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SUMMARY

Decision makers in contexts as diverse as medical, judicial, and political decision
making are known to differ substantially in response bias and accuracy, and these
differences are a major factor undermining the reliability and fairness of the
respective decision systems. Using theoretical modeling and empirical testing
across five domains, we show that collective systems based on pooling decisions
robustly overcome this important but as of now unresolved problem of experts’
heterogeneity. In breast and skin cancer diagnostics and fingerprint analysis, we
find that pooling the decisions of five experts reduces the variation in sensitivity
among decision makers by 52%, 54%, and 41%, respectively. Similar reductions
are achieved for specificity and response bias, and in other domains. Thus,
although outcomes in individual decision systems are highly variable and at the
mercy of individual decision makers, collective systems based on pooling
decrease this variation, thereby promoting reliability, fairness, and possibly
even trust.

INTRODUCTION

Designing the process of making decisions well is key to the success of human societies, including good deci-

sion making in medicine, law, economics, and politics. The architecture of this process and the resulting deci-

sion-making systems are thus of paramount importance to human welfare. One of the prominent properties of

decision-making systems is whether the system rests on an individual agent making the decision or on a collec-

tive of individuals. In recent decades, a large body of research across the behavioral sciences has sought tomap

out the relative advantages and disadvantages of individual versus collective decision-making systems (Bang

and Frith, 2017; Conradt and List, 2009; El Zein et al., 2019; Gully et al., 2002; Kerr and Tindale, 2004). To

date, this research’s focus has been almost exclusively on accuracy as the performance criterion (Bahrami

et al., 2010; Bang and Frith, 2017; Clément et al., 2013; Kerr and Tindale, 2004; Koriat, 2012; Kurvers et al.,

2016, 2019; Lorenz et al., 2011; Wolf et al., 2013; Woolley et al., 2010) (but see El Zein et al., 2019), neglecting

a second major performance metric of the quality of decision-making systems, namely, the variation in out-

comes between decision-making agents. Here, we turn to this quality benchmark. We start with explaining

the challenge heterogeneity in expert performance poses for good decisions.

Individual decision makers differ in key aspects of their decision processes and thus the decisions they pro-

duce. In many domains including medical diagnostics, truth detection, and geopolitical forecasting, ex-

perts have been shown to differ substantially in their level of accuracy (Burgman, 2016; Koran, 1975; Kurvers

et al., 2016; Mellers et al., 2015; O’Sullivan and Ekman, 2004; Wolf et al., 2015). Moreover, in binary classi-

fication tasks, such as truth detection and many instances of medical diagnostics, experts have also been

shown to differ in how much evidence they require to classify a case as either signal (e.g., cancer, lie) or

noise (e.g., non-cancer, truth). In other words, they differ in their response bias (DeKay, 1996; Deneef

and Kent, 1993; Hammond, 1996; Macmillan and Creelman, 2005). These differences matter because, in

general, the higher the variation in outcomes (i.e., accuracy levels, response bias) between decision

makers, the less predictable and reliable the outputs of the corresponding decision-making system. Sys-

tems with low variation are perceived as fairer and more trustworthy than those in which outcomes depend

heavily on the specific decision makers (Tyler, 2000). To appreciate the issue of fairness, consider the prin-

ciple of equality before the law. This fundamental legal principle is typically taken to imply that judicial out-

comes should not depend on irrelevant characteristics (e.g., race or gender) of the defendant, yet it also

implies that outcomes should be independent of the legal agent (e.g., court or jury) deciding on a defen-

dant’s case. Similarly, in the medical domain, patients facing a health crisis hope that the diagnosis and
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treatment they receive is not subject to the idiosyncrasies of the physician they happen to encounter. Thus,

in many contexts, next to high decision accuracy, a low degree of variation in outcomes is an important goal

for decision-making systems.

In the following, we use a combined theoretical and real-world data-driven approach to investigate how a

simple, yet highly effective, system of collective decision making—the pooling of independent decisions

using the majority rule—affects the variation in outcomes between decision makers. Our focus is on binary

classification tasks such as categorizing a mammogram in terms of ‘‘cancer present’’ or ‘‘cancer absent.’’ A

first intuition can be derived from the law of large numbers: as group size becomes sufficiently large, the

mean characteristics of the members of a group (e.g., the mean accuracy level or mean response bias of

a random sample of decision makers) tend to approach the population mean, thereby reducing variation

between different large groups. Here, however, we are interested in variation in decision outcomes be-

tween groups with sizes that are realistic in real-world decision-making environments in which groups

and teams are often relatively small. In addition, and limiting the usefulness of the law of large numbers

in this context, decision outcomes that stem from pooling independent decisions can generally not be pre-

dicted from the mean characteristics of the group’s members alone.

We proceed in two steps. First, based on a statistical argument and large-scale numerical computer sim-

ulations, we derive general predictions about how the pooling of decisions affects variation in decision out-

comes between decision-making agents in binary classification tasks. Second, we use several real-world

datasets on breast and skin cancer diagnostics, fingerprint analysis, geopolitical forecasting, and a general

knowledge task to empirically test these predictions.

RESULTS

Analytical result: Pooling decisions reduces outcome variation in homogeneous groups

We start by developing a basic formal intuition about the relationship between pooling decisions and outcome

variation in binary classification tasks. The task is to solve a set of binary choice problems, for example, to classify

a mammogram as ‘‘cancer present’’ or ‘‘cancer absent,’’ to decide whether a defendant is guilty or innocent, or

to predict whether or not an earthquake will occur in a given region. The most basic scenario is one in which

individual decision makers do not differ in accuracy levels or response bias. We assume a population of individ-

uals, with eachonebeing characterizedby the same accuracy level a, corresponding to their probability of being

correct in any given choice. We further assume that decisions of different individuals are statistically indepen-

dent from each other. Although individuals have identical accuracies, they may still differ in how they respond

to specific cases. The expected frequency of disagreement between two individuals can be calculated from the

binomial distribution as 2,a,ð1 � aÞ. Focusing on situations where individuals’ accuracy level is above chance

(i.e., a > 0:5), we make two observations. First, the higher the accuracy a of two individuals, the lower their ex-

pected frequency of disagreement (the derivative of the expected disagreement with respect to a is 2� 4, a,

which is negative as long as a > 0:5). Second, groups that pool independent decisions with the help of amajority

rule achieve higher accuracy than individuals, with larger groups achieving higher accuracy than smaller groups

(Condorcet Jury Theorem) (Grofman et al., 1983). From these two observations follows that—in this most basic

scenario—pooling decisions decreases outcome variation between agents: as group size increases, accuracy

increases, thereby decreasing the expected frequency of disagreement between groups. Figure 1 illustrates

this relationship for different individual accuracy levels and group sizes. As can be seen, for any individual accu-

racy level a—with the exception of accuracies 0.0, 0.5, and 1.0—the variation between agents (1) is larger be-

tween individual decision makers than between groups of decision makers; (2) decreases as group size in-

creases; and (3) approaches 0 as group size becomes sufficiently large. This general statistical argument

concerning the most basic case (i.e., absence of individual differences in accuracy and response bias) suggests

that pooling decisions could be a powerful approach to reduce variation in outcomes between decision-making

agents.Note that individuals’ accuracy level needs to be above chance (a> 0.5), so that pooling decisions simul-

taneously decreases outcome variation and increases accuracy. If accuracy is below chance (a < 0.5), pooling

decisions will decrease both outcome variation and accuracy (see discussion).

Numerical simulations: Pooling decisions reduces variation in accuracy in heterogeneous

groups

We next investigate how pooling decisions impacts variation in outcomes in more realistic scenarios,

namely, when decision makers differ in accuracy and response bias. Note that, whenever individuals differ

in accuracy and/or response bias, then the decision outcomes produced by a group employing themajority
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rule (and thus the variation in outcomes between groups) will depend on the specific composition of indi-

viduals in that group. To investigate this more complex scenario we will employ numerical simulations.

We first focus on differences in accuracy levels. To this end, we consider a large range of populations of decision

makers that differ in their accuracy distribution. To generate these distributions, we use beta distributions—the

canonical method to model proportions—which are defined on the interval [0, 1], thus matching the natural

accuracy range of 0 (always incorrect) to 1 (always correct). We systematically vary the distributions’ mean

and variance (controlled by the two shape parameters a and b), resulting in populations that differ in their

average accuracy, variance, and skewness. As a consequence, we are able to investigate a broad range of dis-

tributions (Figure 2A). For each of these populations, we repeatedly and randomly sample groups of n decision

makers (i.e., individuals characterized by a given accuracy level; n = 1, 3, 5, and 9). Each of these n decision

makers in a group faces the same m binary cases (m = 10, 25, and 100), and they independently judge the m

cases, based on their accuracy level. Next, we pool the decisions of the n decision makers for each of the m

cases, using a majority rule: if the majority of decision makers classifies the case correctly (incorrectly), the col-

lective decision is categorized as correct (incorrect). We then calculate the group performance by summarizing

the majority outcomes across the m cases (i.e., proportion correct decisions). For each unique combination of

group size n, cases m, and accuracy distribution we sample 10,000 groups. Finally, for each unique treatment
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Figure 1. Statistical argument: Pooling independent decisions reduces outcome variation in homogeneous groups

We here consider the most basic scenario, where individual decision makers do not differ in accuracy or response bias. Although individuals have identical

accuracies, they may differ in how they respond to specific cases. The expected frequency of disagreement between two decision-making agents (i.e., two

individuals, two groups pooling independent decisions with a majority rule) can be calculated from the binomial distribution (see results). For any level of

individual accuracy (x axis), the figure shows the expected frequency of cases where two agents disagree. With the exception of accuracies 0.0, 0.5, and 1.0,

pooling decisions is predicted to systematically reduce the frequency of cases with disagreement between agents, with larger groups showing larger

reductions than smaller groups. This reduction can be explained by (1) the link between accuracy levels and the expected frequency of disagreement and (2)

the effect of pooling decisions on accuracy levels: as long as the individual accuracy is above chance (i.e., > 0:5), pooling decisions increases accuracy levels,

which, in turn, decreases the expected frequency of disagreement. When the individual accuracy level drops below chance (i.e., < 0:5), pooling decisions

decreases both the expected frequency of disagreement and accuracy. Only odd group sizes are calculated to avoid the need for a tie-breaking rule. The

inset shows how expected disagreement develops with group size for an individual accuracy level of 0.75.
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Figure 2. Numerical simulations: Pooling independent decisions reduces variation in accuracy and response bias

in heterogeneous groups

(A) For the numerical simulations, we sampled decision makers from a wide range of populations with different

performance distributions (x axis: individual accuracy; y axis: probability density). We generated those populations by

systematically varying the mean (values at the top) and variance (values on the right) of the beta distribution. Dashed

vertical lines indicate chance level (i.e., accuracy of 0.5).

(B) The variance in accuracy between individuals/groups for different-sized groups (n = 1, 3, 5, and 9; subpanel rows)

makingm = 10, 25, and 100 decisions (subpanel columns). Within each subpanel, the tiles correspond to the populations

(i.e., accuracy distributions) of the respective tiles (i.e., mean-variance combination) in (A). The middle column within each

subpanel corresponds to rater populations performing on average at chance level (i.e., mean accuracy = 0.5), with tiles to

the left (right) of that column indicating populations performing on average below (above) chance. Darker color indicates

increasing variance in accuracy between individuals or groups employing a majority rule. For each unique combination of

group size n, decision casesm, and accuracy distribution, the variance shown corresponds to the variance between 10,000

independently sampled groups. As can be seen, independent of the specific accuracy distribution and number of

decision cases considered, we robustly observe that increasing group size reduces the variance in accuracy between

groups. This effect is smallest for populations at chance level and increases the closer themean accuracy moves towards 1

or 0.

(C) For the simulations of response bias, we sampled decision makers from a wide range of populations of decision

makers differing in their criterion value (x axis: criterion parameter; y axis: probability density). We generated those

populations by varying the mean (values at the top) and variance (values on the right) of the beta distribution, where we

transformed the beta range from [0,1] to [�1,1] to achieve a broad symmetrical range of criterion values. Dashed vertical

lines indicate no response bias (i.e., criterion value = 0), raters increasingly to the left (right) of that line put increasingly

ll
OPEN ACCESS

4 iScience 24, 102740, July 23, 2021

iScience
Article



combination, we calculate the variance in accuracy among the corresponding 10,000 groups as a measure of

variation in accuracy between decision-making agents.

Figure 2B shows the results. Within each subpanel, the tiles correspond to the populations (i.e., accuracy

distributions) of the respective tiles in Figure 2A. Moving from left to right within each subpanel corre-

sponds to an increase in the mean accuracy of populations, and moving from bottom to top corresponds

to an increase in the variance in individual accuracy. The middle column within each subpanel corresponds

to populations performing at chance level (i.e., mean accuracy = 0.5), and tiles to the left (right) indicate

populations performing below (above) chance. As can be seen from Figure 2B, independent of the specific

accuracy distribution, the variation in accuracy between individuals is larger than that between groups of

decision makers and increasing group size reduces the variation in performance between groups (i.e.,

different decision-making agents). This effect is smallest for populations at chance level and increases

the closer the mean accuracy moves towards 1 or 0. The reduction in variation in accuracy between groups

with increasing group size is present in almost all scenarios, suggesting this is a robust effect. Figure S1

shows that, as expected, the reduction of variation in accuracy between groups increases even further

with increasingly larger groups. Figure S2 shows that, as expected, (1) when mean individual accuracy is

above 0.5, the decreasing variation in accuracy between groups is associated with increasing mean group

accuracy, whereas (2) when mean individual accuracy is below 0.5, the decreasing variation in accuracy be-

tween groups is associated with decreasing mean group accuracy.

Numerical simulations: Pooling decisions reduces variation in response bias in heterogeneous

groups

Wenext focus on how the pooling of decisions affects variation in response bias, which is relevant whenever

the world can be in one of two states (e.g., cancer present or absent; defendant guilty or not) and decision

makers can thus commit two types of errors (false-negative versus false-positive decisions) (Macmillan and

Creelman, 2005; Marshall et al., 2019; Sorkin and Dai, 1994; Sorkin et al., 2001). In order to reduce the num-

ber of possible scenarios to a feasible set, we make two simplifying assumptions: first, both states of the

world appear equally often; second, decision makers within a population have the same ability to discrim-

inate between signal present and signal absent cases. Following the simplest signal detection approach for

such a setup (equal-variance Gaussian model) (Macmillan and Creelman, 1990, 2005), we use d’ (d’ = z(HR) –

z(FPR)) as a measure of discrimination ability (which we vary from 1 to 1.5 to 2 between populations) and the

criterion value c (c = – (z(HR) + z(FPR))/2) as a measure of response bias, where z(.) is the inverse distribution

function of the normal distribution, yielding the z-scores for the hit rate (HR; also known as sensitivity) and

the false-positive rate (FPR; 1 – specificity), respectively (Macmillan and Creelman, 1990, 2005). We use the

criterion value c as a widely used measure of response bias (Macmillan and Creelman, 2005). Analogous to

the accuracy analysis above, we generate a large range of populations varying in their distribution of

response biases. We do this by systematically varying the mean and the variance of the associated criterion

distribution, allowing the criterion of individuals to range between�1 and +1 (Figure 2C). For each of these

populations, we repeatedly and randomly sample groups of n decision makers (i.e., individuals character-

ized by a particular criterion value; n = 1, 3, 5, and 9), holding constant the number of cases to be decided

upon (1,000). For each of the simulated groups that pool decisions with a majority rule, we then calculate

the accuracy (i.e., proportion correct) separately for state 1 (truly positive cases: sensitivity) and state 2 (truly

negative cases: specificity) and use both values to calculate the implied criterion value (see STARmethods).

We report sensitivity and specificity separately because the trade-off between the two types of errors is

important in many real-world settings (e.g., medical diagnostics or forensics, which we investigate in the

empirical analysis below). For each combination of group size n, discrimination ability d’, and criterion

Figure 2. Continued

more weight on accuracy in state 1 (state 2). Note that we assume that all individuals within any given population have

the same discrimination ability.

(D) The variance in response bias between individuals/groups for different-sized groups (n = 1, 3, 5, and 9; subpanel rows)

and three different discrimination abilities 1, 1.5, and 2 (subpanel columns). Within each subpanel, the tiles correspond to

populations (i.e., criterion distributions) of the respective tiles (i.e., mean–variance combination) in (C). Darker color

indicates increasing variance in response bias between individuals, or groups employing a majority rule. For each unique

combination of group size n, discrimination ability d’, and response bias c, we independently sampled 10,000 groups and

calculated the variance in response bias between these 10,000 groups. Independent of the specific distribution and

discrimination ability in the population, we find that increasing group size robustly reduces the variation in response bias

between groups.
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distribution, we again independently sample 10,000 groups and calculate the variance in criterion among

the corresponding 10,000 groups as a measure of variation in response bias.

Figure 2D shows the results of this analysis with darker color indicating higher variance in response bias

between groups. Within each subpanel, the tiles correspond to the populations of the respective tiles in

Figure 2C. Independent of the specific criterion distribution and discrimination ability, increasing group

size reduces the variation in response bias between decision-making agents. That is, across a wide range

of populations that differ in how much individuals vary in their response biases, we find that the pooling of

decisions substantially reduces variation in response bias between agents. This reduction is observed in

almost all scenarios, suggesting this is a robust effect. Figure S3 shows that, as expected, increasing group

size also leads to a reduction in variance in sensitivity and specificity between groups.

For simplicity, so far we assumed that the decisions of individuals in the same group were statistically in-

dependent of one another. Figure S4 shows how variation in accuracy and response bias develops as

the correlation between decisions increases (see STAR methods for a description of how the correlations

were implemented). When increasing the correlation between decisions, the key result still holds:

increasing group size reduces variation in accuracy and criterion.

Empirical analysis: Pooling decisions reduces variation in accuracy and response bias in real-

world contexts

Our theoretical and simulation results suggest that a decision-making system that pools decisions repre-

sents a simple and effective approach to reduce outcome variation between decision-making agents in

binary classification tasks. To corroborate this prediction in real-world contexts, we next analyze several

published datasets from five domains: (1) a breast cancer dataset, comprising 15,655 diagnoses by 101 ra-

diologists based on 155 mammograms (Carney et al., 2012); (2) a skin cancer dataset, comprising 4,320 di-

agnoses by 40 dermatologists based on 108 dermoscopic images of skin lesions (Argenziano et al., 2003);

(3) a fingerprint recognition dataset, comprising 1,584 evaluations by 36 professional fingerprint examiners

of 44 fingerprint pairs (Tangen et al., 2020), (4) a geopolitical forecasting dataset from the Good Judgment

Project, containing 8,258 forecasts by 89 forecasters on 94 geopolitical events (Ungar et al., 2012); and (5) a

general knowledge dataset, containing 99,000 responses by 99 individuals to 1,000 questions (here: which

of two cities is larger) (Yu et al., 2015). All datasets are described in detail in the STAR methods. For the

medical datasets, the patient’s actual health state (i.e., cancer present versus absent) was known from

follow-up research; for the forecasting dataset, the correctness of forecasts was determined by follow-

up research. We use all datasets to investigate the consequences of pooling decisions for variation in ac-

curacy. Figures 3A–3C, 4A, 4B, and S5A–S5C show that individuals vary substantially in their accuracy levels

in all five datasets. Response bias could, however, only be studied in three of the datasets (breast cancer,

skin cancer, and finger recognition) as there is no clear distinction between false-negative and false-pos-

itive errors in the forecasting and the general knowledge datasets. In the three former datasets, individuals

also vary substantially in their response bias (Figures 5A–5C).

To investigate how variation in accuracy and response bias change with group size we randomly and

repeatedly sample (without replacement) two groups of size n (1, 3, 5, 7, and 9) within each dataset. For

each draw of two groups, we calculate the performance of each group across all cases under the majority

rule and—as a measure of variation in performance between groups—the absolute difference in perfor-

mance between both groups. We calculate performance in terms of sensitivity, specificity, and d’ for breast

and skin cancer, and fingerprint recognition, and in terms of overall accuracy for geopolitical forecasting

and general knowledge (see STAR methods for calculation of d’). For breast and skin cancer, and finger-

print recognition, we also calculate the criterion value c and—as a measure of variation in response bias

between groups—the absolute difference in the criterion between both groups. Within each dataset we

repeat this procedure 1,000 times for each group size (i.e., we independently sample two groups of a given

size) and determine the mean values of all the above measures across these 1,000 draws. This approach

yields the mean pairwise absolute difference (MPAD) between two groups (i.e., the expected difference

between two randomly sampled groups). We chose this pairwise measure of variation as it compares

the outcomes of groups consisting of different individuals. Using the variance (a more common measure

of variation and the measure we used in the numerical simulations) would imply comparing groups consist-

ing of partly overlapping members, which could confound our results on the relationship between group

size and outcome variation.
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Figures 3D–3O, 4C–4F, and 5D–5I show the results of this analysis. As predicted, the mean pairwise abso-

lute difference (MPAD) in sensitivity (Figures 3D, 3F, and 3H) and specificity (Figures 3J, 3L, and 3N) de-

creases with increasing group size in the breast and skin cancer, and fingerprint recognition datasets.

This reduction is substantial in all scenarios, and strong reductions already occur at relatively small group

sizes. For example, the MPAD in sensitivity between two randomly selected single experts is 0.13 for breast

cancer, 0.13 for skin cancer, and 0.17 for fingerprint recognition; pooling the decisions of five experts re-

duces these values to 0.06, 0.06, and 0.10, which amounts to relative reductions of 52%, 54%, and 41%,

respectively. Of importance, and as reported before (Kurvers et al., 2015; Tangen et al., 2020; Wolf

et al., 2015), mean sensitivity (Figures 3E, 3G, and 3I) and specificity (Figures 3K, 3M, and 3O) increase

with increasing group size in all three datasets. Figures S5D–S5I show that the same patterns emerge for

the performance measure d’. Similarly, in the geopolitical forecasting and general knowledge dataset,

increasing group size substantially reduces the MPAD in accuracy between groups (Figures 4C and 4D)

while increasing mean accuracy (Figures 4E and 4F). Figure S6 shows that similar results emerge when
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Figure 3. Pooling independent decisions reduces variation in sensitivity and specificity in breast and skin cancer detection and in fingerprint

recognition

(A–C). True- and false-positive rates (i.e., sensitivity and 1 � specificity, respectively) of each rater in the three datasets. Each dot corresponds to one rater.

The dashed diagonal corresponds to those points that can be achieved by a random classifier; dots above (below) the diagonal indicate performance above

(below) chance. In all three domains, raters differ substantially in both accuracy components (i.e., sensitivity and specificity).

(D–O) For each dataset and each group size, we repeatedly and randomly sampled two groups and calculated the mean pairwise absolute differences

(MPAD) in sensitivity and specificity. As predicted, in all three datasets, relative to the baseline levels of variation between individual decisionmakers (dashed

lines), substantial reductions in variation (i.e., MPAD) in (D, F, H) sensitivity and (J, L, N) specificity are achieved by pooling independent decisions; as

expected, these reductions increase with increasing group size. These reductions in variation are accompanied by an increase in mean (E, G, I) sensitivity and

(K, M, O) specificity.
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we use the original continuous subjective probability scale in the forecasting dataset (rather than the binary

yes/no scale).

As predicted, the MPAD in criterion value (i.e., response bias) also decreases with increasing group size in

the breast and skin cancer, and fingerprint recognition datasets (Figures 5D–5F). Again, this reduction is

substantial in all three datasets and even with relatively small group sizes. The mean criterion value either

remains the same or slightly increases or decreases with group size (Figures 5G–5I). Thus, as predicted,

pooling independent decisions robustly reduces differences in response bias and accuracy between deci-

sion-making agents.

Empirical analysis: Pooling decisions reduces variation at the case level

Thus far, we have focused on differences between decision-making agents across a large number of cases.

Next, we ask whether and to what extent collective decision-making systems based on the pooling of
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Figure 4. Pooling independent decisions reduces variation in geopolitical forecasting and in a general knowledge

task

(A and B) Frequency distribution of the accuracy levels of raters in the (A) geopolitical forecasting and (B) general

knowledge dataset, showing that raters in both domains differ substantially in accuracy levels.

(C and D) For each dataset and each group size (n = 1, 3, 5, 7, and 9), we repeatedly and randomly sampled two groups

and—as a measure of variation between groups—calculated the mean pairwise absolute differences (MPAD) in accuracy.

As predicted, in both datasets, relative to the baseline level of variation between individual decision makers (dashed

lines), pooling independent decisions substantially reduces variation (i.e., MPAD) in accuracy; as expected, these

reductions increase with larger group sizes.

(E and F) These reductions in variation are accompanied by an increase in mean accuracy in both datasets.
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independent decisions can also reduce variation on the level of the individual case, be it a mammogram,

skin lesion, fingerprint set, forecasting question, or general knowledge question. To this end, we randomly

and repeatedly sample two individuals and determine whether or not both individuals give the same

response to each individual case in each dataset. This is repeated 2,500 times per case. We then calculate

the average frequency of agreement per case. We use the same procedure for groups: for each case within

each dataset, we randomly and repeatedly sample two groups of n individuals (5 and 9) and determine

whether or not these two groups arrive at the same response under the majority rule. This is repeated

2,500 times per unique combination of case and group size; we then calculate the average frequency of

agreement per case per group size.

Figure 6 shows the results of this analysis. In all datasets, there are many cases with substantial between-

individual disagreement. For example, in the breast cancer dataset, 71 of 155 cases have an agreement

level below 0.6, implying an at least 40% chance that two randomly sampled radiologists will disagree.
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Figure 5. Pooling independent decisions reduces variation in response bias in breast and skin cancer detection

and in fingerprint recognition

(A–C) Frequency distribution of the criterion values of raters in the three datasets, showing that raters in each of these

domains differ substantially in criterion values. Dashed vertical lines show the neutral criterion value.

(D–I) For each dataset and each group size, we repeatedly and randomly sampled two groups and calculated the mean

pairwise absolute differences (MPAD) in the criterion (i.e., response bias). (D–F) As predicted, in all three datasets,

pooling independent decisions substantially reduces variation (i.e., MPAD) in the decision criterion. The mean criterion

either (G) remains unchanged, (H) decreases slightly, or (I) increases slightly.
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In all datasets, this distribution shifts toward more agreement with increasing group size. That is, the pool-

ing of decisions systematically decreases the number of situations where decision-making agents disagree

and increases the number of situations where they agree. Pooling decisions thus also reduces outcome

variation between decision-making systems at the level of individual cases.
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Figure 6. Pooling independent decisions reduces variation at the case level in all five datasets

Histograms show for each case the proportion of comparisons where (1) two randomly selected individuals, (2) two groups

of five randomly selected individuals, and (3) two groups of nine randomly selected individuals agree, for (A–C) breast

cancer, (D–F) skin cancer, (G–I) fingerprint recognition, (J–L) geopolitical forecasting, and (M–O) a general knowledge

task. In all five datasets, there is a substantial frequency of cases where two randomly sampled individuals disagree.

Relative to this baseline level, pooling independent decisions systematically decreases the number of situations where

decision-making agents disagree and increases the number of situations where they agree (i.e., the distributions shift to

the right); this effect increases with increasing group size.
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DISCUSSION

Collective decision-making systems based on the pooling of independent decisions can be a relatively simple

and effective approach to boost decision accuracy (Grofman et al., 1983; Hastie and Kameda, 2005; Herzog et

al., 2019; Mannes et al., 2014; Surowiecki, 2004). But it can do even more. Combining a theoretical and data-

driven approach, we analyzed apreviouslymostly neglected performancedimension of collective and individual

decision-making systems: the variation in outcomes between decision-making agents. Our theoretical and

empirical data-driven analyses converge to the same conclusion: pooling independent judgments is a powerful

method to reduce outcome variation between decision-making agents. As has been widely demonstrated, in-

dividual experts differ substantially in terms of both accuracy and response bias (Burgman, 2016; Deneef and

Kent, 1993; Koran, 1975; Kurvers et al., 2016; Mellers et al., 2015; O’Sullivan and Ekman, 2004; Wolf et al.,

2015) (see also Figures 3A–3C and 5A–5C). Our results suggest that this, inmany contexts, undesirable variation

can be substantially reduced by combining their independent decisions.

A key implication of our findings is that pooling independent opinions will often be more reliable and pre-

dictable than betting on an individual expert, thus promoting actual and perceived fairness (Tyler et al.,

1996; Wood et al., 2020). In judicial decision making, for example, the principle of equal treatment under

the law suffers when judges differ in their response bias (i.e., how much evidence they require to convict a

suspect). Relatedly, people perceive outcomes to be fairer (and are more likely to comply) if they believe

that the personal values and biases of professional decision makers did not enter the decision making

process (Tyler, 2000). Beyond boosting fairness, decision-making systems that are more reliable and pre-

dictable—due to lower outcome variation—are typically also perceived asmore trustworthy. Collective sys-

tems that pool individual decisions may be one tool to prevent the erosion of institutional trust.

Throughout, we have argued that low variation at the outcome level is beneficial. This, however, need not

always be the case. Pooling independent decisions can in some cases decrease accuracy—for example,

when average individual accuracy is below chance (Boland, 1989). Critically, pooling decisions in this sce-

nario would also decrease outcome variation (see our statistical argument and numerical simulations),

thereby increasing the reliability—and thus potentially trust in the wrong majority decision. Relatedly,

whenever the biases of collective systems are large (e.g., the judged probabilities of a disease being pre-

sent is generally too high in a population of experts), then a system that maintains variation may be pref-

erable to one with reduced variation because the former is more likely to make correct decisions (e.g., a

healthy case is more likely to be categorized as healthy because, with higher variance, there is a larger

chance that the judged probability will be below the diagnostic cutoff) (see also Friedman, 1997).

Response biases play a crucial role in decision making in a wide range of domains, including medical, judicial,

and political decisionmaking (DeKay, 1996; Swets et al., 2000;Wolf et al., 2013). A key normative question here is

how much evidence should be required to classify a mammogram as malignant, or to convict a defendant

(DeKay, 1996; Deneef and Kent, 1993; Swets, 1992). Individual decisionmakers differ with respect to the decision

threshold (i.e., response bias), which, in turn, can contribute to differences in decisions outcomes among deci-

sion makers. Collective systems based on pooling independent decisions can be a powerful corrective to such

unwanted variation. In many contexts it may be both unclear what exactly a normatively defensible threshold

would be and that threshold might differ among the affected population of people. For example, patients un-

dergoing medical treatment often differ in their preferences (O’Connor et al., 2003; Schwartz et al., 2000), and

taking these individual preferences into account can be important whenproviding treatment recommendations.

Pooling independent judgments can also be useful for such settingswith heterogeneous preferences because a

lower variation in response biases among the decision-making agents will reduce the gap between the desired

and enacted response bias. Although we have focused on the majority rule in our analyses, independent deci-

sions can also be aggregated usingmore flexible quorum thresholds that allowdecisions to be fine-tunedunder

any error cost scheme (Marshall et al., 2019;Wolf et al., 2013; Kurvers et al., 2015) illustrates this approach for the

context of skin cancer diagnostics.

Many previous studies have investigated how the variation (or diversity) between individuals in a group af-

fects its collective accuracy (Hong and Page, 2004). It has been shown that even mild social influence can

undermine collective accuracy by decreasing variation between individuals (Lorenz et al., 2011). Here, in

contrast, we focused on variation at the outcome level, that is, the variation between different groups of

decisionmakers. Pitting past and present results side by side creates an interesting juxtaposition. Although

previous studies have shown that collective decision-making systems often benefit from variation (diversity)
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at the level of the input (i.e., in the opinions of different individuals), these systems will also, at the same

time, reduce the often undesirable outcome variation.

The importance of outcome variation in forecasts, judgments anddecisions has beenpointed out across the

behavioral sciences (Kahneman et al., 2016; Litvinova et al., 2019; Stewart, 2001). For example, in the liter-

ature on optimal portfolio selection, the importance of taking into account both the mean rate and the vari-

ance (i.e., risk) of returns on securities is well established (Brealey et al., 2012); likewise, in the literature on

forecasting (Hibon and Evgeniou, 2005; Lichtendahl and Winkler, 2020) and machine learning (Kuncheva,

2014), aggregation has been shown to reduce risk. In machine learning, classifier ensembles are known to

reduce the variance of the answers, which increases accuracy (Kuncheva, 2003, 2014; Kuncheva and Whi-

taker, 2003). In animal behavior, the theory on risk-sensitive foraging is centered on the insight that—next

to average foraging returns—variation in foraging returns over time is a key fitness determinant (McNamara

and Houston, 1992). Our findings may stimulate new theoretical and empirical questions in these contexts.

The strength and beauty of studying binary classification tasks lies in the combination of broad applicability to

real-worldproblems (frommedicaldiagnostics todemocratic processes)with the fact that theoutcomesof binary

decision processes aregovernedby fundamental statistical principles (Hastie andKameda, 2005).Much previous

research has focused on theCondorcet Jury Theorem (and variations thereof), which uses basic properties of the

binomial distribution to understand how pooling decisions affects accuracy levels (Boland, 1989; Grofman et al.,

1983; Marshall et al., 2019). As we have shown, the basic properties of the binomial distribution also cast light on

the relationshipbetweenpoolingdecisions and variation indecision outcomesbetweenagents. In a nutshell, the

binomialdistributionprovidesadirect linkbetweenaccuracy levelsand the similarityofdecisionsbetweenagents

(Kurvers et al., 2019). In combination with the effect of pooling decisions on accuracy levels, this turns out to be a

key factor shaping the variation in outcomes between agents.

In recent decades, researchers across the behavioral sciences have carefully mapped out the relative ad-

vantages and disadvantages of individual and collective decision-making systems in terms of accuracy.

Variation in outcomes between decision-making agents is another key benchmark of decision-making sys-

tems. As our results demonstrate, collective decision-making systems based on the pooling of indepen-

dent decision are a powerful approach to reduce such variation, thus promoting reliability, predictability,

fairness, and possibly even trust.

Limitations of the study

We have focused on pooling independent judgments; collective decisions can, of course, arise in various ways.

One question for future research is whether other systems of collective decision making, such as discussion

among interacting individuals, also achieve higher levels of between-group agreement. Directly interacting in-

dividuals can, under some circumstances, achieve higher accuracy than individual decision makers and/or sys-

tems based on pooling independent judgments (Navajas et al., 2018). However, little is known about the con-

sequences for variation in outcomes between different interacting groups. Although pooling independent

judgments is firmly rooted in statistical principles, the dynamics of interacting groups are governed by, for

instance, social and conversational norms (e.g., which pieces of information are mentioned during a discussion

and inwhat order [Stasser andAbele, 2020; Stasser and Titus, 1985]). For example, cognitive strategies, such as a

confirmation strategy, may be amplified when individuals with similar biases (e.g., in terms of response bias)

interact. In mock juries deliberation in groups leads to more leniency in sentencing, relative to an individual

reaching a verdict by themselves (MacCoun and Kerr, 1988). Whether and how collective systems based on in-

teracting groups affect variation in outcomes between groups is thus not straightforward and requires further

theoretical and empirical scrutiny. Another issue closely related to our work concerns biases, for example, based

on gender or race, in health care (FitzGerald and Hurst, 2017; Hall et al., 2015) and court rooms (Franklin, 2018;

Spohn, 2000). Future work could investigate whether collective systems such as pooling or interacting groups

could also be employed to reduce such biases.
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Baron, J. (2012). The Good Judgment Project: A
Large Scale Test of Different Methods of

Combining Expert Predictions (2012 AAAI Fall
Symposium Series).

Wolf, M., Krause, J., Carney, P.A., Bogart, A., and
Kurvers, R.H.J.M. (2015). Collective intelligence
meets medical decision-making: the collective
outperforms the best radiologist. PLoS One 10,
e0134269. https://doi.org/10.1371/journal.pone.
0134269.

Wolf, M., Kurvers, R.H.J.M., Ward, A.J.W., Krause,
S., and Krause, J. (2013). Accurate decisions in an
uncertain world: collective cognition increases
true positives while decreasing false positives.
Proc. R. Soc. Lond. B 280, 20122777. https://doi.
org/10.1098/rspb.2012.2777.

Wood, G., Tyler, T.R., and Papachristos, A.V.
(2020). Procedural justice training reduces police
use of force and complaints against officers. Proc.
Natl. Acad. Sci. U S A 117, 9815–9821. https://doi.
org/10.1073/pnas.1920671117.

Woolley, A.W., Chabris, C.F., Pentland, A.,
Hashmi, N., and Malone, T.W. (2010). Evidence
for a collective intelligence factor in the
performance of human groups. Science 330,
686–688. https://doi.org/10.1126/science.
1193147.

Yu, S., Pleskac, T.J., and Zeigenfuse, M.D. (2015).
Dynamics of postdecisional processing of
confidence. J. Exp. Psychol. Gen. 144, 489.
https://doi.org/10.1037/xge0000062.

ll
OPEN ACCESS

iScience 24, 102740, July 23, 2021 15

iScience
Article

https://doi.org/10.1136/bmj.320.7250.1635
https://doi.org/10.1136/bmj.320.7250.1635
https://doi.org/10.1006/obhd.1994.1072
https://doi.org/10.1006/obhd.1994.1072
https://doi.org/10.1037//0033-295x.108.1.183
https://doi.org/10.1037//0033-295x.108.1.183
http://refhub.elsevier.com/S2589-0042(21)00708-2/sref52
http://refhub.elsevier.com/S2589-0042(21)00708-2/sref52
https://doi.org/10.1146/annurev-psych-010418-103211
https://doi.org/10.1146/annurev-psych-010418-103211
https://doi.org/10.1037/0022-3514.48.6.1467
https://doi.org/10.1037/0022-3514.48.6.1467
http://refhub.elsevier.com/S2589-0042(21)00708-2/sref55
http://refhub.elsevier.com/S2589-0042(21)00708-2/sref55
http://refhub.elsevier.com/S2589-0042(21)00708-2/sref55
http://refhub.elsevier.com/S2589-0042(21)00708-2/sref56
http://refhub.elsevier.com/S2589-0042(21)00708-2/sref56
http://refhub.elsevier.com/S2589-0042(21)00708-2/sref56
http://refhub.elsevier.com/S2589-0042(21)00708-2/sref56
http://refhub.elsevier.com/S2589-0042(21)00708-2/sref56
https://doi.org/10.1037/0003-066X.47.4.522
https://doi.org/10.1037/0003-066X.47.4.522
https://doi.org/10.1111/1529-1006.001
https://doi.org/10.1186/s41235-020-00223
https://doi.org/10.1186/s41235-020-00223
https://doi.org/10.1080/002075900399411
https://doi.org/10.1080/002075900399411
https://doi.org/10.1037/0022-3514.70.5.913
https://doi.org/10.1037/0022-3514.70.5.913
http://refhub.elsevier.com/S2589-0042(21)00708-2/sref62
http://refhub.elsevier.com/S2589-0042(21)00708-2/sref62
http://refhub.elsevier.com/S2589-0042(21)00708-2/sref62
http://refhub.elsevier.com/S2589-0042(21)00708-2/sref62
http://refhub.elsevier.com/S2589-0042(21)00708-2/sref62
https://doi.org/10.1371/journal.pone.0134269
https://doi.org/10.1371/journal.pone.0134269
https://doi.org/10.1098/rspb.2012.2777
https://doi.org/10.1098/rspb.2012.2777
https://doi.org/10.1073/pnas.1920671117
https://doi.org/10.1073/pnas.1920671117
https://doi.org/10.1126/science.1193147
https://doi.org/10.1126/science.1193147
https://doi.org/10.1037/xge0000062


STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to the lead contact, Ralf Kurvers

(kurvers@mpib-berlin.mpg.de).

Materials availability

No materials were newly generated for this paper.

Data and code availability

� Data: The skin cancer dataset can be accessed at pnas.org/content/113/31/8777/tab-figures-data.

The fingerprint dataset can be accessed at osf.io/hgx3s. The geopolitical dataset is part of the

Good Judgment Project and accessible at dataverse.harvard.edu/dataverse/gjp. The general

knowledge dataset is accessible at osf.io/cuzqm/. The Breast Cancer Surveillance Consortium

(BCSC) holds legal ownership of the breast cancer dataset. Information regarding data requests

can be found at bcsc-research.org/.

� Code: The code for reproducing the results and figures of the statistical argument (Figure 1) and the

numerical simulations (Figure 2) are uploaded at the Open Science Framework: https://osf.io/rvdxz/.

The code for reproducing the results and figures of the skin cancer dataset (Figures 3 and 6) are also

uploaded here to illustrate how the results were calculated for one of the datasets. Simulations were

done in R (version 4.0.4) (R-Core-Team, 2021).

� Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

This research did not conduct new experiments but analyzed existing datasets. Descriptions of the

different datasets are provided below.

METHOD DETAILS

Breast cancer dataset

Full information on the breast cancer dataset can be found in Carney et al. (2012); we have also summarized

the dataset in our previous publications (Kurvers et al., 2016, 2019; Wolf et al., 2015). The brief summary

provided here largely adopts these earlier descriptions. Mammograms were randomly selected from

screening examinations performed on women aged 40–69 years between 2000 and 2003 from US

mammography registries affiliated with the Breast Cancer Surveillance Consortium (BCSC). Radiologists

who interpreted mammograms at facilities affiliated with these registries between January 2005 and

December 2006 were invited to participate in this study, as were radiologists from Oregon, Washington,

North Carolina, San Francisco, and New Mexico. Of the 409 invited radiologists, 101 completed all

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

R (version 4.0.4) R-Core-Team, 2021 https://www.R-project.org/

Other

Skin cancer dataset Argenziano et al. (2003) https://pnas.org/content/113/31/8777/tab-figures-data

Fingerprint dataset Tangen et al. (2020) https://osf.io/hgx3s

Forecasting dataset good Judgment project Ungar et al. (2012) https://dataverse.harvard.edu/dataverse/gjp

General knowledge dataset Yu et al. (2015) https://osf.io/cuzqm/
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procedures and were included in the data analyses. Each screening examination included images from the

current examination and one previous examination (allowing the radiologists to compare potential

changes over time) and presented the craniocaudal and mediolateral oblique views of each breast (four

views per woman for each of the screening and comparison examinations). This approach is standard prac-

tice in the United States. Women who were diagnosed with cancer within 12 months of the mammograms

were classified as cancer patients (n = 27). Women who remained cancer-free for a period of two years were

classified as noncancerous patients (n = 128; 17% prevalence).

Radiologists viewed the digitized images on a computer. They saw two images at the same time (left and

right breasts) and were able to alternate quickly (%1 s) between paired images, to magnify a selected part

of an image, and to identify abnormalities by clicking on the screen. For each case, the craniocaudal and

mediolateral oblique views of both breasts were presented simultaneously, followed by each view in com-

bination with its prior comparison image. Radiologists were instructed to diagnose them using the same

approach they used in clinical practice (i.e. using the breast imaging reporting and data system lexicon

to classify their diagnoses, including their decision that a woman be recalled for further examination).

The cases were evaluated in two stages. In stage 1, four test sets were created, each containing 109 cases.

Radiologists were randomly assigned to one of the four test sets. In stage 2, one test set containing the

same 110 cases was created and presented to all radiologists. Some of the cases used in stage 2 had

already been evaluated by some of the radiologists in stage 1. To avoid having the same radiologist eval-

uate a case twice, we excluded all cases from stage 2 that had already been viewed by that radiologist in

stage 1. Moreover, we only included cases present in all four test sets in order to ensure that each radiol-

ogist evaluated the same set of cases, resulting in 15,655 diagnoses by 101 radiologists based on 155 cases.

Between the two stages, radiologists were randomly assigned to one of three intervention treatments.

Because there were no strong treatment differences (Geller et al., 2014), we pooled the data from stages

1 and 2. In our analysis, we treated the recommendation that a woman should be recalled for further exam-

ination as a positive test result.

The breast cancer data were assembled at the BCSC Statistical Coordinating Center (SCC) in Seattle and

analyzed at theMax Planck Institute for Human Development (MPIB), Germany. Each registry, the SCC, and

the MPIB received institutional review board approval for active and passive consent processes or were

granted a waiver of consent to enroll participants, pool data, and perform statistical analysis. All proced-

ures were in accordance with the Health Insurance Portability and Accountability Act. All data were anony-

mized to protect the identities of women, radiologists, and facilities.

Skin cancer dataset

Full information on the skin cancer dataset can be found in Argenziano et al. (2003); we have also summa-

rized the dataset in our previous publications (Kurvers et al., 2015, 2016, 2019). The brief summary provided

here largely adopts these earlier descriptions. The dataset comprises 4,320 diagnoses by 40 dermatolo-

gists of 108 skin lesions and was collected during a web-based consensus meeting. The review board of

the Second University of Naples waived approval because the study did not affect routine procedures.

All participating dermatologists signed a consent form before participating in the study. Skin lesions

were obtained from the Department of Dermatology, University Frederico II (Naples, Italy); the Department

of Dermatology, University of L’Aquila (Italy); the Department of Dermatology, University of Graz (Austria);

the Sydney Melanoma Unit, Royal Prince Alfred Hospital (Camperdown, Australia); and Skin and Cancer

Associates (Plantation, Florida). The study was designed to diagnose whether or not a skin lesion was a

melanoma, the most dangerous type of skin cancer. Histopathological specimens of all skin lesions were

available and judged by a histopathology panel (melanoma: n = 27, no melanoma: n = 81; 25% prevalence).

All dermatologists who participated in the study had a minimum of five years of experience in dermoscopy

practice, teaching, and research. Dermatologists first received a training procedure in which they familiar-

ized themselves with the study’s definitions and procedures in web-based tutorials with 20 sample skin

lesions. They subsequently evaluated 108 skin lesions in a two-step online procedure. First, they used an

algorithm to differentiate melanocytic from nonmelanocytic lesions. Whenever a lesion was evaluated as

melanocytic, dermatologists were asked to classify it as either a melanoma or a benign melanocytic lesion,

using four different algorithms. Here, we use the diagnostic algorithmwith the highest diagnostic accuracy,

which is also the one most widely used for melanoma detection: pattern analysis. We treated the decision

to classify a lesion as a melanoma as a positive test result.
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Fingerprint analyses

Full information on the fingerprint analysis dataset can be found in Tangen et al. (2020); here, we provide a brief

summary only. The full dataset comprises 1,728 evaluations by 36professional fingerprint examiners of 48 finger-

print pairs. The fingerprint examiners were recruited from the Australian Federal Police, Queensland Police Ser-

vice, Victoria Police, and New South Wales Police (mean experience = 16.4 years). Novices also participated in

testing, but we used only data from the professional examiners in our analyses. The study was cleared by the

ethical board of The University of Queensland and The University of Adelaide. Each of the 36 fingerprint exam-

iners was presented with the same set of 24 fingerprint pairs from the same finger (targets) and 24 highly similar

pairs fromdifferent fingers (distractors) in a different randomorder. Eachpair consisted of a crime-scene ‘‘latent’’

fingerprint and a fully-rolled ‘‘arrest’’ fingerprint, and participants were asked to provide a rating on a 12-point

scale ranging from 1 (Sure Different) to 12 (Sure Same). The distractors were created by running each latent

fingerprint through theNational Australian Fingerprint Identification System—which contains roughly 67million

fingerprints—to return the most similar exemplars from the database. On the first 44 of 48 trials (22 targets, 22

distractors), participants were given 20 s to examine the prints. On the final four trials (2 targets, 2 distractors),

they had an unlimited amount of time to make a decision. For consistency, we excluded these last four trials,

resulting in a total of 1,584 evaluations by 36 professional fingerprint examiners of 44 fingerprint pairs. To inves-

tigate the case of binary decision-making, we converted the answers from the 12-point scale into ‘different’ (6

and below) and ‘same’ (7 and above).

Forecasting dataset

The forecasting dataset is part of the Good Judgment Project (Ungar et al., 2012); we have previously sum-

marized the dataset in (Kurvers et al., 2019). The brief summary provided here largely adopts this earlier

description. The Good Judgment Project is a large-scale forecasting project, running over several years

and with a wide variety of participants and settings (e.g., training schedules, team competitions). The sub-

ject pool consists of a mix of laypeople and geopolitical experts; participants were free to enter the fore-

casting competition. We used data from the first year of the forecasting project, when participants made

102 forecasts by answering questions such as ‘‘Will Serbia be officially granted EU candidacy by 31

December 2011?’’ and ‘‘Will the Nikkei 225 index finish trading at or above 9,500 on 30 September

2011?’’ Participants were asked to estimate the probability of the future event on a scale from 0 to 1. We

only included data from the individual condition (i.e. we excluded individuals who observed crowd infor-

mation or participated in prediction markets). We excluded questions with more than two possible answers

and questions for which the correct answer could not be irrefutably determined (n = 8), resulting in 94 ques-

tions. Finally, we excluded forecasters who answered fewer than 90 questions, resulting in 89 forecasters.

The total dataset we used thus contained 8,258 forecasts by 89 forecasters on 94 geopolitical events. In

some cases, forecasters updated their forecasts over time, thereby giving multiple responses. In such

cases, we used their first forecast only. To investigate the case of binary decision-making, we converted

the probability scores into two categories: 0 (probabilities <0.5) and 1 (probabilities >0.5). Scores of 0.5

were randomly converted to either 0 or 1. Figure S6 presents the results of additional analyses using the

probability forecasts directly without any conversion, with the Brier score as the accuracy measure.

General knowledge dataset

This dataset is based on Study 3 in Yu et al. (2015); we have previously summarized the dataset in Kurvers et al.

(2019). The brief summary provided here largely adopts the earlier description. The dataset contains binary re-

sponses to the question, ‘‘Which of the following two cities has more inhabitants?’’ The stimulus set consisted of

1,000 randomly generatedpairs of cities froma list of the 100most populous cities in theUnited States in 2010 as

determined by the US Census Bureau. After seeing a fixation cross, participants observed a pair of cities and

after 1.6 s, they were cued to decide. Participants rated 1,000 pairs in two sessions. Participants (n = 109)

were recruited from the Michigan State University (MSU) psychology research participant pool and received

class credits plus a $0–$4 bonus per session. Participants gave informed consent according to the MSU Institu-

tional Review Board guidelines. We excluded participants who did not complete both sessions, resulting in 99

participants, all of whom provided a decision on each of the 1,000 city pairs.

QUANTIFICATION AND STATISTICAL ANALYSIS

Numerical simulations: Correlated errors

To study the effect of correlations between the decisions of different individuals in the numerical simula-

tions, we used an ‘‘opinion leader’’ approach (Grofman et al., 1983; Kurvers et al., 2019), fixing the number
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of casesm to 25. One of the n individuals of a group was assigned to be the ‘‘opinion leader’’. The opinion

leader made independent decisions for them cases based on its (sampled) accuracy level. The decisions of

all the remaining individuals were made dependent on the opinion leader’s sequence, according to a cor-

relation parameter pc ð0%pc%1). This correlation parameter governs the level of correlation between

decision makers, ranging from 0 (maximum amount of independence) to 1 (maximum amount of depen-

dence). Each of the remaining individuals first made m independent decisions based on its (sampled) ac-

curacy level. Next, the sequence of decisions was made dependent on the opinion leader’s sequence using

the correlation parameter pc . For each case, starting at case i = 1, we randomly selected with probability

(1 � pc ) a decision from the set of remaining decisions from that individual (i.e. decisions from cases j that

have not yet been selected, jRi), and we took with probability pc the same decision as the decision of the

opinion leader from this set. If the same decision was not present in that individual’s set of remaining de-

cisions, we randomly selected a decision from this set. We then moved on to the next case i + 1. We

repeated the numerical simulations at three levels of pc : 0 (complete independence, the assumption

used in Figure 2), 0.5, and 1 (maximum level of correlation). Note that even if pc = 1, there can still be

disagreement between individuals in a group, namely, when the numbers of 0s and 1s in their respective

vectors are not equal. The results of this analysis are shown in Figure S4.

Calculation of discrimination ability and criterion

For the simulations of the empirical data, we repeatedly and randomly drew groups of different sizes. The

decisions of the individuals drawn were combined using the majority rule. Based on individual or group de-

cisions, we calculated the number of hits (H), misses (M), false positives (FP), and correct rejections (CR).

From this we calculated the hit rate (HR) as HR = H/(H + M) and the false-positive rate (FPR) as FPR =

FP/(FP + CR). From this we calculated discrimination ability d’ and criterion c using:

d’ = z(HR) – z(FPR) and

c = – (z(HR) + z(FPR))/2.

where z(.) is the inverse distribution function of the normal distribution, yielding the z-scores for the hit rate

(HR; also known as sensitivity) and the false-positive rate (FPR; 1 – specificity). We followed the standard

approach of adding 0.5 to each of the four categories’ counts (i.e. H, M, FP, and CR) to avoid the possibility

of infinite values (Macmillan and Creelman, 2005).
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