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targeted analysis of polymorphic 
loci from low-coverage shotgun 
sequence data allows accurate 
genotyping of HLA genes in 
historical human populations
federica pierini1,3, Marcel nutsua2, Lisa Böhme2, Onur Özer1, Joanna Bonczarowska2, 
Julian Susat2, Andre franke2, Almut nebel2, Ben Krause-Kyora2 & tobias L. Lenz1 ✉

the highly polymorphic human leukocyte antigen (HLA) plays a crucial role in adaptive immunity and 
is associated with various complex diseases. Accurate analysis of HLA genes using ancient DnA (aDnA) 
data is crucial for understanding their role in human adaptation to pathogens. Here, we describe the 
tARGt pipeline for targeted analysis of polymorphic loci from low-coverage shotgun sequence data. 
the pipeline was successfully applied to medieval aDnA samples and validated using both simulated 
aDNA and modern empirical sequence data from the 1000 Genomes Project. Thus the TARGT pipeline 
enables accurate analysis of HLA polymorphisms in historical (and modern) human populations.

The classical human leukocyte antigen (HLA) genes play a central role in adaptive immunity. They encode for 
glycoproteins that present antigenic peptides on the cell surface for recognition by immune effector cells, thus 
enabling the immune system to distinguish between ‘self ’ and ‘non-self ’, eventually stimulating a specific immune 
response1. Owing to their implication in hundreds of different complex diseases2,3, but also because of their 
importance in human evolution4,5, HLA molecules have been extensively studied over the past decades.

HLA genes are among the most polymorphic loci known in the human genome1,2. At the molecular level, HLA 
genetic diversity is characterized by a remarkable amino acid sequence diversification6,7 as well as an enhanced 
rate of non-synonymous substitutions8 in the antigen binding groove of HLA molecules (i.e. the pocket where 
antigens are bound). The specific polymorphism patterns in the exons coding for the antigen binding groove 
define the several thousands of different alleles found at the classical HLA genes9. A complex official nomencla-
ture has been defined for HLA to characterize the extent of its polymorphism. According to this nomenclature, 
alleles of an HLA gene are defined by the gene name indicating the locus (e.g. HLA-A, -B, -C, -DRB1, -DQB1, 
-DPB1), followed by a hierarchical numbering system9. The 1st field (formerly 2-digit level) defines groups of 
related alleles. The 2nd field (4-digit) separates alleles within 1st field groups that differ in their protein sequence. 
Finally, the 3rd and 4th fields define alleles harboring synonymous exonic and non-coding variations, respectively. 
Additionally, the G-group nomenclature has been introduced in order to merge alleles that have the same nucleo-
tide sequence along the antigen-binding groove and differ in their sequence only outside the groove, thus binding 
the same repertoire of antigenic peptides.

Past and ongoing pathogen-mediated selection is proposed to be one of the major factors affecting genetic 
variability at HLA genes8,10,11. In addition, HLA genes are associated with various complex genetic disorders in 
contemporary humans2, suggesting a link between historical selection by infectious agents and present preva-
lence of genetic disorders12,13. The recent development of genomic tools for the analysis of ancient DNA (aDNA) 
provides a unique opportunity to unravel the trajectories of alleles associated with human adaptations to newly 
introduced or co-evolving pathogens14,15. In particular, the investigation of ancient HLA genes in historical pop-
ulations could shed light on the molecular signatures associated with pathogen-mediated selection and promote 
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the identification of the exact targets of selection. Thus, reliable genotyping of the HLA genes in ancient samples 
is crucial to answer unresolved questions ranging from human genetics to evolutionary medicine. However, the 
high density of SNPs16 as well as the paralogous organization17 of the HLA genes makes their appropriate char-
acterization extremely difficult. Because of the nature of such polymorphisms, SNP-based approaches have very 
limited applicability, while available NGS-based analysis pipelines rely on deep and homogeneous coverage, as it 
is readily available from modern DNA samples. DNA molecules extracted from skeletal remains, in contrast, are 
usually heavily fragmented and degraded through chemical modifications18, hence, sufficient genomic coverage 
of the endogenous DNA can hardly be obtained, adding a further layer of complexity to reliable allele calls within 
the HLA region. The fragmentation of the aDNA also prevents any of the primer-based amplification approaches 
(e.g. SSO or SSP) that are commonly used in clinical settings. Thus, to our knowledge, none of the existing HLA 
genotyping tools have been proved to be suitable for aDNA samples. In this light, the development of an accurate 
HLA genotyping method applicable to aDNA samples is a prerequisite for studying the evolution of human resist-
ance or susceptibility to pathogens in historical populations.

Here we present a novel aDNA-optimized analysis pipeline for low-coverage and low-quality shotgun 
sequence data, which we call ‘TARGT’ (Targeted Analysis of sequencing Reads for GenoTyping). The pipeline 
automatically identifies and sorts target-specific sequence reads from any kind of shotgun short-read sequence 
data. In principle, it can be used to analyze any targeted region in the genome, but was here applied to the HLA, 
the most polymorphic genes in the human genome. To identify the specific HLA allele combinations of an indi-
vidual, the TARGT pipeline combines automated read selection and sorting, with highly repeatable semi-manual 
filtering and HLA allele identification at up to 3rd field (6-digit) resolution (Fig. 1). After pre-processing and 
quality control, sequence reads from genomic shotgun sequencing are aligned against a comprehensive reference 
file containing the exon sequences coding for the peptide-binding groove of all known classical HLA gene vari-
ants: class I (HLA-A, HLA-B, HLA-C) and class II loci (HLA-DRB1, HLA-DRB3/4/5, HLA-DQA1, HLA-DQB1, 
HLA-DPA, HLA-DPB1). The TARGT pipeline is highly versatile; indeed, this step could be adapted and used to 
target any gene or polymorphic region in the genome by providing a corresponding reference sequence for read 
selection. Mapped reads are then grouped by gene specificity, and saved into sample- and gene-specific FASTA 
files. Using a sequence alignment software, the FASTA files can be manually analyzed to genotype individual 
samples.

While the TARGT pipeline can be applied to any kind of shotgun sequence data, we here present it in combi-
nation with a targeted DNA capture approach to analyze HLA polymorphisms in a comprehensive set of historical 
human samples. Target-enrichment by hybridization, also known as DNA capture, is one of the most widely used 
approaches for sequencing aDNA, because of its efficiency in increasing the sequence coverage of the endogenous 
DNA fraction19–22. In this work, we used a customized DNA capture approach previously developed for modern 
DNA and based on sequence information from 8,159 known HLA alleles (available at the IMGT/HLA data-
base9)23, to enrich a set of DNA libraries from medieval Europeans for the most polymorphic classical HLA class 
I (HLA-A, -B, -C) and class II (HLA-DRB1, -DQB1, -DPB1) genes. A subset of the obtained HLA class II data has 
already been analyzed previously in the context of medieval leprosy, yielding a leprosy-associated HLA-DRB1 
risk allele24. We here assessed the general success of the HLA target-enrichment approach and the overall per-
formance of the TARGT pipeline for both HLA class I and class II genes in the medieval European samples. We 
then employed a number of different and independent approaches to evaluate the accuracy of the pipeline in 
producing HLA genotypes. This evaluation includes a comparison with the independent HLA genotyping algo-
rithm OptiType (only available for class I genes, and so far only tested on modern DNA data), with PCR-based 
results from a specific tag-SNP, and with simulated aDNA sequence data with known HLA alleles. Finally, we 
explored whether the TARGT pipeline, initially developed for aDNA sequence data, can also be applied success-
fully to shotgun sequence data from modern populations. For this we applied our approach to a subset of the 1000 
Genomes Project samples, for which HLA typing has been performed previously25. The TARGT pipeline is freely 
available for download from SourceForge (https://targt-pipeline.sourceforge.io/).

Results
Success of the HLA target-enrichment for historical samples. One of the main purposes of this work 
was the accurate genotyping of HLA genes in aDNA samples. Thus, a previously described dataset of sixty-eight 
samples collected from the medieval cemetery of St. Jørgen (Denmark) was used to assess the success of a HLA 
target-enrichment approach and the subsequent performance of the TARGT pipeline. Owing to different post 
mortem degradation processes over time, DNA molecules retrieved from ancient organisms hold a high level of 
base pair modifications. Such DNA damages are the source of incorrect incorporation of nucleotides during DNA 
amplification, and might cause false SNP calling during the final step of sequencing data analysis. The majority 
of damage-derived miscoding lesions in aDNA sequences are caused by deamination of cytosine into uracil26–28. 
To reduce the rate of ancient DNA errors, treatment with uracil DNA glycosylase and endonuclease VIII (USER 
mix) is commonly used during library preparation, which generates and cleaves out abasic sites at deaminated 
cytosines29. Having a minimized amount of miscoding lesions, UDG-treated libraries, can lead to higher accuracy 
of aDNA sequences, and are thus more reliable for downstream population genetic analysis. On the other hand, 
non-UDG-treated libraries are commonly used to verify ancient DNA authenticity through the investigation of 
aDNA features like DNA fragmentation and the above described nucleotide misincorporation patterns27. We 
thus performed shotgun sequencing on both UDG-treated and non-UDG-treated libraries for the whole set of 
sixty-eight individuals. To assess the ancient origin of DNA sequences, the resulting shotgun sequencing data 
were aligned against the H. sapiens reference genome hg38 and postmortem DNA damage signatures evaluated 
using mapDamage v2.0.6.30. The analysis of damage patterns in the final nucleotide of the sequenced fragments 
revealed misincorporation frequencies of up to 2.6% in UDG-treated and up to 21.9% in non-UDG-treated data-
sets (Tables S1 and S2). This confirmed that most of the reads mapping to the human reference originate from 
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aDNA fragments. The degree of DNA fragmentation was also explored to further authenticate ancient DNA. The 
average length of DNA fragments in UDG-treated datasets ranged from 47 to 101 bp (Table S3).

In response to the fragmentation and low concentration of endogenous DNA from ancient samples, hybridi-
zation capture-based target enrichment can be used to improve the yield of DNA molecules for a specific region 
of interest. An HLA target-enrichment approach was thus applied to the UDG-treated libraries, from here on 
defined as HLA-enriched UDG libraries, to investigate the highly polymorphic classical HLA class I (HLA-A, 
-B, -C) and class II (HLA-DRB1, -DQB1, -DPB1) genes. To evaluate the performance of the capture approach, 
endogenous DNA content, fold-enrichments as well as average coverage and read depth over the HLA genes were 
quantified on both original UDG libraries and HLA-enriched UDG libraries for a subset of 62 samples (library 
comparison for six samples was not possible because of technical problems unrelated to the data quality). The 
number of reads mapping to the human reference genome ranged from 56,925 to 137,542,840 when consid-
ering the original UDG libraries and from 244,945 to 74,490,774 when considering the HLA-enriched UDG 
libraries (Table S4). The corresponding median endogenous DNA content calculated over the whole set of sam-
ples was significantly higher for the HLA-enriched UDG libraries (36%) than for original UDG libraries (14%) 
(Mann-Whitney, p < 0.001; Fig. 2A and Table 1). The number of reads mapping to the HLA reference ranged 
from 0 to 8,452 for the original UDG libraries and was higher when considering HLA-enriched UDG libraries, 
ranging from 359 to 225,013 (Table S4). Consequently, the % of reads aligning to HLA genes calculated over the 
whole set of samples differed significantly between original (median: 0.0001%) and HLA-enriched UDG libraries 
(median: 0.1210%) (Mann-Whitney, p < 0.001; Fig. 2B and Table 1). Overall, the HLA enrichment approach 
performed on the historical samples yielded from 3 to 13,596-fold increases of HLA target sequences compared 
to the pre-capture condition i.e. the original shotgun sequence data (Table S4). Consistently, the coverage over 
the HLA genes calculated across the whole set of samples was significantly higher after the enrichment approach 
(median: 96%) compared to the original shotgun sequence data (median: 9%) (Mann-Whitney, p < 0.001; 
Fig. 2C and Table 1; for calculation at individual HLA loci see Figure S1 and Tables S5 and S6). Similarly, the 
read depth quantified for the whole set of samples was significantly lower when considering the UDG shotgun 
libraries (median: 0.2×) compared to read depth achieved after the HLA target enrichment (median: 17.4×) 
(Mann-Whitney, p < 0.001; Fig. 2D and Table 1; for calculation at individual HLA loci see Figure S2 and Tables S5 
and S6).

Genotyping of the HLA genes in historical samples. To call HLA genotypes from the aDNA sam-
ples, all the sequence data generated from UDG-treated libraries were combined for each sample and processed 
through the TARGT pipeline. The TARGT pipeline allows HLA allele identification at up to 3rd field (6-digit) 
resolution; however, as most HLA typing tools and HLA genetic studies rely on 2nd field resolution, we are here 
only reporting results up to this level. Furthermore, when limited read coverage did not allow for 2nd field reso-
lution, usually because several alleles of the same 1st field allele group were equally well supported, the allele call 
was rounded to that level of resolution (1st field) (Table S7). Of the 136 alleles (2n) investigated at each locus, we 
were able to call at 1st field level 83 alleles for HLA-A, 75 alleles for HLA-B, 74 alleles for HLA-C, 83 alleles for 
HLA-DRB1, 96 alleles for HLA-DQB1, and 46 alleles for HLA-DPB1. Of these, the allele call reached the 2nd 
field resolution for 45 alleles for HLA-A, 49 alleles for HLA-B, 11 alleles for HLA-C, 58 alleles for HLA-DRB1, 
79 alleles for HLA-DQB1, and 46 alleles for HLA-DPB1 (Table 2). The success rate calculated across the whole 
dataset of ancient samples was 56% at the 1st field level and 35% at 2nd field level (for values at each locus see Fig. 3 
and Table 3). As expected, a significant positive correlation between coverage and success rate (1st field, Kendall 
τ = 0.76, p < 0.001; 2nd field τ = 0.76, p < 0.001; Figure S3) as well as between read depth and success rate (1st 
field, τ = 0.75, p < 0.001; 2nd field τ = 0.75, p < 0.001; Figure S4) was observed, indicating a considerable effect of 

Figure 1. Different steps performed by the TARGT pipeline for HLA genotyping of ancient and modern 
samples. Preprocessing (optional): after quality control, genomic sequences are pre-processed (adapter clipping, 
merging and trimming) using ClipAndMerge (version 1.7.3) from the EAGER pipeline55. Mapping: performed 
using Bowtie249 against a comprehensive reference file, containing known 3rd field HLA alleles (following 
G-group nomenclature). Sorting: mapped reads are grouped by gene specificity and saved into gene-specific 
FASTA files. HLA genotyping: Sample-specific FASTA files are manually analyzed using BioEdit50 to genotype 
HLA genes in ancient and modern samples.
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DNA preservation on allele call success. These associations can explain some cases where poor DNA quality and 
thus read coverage did not allow for more precise allele calls (Tables 2 and S7). Notably, we found no evidence for 
more than two alleles at any locus, supporting the notion that the vast majority of DNA fragments in each sample 
originate from a single individual. These results, together with the examination of misincorporation frequencies 
and average length of DNA fragments shown above, indicate that the human DNA analysed in each sample is 
likely to be endogenous.

Figure 2. Performance of HLA target-enrichment experiments. Comparison between the median values of (A) 
endogenous DNA content (B) percentage of reads aligning to HLA genes (C) average HLA coverage and (D) 
average HLA read depth calculated across a subset of 62 aDNA samples before and after performing the HLA 
enrichment experiments. Significant differences between median values, as derived from Mann-Whitney test, 
are indicated by horizontal line and asterisks (***p < 0.001). Box plots show median, interquartile range, min-
max whiskers and outliers.

Sequence data Min Max Median (95% CI)

endogenous [%]
original 1 76 14 (8–25)

HLA-enriched 2 88 36 (24–42)

reads aligning to HLA genes [%]
original 0.00 0.02 0.00 (0.00–0.00)

HLA-enriched 0.00 0.39 0.12 (0.05–0.17)

average HLA coverage [%]
original 0 93 7 (5–13)

HLA-enriched 2 100 97 (94–99)

average HLA read depth (x-fold)
original 0.00 3.98 0.14 (0.11–0.22)

HLA-enriched 0.12 472.62 18.00 (9.68–68.95)

Table 1. Performance of HLA target-enrichment experiments. Endogenous DNA content (%), percentage of 
reads aligning to HLA genes (%), average HLA coverage (%) and average HLA read depth (x-fold) compared 
between pre-capture shotgun sequence data (original) and sequence data after HLA enrichment experiments 
(HLA-enriched) obtained from a subset of 62 historical samples.
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Because of the high level of linkage disequilibrium (LD) within the HLA region, it has been shown that certain 
SNPs outside the classical HLA genes are informative about HLA types. Such ‘tag SNPs’ are commonly used to 
test for association between HLA alleles and disease susceptibility. One example is the T allele at the SNP locus 
rs3135388, known to be in almost complete LD with the HLA-DRB1*15:01 allele in individuals of European 
(CEU) ancestry31. As reported in the previous study on the sixty-eight medieval samples, this SNP was assayed 
by PCR and the genotyping results compared to the DRB1*15:01 allele calls obtained with the TARGT pipeline24. 
The study showed perfect correspondence between the tag SNP allele rs3135388-T and the TARGT-based allele 
calls for the allele DRB1*15:01 where 2nd field allele resolution could be achieved (N = 13), and also with the 
DRB1*15 call in samples where only the broader 1st field resolution was possible (N = 20, Table S8). That previous 
study also revealed an interesting observation regarding the specific haplotype structure of the HLA region. Due 
to the fragmented nature of aDNA, and also due to a lack of intergenic sequence information in the original bait 
panel of the target capture approach, the haplotype structure of the HLA region cannot be resolved reliably from 
aDNA. However, the previous study clearly showed a co-occurrence between the allele DRB1*15:01 and the allele 
DQB1*06:02 (Table S7), suggesting a strong LD between these two loci24.

HLA class i allele call comparison with optitype. To our knowledge, OptiType32 is currently the only 
HLA genotyping algorithm for which testing of both read depth and read length on prediction accuracy has 
shown that allele calls appear reliable even for sequence data containing short reads or only a 10x average read 
depth over the HLA class I loci32. These features make OptiType potentially suitable for studying HLA genes from 
aDNA. However, the algorithm has not been explicitly tested or validated for aDNA and is currently available 
only for the typing of HLA class I genes. Nevertheless, this tool presently appears to be the only available method 
to compare with our TARGT pipeline. Thus, to validate our allele calls with an independent approach, a random 
subset (N = 39) of the historical samples were analyzed using OptiType32 v1.3.1, and HLA class I genotype infor-
mation compared with allele calls from the TARGT pipeline. As OptiType was not designed for low quality data 
such as usually obtained from aDNA, it has no built-in minimum threshold for data quality, and thus always calls 

HLA-A HLA-B HLA-C HLA-DRB1 HLA-DQB1 HLA-DPB1

1st field 83 75 74 83 96 46

- of these 2nd field 45 49 11 58 79 46

NA (no call possible) 53 61 62 53 40 90

Table 2. Locus-specific allele call success for the 68 historical samples. Number of alleles called at the 1st field 
level and at the 2nd field level of resolution reported for each locus (2n = 136) for the 68 historical samples.

Figure 3. HLA allele call success rate for 68 historical aDNA samples. Percentage of alleles called at each 
individual HLA locus calculated for the whole set of historical samples (N = 68). Allele calls are reported at 
two different level of resolution 2nd field (4-digit) and 1st field (2-digit) levels. ‘No call possible’ represents the 
fraction of cases where the allele call was not possible or allele calls were ambiguous.

HLA-A HLA-B HLA-C HLA-DRB1 HLA-DQB1 HLA-DPB1 Overall

Success 1st field (%) 61 55 54 61 71 34 56

Success 2nd field (%) 33 36 8 43 58 34 35

Table 3. Success rate for the 68 historical samples. Success rate at the 1st field level and at the 2nd field level of 
resolution, across the 6 investigated genes and overall, for the whole dataset of historical samples.
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two alleles for a given HLA gene, no matter how spurious the sequence information. For some of the ancient 
samples, the TARGT approach indicated that low DNA yield and quality, and correspondingly low read coverage, 
made reliable allele calls impossible at some or all of the investigated HLA genes (Tables S5 and S7). This could be 
confirmed by visual inspection of the read coverage at the target HLA genes, but OptiType nevertheless produced 
allele calls also in these cases. However, as it uses the same shotgun sequence data, the reliability of OptiType 
allele calls are likely to suffer similarly from such data limitations. We therefore excluded those instances from the 
comparisons, as we were not able to estimate the accuracy of OptiType.

Dividing the number of alleles with identical call in the two approaches by the number of total alleles called, 
we observed that the two approaches agreed in 93% of the calls. This high agreement rate lends further support 
to our genotyping approach (Table S9). The number of called alleles that differed between the two approaches 
(TARGT vs. OptiType) was 12 (7% of all called alleles). One advantage of the TARGT pipeline is that it allows 
for visual inspection of the supporting sequence reads underlying each allele call. We thus went back to those 
conflicting allele calls in order to explore the read support for one or the other call. In 5 out of the 12 cases, we 
found support for our allele call but no support for the call by OptiType. In contrast, in 4 out of the 12 cases, we 
could not confirm the calls from our approach, but found supporting reads for the allele call by OptiType. In the 
last three instances, we found that the two different allele calls by the two approaches were both supported and we 
could not resolve the right allele (Table S9). Note that this evaluation does not include the allele calls by OptiType 
made with spurious low-quality read data, which are likely to have a significantly higher error rate. Thus, while 
our approach has a lower success rate in the allele call compared to OptiType, it is likely providing a higher accu-
racy by avoiding low quality/confidence allele calls. Unfortunately, it is impossible to evaluate this point in more 
detail as no alternative method is available to obtain the ‘true’ HLA genotypes of ancient samples.

HLA molecular profile of the historical St. Jørgen samples. As the HLA class II data of these samples 
have been characterized already in a previous study24, we here focus on describing the allele frequency distribu-
tions at HLA class I genes (-A, -B and -C; reported in Tables S10 and S11). Twelve distinct allele groups (‘lineages’) 
at 1st field level of resolution were observed for HLA-A. The A*02 lineage comprises 31% of the total allele pool, 
with the most common allele A*02:01 seen at a frequency of 0.244. The second most common linage is A*03, 
with the most common allele A*03:01 also found at a frequency of 0.244. The next two more common linages 
are A*01 and A*24, for which the most common alleles are A*01:01 (f = 0. 156) and A*24:02 (f = 0.133). The 
others linages (A*26, A*68, A*11, A*32) are found at frequencies of lower than 10%; while the linages A*29, 
A*30, A*31 and A*36 as well as the alleles A*02:06, A*31:01, A*32:01 are present as singleton copies. A total of 
sixteen distinct 1st field level allele lineages were observed at the HLA-B locus, four of which (B*07, B*15, B*44 
and B*08) were found at frequencies of greater than 10%. The most common 2nd field HLA-B alleles are B*07:02 
(f = 0.204), B*08:01 (f = 0.122), B*40:01 (f = 0.122) and B*44:02 (f = 0.122). The lineage B*42 and the alleles 
B*27:05, B*35:01, B*35:03, B*45:01, B*55:01 and B*56:01 are found as singleton copies. At the HLA-C locus, 
a total of eleven distinct lineages at 1st field level of resolution were observed. The three most common lineages 
(C*07, C*03 and C*04) comprise together over 70% of the total allele pool. The 2nd field level allelic resolution at 
HLA-C locus was lower as compared with HLA-A and –B loci, nevertheless a total of five distinct 2nd field level 
alleles were found, with the allele C*07:01 being the most common subtype.

A likelihood ratio test, implemented in Pypop33, was used to test the significance of observed linkage dis-
equilibrium (LD) between any two loci (Table S12). The analyses were performed removing individuals with 
NA at all loci while keeping only allele calls that reached the 2nd field level of resolution. As expect from mod-
ern day genetic data, for which high LD has been documented in the HLA region34–36, strong linkage signals 
were also revealed for the historical samples, both within class I and class II as well as between class I and class 
II loci (Table S12). Locus HLA-A showed significant associations with locus HLA-B (D’ = 0.804; Wn = 0.844), 
HLA-C (D’ = 1; Wn = 1), HLA-DRB1 (D’ = 0.703; Wn = 0.755) and HLA-DQB1 (D’ = 0.764; Wn = 0.709), while no 
global LD was observed with the HLA-DPB1 locus. Locus HLA-B showed nonrandom associations with all loci: 
HLA-C (D’ = 0.833; Wn = 0.829), HLA-DRB1 (D’ = 0.882; Wn = 0.775), HLA-DQB1 (D’ = 0.877; Wn = 0.772) and 
HLA-DPB1 (D’ = 0.829; Wn = 0.823). Global LD was revealed also between HLA-C and HLA-DRB1 (D’ = 0.833; 
Wn = 0.882) and between HLA-C and HLA-DQB1 (D’ = 0.875; Wn = 0.913). A particularly strong associations 
was observed between the two adjacent HLA class II loci HLA-DRB1 and HLA-DQB1 (D’ = 0.984; Wn = 0.883), 
while no global LD between the DP locus and the other class II genes were found. Two- and three-locus haplo-
type frequencies were estimated using the expectation-maximization algorithm. We confirmed the presence of 
the previously described class II haplotype DRB1*15:01-DQB2*06:0224, found at a frequency of 27%. Further 
common haplotypes were B*07:02-DRB1*15:01 (f = 0.267) and B*07:02-DQB1*06:02 (f = 0.222), suggesting the 
presence of an extended class I-II haplotype, B*07:02-DRB1*15:01-DQB1*06:02 (f = 0.286). Further extended 
haplotypes were also observed at appreciable frequencies: A*02:01-DRB1*15:01-DQB1*06:02 (f = 0.125) and 
B*08:01-DRB1*03:01-DQB1*02:01 (f = 0.143). Several other common two- and three-locus haplotypic associa-
tions were observed and are reported in Table S13.

tARGt pipeline validation on simulated aDnA samples and detection of unknown HLA 
alleles. To assess the efficacy of the TARGT pipeline, we applied it to simulated aDNA sequence data with 
different read depth levels. Instead of downsampling available human genome data to match the ancient DNA 
read depth at HLA loci, we took advantage of the gargammel package, a software that can simulate ancient DNA 
fragments from provided genome sequences37. This approach allowed us to consider how both typical aDNA 
fragmentation and damage pattern can affect reliable allele calls at HLA genes, to verify if and how performance 
declines with lower read depth, and also to test for the detection of unknown HLA alleles. Seven haplotypes with 
known but distinct HLA-B and -DRB1 alleles were artificially generated and combined in six different ‘diploid’ 
combinations (Table S14). Using the program gargammel37, typical aDNA fragmentation and damage patterns 
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were introduced in the sequences and the TARGT pipeline tested for increasing read depth from 1x up to 60×, 
for a total of 30 simulated ancient samples. The HLA allele calls from the TARGT pipeline (here only run on the 
artificially varied genes HLA-B and HLA-DRB1) were compared to the original known HLA genotypes. If allele 
calls were not possible, we reported ‘NA’. Allele calls naming several equally well matching 1st field allele groups 
were considered ambiguous and also reported as ‘NA’. The success rate, defined as the proportion of times an 
allele call was possible with our approach across the different samples and read depth levels, was 71% at the 1st 
field level and 57% at the 2nd field level (Table 4). Whenever a call was possible, the allele calls were correct, thus 
we observed an accuracy rate of 100% for both the 1st field and 2nd field levels (Table 4). However, the 30 ancient 
simulated samples varied considerably in read depth (from 1× up to 60×), and as expected, the success rate 
was significantly positively correlated with the read depth. Association between read depth and success rate was 
observed at both the 1st field and 2nd field levels (Figs. 4 and S5). As the entire set of simulated ancient samples 
where homogeneous in terms of coverage (i.e. the proportion of covered sites at each locus) we could not test 
its effect on HLA allele calls in simulated aDNA samples. Intriguingly, we observed that 1st field allele calls were 
possible already at 1× read depth, while allele calls at 2nd field resolution were obtained starting from a read depth 
of 5×(Fig. 4). Notably, for some samples the resolution of HLA alleles was not possible even at moderate read 
depth (30×), underlining that allele call success does not depend exclusively on read depth. Indeed, the specific 
combination of alleles at each genotype can significantly affect the success in calling the HLA alleles. For instance, 
highly similar alleles that differ only by a few nucleotides would not be resolved even in samples with high read 
depth, if those few nucleotide positions happen to not be covered by any read. On the other hand, if a particular 
region that differentiates the two alleles is covered by only a few reads, an accurate allele call might be possible 
even if the rest of the gene is not covered at all. We further tested if the TARGT pipeline can detect unknown 
alleles, such as HLA alleles that were present in human history but no longer exist in modern populations, or 
extremely rare alleles that are not represented in the HLA reference database. To do so, we introduced three point 
mutations in two out of the seven artificially generated haplotypes. All of them were well detected starting from 
a read depth of 5× (Table S14). These results confirm that the mapping of shotgun sequence reads to a reference 
file containing known HLA alleles, an inherent component of the TARGT pipeline, does not prevent the detection 
of novel alleles.

Pipeline validation on 1000 Genomes Project samples. The TARGT pipeline was initially developed 
with the aim to define HLA alleles from aDNA sequence data. However, since shotgun low-coverage resequencing 

HLA-B HLA-DRB1 Overall

Success 1st field (%) 62 80 71

Success 2nd field (%) 50 64 57

Accuracy 1st field (%) 100 100 100

Accuracy 2nd field (%) 100 100 100

Table 4. Success rate and accuracy rate for simulated ancient DNA samples. Success and accuracy rate of HLA 
allele calls, at the 1st field level and at the 2nd field level of resolution, across the 2 investigated genes and overall, 
for the simulated ancient samples.

Figure 4. HLA allele call success rate for the simulated ancient samples. Percentage of allele calls calculated 
across the two investigated loci (HLA-B and HLA-DRB1) and across the set of samples (N = 6) investigated at 
different read depth (from 1x up to 60×) for a total of 30 simulated ancient samples. Allele calls are reported at 
two different levels of resolution, 2nd field (4-digit) and 1st field (2-digit). ‘No call possible’ represents the fraction 
of cases where the allele call was not possible or allele calls were ambiguous.
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of modern population samples is becoming more and more common, our pipeline might also be useful in that 
context. In order to test whether the TARGT pipeline can also be successfully applied to shotgun sequence data 
from modern populations, we genotyped the classical HLA genes in a diverse subset of individuals from the 1000 
Genomes Project, for which HLA genotype information has previously been published (N = 31; Tables S15–S17). 
The majority of the allele calls obtained through the TARGT pipeline were consistent with the ones obtained 
through independent PCR-based genotyping in Gourraud et al.25, as evidenced by the high agreement rate of 96% 
(Tables S16–S18). The total number of called alleles that differed between the two approaches was five (4%). After 
careful inspection of the available read data, we found supporting evidence for the allele call by Gourraud et al. in 
three out of the five cases. In contrast, in two of the five cases, the data did not support the call by Gourraud et al. 
but instead clearly confirmed our allele calls, showing that the TARGT pipeline can rectify erroneous calls from 
PCR-based HLA genotyping. The success rate for allele calling obtained with the TARGT pipeline was 100% at 
the 1st field level and 90% at the 2nd field level. Indeed, the majority of the called alleles could be defined at the 3rd 
field level, using the G-group nomenclature (Table S18). When looking at individual loci, a higher success rate 
was achieved for allele calls at the HLA-DRB1 locus compared to HLA-B (Table 5). The accuracy rate of the called 
alleles was 99% at 1st field (2-digit) resolution, and 97% at 2nd field (4-digit) resolution. Also in this case, higher 
accuracy was obtained for the allele calls at the HLA-DRB1 locus in comparison to the HLA-B, at both 1st field 
and 2nd field resolution (Table 5).

Discussion
The investigation of HLA genes in ancient and modern human populations is of great interest to answer unsolved 
questions in the fields of biomedicine and evolutionary biology. As independent targeted HLA genotyping is 
very costly, the possibility to obtain HLA genotypes from the low-coverage shotgun sequence data that is now 
routinely generated in population genomic studies would be highly advantageous. We therefore present here the 
novel TARGT pipeline for HLA genotyping from low-quality shotgun data, and evaluate its accuracy for ancient 
and modern DNA samples. The pipeline can be applied directly to shotgun sequence data or can be combined 
with a target enrichment approach.

Widely used in the aDNA field, the target-enrichment approach can effectively recover endogenous DNA 
fractions of interest, targeting SNPs38,39, whole chromosomes21,40, mitochondrial19,41,42 or nuclear genomes20,22,43,44.

We here applied a customized DNA capture approach23 to enrich a defined set of sixty-eight aDNA libraries 
for the classical HLA class I (HLA-A, -B, -C) and class II (HLA-DRB1, -DQB1, -DPB1) genes. Endogenous DNA 
content, percentage of reads aligning to HLA genes as well as coverage and read depth over the HLA genes were 
compared between shotgun libraries and HLA-enriched libraries (Fig. 2 and Table 1). The comparison between 
pre-capture shotgun sequence and sequence data obtained after HLA target enrichment yielded from 3-fold to 
13,596-fold increases of HLA target sequences and clearly showed the efficiency of the HLA enrichment approach 
in increasing the number of reads mapping to the HLA genes of interest. These results highlight the advantage of 
the HLA target enrichment for studying HLA polymorphisms in ancient human populations.

We then applied the TARGT pipeline (Fig. 1) to the aDNA sequence data and evaluated the resulting HLA 
allele calls. The success rate was variable across the different loci with the highest success rate obtained at the 
HLA-DQB1 locus, followed by HLA-A, HLA-DRB1, HLA-B and HLA-C; while the HLA-DPB1 locus showed 
the lowest success rate (Fig. 3 and Table 3). As the achieved average coverage was comparable across the different 
loci (Figure S1 and Table S6), the differential success rate is unlikely to be due to an unbalanced bait design. The 
general differences in both the allelic diversity as well as in the extent of sequence divergence between alleles at 
the different HLA loci, together with the uneven distribution of nucleotide diversity along the investigated exons, 
are more plausible explanations for the observed variable resolution across loci. Furthermore, DNA preservation 
of individual samples can affect allele call success as shown by the strong association between success rate at each 
sample and both read depth and coverage. Thus, the observed success rate calculated for the historical dataset 
(56% at 1st field resolution; 35% at 2nd field) cannot be generalized for other ancient samples, as it will likely vary 
depending on the spatial and temporal scales investigated as well as on the degradation of the underlying DNA.

The allele calls obtained with the TARGT pipeline were evaluated using an independent approach, the soft-
ware OptiType32, which is currently available only for the typing of HLA class I genes. The comparison revealed 
a high level of agreement between the two approaches (93%) for the HLA genotyping of class I alleles. Moreover, 
the presence of the most frequent variant at one of the class II genes, the allele DRB1*15:01, was supported by the 
independent detection of a specific tag-SNP in a previous study24. Both comparisons provided further evidence 
for the accuracy of our allele calls, supporting the validity of the TARGT pipeline.

Our pipeline was also evaluated on simulated aDNA sequence data with distinct but known HLA-B and 
-DRB1 alleles. Here we observed a success rate of 71% at the 1st field level and 57% at 2nd field level of resolution, 
both with an accuracy of 100% (Table 4). We tested the pipeline for increasing read depth (from 1× up to 60×) 

HLA-B HLA-DRB1 Overall

Success 1st field (%) 100 100 100

Success 2nd field (%) 84 95 90

Accuracy 1st field (%) 95 100 99

Accuracy 2nd field (%) 95 100 97

Table 5. Success rate and accuracy rate for the 1000 Genomes Project samples. Success and accuracy rate of 
HLA allele calls, at the 1st field level and at the 2nd field level of resolution, across the 2 investigated genes and 
overall, for a diverse subset (N = 31) of the 1000 Genomes Project samples.
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and observed also in this case a strong association with success rate. However, we noticed that in some cases 
alleles could be called at very low read depth: some 1st field alleles could be called already at 1x depth, while calls 
at 2nd field resolution were obtained starting from 5× read depth (Fig. 4). In contrast, in a few instances, the res-
olution of HLA alleles was not possible even at moderate read depth (30×), suggesting that read depth is not the 
only factor influencing the allele call success. Whilst additional sequence reads in terms of read depth allow the 
identification of sequencing errors and can provide support for specific allele calls, informative overlap among 
reads to build a consensus sequence of sufficient length is also essential to obtain reliable HLA genotypes. Indeed, 
the proportion of covered sites at each locus together with the specific combination of alleles can significantly 
affect the success in calling HLA alleles. For instance, if the alleles of a given genotype differ only in positions that 
are not covered by any reads, a full allelic resolution will be impossible, even if the rest of the sites are covered at 
high depth. With the allele call success depending on various properties of a given DNA sample, it would be inap-
propriate to define a default threshold of read depth or coverage for applicability of the TARGT pipeline, espe-
cially for ancient samples. However, the advantage of our semi-manual approach is that the experimenter receives 
direct visual feedback about the quality and quantity of the sequence data and can make an informed decision 
about the reliability of any allele call. The possibility of visual inspection of the raw data is particularly crucial 
in case of aDNA samples; this feature sets our pipeline apart from other more automated approaches (presently 
only available for modern DNA), some of which will always provide an allele call, no matter how spurious and 
ambiguous the underlying sequence data. During the evaluation process on simulated aDNA sequences we also 
observed that the HLA allele calls obtained with the TARGT pipeline achieved high accuracy even in samples 
whose HLA alleles are not included in the original HLA reference file. These results show that our new approach 
has the potential to detect unknown alleles, such as extremely rare alleles that are currently absent in the HLA 
reference database or alleles that were present in the past but no longer exist in modern populations.

We then also applied our pipeline to a subset of the 1000 Genomes Project samples in order to test its appli-
cability for shotgun sequence data of modern DNA from population genomic projects. Modern DNA usually 
exhibits no degradation or extensive fragmentation, thus yielding much longer sequence reads and more even 
coverage, making allele calling much easier. Consequently, we observed a much higher success rate (100% at the 
1st field; 90% at the 2nd field level of resolution) compared with both the empirical and simulated ancient datasets 
(Table 5). These results, together with the high accuracy rate observed (99% at the 1st field level; 97% at 2nd field 
level), suggest that the TARGT pipeline, originally developed to define HLA alleles in aDNA samples, can also be 
successfully applied to shotgun sequence data from modern DNA.

The pipeline includes a pre-processing part with several automated steps essential for the analysis of any 
next-generation sequencing data: quality control, adapter clipping, and merging of paired reads (Fig. 1). This 
part is optional and can be applied if raw sequence data is to be used for HLA analysis. However, if WGS/WES 
shotgun data has already been quality-checked and trimmed for other purposes, this can also be used directly as 
input data for the TARGT pipeline, which would then start with the mapping and sorting steps (Fig. 1). Important 
in the latter case is the awareness that duplicate reads will likely have been removed during quality filtering. For 
modern sequence data with decent coverage, this might not be a problem, but for data from aDNA, information 
about read abundance can be an important parameter during allele calling. In this case, it might be advisable to 
start the pipeline on the raw data instead, and redo the quality filtering specifically with the TARGT pipeline, 
not discarding duplicate reads. For the mapping step, it is also recommended to carefully consider the optimal 
mismatch threshold for successful mapping of reads to the HLA reference. A very stringent threshold (e.g. 0% 
mismatch allowed) will lead to individual reads mapping to fewer HLA loci/alleles in the reference and thus pro-
vide less ambiguous read data for allele calling. However, such a stringent threshold might also lead to missing 
of novel/unknown alleles in a sample, as their specific reads might not map well enough to any known allele and 
thus would be thrown out. This trade-off should be considered for each given dataset/project, and it might be 
advisable to run the pipeline multiple times with different thresholds in order to detect the presence of unknown 
alleles. The default threshold of 1% mismatch balances this trade-off and appears to be a good starting point for 
most datasets in our experience. The subsequent visual inspection of HLA sequence reads is a critical step for 
the correct calling of HLA alleles, especially with aDNA samples where miscoding lesions and fragmentation, in 
combination with the high density of SNPs and paralogous sequences naturally present in the HLA region, can 
easily lead to incorrect allele calls. The manual identification of HLA alleles allows detection of small differences 
between alleles and was successful in detecting novel HLA variants in our evaluation. Furthermore, discrepancies 
between different PCR-based methods routinely used for HLA typing have been observed45, highlighting that 
inaccurate HLA allele calls could be a problem also in case of modern samples. In this context, we have shown 
that our approach successfully identifies incorrect genotypes and thus allows validation of HLA allele calls from 
other, even more established, methods.

Despite the advantage of reaching high accuracy by preventing low quality/confidence allele calls, we recog-
nize that our approach can be time-consuming and that the visual inspection of the sorted reads might depend on 
the experience of individual researchers. However, in a previous study on medieval leprosy victims, it was shown 
that the results of the TARGT pipeline, including the manual allele call by different researchers, were highly 
reproducible, reaching >99% reproducibility at the nucleotide level24. Eventually, every genotyping approach has 
its advantages and disadvantages, and it has proven difficult to establish a single best-performing method among 
the growing number of available computational tools for HLA typing45. In such a situation, the most appropriate 
approach would be to use consensus information that integrates results from different complementary methods. 
In this context, the TARGT pipeline has a true advantage by providing an independent, non-automated allele call 
that includes visual inspection of the underlying sequence data and intuitive feedback about the reliability of the 
call (also with regard to calls from other methods that use the same sequence data).

Our results show that the TARGT pipeline is an accurate method for HLA genotyping in case of low-coverage 
shotgun sequence data. The pipeline also allows for the detection of unknown alleles that are not included in 
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the original HLA reference database. The observed solid performance demonstrates that TARGT is a reliable 
approach to accurately genotype HLA genes in ancient and modern DNA samples. The pipeline has already been 
applied successfully to a dataset of medieval European samples, associating HLA variability with susceptibility to 
leprosy24, and indicating its applicability to study the evolution of human resistance or susceptibility to pathogens 
in historical populations. In addition, the pipeline could be employed to explore HLA allele frequency changes 
through time, when temporal sample series are available46, thus providing a deeper understanding of HLA genetic 
variation through human history.

Methods
HLA typing from shotgun sequence data (tARGt pipeline). HLA reference file for read mapping. A 
key component of the TARGT pipeline is a comprehensive HLA reference file containing all known nucleotide 
sequence variants of the exons coding for the peptide-binding groove of the classical class I (exons 2 and 3; 
HLA-A, HLA-B, HLA-C) and class II HLA genes (exon 2; HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-DPA, 
HLA-DPB1). This reference allows differentiation of HLA alleles at up to 3rd field (6-digit) resolution using the 
G-group nomenclature. The G-group nomenclature groups together HLA alleles whose peptide-binding domains 
are identical at the nucleotide level (and thus also at the protein level47). The reference also contains correspond-
ing sequence variants for non-classical HLA genes, to avoid mis-mapping and misidentification of reads, due 
to paralogous sequence similarity. To build this reference, nucleotide coding sequences were downloaded from 
the IMGT/HLA database9 (accessed 28 July 2015) for the following loci: HLA-A, -B,-C, -E, -F, -G, -H, -J, -K, -L, 
-U, -V, -DQA1, -DQB1, -DRA, -DRB1, -DRB3, -DRB4, -DRB5, -DRB6, -DRB7, -DRB9, -DPA1, -DPB1. Exon 
sequences of HLA-DQB2 from the human reference genome (not represented in the IMGT/HLA fasta files), 
was also included, again to preclude misidentification of its reads as HLA-DQB1 variants. Alignment of selected 
nucleotide sequences was then performed individually for each locus using the program muscle48 v3.8. Gaps 
caused by rare non-functional alleles were removed as well as overhangs upstream and downstream of the exons 
of interest. Redundant sequence variants that are identical within the exons of interest were also removed (fol-
lowing the G-group nomenclature). One hundred nucleotides (Ns) were introduced upstream and downstream 
of all sequences, while 20 Ns were introduced between exon 2 and 3 for class I loci in order to allow for mapping 
of reads crossing the exon-intron border, as the intron sequences for most alleles are not available from the 
IMGT/HLA database. All aligned sequences were combined into one FASTA file, which was finally indexed using 
Bowtie2 to produce the final HLA reference file.

Read mapping. The standard input for the TARGT pipeline is qc-filtered and adapter-trimmed short-read 
sequence data in fastq format. The first step maps the sequence reads of the sample to the HLA reference file using 
Bowtie249 v2.2.7 in local alignment mode. Bowtie2 allows mapping of both merged reads and separate paired-end 
reads. By using the ‘-a reporting mode’, we allow each read to map against multiple alleles in the reference, which 
is crucial because of the expected ambiguous mapping of most reads. To achieve a maximum mismatch threshold 
of 1%, the minimal alignment score was set to –score-min L,0,0.99, while keeping the local alignment matching 
bonus setting of –ma 1, and the maximum (MX) and minimum (MN) mismatch penalties equal to –mp 0,0. 
Allowing for 1% mismatch represents a balanced trade-off between mapping sensitivity and specificity, while 
at the same time enabling the identification of unknown alleles (not present in the reference file). However, this 
mismatch threshold can be varied, and should be carefully chosen with regard to the specific study question (see 
discussion).

Automated read sorting. Output from mapping with Bowtie2 contains reads that aligned best exactly one time 
to the HLA reference file as well as ambiguous reads i.e. reads that map equally well to multiple alleles in the 
reference. Such ambiguous reads can map to multiple alleles of the same locus and to alleles from different loci. 
In the latter case, multiple instances of the same read sequence, one for each distinct mapping locus, are stored 
in the resulting alignment. The mapping information from the Bowtie2 output is processed with a Perl script 
(included in the pipeline scripts on Sourceforge). During this processing procedure, identical reads, representing 
PCR duplicates of the same DNA fragment, are collapsed and their absolute frequency is noted. For each read, the 
number of duplicates as well as the mapped locus name(s) and number of alleles per locus are stored in the read’s 
fasta tag. Read sequences are then grouped by locus and saved into a FASTA file in a specific format: sequences 
are ordered, in ascending order, according to the number of genes they map to and then sorted by the starting 
position within the corresponding locus so that they follow the sequence orientation along the locus of interest 
(Figure S6). The thus generated locus-specific FASTA files can then be inspected for manual allele calling using a 
sequence alignment editor.

Manual read sorting and allele calling. For the manual read analysis and allele calling, we use the freely available 
and versatile sequence alignment editor BioEdit50 v7.2.565, which permits visual inspection and manipulation of 
sequence reads. However, in principle, any sequence alignment editor can be used for this purpose as long as it 
facilitates the steps described here. The locus-specific FASTA files generated by the above Perl script were opened 
in BioEdit and consensus sequences of the allele combinations present in each sample were generated. First, by 
visually inspecting sequence identity among reads, true SNPs (identifying the true alleles) were distinguished 
from PCR/sequencing errors. Sequence reads representing the possible alleles were then identified and sorted 
into blocks of reads belonging to the same allele (Figure S6). Here, reads were prioritized that map uniquely to 
the locus of interest, and/or that were represented by multiple exact PCR duplicates (less likely to represent PCR/
sequencing errors). Overlapping reads that shared the same combination of variations were collapsed into a con-
sensus sequence. To identify matching alleles, consensus sequences were compared to a reference alignment of 
all known 4-digit alleles of the corresponding HLA locus. Such comparison was performed first focusing on an 
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established set of ‘common and well-documented’ HLA alleles51. If the consensus sequences perfectly matched 
one or more alleles from that set, we did not look for additional matches in the rarer alleles; otherwise, the full set 
of all known alleles of that locus was screened for best-matching sequences. The full nucleotide sequence of the 
identified allele was finally compared to the read alignment to confirm that the allele call was indeed supported 
by all high confidence reads. In case of several equally well matching alleles belonging to the same two-digit allele 
group (e.g. because of incomplete coverage), only the 1st field (two-digit) allele name was reported.

Sequence data from historical samples. Historical samples. The human skeletal remains whose DNA 
was analyzed in this study were obtained from the medieval cemetery of St. Jørgen/Denmark. Sixty-eight indi-
viduals were considered for this study, ranging in age from 1270 to 1536 AD, with most of the individuals falling 
between 1270 and 1400 AD24. Sample processing, DNA extraction and DNA library preparation have previously 
been described in Krause-Kyora et al.24. DNA extractions and pre-PCR steps were performed in clean room 
facilities dedicated to aDNA research, following the guidelines on contamination control in aDNA studies52–54. 
For each sample, two different double-stranded DNA sequencing libraries (UDG-treated and non-UDG-treated) 
were prepared. Both UDG-treated and non-UDG-treated libraries underwent paired-end shotgun sequencing 
carried out on the Illumina HiSeq 2500 (2 × 125 bp) and HiSeq 4000 (2 × 75 bp) platform at the Institute of 
Clinical Molecular Biology, Kiel University, using the HiSeq v4 chemistry and the manufacturer’s protocol for 
multiplex sequencing.

HLA target-enrichment for historical samples. UDG-treated libraries were enriched for DNA from the classical 
class I (HLA-A, HLA-B, HLA-C) and class II HLA genes (HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-DPA, 
HLA-DPB1), using a custom bait library designed by Wittig et al.23. The HLA capture probes have been orig-
inally created considering the full list of available cDNA and gDNA sequences from the IMGT/HLA reference 
database9 (i.e. 8,159 alleles), which resulted in a total of 16,351 distinct RNA baits, covering a cumulative target 
genomic sequence of 215.5 kb23. The in-solution targeted capture has been performed using the SureSelectXT 
Target Enrichment System (Illumina) for the Illumina paired-end multiplexed sequencing library (version B4, 
August 2015). For each capture reaction, up to four UDG-treated libraries have been pooled. The hybridization 
reaction required 800 ng of library DNA per pool in a volume of 3.4 µL. As the UDG-treated libraries were already 
indexed during library preparation, the 12 cycles of post-capture PCR was performed using 1 µL of each IS5 and 
IS6 primers (100 µM). According to the protocol, the resulting amplified captured libraries were purified using 
the AMPure XP beads, while quality assessment was performed on the Agilent 2100 Bioanalyzer with the High 
Sensitivity DNA Assay. Finally, sequencing was done on the Illumina HiSeq 4000 (2 × 75 cycles) platform at the 
Institute of Clinical Molecular Biology, Kiel University, using the HiSeq v4 chemistry and the manufacturer’s 
protocol for multiplex sequencing.

Data preprocessing for historical samples. HTS data sets generated for the sixty-eight individuals from St. Jørgen 
were pre-processed (adapter clipping, merging, trimming) using ClipAndMerge (version 1.7.3) from the EAGER 
pipeline55. During the adapter clipping step, adapters were excluded when present in the sequence, while reads 
with fewer than 25 nucleotides after adapter clipping or containing only adapters sequences were removed. In 
the merging step, all remaining paired reads were merged with a minimum overlap of 10 nucleotides and at 
most 5% mismatches in the overlap region. In the final quality trimming phase, all nucleotides with Phred scores 
smaller than 20 were trimmed from the 3’ end of each read, while sequences shorter than 25 nucleotides after 
quality trimming were removed. In order to evaluate postmortem DNA damage signatures, using mapDamage 
v2.0.630, shotgun sequencing data from both UDG-treated and non-UDG-treated libraries were aligned against 
the H. sapiens reference genome hg38 (GRCh38) using Bowtie249 v2.2.7, in a semi-global alignment mode and 
with default parameters, as described in Krause-Kyora et al.24. Read duplicates were not removed during the 
pre-processing and quality filtering steps, as read redundancy information is used during manual HLA allele call 
for identifying sequencing artifacts. Endogenous DNA content, percentage of reads aligning to HLA genes as 
well as coverage and read depth over the HLA genes were quantified on both the original UDG shotgun libraries 
and the HLA-enriched UDG shotgun libraries. Endogenous percentage was measured by the proportion of reads 
mapping to the human reference genome over the total amount of reads. Percentage of reads aligning to HLA 
genes was calculated as the proportion of reads mapping to the HLA reference over the total amount of reads. 
Fold-enrichment was calculated by dividing the number of on-target reads, i.e. reads mapping to the HLA refer-
ence, from HLA-enriched libraries by the number of on-target reads from pre-capture shotgun libraries; when 
the denominator was 0 the number of on-target HLA reads from enriched libraries has been assigned. Coverage 
was calculated as the proportion of covered sites at each locus. Because of the extensive number of reads mapping 
to multiple HLA loci, read depth (i.e. number of times a base at a given locus is sequenced) has been calculated 
weighing the read length for the number of loci that each read would map to. Also, to exclude reads containing 
PCR/technical duplicates, we considered each read with the same starting and ending position only once. Average 
HLA coverage and average HLA read depth are the mean of coverage and read depth calculated across the 6 
investigated class I (HLA-A, -B, -C) and class II (HLA-DRB1, -DQB1, -DPB1) genes.

Statistical analysis for historical samples. Allele frequencies in historical samples for class I genes (HLA-A, -B 
and -C) at the 1st field level and 2nd field level of resolution were obtained by direct counting. Pairwise estimates 
of nonrandom associations between each pair of HLA loci, i.e. linkage disequilibrium (LD), as well as frequent 
haplotypes in high LD were determined using PyPop33 with defaults settings. PyPop is a software pipeline, orig-
inally developed for the analysis of highly polymorphic human leukocyte antigen (HLA) data, and thus useful 
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to perform genetic statistics from multilocus genotype. Overall LD between pairwise HLA genes was defined 
through two measures. The first one is the normalized Hedrick’s D’ statistic (D’) which weights the LD contribu-
tion of specific allele pairs by the product of the allele frequencies at each locus56. The second one is the Cramer’s 
V statistic (Wn) which defines the normalization between zero and one of the chi-square statistic for deviations 
between observed and expected haplotype frequencies57. The normalized LD values (D’ and Wn) range between 0 
and 1. The permutation distribution of the likelihood-ratio test has been used to test the significance of the overall 
LD between pairwise HLA genes58. Two- and three-locus haplotype frequencies were estimated from the ancient 
genotypic data, using the iterative expectation-maximization (EM) algorithm59,60. The analyses were done remov-
ing individuals with NA at all loci while keeping only allele calls that reached the 2nd field level of resolution.

Allele call comparison to OptiType pipeline. To compare the allele call results obtained with the TARGT pipeline 
with an independent method, sequence data of the historical samples were also analyzed using OptiType32 v1.3.1. 
The OptiType pipeline in its present form allows only analysis of HLA class I loci. Results of the genome-wide 
alignment against the human reference were used as input and FASTQ files were generated from aligned BAM 
files using samtools. OptiType was then applied in DNA mode with default settings.

Sequence data from simulated aDnA samples. To validate our HLA genotyping pipeline, we gener-
ated simulated aDNA data from genomes with known HLA variants. For this, we first created seven unique MHC 
haplotypes containing known HLA-B and -DRB1 alleles. The nucleotide sequence of the classical MHC region 
(chr6: 29,640,000–33,120,000)61 was downloaded from the UCSC Genome Browser, using the human reference 
genome GRCh38. The exons forming the variable region in the peptide binding groove (i.e. exon 2 and 3 for 
the HLA-B locus and exon 2 for the HLA-DRB1 locus) of known alleles were first aligned and then manually 
edited using BioEdit50; thus creating haplotypes with different alleles from the reference genome. Additionally, 
‘de-novo mutations’ were introduced in two out of seven haplotypes: in the first haplotype, a point mutation was 
introduced at each locus (HLA-B and -DRB1); while in the second haplotype a point mutation was introduced 
only at the HLA-DRB1 locus. The 7 unique HLA haplotypes were then combined in six different diploid combi-
nations of heterozygous genotypes (Table S14). Typical bias observed in aDNA samples (fragmentation and dam-
age patterns) were then introduced using the program gargammel37. For each genotype, we created five aDNA 
paired-end read datasets with increasing read depth (1×, 5×, 10×, 30×, 60×), for a total of 30 simulated aDNA 
samples. In simulating DNA fragmentation, fragment size was calculated considering the average fragment length 
observed in the set of medieval European samples tested in this study. In the same way, deamination patterns and 
base content profile were also obtained from one of the investigated ancient samples (G507). One of the advan-
tages of the capture approach is that it can drastically reduce the extensive microbial contamination often present 
in ancient samples; we thus did not introduce microbial contamination while simulating the ancient HLA regions. 
Ideally, the assessment of the ancient origin of DNA sequences can be evaluated, and ancient samples suspected 
to contain human contamination should be excluded from the analysis. Because of that, human contamination 
was also not introduced in our simulated samples. To avoid any observer bias in the allele call of simulated aDNA 
samples, the HLA genotyping was performed by two independent researchers that were not aware of the specific 
alleles introduced in the simulated samples.

Modern sequence data from 1000 Genomes Project. In order to assess the applicability of our pipe-
line for shotgun sequence data from modern samples, we used whole-exome shotgun sequence data from the 
1000 Genomes Project62. Paired-end sequencing datasets from 31 individuals of diverse ancestry (8 Africans, 8 
East Asians, 7 Americans, and 9 Europeans) were downloaded from the 1000 Genomes Project database (phase 
3) (Table S15). Only samples with available SBT-based HLA genotype information published in Gourraud et al.25 
were included (Tables S16 and S17).

evaluation of HLA allele calling pipeline. To assess the reliability of the TARGT pipeline, three different 
measures were defined. The success rate quantifies the proportion of cases where an allele call was possible, in 
both the empirical datasets (historical samples and 1000 Genomes samples) as well as in the simulated aDNA 
samples. It was defined as the ratio between the number of called alleles provided by our approach and the total 
number of the alleles assayed (two per locus and sample). The success rate reported here can be considered con-
servative since ambiguous results (i.e. allele call with several equally well matching alleles belonging to different 
two-digit allele groups) were reported as NA (allele call ‘not available’). The measure of agreement was used to 
compare the allele calls from two independent methods. It was calculated as the proportion of identical alleles 
typed using the two approaches over the total number of the alleles called, thus excluding alleles for which allele 
call was not possible in one or both approaches. The accuracy rate was used to assess the confidence of HLA gen-
otypes provided with our approach, when HLA alleles were known a priori, as in the case of the simulated ancient 
samples, or when HLA alleles have been previously typed with different approaches in the case of 1000 Genomes 
samples. It was calculated as the proportion of correctly called alleles over the sum of correctly and incorrectly 
called alleles; also in this case non-possible allele calls were excluded.

Data availability
Pipeline scripts together with instructions and ancillary files are freely available online (https://targt-pipeline.
sourceforge.io/). Sequence data were obtained from Krause-Kyora et al.24 and are accessible in the European 
Nucleotide Archive under accession no. ERP021830 (https://www.ebi.ac.uk/ena/data/view/PRJEB19769).
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