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Quantum to classical crossover of Floquet engineering in correlated quantum systems
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Light-matter coupling involving classical and quantum light offers a wide range of possibilities to tune the
electronic properties of correlated quantum materials. Two paradigmatic results are the dynamical localization
of electrons and the ultrafast control of spin dynamics, which have been discussed within classical Floquet
engineering and in the deep quantum regime where vacuum fluctuations modify the properties of materials.
Here we discuss how these two extreme limits are interpolated by a cavity which is driven to the excited states.
In particular, this is achieved by formulating a Schrieffer-Wolff transformation for the cavity-coupled system,
which is mathematically analogous to its Floquet counterpart. Some of the extraordinary results of Floquet
engineering, such as the sign reversal of the exchange interaction or electronic tunneling, which are not obtained
by coupling to a dark cavity, can already be realized with a single-photon state (no coherent states are needed).
The analytic results are verified and extended with numerical simulations on a two-site Hubbard model coupled
to a driven cavity mode. Our results generalize the well-established Floquet engineering of correlated electrons
to the regime of quantum light. This opens up a pathway of controlling properties of quantum materials with

high tunability and low energy dissipation.

DOI: 10.1103/PhysRevResearch.2.033033

I. INTRODUCTION

Under a time-periodic perturbation, such as the electric
field of a laser or a coherently excited phonon, the time
evolution and steady states of a quantum system are described
by an effective time-independent Floquet Hamiltonian H*,
which can be entirely different from the undriven one. Math-
ematically, H is defined through the stroboscopic time evo-
lution U(t + T, t) = exp(—iTH") over a period T =27 /Q
of the drive. The design of a given Floquet Hamiltonian with
suitable driving protocols, termed Floquet engineering [1-3],
has become an important tool for quantum simulation with
ultracold gases, and it has been widely discussed in relation
to the control of interactions and phase transitions in solids.
A certainly incomplete list of theoretical proposals includes
the manipulation of topologically nontrivial bands [4,5], spin
Hamiltonians [6-8], superconductors [9-19], strongly cor-
related materials [20-25], and magnetic topological phase
transitions [26].

A major limitation to Floquet engineering is heating. The
generic steady state of an isolated periodically driven many-
body system is an infinite-temperature state [27,28], and
although interesting Floquet phases may emerge as prether-
mal states [29-34], many of the above-mentioned theoretical
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predictions have not been implemented in solids. Even in
cold-atom systems, heating can be substantial [35-37]. In par-
ticular, the qualitatively most interesting effect on many-body
interactions is typically achieved by driving a system close
to a resonance, like phonon frequency for superconducting
pairing [13], or the Mott gap for the magnetic superexchange
[6], but this near-resonant regime is also where heating is most
substantial [16].

On the other hand, quantum fluctuations of photon fields
in cavities open the possibility to change the properties
of matter through light-matter coupling without the need
of strong lasers. In particular cavities have the advantage
that strong light-matter coupling is in principle achievable,
much stronger than the bare coupling in free space. Cavity
quantum-electrodynamical environments therefore provide a
new paradigm for using light-matter interactions for the cre-
ation of effective Hamiltonians with tunable interactions, with
intriguing proposals ranging from light-induced supercon-
ducting pairing to magnetic super-exchange or ferroelectricity
[38—46].

While such a control of many-body interactions has been
discussed mostly in the deep quantum limit, where vacuum
fluctuations alone affect the solid, one can anticipate that driv-
ing the cavity state out of equilibrium implies a continuous
crossover to the classical limit of Floquet engineering. Simply
speaking, this crossover is expected to exist because both in
the quantum limit and in the Floquet limit the many-body
system can exchange photons with the light field, giving
rise to induced interactions between the low-energy degrees
of freedom. In the quantum limit, an example of effective
electronic interactions mediated by a vacuum of bosons can be
found in the well-known Bardeen-Cooper-Schrieffer mecha-
nism for phonon-mediated electron-electron attraction, which
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comes about through the exchange of virtual phonons between
electrons. Similarly, induced interaction still emerges when
the bosonic field is excited, and populated with states of a
few photons or phonons or superpositions thereof. In this case
both virtual photon emission and absorption contribute to the
induced interaction. Classical laser fields finally correspond to
coherent states of high photon numbers, so one can anticipate
that the induced interactions in the Floquet Hamiltonian arise
when virtual photon absorption and emission become entirely
symmetric. This will be explicitly shown below.

The basic question to be asked here is whether one can,
at strong coupling, achieve with only a few photons a similar
renormalization of the Hamiltonian as in the classically driven
case. Because heating is intrinsically related to the presence
of an infinite energy density in the photon system, it should be
less relevant if only a few photons partake. Naively one might
assume that the classically driven Floquet limit is recovered
only when the cavity is put in a coherent state, but, as we
will explain in this work, this is not generally true: At strong
light-matter coupling, a Hamiltonian similar to the Floquet
Hamiltonian can be engineered by putting the cavity in a
given photon-number state (with zero expectation value of
the driving field), while a coherent state will lead to a more
complicated dynamics which is not described by a single
effective matter Hamiltonian.

In this paper, we address this fundamental question by
demonstrating the crossover from cavity coupling to coher-
ent Floquet engineering for two important classes of Flo-
quet problems: (i) the renormalization of tunneling (dynam-
ical localization) [47,48], which underlies the Floquet band-
structure control, and (ii) effective induced interactions such
as kinetic spin exchange emerging from mobile electrons
with Coulomb repulsion, which can be obtained from the
Schrieffer-Wolff transformation. The Schrieffer-Wolff trans-
formation is a perturbative framework to derive effective inter-
actions in a sub-Hilbert space, when the rest of the states are
projected out; its application includes the derivation of spin
models, the #-J model, phonon-mediated electron-electron in-
teractions, and more [49]. The Floquet-Schrieffer-Wollff trans-
formation [50] is therefore an equally powerful approach to
understand the design of induced interactions under periodic
driving. Here we present a formulation of the Schrieffer-Wolff
transformation of the light-matter Hamiltonian which is in
close analogy to the Floquet-Schrieffer-Wolff transformation
and thus shows how the Floquet induced interactions are
approached by the induced interactions in the cavity when the
photon number is increased.

The Schrieffer-Wolff transformation is mathematically
similar for different systems, and we investigate it for the
paradigmatic example of the spin exchange interaction. The
classically driven system has been examined in photoexcited
solid-state materials as well as shaken cold-atom systems
[51-53], and provides an interesting route both for design-
ing exotic spin models [7] and for the ultrafast control of
magnetism [54,55]. While in the Floquet limit it is possible
to reverse the sign of the interaction [6] (as experimentally
observed in Ref. [53]), vacuum fluctuations alone only reduce
the exchange [44]. Here we will see that already a single
photon can be enough to allow for the sign reversal of the

interaction and almost quantitatively restore the classical Flo-
quet limit.

This paper is organized as follows. In Sec. II, we discuss
the cavity-coupled Hubbard model and the crossover of the
dynamical localization phenomenon into the quantum regime.
In Sec. III, the Schrieffer-Wolff transformation is discussed
for a two-site Hubbard model and a corresponding spin-
photon Heisenberg model is derived at large U. In Sec. 1V,
we discuss the high-frequency limit of the cavity-Heisenberg
dimer, and consider its crossover from the Floquet-driving
limit, where the photon number n approaches infinity, to the
extreme quantum light regime where only a few photons are
present in the cavity. Section V supplements the previous
discussion with a numerical solution of a minimal model for
a driven cavity, where cavity photons are created through an
external classical driving, and Sec. VI includes the conclusion
and outlook.

II. CAVITY-INDUCED DYNAMICAL LOCALIZATION

In a certain sense, the link between classically driven
Floquet systems and quantum systems is rather straightfor-
ward. Consider a Hamiltonian H! = H[Q(t)] depending on
a classical driving field Q(r) = A cos(2t). Floquet states are
given by a Bloch wave function in time, ¥ (¢) = u(t)e ",
where the u(t) = u(t + T) is periodic in time (T = 27 /).
If expanded in a Fourier series, u(t) =), e~y the co-
efficients u, can be viewed as a wave function in a product
space |o,n) of matter states |o) and a Floquet index n,
and the Floquet states are obtained from a solution of the
time-independent Schrodinger equation with a Hamiltonian

H pwom = %fOT dte{m=mig, . (t), known as the Floquet
matrix. On the other hand, if the drive is replaced by the
displacement of a quantum oscillator, H?" = H[g(a’ + a)] +
Qa'a, one can project the Hamiltonian on photon num-
bers. In the following, we will demonstrate that the Floquet
Hamiltonian emerges as a classical limit, H"(g)y.ntma’.n —
H[ . o n» When the photon number 7 is large and the cou-

pling g is small,
g+/n fixed. (1)

Indeed, this statement already indicates that at strong light-
matter coupling, states with few photons may be sufficient to
realize effective Hamiltonians similar to the Floquet Hamil-
tonian. The structural similarity between the Floquet matrix
and cavity quantum electrodynamics has been considered in
ab initio calculations [56,57].

To concretely demonstrate the crossover from classical
Floquet driving to the quantum light regime, we consider a
1D tight-binding model coupled to a single cavity mode. We
assume the long-wavelength limit, i.e., the photon wavelength
is much larger than the system size, so that one can make
the dipole approximation. The cavity photon is described by
a vector potential A = g(@ + a'), where g is a dimensionless
light-matter coupling strength determined by the cavity setup
and the operators a,a’ annihilate/create a photon in the
mode. With the electronic annihilation (creation) operators
c(]T; acting on site j and spin ¢ =7, |, and the number operator

n— 0o,

! _¢._, the minimal gauge-invariant Hamiltonian is

nj,a = c],a j.o?
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given by

A=1,) @2, +He)+Qa'a. )

io

Here 1, is the electronic hopping matrix element between
neighboring atoms, and €2 denotes the bare cavity photon
frequency. This minimal gauge-invariant model can also be
derived from the microscopic description under certain cir-
cumstance [58] and is in line with the Peierls substitution in
the semiclassical limit. It is worth noting that an expansion in
powers of g has been used to yield a bilinear term coupling
the photonic displacement to the electronic bond current
(“paramagnetic term”) in related works [40,44], which should
be fine in the weak or intermediate coupling limit. For larger
coupling, a next-leading term that is second order in g and
couples the squared vector potential A2 to the kinetic energy
of the electrons (“diamagnetic term”) can play a crucial role
[44]. Even in the weak light-matter coupling limit, a many-
photon state may still feature a large amplitude (A2), and the
perturbation theory breaks down. In fact, this is nothing but
the semiclassical limit discussed in the introduction. As we
intend to make a bridge between these extreme regimes, we
keep the exponential to all orders in the following.

From the Hamiltonian (2), taking a proper semiclassical
limit at n — oo should recover the phenomenology of a
Floquet driven system. In the latter case, the cavity mode
should be replaced by a coherent electric field A — A cos 1,
leading to the Hamiltonian

Hy=1,) (&1 8, €% +He), 3)

jo

where A, Q are the amplitude and frequency of the periodic
external field. The effective Floquet Hamiltonian in the high-
frequency 2 — oo limit is known to have a renormalized
hopping [1,48]

i (A) = thJo(A), “

where Jy(x) is the zeroth Bessel function of the first kind.

We now concentrate on the corresponding renormaliza-
tion of hopping #, due to the cavity photons in the high-
frequency limit. Specifically, we perform a unitary transfor-
mation U (r) = exp(iQaTat) on the cavity-lattice Hamiltonian
(2) to enter the rotating frame (equivalent to going to the
interaction picture with respect to iQa'a). This removes

the term Qa'a, and leads to the replacement a — ae‘l’n’ .
The transformed Hamiltonian H,y(t) = U(¢t)[H — i0;]U"(¢)

is then periodic in time Hoi(t + 21 /) = H.,(1), and one
can perform a high-frequency expansion [1]. The effective
Hamiltonian at the lowest order, Hor = % fOT dtH.i (1), is

Aer =ty Y 10290} ¢4, , +Hel, ()

where Jj,(x) = e /8 ZZZO(ix/2)2k(a*)kak/k!2 (for details,
see Appendix A 1). When n photons are present in the cavity,
one can see that the electronic ho%)gmg is renormalized by a
factor J}E")(x) = (n|Jh(x)|n ie, 1, (g = thJ(")(2g) Finally,
under the classical limit defined in Eq (1), one can show that

(a) original — - -
L Floquet = - -

W/ W,

-0.2
-0.4
-0.6

FIG. 1. Cavity-Floquet crossover for dynamical localization.
(a) The evolution of noninteracting energy band for increasing
photon number n = 0, ..., 10, with 2g\/n = 2.42 fixed (2g = 2.42
for n = 0). The black dot-dashed line indicates the undriven band
(—2t, cos k) and the dashed line is the Floquet case. The curves are
shifted vertically for visibility. (b) The relative bandwidth W/W, with
Wy = 2t,, as a function of A = 2g/nandn = 0, ..., 10. The red dot
labels the value A = 2.42 for the curves in panel (a), which is the first
zero of the Bessel function Jy. For n = 0, A = 2g is adopted. In both
(a) and (b) the same color scheme is used for indicating n.

this renormalized hopping approaches the Floquet limit,

lim th")(g) =1 (A), (2gv/n = A fixed). ©6)

The Floquet-cavity crossover for dynamical localization is
explicitly illustrated in Fig. 1. Panel (a) shows the effective
energy band with dispersion —2¢, ™ cos(k) for different n (A =
2g/+/n fixed). In the large-n 11m1t the energy band becomes
almost flat, which is consistent with the Floquet limit where
thF x Jo(A = 2.42) = 0 for the given parameters. Figure 1(b)
shows the renormalized hoppings t(") as a function of the
coupling. In the dark cavity (n = 0), the factor J,EO) =8/
always leads to a reduced bandwidth tflo) < t,, while the
Floquet drive allows for a flipping of the band, with interesting
consequences in interacting systems [20]. With more photons
in the cavity (n > 0), both emission and absorption of virtual
photons contribute to J;E”). It is interesting to see that a single
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photon is already sufficient to flip the band and thus correct
for the qualitative difference between the dark cavity and the
classically driven system.

As emphasized in the introduction, the Floquet Hamil-
tonian is recovered when the cavity is in a number state,
and no coherent state is assumed. At small coupling and
large photon number n, however, the photon number state
and a coherent state would nevertheless give the same result,
because the coherent state has a small variance in the photon
number An < (n). In the classical limit, therefore, the Flo-
quet Hamiltonian can be realized by coherent driving. At large
coupling and small photon number, in contrast, the coherent
state would give a dynamics which cannot be described by a
single tunneling matrix element at all. This will be illustrated
in more detail for the following example.

III. SCHRIEFFER-WOLFF TRANSFORMATION IN THE
CAVITY

In this section we extend the Hamiltonian (2) by a local
Hubbard interaction U,

5 N iA
H =1, Z(c;’acﬂ_l’a e” +Hc.)

jo

+ U iy, + Qata. @)
J

We will take this as an example to discuss the cavity to Flo-
quet crossover regarding induced interactions in a low-energy
space. For this purpose, we focus on the limit U > #;, at half
filling (one electron per site). In this limit, it is well known
that the effective low-energy Hamiltonian without coupling
to the electromagnetic field is obtained by projecting out
configurations which contain doubly occupied and empty sites
(Schrieffer-Wolff transformation). The resulting low-energy
space has one spin-1/2 at each lattice site, and the effective
Hamiltonian is a Heisenberg model H = Jo, Y, SiSit1 with
exchange interaction J,, = 417 /U (S; are canonical spm——
operators). In the following we include the coupling to the
electromagnetic field, but still focus on the limit U > #, and
ask how the low-energy spin model and the induced spin
interactions are modified by either classical driving [replacing
A — Acos() as in the previous section] or by coupling to
the quantum field, and how the two limits are related. For this
purpose it is sufficient to consider a minimal Hubbard lattice
of two sites j = 1, 2 (Hubbard dimer).

With the coupling to the cavity mode, the relevant Hilbert
space at U > t;, after projecting out electronically excited
doubly occupied states, will contain both spins and pho-
tons, and the effective Hamiltonian is therefore a spin-photon
model. Below we will derive a suitable Schrieffer-Wolff trans-
formation for the electron-photon Hamiltonian (7) to show
that the Hubbard dimer reduces to the spin-photon Heisenberg
model

H = (85, — 1)Jla", al + Qa'a, ®)

where the exchange interaction becomes an operator J[a', a]
acting on the photon states. In deriving this expression, we
only assume the absence of (multiphoton) resonances, i.e.,

n2 # U for any integer n. It is convenient to separate J[a', a]
into photon number transitions,
Jla',al = Jola’, al+ Y _{(@ )" Fola’, al +Hel, (9)

m=1

oo
Tom =Jex Y &T"(@") a Lem(g, @), (10)
c=0

where J, are (normal ordered) Hermitian operators which are
diagonal in the photon number, & = /U, and the overall

scale is the bare kinetic exchange interaction Jox = %. Note
that only even photon number transitions have nonvanishing
matrix elements. The function L. ,,(g, @) contains the depen-
dence of the exchange interaction on frequency. Its precise
form is given in Appendix A, Eq. (A55). It is a smooth
function of 2 and g, apart from divergencies at the resonances
U = nQ2, with integer n.

The above equations constitute a central result of this
paper. The spin-photon Hamiltonian has a similar form to
the Floquet-engineered spin Hamiltonian described below, but
describes the full dynamics of the spin and photon-coupled
system. In Eq. (10) the nonresonance condition is assumed
U # n€2, but no assumption is made for the relation between
2 and the low-energy scale J., leaving the full photon dynam-
ics intact. Thus, the Hamiltonian describes both the photon-
engineered spin dynamics, and the modification of photon
states due to the presence of magnetic degrees of freedom.
In the following we briefly discuss the renormalization of the
photon states, and then turn to the cavity engineering of the
spin-exchange coupling.

Below we contrast these results to the Floquet-driven
system. The Floquet spin Hamiltonian at U >> #;, has been
obtained in the same spirit as the Heisenberg model above,
by assuming that the nonresonant driving does not generate
charge excitations, and one can thus project out doubly oc-
cupied states from the Floquet Hamiltonian [6]. Alternative
derivations have been formulated in various ways, including
operator-based Floquet Schrieffer-Wolff transformations [50],
time-dependent Schrieffer Wolff transformations [59], or a
resummation of the high-frequency expansion [60]. For U >
t,, the low-energy physics of the Floquet-driven system is
described by the Floquet Heisenberg model A" = J£§,S,,
with exchange interaction given by [6]

Jig(A)?
J“Z 1—¢Q/U’ (n

with Jx = 4@% /U being the exchange interaction of the un-
driven system and J;(A) being the £th Bessel function. This
expression can be schematically explained with the multi-
ple Floquet sectors with energy U + £2, for ¢ € Z, con-
tributing to the virtual spin exchange process, as shown in
Fig. 2(b). Note that © > J is needed to exclude real pho-
ton emission/absorption in the effective model (11). In the
undriven case A = 0, the usual Heisenberg model is restored
as Jg(0) = dpe.

Analogously, we consider the limit U > t;, of the cavity-
Hubbard dimer (7). In this limit, the induced magnetic in-
teraction (S152) emerges due to electron hopping between
neighboring lattice sites with an intermediate excited state.
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FIG. 2. The Hubbard dimer coupled to a photon mode. (a) The
sketch of a Hubbard dimer coupled to the cavity photon mode.
(b) The energy structure of a cavity-coupled Hubbard dimer at the
strong coupling U >>> t, limit. The two lattice sites exchange spins
through virtual processes visiting different photon number sectors.

For example, one electron (say spin up) at site 1 can hop to
its neighbor 2 and form a spin singlet (the doublon) at 2. If |¢|
photons are absorbed (emitted) in this process, the intermedi-
ate state then has excess energy U = |£|€2, respectively. The
other electron (spin down) can eventually hop back to site 1,
with the net result of exchanging the two spins. If the high-
frequency limit is taken, the absorbed (emitted) photon have
to be emitted (absorbed) back, and the system must go back to
the original photon-number state. This is in parallel with the
Floquet scenario as discussed above. However, in that case
the energy £€2 is borrowed from (or lent to for negative £) the
classical driving field, instead of the quantized cavity levels.

We briefly describe here how to systematically derive
the effective model Eq. (8) and refer to Appendix A for
details. One again applies the unitary transformation U =
exp(iQa'at) and separate the Hilbert space into sectors
and H, without and with charge excitations (doublons, holes),
respectively. No assumption is made on €2, and both sectors
may contain an arbitrary number of photons. It is then possible
to perform a subsequent time-periodic unitary transformation,
analogous to the Floquet Schrieffer-Wolff transformation,
such that the coupling matrix elements between the two
sectors are small in #,/U, and after that project to the sector
0. This procedure is essentially a generalized Schrieffer-Wolff
transformation in the electron-photon Hilbert space. Details
of this cavity Schrieffer-Wolff transformation can be found in
Appendix A.

Squeezed photon states. In general, the photon states are
coupled to magnetic excitations in the spin-photon Heisenberg
model. For the dimer, the eigenfunctions are obtained in the
form |Sot, S;) W), Where |Sio, S;) is the spin wave function,
which is a singlet (Sy; = 0) or triplet (Sior = 1), and |W,,) is
the eigenfunction of the operator Qa‘a — (1 — Sy J[a’, al.
The operator J[a', a] contains various photon nonlinearities.
For example, it can be readily evaluated at weak coupling g <
L,

Jo , @ . 2 .
ol - 0o(g"), 12
T g tedaT—z T06. (2
T o + 2" .
— = o(g"), 13
T g2(1_4@2)(1_@2)+ (" (13)
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0.01
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|
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0 0.2 04 , 06 0.8 1

FIG. 3. Energy shift AE, = E, —n due to the light-matter
coupling for the singlet S,y = 0. (a) Low frequency /U = 0.15,
(b) higher frequency 2/U = 0.8. The dashed lines correspond to an
evaluation in the high-frequency limit.

so that the cavity wave functions for Sy = 0 are squeezed,
and the cavity frequency is shifted. Figure 3 shows the energy
shift relative to the free photon AE, = E, — nQ2. The results
are obtained by diagonalizing Qa’a — (1 — Sio) T [a’, a]. At
small g the shift of the cavity frequency is proportional to
g’. For larger g nonlinearities (photon self-interaction) set
in. The results obtained in the high-frequency limit, omitting
the photon-nondiagonal terms ~7,o in the Hamiltonian, are
shown in the figure with dashed lines.

The high-frequency expansion is reasonable when Q >> Jex
(lower panel). In contrast, when 2 ~ J, the photon ground
wave function becomes a squeezed state, with admixtures
from |n=2,4,...).

It is worth noting that the Schrieffer-Wolff transformation
can be performed for the Hubbard model on an arbitrary
lattice,

1 ) _
H=Y" (srss —~ 5)&,3)[a‘,a] +Qad'a, (14
(rs)

where . is determined by the exchange operator of the two-
site model with the hopping #, and coupling g for the given
bond. On an arbitrary lattice, spin excitations can be created
through photon absorption, or vice versa. For example, if the
polarization is such that only bonds along one direction of
the lattice are affected, the Hamiltonian gives rise to two-
magnon, two-photon scattering terms. The discussion of this
rich physics is left for future works.

IV. THE CAVITY-FLOQUET CROSSOVER

A. Floquet crossover of the photon-number states

‘We now turn to the cavity engineering of the spin dynamics
in the high-frequency limit € >> J.x where one can project
out the creation and annihilation of real photon excitations.
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Jox / Jex(0)

FIG. 4. Exchange interaction J in the n-photon state as a
function of A forn = 1, ..., 10. The vertical axis is in units of J., (0)
at coupling g = 0. The curves with colors from dark to light red
correspond to 2 = 0.8U (red-detuned) and those with dark to light
blue correspond to Q2 = 1.2U (blue-detuned). The lightness of the
color indicates the photon number n with the darkest ones denoting
n = 0. The dashed black (orange) line shows the Floquet result (11)
for Q = 0.8U (Q = 1.2U). For the dark-cavity (n = 0) case, JO is
plotted as a function of the coupling g = A.

We emphasize that, distinct from the case of dynamical local-
ization, the frequency does not have to be high compared to
the energy scales U or #, which have already been removed
from the Hamiltonian. In the high-frequency limit one could
perform another unitary transformation, which rotates away
the transition matrix elements ~ 7, between different pho-
ton number sectors. This would result in corrections of order
J2 /9 < Jex to the photon-diagonal exchange Hamiltonian,
which are omitted [61]. The resulting exchange operator thus
becomes photon diagonal, and the full Hamiltonian becomes

H= Z |n) (n| (HP™ + 1<), 15)

with H,"" = (818, — 1)J%), and an exchange interaction
JI = (n| Jo|n). Analogous to the dynamical localization
[Eqg. (6)], one can now show explicitly that in the classical
limit (1), the exchange interaction J approaches the Floquet

result (11) (see Appendix A 1 for details),
JM(g) — JE(A), (n— o0, A =2/ngfixed). (16)

The behavior of J, which quickly converges to the Flo-
quet limiting curves (dashed lines) as 7 rises, is systematically
demonstrated in Fig. 4. For small A, the red-detuned (2 <
U) cavity results in an enhanced J.x while the blue-detuned
(2 > U) cavity leads to a reduced Je, and eventually a sign
change. In the case of a completely dark cavity (n = 0),

Je(f()) is suppressed for both red and blue-detuned frequencies,
and is thus qualitatively different from the Floquet limit JL
Similarly to the case of dynamical localization, however, a
single photon is already sufficient to resolve these qualitative
differences, and in particular restore the possibility to flip
the sign of the exchange interaction. Also quantitatively, we
observe a rather fast convergence of J{" with the photon
number.

Note that the qualitative enhancement and suppression of
Jox in the red- and blue-detuned cases are consistent with the
result of Ref. [44] based on an expansion of the light-matter
coupling truncated at the quadratic “diamagnetic” term. The
suppression in the blue-detuned case is, in particular, missing
in the linear coupling approximation (“paramagnetic” term)
[44].

B. The spin dynamics in the high-frequency limit

While at strong coupling the Floquet exchange is recovered
with only a few photons, it should be emphasized that putting
the cavity in a coherent state does not necessarily recover
the Floquet result. Instead, the resulting dynamics of the spin
subsystem cannot be described by a single spin Hamiltonian
at all. In this section we illustrate this fact with a simple
precessional spin dynamics:

We prepare the system in a state

=11, 1)) buln), (17)

where the spins form a Néel state | 1, | ), which is a singlet-
triplet superposition, and the cavity is in an arbitrary state.
Then we find, for the precessional motion of the spin on
site 1,

1 00
Z (n)
(Si() = 5 2:0 |ba|? cos (Jr). (18)

The behavior (18) of the cavity-driven Heisenberg dimer
is therefore apparently different from the classical Floquet
engineering. In the latter case, upon projecting out high-
frequency processes, the Néel state would precess with a
single renormalized frequency JZ,

SPF(t) = 4 cos (JE1). (19)

This discrepancy is somehow expected as the coupling to
a classical field A cos €2t is fundamentally distinct from the
coupling to a few discrete quantum states, where multiple
precessional frequencies can emerge out of the coupling to
a plethora of discrete levels.

To make a clear connection with the Floquet-driven case,
we suppose the cavity is prepared in a coherent state with a
mean number N of photons, i.e.,

br=eN—. (20)

n!

Note that by identifying A cos(Qt) with (N|A|N)(t) in the
free field limit, one obtains the semiclassical correspondence
A= 2g\/ﬁ . In Fig. 5, we examine the Fourier spectrum
of the spin dynamics (18) for a coherent state with N =
(A/28)%: S(w, A) = Y, D2p(w — J™), where ¢ (x) = e/~
is a broadened § peak with frequency resolution A = 0.05.
At different cavity coupling g, we plot the Fourier spectrum
and compare it to the Floquet exchange J/ . The large-N limit
is obtained by taking a small g with a fixed amplitude A. It
is evident that, with a relatively large N [such as g = 0.15
in Fig. 5(a)], the Fourier spectrum fits very well with the
Floquet limit. This is expected as in the semiclassical limit,
the cavity-induced modification of J.x should be consistent
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FIG. 5. Visualization of the crossover: Fourier analysis of the
spin dynamics. The Fourier spectrum of the spin-precession modes
is shown for a coherent state with N = (4/2g)?, as a function of the
amplitudes A. (a) Light-matter coupling strength g = 0.15, (b) g =
0.2, (c) g = 0.3. The color is scaled in units of Jox = 4t,f/U. The red
line is JZ (A). For large g, only a few photons are needed to get the
same modification of J., and the discreteness of the photon states
becomes apparent. The frequency is 2 = 0.8U.

with the Floquet theory. For larger g [Figs. 5(b) and 5(c)], at

given A = Zg«/ﬁ , the photon number is small and we observe
quantized frequency plateaus in the Fourier spectrum. The
plateaus are generally in the vicinity of the Floquet curve
JE(A). Tt is especially intriguing to see that, in the strong
light-matter coupling limit, even with few photons [N < 6 at
A < 1.5 for g = 0.3; Fig. 5(c)], the discrete frequency levels
still follow closely the Floquet curve JeFX(A). This extends
the Floquet-like engineering into the few-photon or extreme
quantum light regime. As A increases, the photon number
increases for fixed g, and the plateaus become denser and
eventually merge into a continuum in the large-N limit. For
a coherent state |N), the standard deviation of # is VN and
thus the sum (18) is dominated by the term 1 cos(J&Vr).
Therefore, the conventional Floquet engineering is restored in
the coherent-driving limit. We conclude that the two seem-
ingly distinct situations, coupling to coherent driving and to
a photon-number state, both converge to the Floquet-driven
scenario in the semiclassical limit. The above discussion also
shows that the modification of exchange interaction can be

generalized to an arbitrary photon occupation provided |b,|?
is sharply centered around n ~ N, without the assumption of
a coherent or even a pure cavity state.

V. DRIVING THE CAVITY

Using the generalized Schrieffer-Wolff transformation, we
have shown that both coherent states and photon-number
states result in Floquet-like modifications of the magnetic
dynamics. In more realistic experiments, the cavity would be
driven to an excited state by some external field. In addition,
the cavity is generically open and dissipative. In the following
we consider a minimal setup of a driven cavity, where the
cavity is originally prepared in the ground state (a dark cavity)
and then is acted on by a time-dependent external laser field
f(¢) linearly coupled to the photon mode

F@t)=f@t)a+a", 1)

so that the time evolution is determined by the total Hamilto-
nian

H@)=H+F@). (22)

A closed and isolated cavity is still assumed, so that no
dissipation or photon leakage is present in the time evolution.
Below we use a driving field

f(t) =Fsin(Qqt), (¢ >0) (23)

with driving frequency €24, and amplitude F.

We perform an exact time evolution with a truncated
bosonic Hilbert space [62] for the the case of a Hubbard dimer.
In order to specifically address the photodressing effects on
the effective magnetic exchange interaction J.gf we compute
the local double-time spin-spin correlation function on the
first site equal to the one on the second site,

Xt 1) = (YOISUE. S5 (E)), (24)
where

85 = H(ig — fny), (25)

[v(¢)) denotes the wave function at time ¢, and U@, 1) =
T exp[—i fltﬁ (s)ds] is the unitary time evolution operator
with time ordering 7 that propagates the wave function from
the initial ground state [y (t = 0)) = |¢) of the undriven
Hamiltonian to the time-evolved state,

[y () = U, 0)|¥). (26)

From the double-time response function we compute a time-
and frequency-resolved spin susceptibility

x(w, 1) = / dt f di's(t, 1)t 10)x (¢, 1), (27)
with probe envelope function

st,10) = exp[ — 2t —19)*/o?] (28)

with probe duration o and probe time #y. Note that for a
pure Heisenberg dimer, y(¢,t') ox cos(Jext), and therefore
X (w) x exp[—%(a) — Jex)?0?] has a single peak at @ > 0
which directly measures Je.

Below we show results for runs up to fm.x = 200, probe
time ty = 100, and probe duration ¢ = 36. The units are
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FIG. 6. Light-matter tuning of effective exchange interaction at
high frequency. Evolution of frequency-dependent spin suscepti-
bility [Eq. (27)] for varying light-matter coupling strength g (top
curves) and driving strength F (bottom curves) for Coulomb repul-
sion U/t, = 8, cavity frequency Q/f, = 10, and driving frequency
Qu:/tn = 10. Gray dots above the curves indicate main peak posi-
tions. Curves are offset vertically for visibility.

chosen such that the hopping #;, = 1 sets the unit of energy,
and correspondingly times are measured in units of 7/t,. We
note that i = 0.658 eV x fs, implying that for 7, = 1 eV the
time unit is 0.658 fs. Throughout we fix U/f;, = 8 to be in a
relatively strong-coupling limit, for which the spin exchange

interaction is perturbatively given by Jx = %"2 = 0.5. We
employ driving frequencies €24 on resonance with the bare
cavity mode frequency €2 and choose these frequencies to be
well above the J.x scale, but on the order of U.

We first investigate the spin susceptibility as a function
of the dimensionless light-matter coupling g. In practice, g
depends on the effective cavity volume and can be tuned by
the specific cavity setup [40,63]. Here we take it as a theory
parameter to show the general effect of moderate light-matter
coupling, which is realistically achievable. In Fig. 6 the top
blue-colored curves show the spin susceptibility as a function
of energy w for the undriven cavity and coupling strengths
g=20.00 ... 0.20 and a blue-detuned cavity frequency, equal
to the driving frequency, 2 = 10. Initially the peak position is
o = 0.472, which corresponds to the bare exchange coupling
Jeir and is slightly below the perturbative value Jox = 0.5.
When g is increased, the peak moves to smaller values, e.g.,
Jetr = 0.463 for g = 0.20.

Starting from g = 0.20 we then turn on the external driving
field F'. The evolution of the spin susceptibility under increas-
ing F shows that the peak position is further decreased. At
the same time the curves broaden considerably. We note that
a decrease of J.¢ for blue-detuned driving €2 > U is similarly
obtained in the fully classical Floquet limit (11) [6].

14

12 | /\ ]
10 [0
N

6t
40_.03/\‘
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FIG. 7. Light-matter tuning of effective exchange interaction at
sub-U frequency. Evolution of frequency-dependent spin suscepti-
bility [Eq. (27)] for varying light-matter coupling strength g (top
curves) and driving strength F (bottom curves) for Coulomb repul-
sion U/t, = 8, cavity frequency 2/f, = 6, and driving frequency
Qq:/t, = 6. Gray dots above the curves indicate main peak positions.
Curves are offset vertically for visibility.

To complement this behavior, we show in Fig. 7 the
spin susceptibility evolving for subresonant, red-detuned fre-
quency 2 =6 < U. First, for the dark cavity we observe
again a reduction of Jeg, which is slightly less strong with
g compared to the blue-detuned case here. For instance, at
g = 0.20 we obtain Je = 0.465 compared to 0.463 for the
blue-detuned case. However, when the classical driving field
is turned on, this reduction is quickly reversed and an en-
hancement of J.; is obtained, consistent with the analytical
results discussed above in the paper. At larger driving fields,
not only a broadening is found, but also the emergence of side
peaks in the spin susceptibility.

We summarize our findings for modifications of the ef-
fective exchange couplings in the driven cavity in Fig. 8,
in which we show the extracted main peak positions as a
function of the time-averaged photon field amplitude X,,, =

s 2% dt|X (1)]. First of all, the maximally achieved ampli-
tudes are larger for the same set of external field values F
in the red-detuned case, which is attributed to the different
modifications of photon frequencies for 2 < U and Q2 > U
cases; see Eq. (13) and Appendix B for details. Note that a
similar dependence of J.; on photon number (a'a) instead
of X, has also been found, which is expected because, as
discussed in the analytical theory, a coherent displacement
(X) # 0 is not needed to modify the exchange interaction.
The reduction (enhancement) of J. for blue (red) detuning
is clearly visible here, and we find a quadratic dependence of
this reduction (enhancement) on the driving-induced photon
field amplitude, again consistent with the analytical results as

well as the classical Floquet limit.
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FIG. 8. Effective exchange coupling as extracted from the peak
position in the local spin susceptibilities, corresponding to effective
singlet-triplet splitting in the driven system, as a function of driving-
induced average peak photon field amplitude, for blue and red de-
tuning of the photon frequency as indicated. Data points correspond
to driving field values F = 0.00 ... 0.10 in steps of 0.01. Curves
indicate quadratic scaling in the amplitude for small amplitudes.

However, a quantitative comparison is more difficult. First
of all, the initial ground state features a mixture of different
photon-number states instead of a a single one, so that the
spin dynamics is not described by a single spin Hamiltonian,
but is a result of contributions from all photon number sectors.
More importantly, the classical driving itself further mixes
different photon-number states during the time-evolution, av-
eraging over the frequency peaks in the Fourier spectrum.
This renders a quantitative analysis, though possible with
the analytic theory [calculating the time evolution using the
spin-photon Hamiltonian (8)], complicated and less relevant
in this minimal model. Thus we reserve it for future studies
with a more realistic cavity setup.

Finally, we comment on the experimentally relevant ef-
fects of decoherence and dissipation in the case of a driven
cavity, which are not included in the our simulations of a
closed electron-photon system. First of all, one should state
that these effects will result mainly from coupling to other
degrees of freedom in the material under consideration, such
as phonons or a substrate, and the resulting thermalization of
the electronic system may stimulate photon absorption from
the driven cavity. Cavity losses can also play a role but usually
occur on longer timescales. It is clear that such decoherence
and dissipation effects might limit the timescales on which
cavity-modified exchange interactions will be achievable in
practice. On the other hand, one of our central results is that
coherence in the photon states is not a necessary prerequi-
site to achieve such cavity-modified interactions, provided
that relatively strong light-matter coupling can be achieved.
Therefore we expect the limitations of decoherence to be
more severe at weak light-matter coupling than at strong
light-matter coupling.

VI. CONCLUSION AND OUTLOOK

In this work, we have investigated the light-induced
changes in material properties from the quantum to the
classical limit. In general, the classical limit is achieved by

increasing the photon number n, while decreasing the cou-
pling, so that g./n is fixed. We have introduced a cavity
Schrieffer-Wolff transformation to derive the spin-exchange
interaction in the presence of quantum light coupling. In par-
ticular, we observed that the cavity-modified spin-exchange
interaction deviates from the bare value Jox = 417 /U and
matches both the Floquet result [6] Jg in the classical limit
and the vacuum renormalization of J. [44] for the dark cavity.
By systematical examination of the quantum-light regime, we
show that the Floquet engineering can be extended to the
few-photon regime. In particular, already putting the cavity in
the one-photon state is enough to revert the sign of J.x, which
is possible in the Floquet limit but not for the dark cavity.

A coherent amplitude of the photon field is not needed to
recover the Floquet physics. Instead, if the cavity is in a coher-
ent state with few photons, the dynamics of the matter is not
described by a single effective Hamiltonian but instead shows
individual contributions from each photon number sector. In
the classical limit of weak coupling and macroscopically large
photon number, on the other hand, both the photon number
state and the coherent state, and in fact any photon occupation
sharply centered around some large average photon number
N, recovers the Floquet limit. As a result, the assumption of
a coherent driving is apparently too strong for the purpose of
Floquet engineering. The slightly counterintuitive observation
may be clarified by the fact that the effective exchange inter-
action in a classical coherent state is also obtained by virtual
emission and absorption of photons. The phase information
between the different Fock state components of the cavity
state is thereby lost because a phase ¢® on emission is
canceled by a corresponding phase e~ on absorption.

Moreover, we studied a minimal numerical model, where
the cavity is driven by a classical field. In this minimal setup,
the cavity acts as a transducer from the external driving laser
to the electrons in a material.

A photon amplitude is created by the external driving,
and then drives the electronic system to modify its the spin
susceptibility. The cavity-induced modification observed in
the simulation is fully consistent with the analytic solution
on the coherent state and photon-number state. It is shown
that the Floquet-like engineering is indeed restored with a
relatively weak photon amplitude, in the strong light-matter
coupling regime. In contrast to the Floquet limit where ex-
cess heating is often unavoidable, a state with finitely many
photons can minimize the heating effect, due to the limited
electromagnetic energy inside the cavity volume. Our findings
therefore open up design opportunities for electronic devices
with high tunability, low energy consumption, and minimal
heating effects.

On the fundamental side, it will be also intriguing to
further investigate how the control of induced interactions
in solids by coupling to driven cavities can tune properties
of quantum materials. In the future, it would be promising
to extend the current results to a lattice model to examine
the nature of mixed photon-magnon excitations. For exam-
ple, the study of cavity-modified spin fluctuations and their
influence on high-temperature superconductivity promises in-
triguing insights [64,65]. Using the cavity-Schrieffer Wolff
transformation, it will also be interesting to investigate the
Kondo physics and generally quantum criticality in the
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cavity-coupled system, as well as to look for cavity re-
alizations of light-induced scalar spin chirality propos-
als [7,8,66,67] with time-reversal-symmetry-breaking photon
fields [46]. Another direction would be to study more realistic
models, especially to include the effect of an open cavity,
where a nonequilibrium steady state of the light-matter system
can be maintained through weak external driving.

Moreover, it will be interesting to consider long-range
interactions induced via the cavity. In Ref. [44], such terms
appear in the form of hopping processes on two distant bonds
which become correlated via virtual photon exchange. While
such terms are not present in the spin model, where all charge
excitations have been projected out, in the spin model one can
expect corresponding correlated spin flips on distant bonds.
To systematically derive such terms, one would have to go
to fourth-order perturbation theory in the hopping, which is
possible, but left for future work. A subset of these terms, pro-
portional to th /(U*R), can be obtained by perturbatively elim-
inating the two-photon creation and annihilation processes
from the spin photon Hamiltonian. Though such terms are
smaller in ¢; 2 /U, their long-range character might make them
highly relevant for the resulting spin models, in particular as
long-range spin interactions can give rise to frustration.

The discussion of cavity-Floquet crossover can also be
extended to more general contexts, such as in the intermediate
or weak interaction regime. Indeed, without performing the
Schrieffer-Wolff transformation, the light-matter Hamiltonian
(2) represented on the photon-number basis constitutes a
natural analogy of the Floquet Hamiltonian, and a general
light-matter system is expected to show a similar cavity-
Floquet crossover, which can make a bridge between general
Floquet-engineered states and cavity states.
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APPENDIX A: DERIVATION

To bring the Hamiltonian into some suitable form, we
use time-dependent unitary transformations. For a general
unitary transformation W (¢), we define the transformation to
the rotating frame as |V (¢)) = W(#)|¥(¢)). The new wave
function satisfies the Schrodinger equation i0;|Yc(?)) =

H,o (t ) | Wrot (t)) with

Hor(1) = W(0)[H — id,JW (1) (AD)

We first use a basis rotation to remove the free photon Hamil-
tonian from (2). With W (z) = ¢*%'? we have

Ho () =1y Y (@] &, €AV +He) +UD = af (1) +V,
(A2)

where
A)=WOAWT (1) = ae™™ + ', (A3)

and the dimensionless parameter has been inserted as an
expansion parameter (o << 1).

1. Dynamical localization

Note that the Hamiltonian (A2) is now periodic in time.
To understand its high-frequency limit, we perform the (Van
Vleck) high-frequency expansion and only retain the zeroth-
order term, which is the time average of the Hamiltonian over
a period 27 /€2,

Q (3
Hef = _/ dtHrot(t)

; —27ix T ,2mix A
=1, Z (cl oCro dx gislaec " tae )+H.C.) +UD

=al (A4)

which can be evaluated by a Taylor expansion of the exponen-
tial i@ ™ +a'e™) 1 fact, we have

1 . .
/ dx eig(ae—Zm.t_;'_aTeme)
0

1
_ / dx el‘ga‘\'g’lnixeigae—’lnixeigZ/z
0

SN TP S|
= e*gz/z Z (iga")" (iga) f dx &2Tik—=K)x
o k! k' 0

e (iga")* (iga)*
—=e g‘/zz k‘ k/' Sk,k/
kk' : ’

- N2k iRk
_enNGgTa a
=e Z k12 ’

(A5)
which is nothing but the fh(Zg) defined in the main text.
To take the large photon number limit, we note that
1 2g) = (nlfy2g)ln) = e=¢/2 Z Gg) _n (A6)
h k2 n—k!

which is a finite sum that can be readily evaluated. In the limit
n — oo with 2g./n = A, we have n!/(n — k)! — n¥, and

(=DF@A/2)*

n a2
J )(Zg)—>eA/8”Z P

k

— JA). (A7)

This is the Floquet result.

2. Schrieffer-Wolff transformation

In the next step, we attempt a time-dependent unitary
transformation W(t) = 5%, which is designed to make the
Hamiltonian diagonal in the double occupancy, in order to
facilitate a projection to the spin sector: We define projectors
Py and Py = 1 — Py to sectors 0 and 1, and decompose each
operator A into transitions A,, = P,AP), between and within
the sectors. We attempt to find a time-dependent unitary trans-
formation W(t) = 5®) (parametrized by the anti-Hermitian
matrix §), such that in the rotating basis matrix elements
between sectors O and 1 vanish at any time [59]. A Taylor
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ansatz S = S| + oS, + - - - yields the series
Hi(t) =V + o{T +[S1, V] +iSi} + *{[$2. V]
+ i8Sy + [S1, T1ALS1, iS1 + [S1, VII} + 0@@?).
(A8)

One can now truncate the expansion of S after a given order m,
and choose S, such that H has no mixing terms up to order
m. Here we proceed even simpler, looking for a time-periodic
solution for the generator S(¢). We request that the first order
has no transition matrix elements,

To1 + Tio + [S1, V] +iS; = 0.

Since all operators are periodic with period T = 27 /w, we
can use a Fourier decomposition

A(t) — ZA(”)e_[wm,

(A9)

(A10)

1 (7 ,
AW = — f dt A(r)e'™™ . (A11)
T Jo

With the ansatz S| = S19 + So1, Eq. (A9) becomes
0=T5" + 735" + [Sg7 + 515 V] + neo(S57 + 517

(A12)
Since Vo = 0,
0=T" +S'Vii + nwS?,
0="T. —Vi1S\¥ + nwsy, (A13)
and thus
S = =Ty [U + nol ™,
St = U — no] "I, (Al4)

Using Eq. (A9) in Eq. (A8), we obtain, for the second-order
terms,

{82, VI+ 9,82 + [S1, Tul + 581, Tor + Twol}.  (A15)

Proceeding as before, all second-order terms which mix sector
0 and 1 of the Hilbert space, such as the generated terms
So1711, are removed by a choice of S,. The terms which remain

in sector O are from the last commutator,
2[S01Ti0 — To1So]- (Al6)

Inserting Fourier components, the Hamiltonian in the 00
sector is

2
n o n—1) (1 n—1) o(l
HG = & [y st A1)
!
n—I 1 n—I 1
— _ﬁ Z 76(1 )TI(O) + TO(I )T1(o) (A18)
2 - U+m—-Do U-lw
2 (m) (1) (m) (1)
o T,,"'T T, T,
— __ Sm " 01 10 01 10 . A19
2; . |:U+ma)+U—la) ( )

We now evaluate the time-dependent operators. For this, it is
convenient to introduce

1T .
B = — / dt AW gmet (A20)
g T 0

Then, for a bond (rs),

o =t Y _lclycoolot B + [clcroloiBY,  (A21)
o
and
Ty T =17 Z [[C:(,Cm]mBém) + [Cl-dCra]OlB(_”;)]
o
X Z [[CIO-/CSU/]IOB((;) + [Cjarcrtr/]IOBg()g]
a/
(A22)
= ti% Z [[ngcs(r]()l [Cjarcra’]IOBém)Bg;
o,0’
+ [C:acm](n[CIJme']loB(_r?Bg)]. (A23)

The projected hoppings reduce to spin operators in the 00
sector as usual,

lef esolotlel crorlio

= cfa(l — Ny5 )Cso Nso c;ra,n“—,/cmf(l — Ny5') (A24)
=, 80.0'[cly (1 = N5 )esonsaclyng e (1 = ny5)]

+ 85 0/ [cfy (1 = 13 s s Cla Mo Crs (1 — 5] (A25)

= 80,0’(1 — N5 )nra(l — Hgo )nsz'r

+ 86,0’ [C:g Cri (1 — Nyo )C‘m CI& nSG]’ (A26)
so that, after projection to the 00 sector,
Z[CIJCXU]OI [Cja/cra’]lo
1 2z +o— -t
= E—ZS;S;—S,SS o M
1
= 5~ 28,8, =2P), (A27)

(P:, is actually the projector to the singlet on bond rs). Using
this expression in Eq. (A23) we have
T T = 2675, (BB, + BYYBY).

rs

(A28)

The full exchange Hamiltonian is, using (A19),

HY = = o®P5 Y 8410 (B BY) + B"BD)

rot s
m,l

by (A29)
X
U—-lo U+nmo)’
and thus
Hi(t) =Y Hule ™ = —o’PLJ (1), (A30)
j(t) — Ze—inwl (B;n_l)Bgiy + B(fgl)Bg))
n,l
t; t;
) A31
X<U—la)+U+(n—l)a) (A3D)

We now evaluate the exchange operator 7 (¢). First, consider

po-np® — [ 414% jos) migre) ottt +inl (A3
8 -8 T2 :
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Using the Baker-Hausdorff relation (where [X, Y] is a c-number),
KXY = XY X I2 (A33)
Xe¥ = el XX (A34)

we can normal-order the integrand with respect to a and a’,

ity

eigA(tl)efigA(tz) — eigae_i")’l +iga'el®n efigae_i"”Zfiga'l'e (A35)
— eigate"“’l eigae’i“”l e—[igaTei“”l ,igcte’i“’l]/Ze—igare"“”Z e—igae’i“”Z e—[—igate"“”Z,—igae’i“”Z]/Z (A36)
— eiga“e[“”l eigae”"‘”l e—iga%e"‘"2 e—igae’[‘“’Z e—g2 (A37)
— giga'l'e"“”l efiga':'ei””Z eigae_i””l e[igae_i“"l,7iga"'e"“”2] efigae_"‘“’Z 675’2 (A38)
— eiga‘\ (en —eiw’Z)eigu(e’i‘”’l —e’i“”Z)egz(e’“’(’Z”l)—l) (A39)
_ eigaTei‘“'l (l_eiw(/z—/] ))eigae"""’l (l_e—iw(lzfll ))egZ(eiw(Q*/] )_1)’ (A40)

Using a(t) = ae ™ andt, — t| = t,,
eigA(tl)efig“x(tz) — eiga(tl)+(lfei“”’)eiga(tl)(lfefi“”)egz(e'v"”’fl). (A41)

Inserted into (A32),
—inwt p(n—0) p) __ dtldtz iga’ (1)(1—er) iga(t;)(1—e™ ") (e —1) iwn(t)—t) jiwl(ta—t;)

e B, 7VB”, = / Te e e e e . (A42)

We can now add back the wa'a term to the Hamiltonian (inverse of the first unitary rotation W), which corresponds to a shift of
the time arguments #; — #; — ¢ in the operators a and a’. With a shift of the integration variable t; — t — s, (A42) gives

e_mwlB;n_l)B(l; — / d;cifr elga(v) (1—ei@'ry lga(f)(l—e""””)egz(ei“’"‘—l)eiwnseiwltr. (A43)

Taylor-expanding the exponentials,

d dtr T 1 — iwt, \1b 1— —iwt, \]c¢ orr ) )
pinor B(n ) B(l) Z /' sdt, [iga(s) (b' e"')]” liga(s)( ' e ') L) jions jiolt, (A44)
s ! c!
Now one can see that the s integral projectston +b — ¢ =0,
—in n— dtr [lg(l iwt, )]b [lg(l - e—ia)l, )]L e —1) iw
e BBl = Z Sne—pla’)a / - - et (D lelt (A45)

b,c=0

In Eq. (A31) one must add the term (A45) and a corresponding term with g — —g, which corresponds to a multiplication of
(A45) with [1 4 (—=1)b*¢],

— - \b ¢ 1\t t}% t}%
T =) bupel@)al +( 1)](U—lw+U—(n+l)w>

I,n b,c=0

1 io(1 — 2wx\1b 15 1— —i2mxy\yc . .
% / dx Lig( b'e )17 Lig( ce' )] o8 (@ =) yi2mxl (A46)
0 !
. ) ti ti
- S p_c(aPac[1 + (1)
2 2 duela)a 1+ ( )]<U—lw+U—(n+l)w>
I,n b,c=0
1 : —inx __ ,inx\1b 15 ITX _ p—ITXYIC o ) .
% / dx [ige - e )] [igle C‘e )] eg‘(ez —])eIZJTXlelﬂXI’l’ (A47)
0 . .

where we have changed n — —n for convenience and substituted wt, = 2wx. The number —n counts the change in the photon
number. It is therefore useful to represent

T=%+ Y, W@a)Ty+ Taa", (A48)

n=2.4,...
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where 7, are operators which are diagonal in the photon number. For the terms with n > 0 we get (n = 2m)

00 . .
2l2 2l2 1 inx _ ,—imx\]12(c+m) . )
— E E (aT)CaC(U h + h ) / dx[g(e € )] egz(ez 71)8127'[X(]+m) (A49)
I c=0 N 0

lo U—-—m+DHo (c+2m)!c!

& 2 2 1 iTx —imx\12(c+m
— Z Z(a'l')cac 2th + 2th / dx [g(e™ —e )] (et )egz(eiz’”?l)eianl' (A50)
— = U-—(l-mo U-=(I+mw)/ ) (c +2m)!c!

One can see that 7, is Hermitian, and with some math, that 7_,, = 7, (so that 7 is Hermitian).
To explicitly evaluate the expressions, we expand the product,

x T\¢ 4C 2 2 2(c+m) 1
— —gz 2(c+m) (a ) a 2th 2th 1 p 2C + 2m / d —i2nx(c—p—1) gzeazm
Jom = Z;g c+2mlc\U—lo ' U—-@m+ Do ZZ:( ) , e ¢
_ g782 Z 21‘3 + 21‘3 Z( T)C . g2(5+m) 2¢ + om
U-—-lw —QCm+ Do (2c+2m)! c

2(c+m) . .7
X Z (=1 (2c + 2m> f dx e—i27x(e=p=1) g™

0

The integral evaluates to

/ dx e~ 2mx(e—p=1) pge* ™ _ Z g2 Se—p—t,r- (A51)

r=0

Using this result, we get

e~ & 1 1 ad o me 2c¢ +2m > Zr et 2c +2m
m:]x_ Nag D" 86 "
Jon = Jex =3 ;<1_1@+1—<zm+1>@)§m” (2c+2m>!( ¢ )Z 2 - )( ) r

r()'p()

(AS2)

00 9y 2(ctm)

Jex S . e—g2g2m+2c 2¢ +2m g 2¢ +2m 1 1
- = \C o€ 1p .
zg(a)a(zc-i-Zm)!( c )Zr' Z( )< p >(1+(r—c+p)d)+1+(r—c—|—p—2m)(2)>

r=0 p=0
(A53)
By defining
L - A54
(@ 8) = e ;r'l—i-(r—i-p)a) (a9
and
2(c+m)
_ 1 2c +2m
- - P
Lem(@, g)_2(c+2m)!c! ; (=1) ( p )[ p—c(@, 8) + Lp—c—2m(@, )], (AS5)

we finally get Eq. (10).

3. Details on the classical limit

The exchange coupling JI" = (n|Jo|n) can be evaluated to be

. n gz | 2c ) .
I = Jex Z = c;’,c,c, ZO ( If)(—l)PLp_c(w, g). (A56)
pu

where we used that (a")°a‘|n) = (” C), |n) if n > c. The expression (A56) is a finite double sum which is readily evaluated.
Recall the explicit form of the Bessel function,

o0

b7 2pHiel
Jo(A) =) ———— (A2 A57
j01(A) 2. oA (A5T)
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FIG. 9. Photon displacement and electronic energy in the high-frequency driven system at /t, = Q4./t, = 10. (a) Photon displacement
[Eq. (B1)] and (b) electronic energy [Eq. (B2)] as a function of time for field strength F = 0.02. (c¢)—(j) The same for increasing driving field

strengths £ = 0.04 ... 0.10 as labeled. Color code corresponds to the one used in Fig. 6.

Under the limit n — 0o and 2g./n = A, one again notes that n!/(n — c¢)! — n°, and thus,

" A2 20\ (1 I S (A/2% N (2
IO = Je e Z(p)w——c)&):Je"Xl:l—l@Z e Z<p>(_l)p6“"*’

o=l ’ p=0 c=0 p=0
B 1 (=DPA/2)2PHD 12+ 1))
B J“zl:l—m; (p+1LNP ( p )

Using the Bessel function

Jig(A) = Z &(A/z)hﬂrw’

= Pl + p)!

one can verify that

kK (A 2(k+k")+21€| ) A 2p+20¢| P 1
J\e\(A)zzz (=1) (2) ZZ(_DP( ) Z
p=0

e WKL+ )] + &) 2 pors k'(p— k)L + k) (p+ €] —k)!
S pip+21ent\2 S\ \k+1e1) =i \2 )
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FIG. 10. Photon displacement and electronic energy in the sub-U -frequency driven system at 2/#, = Qq4,/t;, = 6. (a) Photon displacement
[Eq. (B1)] and (b) electronic energy [Eq. (B2)] as a function of time for field strength F = 0.02. (¢)—(j) The same for increasing driving field
strengths F' = 0.04 ... 0.10 as labeled. Color code corresponds to the one used in Fig. 7.

which implies (11). Note that for the third equality we have
used the following identity (for k' > 0,n + k' < m):

It can be checked by comparing the constant term (x~)
from the left-hand side and right-hand side of the identity
(14 2x)"(1 4+ 1/x)™ = (1 + x)™" /x™.

(A62)

APPENDIX B: PHOTON DISPLACEMENTS
AND POWER SPECTRA

In order to understand the behavior of the cavity-dimer
system under classical driving, we show in Figs. 9 and 10 the
time evolution of the photon displacement field

X)) = (y®la+a' 1y ), (BI)

defined for simplicity without a usually included factor of
1/+/2, and the electronic energy (including the light-matter
coupling phase terms)

Ea(t) = (Y (0)|Hal Y (1)), (B2)
which become time-dependent through the time-dependent
wave function in the driven system.

First, for the blue-detuned case (Fig. 9) the amplitude of the
photon displacement (left panels) increases roughly linearly
with the external field strength. A beating pattern is found on
top of the fast oscillation with the external field, corresponding
to a slight splitting (10.00 vs 10.13; see Fig. 11) of the fre-
quencies in the photon response due to light-matter coupling.
This splitting indicates the emergence of a small energy scale
0.13 in the driven system, which in fact is observed as a small
shoulder developing to the left of the main peak (not shown
on the scale of Fig. 6). At the same time, energy is absorbed
by the electrons periodically with the beating frequency but
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FIG. 11. (a) Power spectrum Fourier analysis of photon displacements shown in Fig. 9 for the high-frequency, blue-detuned case. (b) Power
spectrum Fourier analysis of photon displacements shown in Fig. 10 for the sub-U -frequency, red-detuned case.

overall the heating remains under control here (Fig. 9, right
panels).

Next, for the red-detuned case (Fig. 10) the amplitude
of the photon displacement (left panels) is overall much
larger than for the blue-detuned case. Again, a beating pattern
emerges, but this time the splitting of energies depends itself
on the driving field strength, increasing for stronger driving
resulting in shorter periods of beating. A splitting of up to 0.06
for the largest F = 0.10 is found. Since the overall amplitude
is larger here, one can clearly see multiple side peaks (lowest
curve in Fig. 7) split from the main peaks by 0.06. Thus the

side peak emergence in the dynamical spin susceptibility of
the driven system can be explained by the dynamical behavior
of the driven photon-matter system. Essentially, additional
spin exchange channels open up in the driven system, in which
the electrons can tunnel while inelastically emitting energy
into the driven cavity.

Figure 11 shows the power spectra corresponding to the
photon displacements shown in Figs. 9 and 10. The beating
patterns observed in the real-time data show up as peak
splittings in the Fourier spectra, which is consistent with a
squeezing and frequency shift of the photon mode.
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