18 AQ 1.9-µm resin (Dr. Maisch). 
Peptides (0.5 µg) were loaded on the column and eluted for 115 min using a 
segmented linear gradient of 5–95% solvent B (80% ACN, 0.1% FA) (0–5 min, 5%; 
5–65 min, 20%; 65–90 min, 35%; 90–100 min, 55%; 100–115 min, 95%) at a flow 
rate of 300 nl min–1. Mass spectra were acquired in data-dependent acquisition 
mode with the TOP15 method. Mass spectrometry spectra were acquired in the 
Orbitrap analyser with a mass range of 300–1,750 m/z at a resolution of 70,000 full 
width at half maximum (FWHM) and a target value of 3 × 106 ions. Precursors were 
selected with an isolation window of 1.3 m/z (Q Exactive Plus) or 2.0 m/z  
(Q Exactive). HCD fragmentation was performed at a normalized collision energy 
of 25. MS/MS spectra were acquired with a target value of 105 ions at a resolution 
of 17,500 FWHM, a maximum injection time of 55 ms and a fixed first mass of 
100 m/z. Peptides with a charge of +1, >6 or with unassigned charge state were 
excluded from fragmentation for MS2; dynamic exclusion for 30 s prevented 
repeated selection of precursors. The mass spectrometry proteomics data are 
available at the ProteomeXchange Consortium via the PRIDE partner repository 
with the dataset identifier PXD015839.

Protein identification and quantification. Raw data were processed using MaxQuant  
software (v.1.5.7.4, http://www.maxquant.org/)45 to calculate label-free quantification  
(LFQ) and iBAQ values46. MS/MS spectra were searched for by the Andromeda 
search engine against a combined database containing the amino acid sequences of 
Pto (The Pseudomonas Genome Database) and 248 common contaminant proteins 
and decoy sequences. Trypsin specificity was required, and a maximum of two 
missed cleavages were accepted. Minimal peptide length was set to seven amino 
acids. Carbamidomethylation of cysteine residues was set as a fixed modification, 
and oxidation of methionine and protein N-terminal acetylation as variable. 
Peptide-spectrum matches and proteins were retained when FDR < 1%.

Data analysis. Normalized iBAQ values were used for statistical analysis because 
the samples analysed in the present study, and which contain bacterial and plant 
proteins in different ratios, do not fulfil an assumption used in LFQ analysis that 
the abundance of the majority of proteins does not change between conditions. 
For simplification and comparison to transcriptome data, information on protein 
groups was omitted and only the identifier displayed in the MaxQuant column 
Fasta header was used. For each sample, iBAQ values were normalized by TMM 
normalization in the package edgeR47. For this, normalization factors were 
calculated with the calcNormFactors function, with default settings using proteins 
with iBAQ values >0 in all samples. When iBAQ values were zero in more than one 
replicate out of three, the protein was defined as ‘not detected’ and the iBAQ values 
of all replicates were converted to not available (NA). TMM-normalized iBAQ 
values were then log2-transformed. We compared TMM-normalized iBAQ values 
and LFQ values using in vitro (KB) samples, in which LFQ values are not biased 
by the contamination of plant-derived proteins. These values showed a strong 
correlation (R2 = 0.94; Extended Data Fig. 2b), suggesting that TMM-normalized 
iBAQ values can be used as an alternative to LFQ values. After log transformation, 
TMM-normalized iBAQ values showed normal distribution (Extended Data 
Fig. 2c). To each protein, a linear model was fitted using the function lmFit in 
the limma package with the following terms: Sgptr = GPTgpt + Rr + egtr, where 
S is the log2 count per million, GPT is the host genotype (or liquid medium)/Pto 
strain/time point interaction and the random factors, R is the biological replicate 
and e is the residual. The eBayes function in the limma package was used for 
variance shrinkage in the calculation of P values, which was then used to calculate 
FDR (Storey’s q-values) using the qvalue function in the qvalue package39. To 
determine proteins with significant expression changes, a cut-off q-value < 0.01 and 
|log2[FC]| >1 were applied. Hierarchical clustering was done using either the dist 
and hclust functions in the R environment or Cluster3.0 software40. Heat maps were 
created with TreeView41. Enriched GO terms were identified using BiNGO plugin 
for cytoscape42. Subcellular localization of bacterial proteins was obtained at  
www.pseudomonas.com.

GO analysis. Messenger RNA/protein expression data were separately standardized  
using z-score, and a GO expression matrix was generated by taking the  
mean z-score for each GO term. To select GO terms showing distinct  

expression patterns among different conditions, we performed statistical tests in 
all pairwise comparisons among 15 conditions for each GO term and manually 
curated GO terms with high numbers of significant pairs (redundant GO terms 
were avoided).

RT–qPCR analysis. RT–qPCR was performed using the SuperScript One-Step 
RT–PCR system kit (Invitrogen). As inputs, 30 ng of DNase-treated RNA extracted 
from infected leaves was used for analysis of bacterial genes.

Total protein extraction and immunoblotting analysis. Pto wild-type and Pto 
AvrRpt2 strains were infiltrated into 4-week-old A. thaliana leaves and harvested 
at the indicated time points. The infiltrated leaves were ground into a fine powder 
in liquid nitrogen. Total proteins were extracted using the phenol extraction 
method. Briefly, equal amounts of protein extraction buffer (50 mM Tris-Cl pH 
7.6, 5 mM EDTA, 5 mM EGTA, 2 mM DTT and protease inhibition cocktail) and 
water-saturated phenol were added to ground tissues and mixed well. The phenolic 
layer was moved to a new tube after centrifugation at 6,000 g for 5 min. Total 
proteins were precipitated at −20 °C after the addition of an additional 2.5 volumes 
of ice-cold methanol containing 0.1 M ammonium acetate. Precipitated proteins 
were then washed twice in ice-cold methanol containing 0.1 M ammonium 
acetate and ice-cold 80% v/v acetone, respectively. Protein pellets were dissolved 
in protein sample buffer (40% v/v glycerol, 250 mM Tris-Cl pH 6.8, 3.5 M SDS, 
5% v/v β-mercaptoethanol, 0.04% w/v bromophenol blue) after heating at 95 °C 
for 5 min and cooling on ice for 1 min. For immunoblotting, proteins were 
separated on SDS–polyacrylamide gel electrophoresis and then transferred onto a 
polyvinylidene difluoride membrane using an electrophoretic apparatus. Protein 
detection was performed using anti-HrcC (1:5,000)48 and anti-HrpZ (1:5,000)49 
as primary antibodies, and anti-mouse (1:10,000) and anti-rabbit (1:10,000) 
conjugated with horseradish peroxidase as secondary antibodies. To compare the 
expression of HrpZ between samples, protein loading was first normalized to  
HrcC expression.

Primers. A list of primers used in this study is provided in Supplementary Data 12.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Source Data for Fig. 6b are provided with the paper. The RNA-seq data used in this 
study are deposited in the National Center for Biotechnology Information Gene 
Expression Omnibus database (accession no. GSE138901). The mass spectrometry 
proteomics data are available at the ProteomeXchange Consortium via the PRIDE 
partner repository with the dataset identifier PXD015839.
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Extended Data Fig. 1 | Overview of rNa-seq and proteome datasets. Hierarchical clustering of relative expression (RE) of (a) RNA-seq data and (b) 
proteome data that were normalized separately. a, b, ps, pad4 sid2; rr, rpm1 rps2.
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Extended Data Fig. 2 | Normalization of rNa-seq and proteome data. a, Heatmap of RNA-seq count data displaying 387 genes that are omitted from 
further analyses due to low average count (<5). Genes with average counts of zero were not displayed. b, Scatter plot comparing TMM-normalized iBAQ 
values and LFQ values of proteome data. The Pearson’s correlation coefficient was shown. (C) Q-Q plot of TMM-normalized iBAQ values. b, c, In vitro (KB) 
samples were used (n = 3).
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Extended Data Fig. 3 | regulation of selected mrNas and proteins. a, b, Expression (z-score) of mRNAs (left) and proteins (right) related to “coronatine 
biosynthesis” and “catalase” under various conditions. Light and dark gray sidebars represent Pto and Pto AvrRpt2, respectively. Black, orange, and brown 
sidebars represent in vitro (KB), in planta 6 hpi, and in planta 48 hpi, respectively. MM, minimal medium; ps, pad4 sid2; rr, rpm1 rps2. See Supplementary 
Data 13 for the sample size. Different letters indicate statistically significant differences (adjusted p-value < 0.01; two-tailed Student’s t test followed by 
Benjamini–Hochberg method). c, Growth of Pto (infiltrated at OD600 = 0.005) in Col-0 and pad4 sid2 at 24 and 48 hpi. n = 12 biological replicates from 
three independent experiments. Different letters indicate statistically significant differences (adjusted p-value < 0.01; two-tailed Student’s t test followed 
by Benjamini–Hochberg method). a–c, Results are shown as box plots with boxes displaying the 25th–75th percentiles, the centerline indicating the 
median, whiskers extending to the minimum and maximum values no further than 1.5 inter-quartile range.

NaTure PlaNTS | www.nature.com/natureplants

http://www.nature.com/natureplants


ResouRce Nature PlaNtsResouRce Nature PlaNts

Extended Data Fig. 4 | Integration of bacterial transcriptome and proteome data. Comparisons between transcriptome and proteome data in each 
condition. The Pearson’s correlation coefficients were shown. mRNAs/proteins detected in both the transcriptome and proteome in each condition were 
used for this analysis. See Supplementary Data 13 for the sample size.
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Extended Data Fig. 5 | mrNa expression of genes comprising T3SS based on rNa-seq. Expression of hrcC and hrpZ after TMM normalization was 
shown. Asterisks indicate statistically significant differences in mutants relative to Col-0 after fitting linear model (adjusted P < 0.01; two-tailed Student’s 
t test followed by Benjamini–Hochberg method). ps, pad4 sid2. See Supplementary Data 13 for the sample size. Results are shown as box plots with boxes 
displaying the 25th–75th percentiles, the centerline indicating the median, whiskers extending to the minimum and maximum values no further than  
1.5 inter-quartile range.
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Extended Data Fig. 6 | Co-expression analysis of Pto mrNas. a, Correlation matrix of 4,765 Pto mRNAs based on 125 transcriptome datasets in 38 
conditions. b, Correlation matrix of Pto mRNAs related to coronatine, alginate, and the type III secretion system (T3SS). a, b, The Pearson’s correlation 
coefficients were used.

NaTure PlaNTS | www.nature.com/natureplants

http://www.nature.com/natureplants


1

nature research  |  reporting sum
m

ary
O

ctober 2018

Corresponding author(s): Kenichi Tsuda

Last updated by author(s): Apr 30, 2020

Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Hybrid Quadrupole-Orbitrap Mass Spectrometer (Thermo), MaxQuant (v1.5.7.4), Illumina HiSeq 3000

Data analysis MaxQuant (v1.5.7.4), Bowtie2 (v2.1.1), HTSeq (v0.6.1), samtools (v1.3.1), R (v3.6.0), RStudio (v1.1.453), cytoscape (v3.4.0), Cluster3.0, 
TreeView(v1.1.6r4)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The RNA sequencing data used in this study are deposited in the National Center for Biotechnology Information Gene Expression Omnibus database (accession no. 
GSE138901). The mass spectrometry proteomics data are available at the ProteomeXchange Consortium via the PRIDE partner repository with the data set 
identifier PXD015839.



2

nature research  |  reporting sum
m

ary
O

ctober 2018

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.
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contain at least three biological replicates from independent experiments. In our previous study (Nobori et al., 2018, PNAS), RNA-seq data 
were highly reproducible and statistical analyses with three replicates yielded biologically relevant results. Therefore, we prepared three 
replicates in this study; and the data were highly reproducible (see Extended Data Fig1).

Data exclusions No data were excluded for analysis.

Replication For each experiment, at least three replicates were made. All attempts at replication were successful.
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Blinding Not applicable since no group allocation was conducted in this study.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used HrpZ and HrcC antibodies were provided by Dr. Sheng Yang He and Dr. Hsiou-Chen Huang, respectively.

Validation The HrcC antibody was validated in Lin et al., 2006 Plant Pathology Bulletin. The HrpZ antibody was validated in He et al., 1993, 
Cell.
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