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Abstract
Land surface hydrology can play a crucial role during extreme events such as droughts,floods and even
heat waves.We introduce in this study a newhydrological dataset for Europe that consists of soil
moisture, runoff and evapotranspiration (ET). It is derivedwith a simplewater balancemodel
(SWBM) forcedwith precipitation, temperature and net radiation. The SWBMdataset extends over
the period 1984–2013with a daily time step and 0.5° × 0.5° resolution.We employ a novel calibration
approach, inwhichwe consider 300 randomparameter sets chosen from an observation-based range.
Using several independent validation datasets representing soilmoisture (or terrestrial water content),
ET and streamflow,we identify the best performing parameter set and hence the newdataset. To
illustrate its usefulness, the SWBMdataset is compared against several state-of-the-art datasets (ERA-
Interim/Land,MERRA-Land, GLDAS-2-Noah, simulations of the Community LandModel Version
4), using all validation datasets as reference. For soilmoisture dynamics it outperforms the
benchmarks. Therefore the SWBMsoilmoisture dataset constitutes a reasonable alternative to sparse
measurements, little validatedmodel results, or proxy data such as precipitation indices. Also in terms
of runoff the SWBMdataset performswell, whereas the evaluation of the SWBMETdataset is overall
satisfactory, but the dynamics are less well captured for this variable. This highlights the limitations of
the dataset, as it is based on a simplemodel that uses uniformparameter values. Hence some processes
impacting ETdynamicsmay not be captured, and quality issuesmay occur in regions with complex
terrain. Even though the SWBM iswell calibrated, it cannot replacemore sophisticatedmodels; but as
their calibration is a complex task the present datasetmay serve as a benchmark in future. In addition
we investigate the sources of skill of the SWBMdataset andfind that the parameter set has a similar
impact on the simplemodel results as the choice of the forcing dataset. The newly derived SWBM
dataset is of relevance for a range of applications given the deficit of available land datasets. It is
available for download onwww.iac.ethz.ch/url/SWBM-Dataset.

1. Introduction

Soil moisture plays a key role in the climate system as
highlighted by many past and recent studies (see
Seneviratne et al 2010 for a review). Acting at the
interface between land and the atmosphere, it may
influence the corresponding exchange of water and
energy. Soil moisture availability impacts evaporation
of the bare soil as well as transpiration of plants and
therefore the partitioning of available energy into the
sensible and latent heat fluxes. Consequently, it may

affect surface temperature (Seneviratne et al 2006a,
Hirschi et al 2011, Mueller and Seneviratne 2012) and
even precipitation (Beljaars et al 1996, Koster
et al 2004, Hohenegger et al 2009, Taylor et al 2012,
Guillod et al 2015). Moreover, soil moisture is one of
the few variables of the climate systemwith a consider-
able persistence (Delworth and Manabe 1988, Entin
et al 2000, Koster and Suarez 2001, Seneviratne
et al 2006b, Orth and Seneviratne 2012), which makes
it comparatively well predictable (e.g. Calanca
et al 2011, Orth and Seneviratne 2013). Through the
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storage capacity of the soil, soil moisture accumulates
anomalies of the atmospheric forcing such that these
are preserved in the soil.

Despite its importance, soil moisture is poorly
observed in contrast to e.g. temperature or precipita-
tion. Only relatively few (point) measurements are
available, covering rather short time periods (Robock
et al 2000, Dorigo et al 2011). Models may be
employed to compensate for the lack of observations,
but only in terms of soil moisture dynamics (i.e. chan-
ges over time), whereas their absolute soil moisture
storage may differ significantly (Mahanama and Kos-
ter 2003, Koster et al 2009). Furthermore sophisticated
models are dependent on information about vegeta-
tion and soil characteristics and there is considerable
disagreement among available products (Guillod
et al 2013). The heterogeneous nature of the soil in
both the horizontal and vertical dimension, as well as
changes of its characteristics over time, make it diffi-
cult to derive corresponding reliable high-resolution
maps required by models. Nevertheless, there are
efforts towards an observation-based calibration of
such models (e.g. Harrison et al 2012, Santanello
et al 2013), pointing out the great potential perfor-
mance arising from their complexity. In this study,
however, we follow a different approach and employ a
conceptual model: the advantage of this approach is
that thanks to its low number of parameters and the
low computational demand we can sample the entire
parameter space to derive an optimal calibration on a
continental scale.

Based on this approach, we introduce here a new
hydrological dataset for Europe, which we then com-
pare and evaluate against several existing state-of-the-
art products. For this purpose we use a simple hydro-
logical model (simple water balance model—SWBM)
which derives key quantities of the land surface (soil
moisture, evapotranspiration (ET), runoff) from
meteorological forcing variables (precipitation, radia-
tion, temperature).We apply themodel across Europe
and focus on the last 30 years. As any hydrological
model, the model includes parameters to reflect e.g.
soil and vegetation characteristics. To determine these
parameters we sample the entire parameter space by
running the model with 300 random parameter sets.
The 300 resulting model runs are validated against a
number of soil moisture, runoff and ET datasets, using
several metrics of agreement. This allows us to identify
the best model run, and the corresponding optimal
model parameters in Europe. This methodology
therefore does not rely on uncertain information on
soil and vegetation characteristics, instead it allows us
to estimate hydrological dynamics (i.e. changes over
time) from exclusivelymeteorological forcing.

During extreme events such as heat waves or
droughts soil moisture is particularly important
(Seneviratne et al 2006a, Fischer et al 2007, Lorenz
et al 2010, Hirschi et al 2011, Mueller and Senevir-
atne 2012, Quesada et al 2012). Due to the lack of

observations andmissingmodel-based reference data-
sets many previous studies used proxy information to
replace soil moisture, mostly derived from precipita-
tion. We employ the inferred SWBM dataset to com-
pare anomalies of soil moisture and temperature
during the recent European heat waves in 2003 (cen-
tral Europe) and 2010 (Russia).

2.Methodology

2.1. Simplewater balancemodel (SWBM)
We employ in this study a conceptual hydrological
model to derive soil moisture, ET and runoff from
meteorological information alone. The model was
initially proposed by Koster andMahanama 2012, and
we employ here the version introduced by Orth and
Seneviratne 2013 (referred to asOS13 in the following)
which is adapted to the daily time scale. From the
water balance equation we compute soil moisture
( +wn 1) at the beginning of time step +n 1, using
observed precipitation (Pn) accumulated during time
step n, along with modelled, accumulated ET (En) and
runoff (Qn). ET and runoff are obtained through the
assumption that they depend solely on soil moisture
when normalized with net radiation and precipitation,
respectively:
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where Rn denotes net radiation accumulated during
time step n, λ and ρw are the latent heat of vaporization
and the density of water, respectively, which are used
to scale En to the unit of Rn. Furthermore, cs, α, γ and
β0 are (fitted)model parameters: cs is thewater holding
capacity used to scale wn, α and γ are exponents
determining the shape of the functions and therefore
the sensitivity of runoff and ET to (changes in) soil
moisture in different soil moisture conditions, and β0
indicates the maximum evaporative fraction and
hence reflects the local vegetation characteristics. Note
that the basic concept of runoff and ET formation used
here is well established and is employed in many
similar conceptual models (e.g. Manabe 1969,
Bergström1995).

The SWBM also considers snow through a degree-
day approach with an assumed threshold temperature
of ◦1 C. Snowmelts above this temperature, where the
melting intensity depends linearly on temperature as
determined by a melting parameter. In the OS13
model version, snow is formed from precipitation if
the temperature is below the threshold. In this study,
snow is also assumed to (partly) form if the tempera-
ture is slightly above the threshold; 100%, 50%, 0% of
the precipitation form snow at ° °◦0 C, 1 C, 2 C,
respectively. In case of melting snow we extended the
OS13 model version such that the required energy is
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subtracted from the available net radiation of the par-
ticular day. More details on the model can be found in
the supplementary information (section S1 available
at stacks.iop.org/ERL/10/044012/mmedia).

2.2.Model parameters
We aim to sample the entire parameter space to assess
the maximum possible impact of the parameters on
model results. For this purpose, we employ 300
parameter sets, whereby we choose each parameter
randomly from an meaningful range. This range is
derived for each parameter from a set of values from
observation-based calibration results of the SWBM in
Orth and Seneviratne 2014, where the model is
calibrated in 400 near-natural catchments across
Europe using observed streamflow. To minimize the
impact of outliers we use the 5% and 95% quantile of
the 400 inferred values of any parameter as bounds for
its range. Random values for any parameter are then
derived from 20 equally spaced values that span the
whole derived range of the considered parameter.

For simplicity, each random parameter set is
applied over the whole domain and time period, i.e.
parameter values are constant across Europe and dur-
ing the considered time period 1984-2013. An over-
view of themodel parameters is given in table 1.

2.3. Validation and classification
We perform a comprehensive validation of the model
results derived with each random parameter set with
respect to soil moisture, ET and runoff on the daily
and/or monthly time scale (depending on the

validation dataset, see table 2). We compare the
modelled dynamics (i.e. the time variability) using (i)
seasonal correlations (correlating actual time series)
and (ii) anomaly correlations (correlating time series
after subtraction of the mean seasonal cycle). Further
we validate the absolute values with observational data
through computing (iii) the absolute mean bias and
(iv) the Nash–Sutcliffe efficiency (Nash and Sut-
cliffe 1970, referred to as NSE in the following). In the
case of soil moisture, we only validate the temporal
variability, because absolute soil water content is
highly dependent on model (Koster et al 2009) and
location (Mittelbach and Seneviratne 2012). Please
refer to the supplementary material (section S2 avail-
able at stacks.iop.org/ERL/10/044012/mmedia) for
further information on the validationmetrics.

Note that when performing any validation we
focus on May–October to exclude the freezing period
because during the latter hydrological dynamics
except from snow are low (with consequently limited
impact on climate) and validation measurements may
be erroneous due to ice formation.

In order to determine the best of the 300 random
parameter sets, we rank the corresponding model out-
puts. Ranks are computed against all validation data-
sets, all validation metrics, and at the daily and
monthly time scale, i.e. for each model output we
compute 18 ranks. The model output with the lowest
sum of ranks constitutes the new SWBM hydrological
dataset (see table 1 for corresponding optimal para-
meters). However, note that some other parameter
sets performed almost similarly well.

Table 1. Summary ofmodel parameters.

Parameter Meaning Considered range Optimal value

Water holding capacity cs Maximumwater storage 80–1490mm 971mm

Runoff function exponent α Sensitivity of (normalized) runoff to soilmoisture 0.4–15 10.4

ET function exponent γ Sensitivity of evaporative fraction to soilmoisture 0.03–1.14 1.14

maximumET ratio β0 Maximum fraction of net radiation that can be transformed into ET 0.39–0.99 0.67

Melting parameter Speed of snowmelting 0.15–12 3.9

Table 2.Overview of validation datasets.

Variable Dataset Remark Spatial resolution Time period

Time

resolution Reference

Soil

moisture

Station

observations

Groundmeasurements (see

table S1)

4 Sites in Finland, 5 in

Switzerland, 2 in

Italy

Depends on

site (see

table S1)

daily &

monthly

Dorigo

et al 2011

GRACE Satellite-derived terrestrial water

storage anomalies

∼ 200 km 2003–2012 Approx.

monthly

Swenson and

Wahr 2006

Stream-flow-

calibrated

SWBM

Similarmodel as in this study but

calibratedwith streamflow

400Catchments across

Europe

1984–2007 Daily and

monthly

Orth and

Seneviratne

2013

ET LandFlux-EVAL Combination of several ET data-

sets derived in different ways

1° × 1° 1989–2005 Monthly Mueller

et al 2013

Stream-

flow

Stream-gauge

observa-tions

Set of long-termmeasurements

fromnear-natural catchments

436Catchments across

Europe

1984–2007 Monthly Stahl et al 2010
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We then further validate the performance of this
new SWBM dataset under extreme conditions. For
this purpose we repeat the above-described validation
with only the 10% driest or wettest days/months of the
respective validation dataset. For simplicity, we focus
in the validation of extremes on the anomaly correla-
tion and on the absolute mean bias; corresponding
results for the seasonal correlation and the NSE are
qualitatively similar (not shown).

3.Data

With each random parameter set we run the SWBM
across the European land area (10°W–50°E, 35°N–70°
N) with a 0.5° × 0.5° spatial resolution, and over the
time period 1984–2013. To run the model, we use
precipitation, temperature and net radiation data
(section 2.1). As in OS13, we obtained precipitation
and temperature data from the E-OBS dataset (Hay-
lock et al 2008), whereby we upscaled the precipitation
by 10% to account for the known precipitation under-
catch (Hofstra et al 2009, see section S3 available at
stacks.iop.org/ERL/10/044012/mmedia). Net radia-
tion is obtained from the NASA/GEWEX SRB dataset
(http://gewex-srb.larc.nasa.gov/ (accessed on 28
March 2014)). As this dataset extends only until 2007,
we additionally employ in this study a novel radiation
dataset from the CERES experiment (http://ceres.larc.
nasa.gov/order_data.php (accessed on 28 March
2014)) which extends until 2013. To merge the
datasets seamlessly we scale the SRB data to match the
mean and standard deviation of the CERES data,
separately at each grid point and in each month of the
year. To investigate the impact of the forcing dataset
on the model results we also force the SWBM with
ERA-Interimdata (Dee et al 2011).

As listed in table 3, we employ several reference
datasets as benchmarks for our new SWBMdataset: (i)
ERA-Interim/Land reanalysis (Balsamo et al 2013),
(ii) MERRA-Land reanalysis (Reichle et al 2011),
alongwith (iii) simulations from the Global LandData
Assimilation System Version 2 (GLDAS-2, Rodell
et al 2004) using theNoahmodel (Chen et al 1996) and
(iv) offline simulations of the Community Land

Model Version 4 (CLM4, Oleson et al 2010) forced
with observation-based data.

Moreover we use several validation datasets to
validate and rank the SWBM output created with each
random parameter set (table 2). Depending on the
dataset the validation is necessarily based on different
time periods as well as temporal and spatial resolu-
tions. We compare the modelled soil moisture with (i)
station observations from different climate regimes
throughout Europe (Dorigo et al 2011), (ii) GRACE
terrestrial water storage measurements (Swenson and
Wahr 2006, Landerer and Swenson 2012), and with
(iii) soil moisture derived with a similar version of the
SWBM (OS13, see also section 2.1), but calibrated
locally with streamflow observations (‘SWBM-local’).
The modelled runoff is validated with stream-gauge
observations from 436 catchments with little or no
human impact, distributed across the continent (Stahl
et al 2010). The modelled ET is compared against a
state-of-the-art dataset which is based on a composite
of independent ETdatasets (Mueller et al 2013).

Further details on the forcing and the benchmark
and validation datasets are provided in sections S3
and S4.

4. Results

In this section we introduce the new SWBM dataset,
validate its performance (against the datasets listed in
2), and compare it with benchmark datasets (see
table 3). Note the different spatial resolutions and time
periods associated with each product. Moreover, we
investigate the sources of skill of the SWBM dataset,
and in the latter part we show two example
applications.

4.1. Validation of soilmoisture
In this section we focus on the modelled soil moisture
from the new SWBMhydrological dataset; the seasonal
means are displayed in figure 1. There is a general
gradient from dry soils in southern Europe to wetter
soils innorthernEurope.Themean soilmoisture across
the continent is highest in spring after snow melt and
lowest in summer when ET is highest. Furthermore the

Table 3.Overview of reference datasets.

Variable Dataset Remark Spatial resolution

Time

period

Time

resolution Reference

Soilmoisture, ET,

streamflow

ERA-

Interim/Land

Land

reanalysis

0.25° × 0.25° (Upscaled here

to 0.5° × 0.5°)

1984–2010 Daily and

monthly

Balsamo

et al 2013

MERRA-Land Land

reanalysis

0.67° × 0.5° (Scaled here

to 0.5° × 0.5°)

1984–2012 Daily and

monthly

Reichle

et al 2011

GLDAS-

2-Noah

Land

reanalysis

0.25° × 0.25° (Upscaled here

to 0.5° × 0.5°)

1984–2010 Daily and

monthly

Rodell

et al 2004

CLM4 Offline

simulation

0.5° × 0.5° 1984–2010 Daily and

monthly

−
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seasonal variations are highest in southern Europe,
whereas in north-western Scandinavia there is almost
no soilmoisture change throughout the year.

To investigate the quality of the SWBM soil moist-
ure dataset we compare its performance with the
benchmarks against (i) station observations located

across the continent (see table S1 for the sites and
figure S1 for the performance), (ii) GRACE data
(figure S2) and (iii) with SWBM-local (figure S3)
(available at stacks.iop.org/ERL/10/044012/mmedia).
The overall results are shown in figure 2. We focus on
the SWBM and CLM4 results using E-OBS forcing
here. The SWBM soil moisture compares overall best
with the validation soil moisture products. It generally
outperforms the benchmarks. It always ranks best or
close to the best, despite its conceptual character and
the constant parameters used across the continent. The
results are similar in termsof seasonal and anomaly cor-
relations. The high correlation of the SWBM dataset
with SWBM-local is noteworthy, as it shows that a gen-
eral model calibration achieves reasonable results when
compared with a local calibration, because in contrast
to the present SWBMdataset, SWBM-local is calibrated
oncatchment (i.e. local) scale.

As described in section 2.3, the best SWBM para-
meter set from all 300 parameter sets was selected
based on the lowest sum of ranks against all validation
products. We found that no parameter set performs
best against all validation datasets, which explains why
the red lines in figure 2 lie always slightly below the
best SWBM performance found against a particular
validation dataset.

Figure S4 (available at stacks.iop.org/ERL/10/
044012/mmedia) displays the validation results with
respect to extreme conditions. The performance of both
the SWBM dataset and the benchmarks is degraded
compared to the overall results in figure 2; this is prob-
ably due to the reduced spread in the reduced data sam-
ple usedhere.However, the SWBMdataset still performs
comparativelywell, especially under dry conditions.

4.2. Validation of ET and runoff
The SWBM hydrological dataset also contains ET and
runoff estimates, and their performance is analyzed in
figure 3 (see also figures S5 and S6 available at stacks.
iop.org/ERL/10/044012/mmedia). Also here we focus
on the SWBM and CLM4 results using E-OBS forcing.
The SWBM outperforms the benchmarks in compar-
ison to monthly dynamics of stream-gauge measure-
ments. We find significant dry biases in all runoff
products, leading to lowmean NSE values. The bias in
the SWBMdata ismainly found inmountainous areas,
as shown in figure S5 (available at stacks.iop.org/ERL/
10/044012/mmedia). It is likely due to precipitation
undercatches in the forcing of the hydrological models
in these regions, namely in E-OBS (SWBM, CLM4;
despite the applied 10% upscaling, see section 3) and
ERA-Interim (ERA-Land; although improvedwith data
fromundercatch-corrected precipitationproduct).

As there are no direct large-scale ET observations
available we use the LandFlux-EVAL dataset (Mueller
et al 2013) for validation here which is a composite of
several ET datasets, both observation-based and
model-based. The absolute biases for SWBM and the

Figure 1.Estimatedmean soilmoisture across Europe in all
seasons. Derivedwith the best-performing parameter set.
Note that themaximum soilmoisture is a prescribedmodel
parameter which is constant across the domain.
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benchmarks are much lower and the NSE are clearly
higher as for runoff. The seasonal correlation with the
LandFlux data is very high for all, which is because net
radiation as a main control of ET is used to force the
models. The anomalies, however, aremuch better cap-
tured by the benchmarks. In the SWBM these anoma-
lies are better captured when ERA-Interim forcing is
used. The performance of SWBM(-ERA-Interim) and
of CLM4 are even out of the performance range of all
SWBM(-E-OBS) parameter sets. However, ERA-
Interim and LandFlux-EVAL are both (partly) model-
based, in contrast to E-OBS. Apart from the role of the
forcing dataset these results underline that the bench-
marks are based on more sophisticated and compre-
hensive models that include relevant processes which
are omitted by the SWBM.

As for soil moisture, we repeated the validation
with a focus on extreme conditions. As shown in
figure S7 available at stacks.iop.org/ERL/10/044012/
mmedia, the SWBM dataset outperforms the bench-
marks in the case of runoff, whereas in terms of ET it
has problems capturing dry conditions. We find con-
siderable runoff biases under wet conditions in all pro-
ducts, pointing to low quality of extreme precipitation
in the forcing data.

4.3. Sources of skill
Figures 2 and 3 also allow us to analyze the sources of
skill of the SWBM dataset. We compare the influence
of the parameter set and of the forcing dataset on the
hydrological model performance. The impact of the
parameter set is shown by the gray boxes denoting the
spread of the performance of all random parameter
sets. The role of the forcing dataset can be assessed
from the difference of the solid and dashed horizontal
lines representing the model performance using E-
OBS and ERA-Interim as meteorological forcing data.
The performance of the SWBM and CLM4 is mostly
degraded when using ERA-Interim forcing, except for
the ET dynamics. The spread of the gray boxes is
mostly comparable to the performance difference
associated with the meteorological forcing dataset.
This is an interesting and important finding; themodel
parameters are hence about equally important as the
forcing dataset. Only in terms of absolute ET and
runoff measures, the parameter set seems to be more
important than the forcing dataset.

To disentangle the impact of particular meteor-
ological forcings on the SWBM performance we re-
run all simulations with the 300 parameter sets and
apply randomized forcing, i.e. we shuffled the years

Figure 2.Performance of soilmoisture dynamics from the SWBMdataset (best parameters) and all reference datasets (ERA-Land,
MERRA-Land, GLDAS-2-Noah, CLM4), assessed against several validation datasets (see table 2), shown by horizontal lines. The gray
boxplots denote the range of performance of the SWBMusing all considered 300 randomparameter sets. Results are shown for
monthly and daily data (if available).
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such that any year was replaced with a different year of
the considered period 1984-2013 (colored boxes in
figures S8 and S9 available at stacks.iop.org/ERL/10/
044012/mmedia). The orange boxes refer to results
obtained with modified temperature data, whereas
precipitation and radiation are unchanged. Their
extent and location is very similar to the gray boxes,
suggesting limited impact of the temperature forcing
on the SWBM performance. The red boxes show that
randomized radiation is also of limited importance for
soil moisture and runoff modelling. However, ET
anomalies largely depend on the radiation forcing
which makes sense given the formulation of the
SWBM (equation (2)). The seasonal correlation is less
impacted as seasonal cycle is largely preserved because
we shuffle complete years. The blue boxes finally show
that precipitation strongly impacts the temporal
dynamics of soil moisture and runoff. The anomaly
correlations drop almost to zero, and due to the rela-
tively weak seasonal cycle of precipitation, the seasonal
correlations also drop substantially. The dominant
impact of precipitation across the meteorological for-
cings may also explain the difference of the CLM4 and
SWBM performance when using E-OBS(/WFDEI) or
ERA-Interim. E-OBS benefits from numerous rain
gauge observations, whereas ERA-Interim as a reana-
lysis relies onmodelled precipitation.

In summary, the high quality of the new SWBM
hydrological dataset is therefore mostly supported by
the choice of the best parameter set and the E-OBS
precipitation data.

4.4.Hydroclimatic applications of the newSWBM
dataset
4.4.1. Sensitivity of runoff and ET to soil moisture
Soil moisture may impact runoff and ET (Koster and
Milly 1997, and equations (1) and (2)), which is
particularly important during extreme events such as
heat waves andfloods (see section 1). In this sectionwe
characterize the sensitivity of runoff and ET on soil
moisture in the SWBM dataset. For this purpose we
compute the derivatives of Qn and En in equations (1)
and (2), respectively:

δ
δ

σ=Q w
Q

w
wsensitivity of to ( ), (3)n n

n

n
n

δ
δ

σ=E w
E

w
wsensitivity of to ( ), (4)n n

n

n
n

where we use the parameters of the SWBM dataset.
The resulting sensitivities are expressed in mm, and
they dependmainly on (i) the slopes of normalizedQn

or En versus wn (equations (1) and (2)), (ii) the
meteorological forcing (precipitation or net radia-
tion), and (iii) the variability of soilmoisture, σ w( )n .

The resulting runoff and ET sensitivities are shown
in figure 5. We find contrasting results for northern/
central, and southern Europe. Runoff is generally
more sensitive to soil moisture in northern/central

Figure 3. Similar to figure 2, but for ET and runoff
performance. Results are shown formonthly data only, as
daily data is not available for these datasets (table 2). The
agreement of temporal dynamics is displayed on top (seasonal
and anomaly correlation) and the agreement of absolute
estimates is shown below (bias andNSE).

7

Environ. Res. Lett. 10 (2015) 044012 ROrth and S I Seneviratne

http://stacks.iop.org/ERL/10/044012/mmedia
http://stacks.iop.org/ERL/10/044012/mmedia


Europe, and less in the south, whereas ET is most sen-
sitive to soil moisture there. In the case of runoff this
can be explained with the slope of the normalized run-
off function (equation (1)), which is larger for wet
soils. Especially in spring in north-eastern Europe and
in mountainous areas the soil is generally wet (see also
figure 1), and the precipitation (and/or) snow melt is
high. The strong sensitivity of ET to soil moisture in
southern Europe can be explained with the compara-
tively high net radiation and the stronger soil moisture
variability (as also seen from the seasonal variations in
figure 1).

4.4.2. Soil moisture during recent European heat waves
Many studies have investigated the role of soil
moisture during heat waves. However, due to the lack
of actual soil moisture measurements most of these
studies used modelled soil moisture of unknown
quality (e.g. Fischer et al 2007, Lorenz et al 2010) or
proxy information such as the standardized precipita-
tion index (e.g. Hirschi et al 2011, Mueller and

Seneviratne 2012, Quesada et al 2012). Here we
employ the derived SWBM soil moisture dataset
exemplarily to investigate soil moisture anomalies
during recent European heat waves.

Figure 4 compares (normalized) soil moisture and
temperature anomalies during the well-known heat
waves in Central Europe (August 2003) and in eastern
Europe and Russia (August 2010). In the regions with
the largest temperature anomalies we generally also
find considerable dry soil moisture anomalies. In con-
trast, slightly elevated temperatures are not necessarily
accompanied by dry soils. In line with previous stu-
dies, these results suggest that dry soils are a necessary
(but not sufficient) condition for extreme heat waves
inmany regions of Europe.

5. Conclusions

In this study we introduced a new hydrological dataset
for Europe using a SWBM. The model computes soil
moisture, runoff and ET from observed precipitation,

Figure 4. Soilmoisture fromSWBMdataset and temperature data fromE-OBS during theAugust 2003 andAugust 2010 heat waves in
Europe, expressed as normalizedmonthly anomalies.
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net radiation and temperature. Runoff (normalized
with precipitation) and ET (normalized with net
radiation) are estimated through power-law depen-
dencies on soil moisture. To calibrate the model, we
sample the entire parameter space using observation-
based ranges for each parameter from Orth and
Seneviratne (2014). The resulting model runs are
extensively validated to select the best parameter set
and hence the model run that constitutes the new
SWBM hydrological dataset. The corresponding fitted
runoff and ET dependencies indirectly capture soil
and vegetation characteristics which enables us to omit
any information on land properties. Our analysis
showedmoreover that there is no single perfect model
calibration but many parameter sets performing
similar to the best set, consistent with the concept of
equifinality.

The derived SWBM dataset was extensively com-
pared against state-of-the-art datasets (ERA-Interim/
Land, MERRA-Land, GLDAS-2-Noah, CLM4 simula-
tions) using several metrics to evaluate their agree-
ment with observation-based reference data. We
showed that our SWBM dataset overall outperforms
the benchmarks in terms of soil moisture on the daily
and monthly time scale, using station observations,
GRACE data (Swenson andWahr 2006) and results of
a locally-calibrated SWBM version (Orth and Senevir-
atne 2014) as references. This is a remarkable result
given the conceptual character of the SWBM model
and the fact that it is used with uniform parameter
values across the continent. For runoff and ET we use
stream-gauge measurements and LandFlux-EVAL
data (Mueller et al 2013) as reference, respectively, and
we perform the analysis on the monthly time scale
only. In terms of runoff dynamics (i.e. changes over

time) the SWBM dataset outperforms the bench-
marks. However, we find a significant dry bias in
mountainous areas in all three datasets. For ET, the
biases in all datasets are much smaller and NSE are
higher, but the performance of the SWBM dataset is
weaker compared to that of the benchmarks. Whereas
this might be partly due to the forcing dataset, it also
indicates that the models used to derive the bench-
mark datasets are more comprehensive such that they
capture more relevant processes. We additionally per-
formed the validation for extreme (dry or wet) condi-
tions and find again comparatively good performance
of the SWBM dataset in terms of soil moisture and
runoff, especially under dry conditions. Also its defi-
ciencies in terms of ET are found under extreme
conditions.

Moreover we investigated the sources of skill of the
SWBM dataset. Comparing the influence of the para-
meter set with the importance of the meteorological
forcing dataset (E-OBS (Haylock et al 2008) versus
ERA-Interim (Dee et al 2011)) we find a similar
impact on the SWBM performance. These results
point out the importance of high-quality input data
for hydrological modelling, besides a reasonable
model calibration, as also reported by e.g. Beven 1989,
Koster et al 2011 and Orth et al 2014 (for the HBV
model). We also compared the role of the particular
meteorological forcings, we identified that precipita-
tion has by far the strongest impact on the SWBM soil
moisture and runoff results, confirming earlier studies
(e.g. Orth and Seneviratne 2014). In contrast, mod-
elled ET ismost sensitive to radiation in Europe.

The derived new SWBMdataset is useful for a wide
range of applications. We exemplarily employed this
dataset to show the strong dry soil moisture anomalies

Figure 5. Sensitivity of runoff and ET to soilmoisture (equations 3 and 4) in the SWBMdataset. Results displayed for all seasons
(except winter), together with themean thereof.
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associated with the 2003 (central Europe) and 2010
(western Russia) heat waves. Furthermore the runoff
and, despite its weaker performance, the ET dataset
are useful as a complement for studies requiring con-
sistent and comprehensive hydrological data. How-
ever, there are limitations to the SWBMdataset, even if
it performs generally well against the considered
benchmarks. It is based on a conceptual model with
uniform parameters, which might lead to problems
e.g. over complex terrain. And even though the simple
nature of themodel allows us to sample its entire para-
meter space and to infer an optimal calibration, it can-
not replacemore sophisticatedmodels that (explicitly)
account for the complex relationships operating in
nature to produce more comprehensive results, in
particular across different climate regimes and under
changing climate conditions. As their calibration is a
challenging task, the SWBM dataset may serve as a
benchmark in the future.

Dataset distribution

The SWBM hydrological dataset derived with E-OBS
forcing data can be downloaded from www.iac.ethz.
ch/url/SWBM-Dataset.
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