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Abstract

We study the problem of distributing a set of indivisible items among agents with additive
valuations in a fair manner. The fairness notion under consideration is Envy-freeness up
to any item (EFX). Despite significant efforts by many researchers for several years, the
existence of EFX allocations has not been settled beyond the simple case of two agents. In
this paper, we show constructively that an EFX allocation always exists for three agents.
Furthermore, we falsify the conjecture by Caragiannis et al. [CGH19] by showing an instance
with three agents for which there is a partial EFX allocation (some items are not allocated)
with higher Nash welfare than that of any complete EFX allocation.

1 Introduction

Discrete fair division of resources is a fundamental problem in many multi-agent settings. Here,
the goal is to distribute a set M of m indivisible items among n agents in a fair manner.
Each agent i has a valuation function vi : 2M → R≥0 that quantifies the amount of utility
agent i derives from each subset of items. In case of additive valuation functions, vi(S) :=∑

j∈S vi({j}), ∀S ⊆ M . Let X = 〈X1, X2, . . . , Xn〉 denote a partition of M into n bundles
such that Xi is allocated to agent i. Among various choices, envy-freeness is the most natural
fairness concept, where no agent i envies another agent j’s bundle, i.e., for all agents i, j with
i 6= j we have vi(Xi) ≥ vi(Xj). However, an envy-free allocation does not always exist, e.g.,
consider allocating a single valuable item among n ≥ 2 agents. This necessitates the study of
relaxed notions of envy-freeness:

Envy-freeness up to one item (EF1): This relaxation was introduced by Budish [Bud11].
An allocation X is said to be EF1 if no agent i envies another agent j after the removal of some
item in j’s bundle, i.e., vi(Xi) ≥ vi(Xj \ g) for some g ∈ Xj . So we allow i to envy j, but the
envy must disappear after the removal of some valuable item (according to agent i) from j’s
bundle. Note that there is no actual removal: This is simply to assess how agent i values his
own bundle when compared to j’s bundle. It is well known that an EF1 allocation always exists,
and it can be obtained in polynomial time using the famous envy-cycles procedure by Lipton
et al. [LMMS04]. However, an EF1 allocation may be unsatisfactory: Intuitively, EF1 insists
that envy disappears after the removal of the most valuable item according to the envying agent
from the envied agent’s bundle—however, in many cases, the most valuable item might be the
primary reason for very large envy to exist in the first place. Therefore, stronger notions of
fairness are desirable in many circumstances.
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Envy-freeness up to any item (EFX): This relaxation was introduced by Caragiannis et
al. [CKM+16]. An allocation X is said to be EFX if no agent i envies another agent j after
the removal of any item in j’s bundle, i.e., vi(Xi) ≥ vi(Xj \ g) for all g ∈ Xj . Unlike EF1,
in an EFX allocation, the envy between any pair of agents disappears after the removal of the
least valuable item (according to agent i) from j’s bundle. Note that every EFX allocation is
an EF1 allocation, but not vice-versa. Consider a simple example of two agents with additive
valuations and three items {a, b, c} from [CKMS20], where the agents valuation for individual
items are as follows,

g1 g2 g3

Agent 1 1 1 2

Agent 2 1 1 2

Observe that g3 is twice as valuable than g1 or g2 for both agents. An allocation where
one agent gets {g1} and the other gets {g2, g3} is EF1 but not EFX. The only possible EFX
allocation is where one agent gets {g3} and the other gets {g1, g2}, which is clearly fairer than the
given EF1 allocation. This example also shows how EFX helps to rule out some unsatisfactory
EF1 allocations. Caragiannis et al. [CGH19] remark that

“Arguably, EFX is the best fairness analog of envy-freeness of indivisible items.”

While an EF1 allocation is always guaranteed to exist, very little is known about the exis-
tence of EFX allocations. Caragiannis et al. [CKM+16] state that

“Despite significant effort, we were not able to settle the question of whether an EFX
allocation always exists (assuming all items must be allocated), and leave it as an
enigmatic open question.”

Plaut and Roughgarden [PR18] show two scenarios for which EFX allocations are guaranteed
to exist: (i) All agents have identical valuations (i.e., v1 = v2 = · · · = vn), and (ii) Two agents
(i.e., n = 2). Unfortunately, starting from three agents, even for the well studied class of
additive valuations, it is open whether EFX allocations exist. Plaut and Roughgarden [PR18]
also remark that:

“The problem seems highly non-trivial even for three players with different additive
valuations.”

Furthermore, it is also suspected in [PR18] that EFX allocations may not exist in general
settings:

“We suspect that at least for general valuations, there exist instances where no EFX
allocation exists, and it may be easier to find a counterexample in that setting.”

Contrary to this suspicion, we show that

Theorem. EFX allocations always exist for three agents with additive valuations.

EFX with charity : Quite recently there have been studies [CGH19, CKMS20] that consider
relaxations of EFX, called “EFX with charity”. Here we look for partial EFX allocations,
where not all items need to be allocated (some of them remain unallocated). There is a trivial
such allocation where no item is allocated to any agent. Therefore, the goal is to determine
allocations with some qualitative or quantitative bound on the set of unallocated items. For
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instance, Chaudhury et al. [CKMS20] show how to determine a partial EFX allocation X and
a pool of unallocated items P such that no agent envies the pool (i.e. for any agent i, we
have vi(Xi) ≥ vi(P )), and P has less than n items (i.e., |P | < n), even in the case of general
valuations. In case of additive valuations, Caragiannis et al. [CGH19] show the existence of a
partial EFX allocation X = 〈X1, X2, . . . , Xn〉, where every agent gets at least half the value of
his bundle in the allocation that maximizes the Nash welfare i.e., the geometric mean of agents’
valuations. (suggesting that unallocated items are not too valuable).

The Nash welfare of a fair allocation is often considered as a measure of its efficiency
[CGH19]: Intuitively, it captures how much average welfare the allocation achieves while still
remaining fair. The result of Caragiannis et al. [CGH19] imply that there are efficient partial
EFX allocations (partial EFX allocations with a 2-approximation of the maximum possible Nash
welfare). Indeed, it is a natural question to ask whether there are complete EFX allocations (all
items are allocated) with good efficiency. To this end, Caragiannis et al. [CGH19] conjecture:

“In particular, we suspect that adding an item to an allocation problem (that provably
has an EFX allocation) yields another problem that also has an EFX allocation with
at least as high Nash welfare as the initial one.”1

If this conjecture is true, it implies the existence of an efficient complete EFX allocation.
We show (in Section 5) that

The above conjecture is false.

To disprove the conjecture we exhibit an instance where there exists a partial EFX allocation
with higher Nash welfare than the Nash welfare of any complete EFX allocation. This also
highlights an inherent barrier in the current techniques to determining EFX allocations: Several
of the existing algorithms for approximate EFX allocations ([PR18]) and EFX allocations with
charity ([CKMS20]) start with a inefficient partial EFX allocation and make it more efficient
iteratively by cleverly allocating some of the unallocated items and unallocating some of the
allocated items. However, our instance in Section 5 shows that such approaches will not help if
our goal is to determine a complete EFX allocation.

A large chunk of our work in this paper develops better tools to overcome this particular
barrier, and we consider the tools introduced here as the most innovative technical contribution
of our work. We also feel that these tools and the instance may help resolving the major
open problem of the existence of EFX allocations for more than three agents and more general
valuations (positively or negatively).

1.1 Our Contributions

Our major contribution in this paper is to prove that an EFX allocation always exists when there
are three agents with additive valuations. The proof is algorithmic. To discuss our techniques,
we first briefly highlight how we overcome two barriers in the current techniques.

Splitting bundles: We first sketch the simple algorithm of Plaut and Roughgarden [PR18]
that determines an EFX allocation when all agents have the same valuation function, say v.
Let us restrict our attention to the special case where there is no zero marginals, i.e., for any
S ⊆ M and g /∈ S we have v(S ∪ g) > v(S). Also, note that since agents have the same
valuation function, if v(Xi) < v(Xj \ g) for two agents i and j for some g ∈ Xj then we have
v(Ximin ) < v(Xj \g) where imin is the agent with the lowest valuation. The algorithm in [PR18]
starts off with an arbitrary allocation (not necessarily EFX), and as long as there are agents
i and j such that v(Xi) < v(Xj \ g) for some g ∈ Xj , the algorithm takes the item g away

1This was posed as a monotonicity conjecture in their presentation at EC’19.
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from j (j’s new bundle is Xj \ g) and adds it to imin ’s bundle (imin ’s new bundle is Ximin ∪ g).
Also, note that after re-allocation the only changed bundles are that of imin and j, and both
of them have valuations still higher than imin ’s initial valuation: v(Ximin ∪ g) > v(Ximin ) and
v(Xj \ g) > v(Ximin ). Observe that such an operation increases the valuation of an agent with
the lowest valuation. Thus, after finitely many applications of this re-allocation we must arrive
at an EFX allocation. Note that this crucially uses the fact that the agents have identical
valuations. In the general case, the valuation of agent j may drop significantly after removing
g and j’s current valuation may be even less than imin ’s initial valuation. Therefore, it is
important to understand how agents value item(s) that we move across the bundles. To this
end, we carefully split every bundle into upper and lower half bundles (see (1) in Section 2).
We systematically quantify the agent’s relative valuations agents have for these upper and lower
half bundles, and in most cases, we are able to move these bundles from one agent to the other,
improve the valuation of some of the agents, and while still guaranteeing EFX property. This
idea is detailed in Sections 3 and 4.

A new potential function: We need to show that there is progress after every swap of
half bundles. The typical method here is to show improvement of the valuation vector on the
Pareto front (see [CKMS20] and [PR18]). However, there are limitations to this approach: In
particular, we show an instance and a partial EFX allocation such that the valuation vector
of any complete EFX allocation does not Pareto dominate the valuation vector of the existing
partial EFX allocation. To overcome this barrier, we first pick an arbitrary agent a at the
beginning and show that whenever we are unable to improve the valuation vector on the Pareto
front, we can strictly increase a’s valuation. In other words, the valuation of a particular agent
a never decreases throughout re-allocations, and it improves after finitely many re-allocations,
showing convergence. A more elaborate discussion on this technique is presented in Section 2.

1.2 Further Related Work

Fair division has received significant attention since the seminal work of Steinhaus [Ste48] in
the 1940s, where he introduced the cake cutting problem among n > 2 agents. Perhaps the
two most crucial notions of fairness properties that can be guaranteed in case of divisible items
are envy-freeness and proportionality. In a proportional allocation, each agent gets at least
a 1/n share of all the items. In case of indivisible items, as mentioned earlier, none of these
two notions can be guaranteed. While EF1 and EFX are fairness notions that relax envy-
freeness, the most popular notion of fairness that relaxes proportionality for indivisible items
is maximin share (MMS), which was introduced by Budish [Bud11]. While MMS allocations
do not always exist [KPW18], but there has been extensive work to come up with approximate
MMS allocations [Bud11, BL16, AMNS17, BK17, KPW18, GHS+18, GMT19, GT19].

While much research effort goes into finding fair allocations, there has also been a lot of
interest in guaranteeing efficient fair allocations. A standard notion of efficiency is Pareto-
optimality2. Caragiannis et al. [CKM+16] showed that any allocation that has the maximum
Nash welfare is guaranteed to be Pareto-optimal (efficient) and EF1 (fair). Therefore, the Nash
welfare of an allocation is also considered as a measure of efficiency and fairness of an allo-
cation. However, finding an allocation with the maximum Nash welfare is APX-hard [Lee17],
and its approximation has received a lot of attention recently, e.g., [CG18, CDG+17, AGSS17,
GHM18, AMGV18, BKV18, CCG+18, GKK20]. Barman et al. [BKV18] give a pseudopolyno-
mial algorithm to find an allocation that is both EF1 and Pareto-optimal. Other works try
to approximate MMS with Pareto-optimality [GM19] or explore relaxations of EFX with high
Nash welfare [CGH19].

2An allocation X = 〈X1, . . . , Xn〉 is Pareto-optimal if there is no allocation Y = 〈Y1, . . . , Yn〉 where vi(Yi) ≥
vi(Xi) for all i ∈ [n] and vj(Yj) > vj(Xj) for some j.
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Applications: There are several real-world scenarios where resources need to be divided fairly
and efficiently, e.g., splitting rent among tenants, dividing inheritance property in a family,
splitting taxi fares among riders, and many more. One examples of fair division techniques
used in practice is Spliddit (http://www.spliddit.org). Since its launch in 2014, Spliddit has
had several thousands of users [CKM+16]. For more details on Spliddit, we refer the reader
to [GP14, PR18]. Another example is Course Allocate, which is used by the Wharton School
at the University of Pennsylvania to fairly allocate 350 courses to 1700 MBA students [PR18,
BCKO17]. Kurokawa et al. [KPS18] used leximin fairness to allocate unused classrooms in
public schools to charter schools in California. The best part of the allocations determined in
all these applications is that they yield results that not only seem fair on most instances, but
also come with mathematical guarantees.

2 Preliminaries and Technical Overview

An instance I of fair allocation problem is a triple 〈[3],M,V〉, where we have three agents 1,
2, and 3, a set M of m indivisible items (or goods), and a set of valuation functions V =
{v1, v2, v3}, where each vi : 2M → R≥0 captures the utility agent i has for all the different
subsets of goods that can be allocated. We assume that the valuation functions are additive
(vi(S) =

∑
g∈S vi({g})) and normalized (vi(∅) = 0). For ease of notation, we write vi(g) for

vi({g}). Further, we write S ⊕i T for vi(S)⊕ vi(T ) with ⊕ ∈ {≤,≥, <,>}. Given an allocation
X = 〈X1, X2, . . . , Xn〉 we say that i strongly envies a bundle S ⊆ M if Xi <i S \ g for some
g ∈ S, and we say that i weakly envies S if Xi <i S but Xi ≥i S \ g for all g ∈ S. From this
perspective an allocation is an EFX allocation if and only if no agent strongly envies another
agent.

Non-degenerate instances: We call an instance I = 〈[3],M,V〉 non-degenerate if and only
if no agent values two different sets equally, i.e., ∀i ∈ [3] we have vi(S) 6= vi(T ) for all S 6= T .
We first show that it suffices to deal with non-degenerate instances. Let M = {g1, g2, . . . , gm}.
We perturb any instance I to I(ε) = 〈[3],M,V(ε)〉, where for every vi ∈ V we define v′i ∈ V(ε),
as

v′i(gj) = vi(gj) + ε2j .

Lemma 1. Let δ = mini∈[3] minS,T : vi(S)6=vi(T ) |vi(S)−vi(T )| and let ε > 0 be such that ε·2m+1 <
δ. Then

1. For any agent i and S, T ⊆M such that vi(S) > vi(T ), we have v′i(S) > v′i(T ).

2. I(ε) is a non-degenerate instance. Furthermore, if X = 〈X1, X2, X3〉 is an EFX allocation
for I(ε) then X is also an EFX allocation for I.

Proof. For the first statement of the lemma, observe that

v′i(S)− v′i(T ) = vi(S)− vi(T ) + ε(
∑

gj∈S\T

2j −
∑

gj∈T\S

2j)

≥ δ − ε
∑

gj∈T\S

2j

≥ δ − ε · (2m+1 − 1)

> 0

For the second statement of the lemma, consider any two sets S, T ⊆ M such that S 6= T .
Now, for any i ∈ [3], if vi(S) 6= vi(T ), we have v′i(S) 6= v′i(T ) by the first statement of the
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lemma. If vi(S) = vi(T ), we have v′i(S)− v′i(T ) = ε(
∑

gj∈S\T 2j −
∑

gj∈T\S 2j) 6= 0 (as S 6= T ).

Therefore, I(ε) is non-degenerate.
For the final claim, let us assume that X is an EFX allocation in I(ε) and not an EFX

allocation in I. Then there exist i, j, and g ∈ Xj such that vi(Xj \ g) > vi(Xi). In that case, we
have v′i(Xj \ g) > v′i(Xi) by the first statement of the lemma, implying that X is not an EFX
allocation in I(ε) as well, which is a contradiction.

From now on we only deal with non-degenerate instances. In non-degenerate instances, all
goods have positive value for all agents.

Overall approach: An allocation X ′ Pareto dominates an allocation X if vi(Xi) ≤ vi(X
′
i)

for all i with strict inequality for at least one i. The existing algorithms for “EFX with charity”
[CKMS20] or “approximate EFX allocations” [PR18] construct a sequence of EFX allocations
in which each allocation Pareto dominates its predecessor. However we exhibit in Section 5 a
partial EFX allocation that is not Pareto dominated by any complete EFX allocation. Thus we
need a more flexible approach in the search for a complete EFX allocation.

We name the agents a, b, and c arbitrarily and consider the lexicographic ordering of the
triples

φ(X) = (va(Xa), vb(Xb), vc(Xc)),

i.e., φ(X) ≺lex φ(X ′) (X ′ dominates X) if (i) va(Xa) < va(X ′a) or (ii) va(Xa) = va(X ′a) and
vb(Xb) < vb(X

′
b) or (iii) va(Xa) = va(X ′a) and vb(Xb) = vb(X

′
b) and vc(Xc) < vc(X

′
c). We

construct a sequence of allocations in which each allocation dominates its predecessor. Of
course, if X ′ Pareto dominates X, then it also dominates X, so we can use all the update rules
in [CKMS20].

Our goal then is to iteratively construct a sequence of EFX allocations such that each EFX
allocation dominates its predecessor.

Most envious agent: We use the notion of a most envious agent, introduced in [CKMS20].
Consider an allocation X, and a set S ⊆ M that is envied by at least one agent. For an agent
i such that S >i Xi, we “measure the envy” that agent i has for S by κX(i, S), where κX(i, S)
is the size of a smallest subset of S that i still envies, i.e., κX(i, S) is the smallest cardinality
of a subset S′ of S such that S′ >i Xi. Thus, the smaller the value of κX(i, S), the greater the
envy of agent i for the set S. So let κX(S) = mini∈[3]κX(i, S). Naturally, we define the set of
the most envious agents AX(S) for a set S as the set of agents with smallest values of κX(i, S),
i.e.,

AX(S) = {i | S >i Xi and κX(i, S) = κX(S)} .

The following simple observation about the most envious agents of specific kinds of bundles will
be useful.

Observation 2. Given any allocation X, and an unallocated good g, for any i ∈ [3], AX(Xi ∪
g) 6= ∅.

Proof. It suffices to prove that there exists at least one agent who strictly prefers Xi ∪ g over
his own bundle in allocation X. This is guaranteed since we are dealing with non-degenerate
instances, in which Xi ∪ g >i Xi.

Champions and Champion Graph MX : Let X be the partial EFX allocation at any stage
in our algorithm, and let g be an unallocated good. We say that i champions j (w.r.t g) if i
is a most envious agent for Xj ∪ g, i.e., i ∈ AX(Xj ∪ g). We define the champion graph MX ,
where each vertex corresponds to an agent and there is a directed edge (i, j) ∈MX if and only
if i champions j.
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Observation 3. The champion graph MX is cyclic.

Proof. By Observation 2, we have that the set of champions of any agent is never empty.
Therefore, every vertex in MX has at least one incoming edge. Thus MX is cyclic.

If i champions j, we define Gij as a largest cardinality subset of Xj ∪ g such that (Xj ∪ g) \
Gij >i Xi. Since the valuations are additive, note that such a subset can be identified efficiently
as the set K of the k least valuable goods for i in Xj ∪ g such that (Xj ∪ g) \K >i Xi and k is
maximum. Now we make some small observations.

Observation 4. Assume i champions j.

1. We have ((Xj ∪ g) \Gij) \ h ≤k Xk for all h ∈ (Xj ∪ g) \Gij and all agents k including i.

2. If agent k does not champion j, we have (Xj ∪ g) \Gij ≤k Xk.

Proof. Note that by definition, Gij is a largest cardinality subset of Xj ∪ g such that i values
(Xj ∪ g) \Gij more than Xi. This implies that (Xj ∪ g) \Gij is a smallest cardinality subset of
Xj ∪ g that i values more than Xi. Thus |(Xj ∪ g) \Gij | = κX(i,Xj ∪ g). Since i champions j,
we have that i ∈ AX(Xj ∪ g) and thus κX(i,Xj ∪ g) = κX(Xj ∪ g). Now, no agent k values a
subset of Xj ∪ g of size less than κX(k,Xj ∪ g) more than Xk. Note that ((Xj ∪ g) \ Gij) \ h
has size κX(Xj ∪ g)− 1 < κX(k,Xj ∪ g) and ,thus, ((Xj ∪ g) \Gij) \ h ≤k Xk.

Now if k did not champion j then κX(k,Xj ∪ g) < κX(Xj ∪ g). Thus, |(Xj ∪ g) \ Gij | =
κX(Xj ∪ g) < κX(k,Xj ∪ g). Since k values any subset of Xj ∪ g of size less than κX(k,Xj ∪ g)
at most Xk, we have (Xj ∪ g) \Gij ≤k Xk.

We next mention two cases where it is known how to obtain a Pareto dominating EFX
allocation from an existing EFX allocation. For an allocation X, we define the envy graph EX ,
whose vertices represent agents, and in which there is a directed edge from i to j if i envies j,
i.e., Xj >i Xi. We can assume without loss of generality (w.l.o.g.) that EX is acyclic.

Fact 5 ([LMMS04]). Let X = 〈X1, X2, X3〉 be an EFX allocation. Then there exists another
EFX allocation Y = 〈Y1, Y2, Y3〉, where for all i ∈ [3], Yi = Xj for some j ∈ [3], such that EY

is acyclic and φ(Y ) �lex φ(X) (because Y Pareto dominates X).

Observation 6 ([CKMS20]). Consider an EFX allocation X. Let s be any agent and let g
be an unallocated good. If i champions s and i is reachable from s in EX , then there is an
EFX allocation Y Pareto dominating X. Additionally, agent s is strictly better off in Y , i.e.,
Ys >s Xs.

Proof. We have that i is reachable from s in EX . Let t1 → t2 → · · · → tk be the path from
t1 = s to tk = i in EX . We determine a new allocation Y as follows:

Ytj = Xtj+1 for j ∈ [k − 1]

Yi = (Xs \Gis) ∪ g
Y` = X` for all other `

Note that every agent along the path has strictly improved his valuation: Agents t1 to tk−1 got
bundles they envied in EX and agent i championed s and got (Xs \ Gis ∪ g), which is more
valuable to i than Xi (by definition of Gis). Also, every other agent retained their previous
bundles and thus their valuations are not lower than before. Thus φ(Y ) �lex φ(X) and also
Ys >s Xs (s was an agent along the path). It only remains to argue that Y is EFX. To this
end, consider any two agents j and j′. We wish to show that j does not strongly envy j′ in Y .
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Case j′ 6= i: Note that Yj′ = X` for some ` ∈ [3] (j′ either received a bundle of another agent
when we shifted the bundles along the path or retained the previous bundle). Also, note
that Yj ≥j Xj (no agent is worse off in Y ). Therefore, Yj ≥j Xj ≥j X` \ h =j Yj′ \ h for
all h ∈ Yj′ (j did not strongly envy ` in X as X was EFX).

Case j′ = i: We have Yj′ = (Xs \Gis)∪ g. Since i championed s, by Observation 4 (part 1) we
have that ((Xs \Gis) ∪ g) \ h ≤j Xj . Like earlier, Yj ≥j Xj (no agent is worse off in Y ).
Thus j does not strongly envy i.

Observation 6 implies that if there is some unallocated good and (i) if the envy graph EX has
a single source3 or (ii) any agent champions himself then there is a strictly Pareto dominating
EFX allocation.

Corollary 7. Let X be an EFX allocation, and g be an unallocated good. If EX has a single
source s, or MX has a 1-cycle involving agent s, then there is an EFX allocation Y that Pareto
dominates X in which Ys >s Xs.

Proof. If EX has a single source s, the champion of s (which always exist, by Observation 2) is
reachable from s. If MX has a 1-cycle involving agent s then again the champion of s (which is s
itself) is reachable from s. In both cases, since the champion of s is reachable from s in the envy
graph EX , there is a Pareto dominating allocation Y such that Ys >s Xs by Observation 6.

Hence, starting from Section 3, we only discuss the cases where the envy-graph has more
than one source and there are no self-champions.

We start with some simple yet crucial observations.

Observation 8. If i champions j and Xi ≥i Xj, then g /∈ Gij, Gij ⊆ Xj, and Gij <i g.

Proof. We have i ∈ AX(Xj ∪ g). Since g /∈ Xj , Gij ⊆ Xj ∪ g, and valuations are additive and
we have that vi((Xj ∪ g) \Gij) = vi(Xj) + vi(g)− vi(Gij). Again since i ∈ AX(Xj ∪ g), by the
definition of Gij , (Xj ∪ g) \ Gij >i Xi, and hence, vi(Xi) < vi(Xj) + vi(g) − vi(Gij). Now we
have Xi ≥i Xj , implying that Gij <i g, and therefore, g 6∈ Gij .

Observation 8 tells us that if i champions j, and i does not envy j, then Gij ⊆ Xj . Therefore,
we can split the bundle of agent j into two parts Gij and Xj \Gij . We refer to Gij as the lower-
half bundle of j, and to Xj \Gij as the upper-half bundle of j, and visualize the bundle of agent
j as

Xj =

Xj \Gij

Gij

(j)

if i champions j and i does not envy j. (1)

We collect some more facts about the values of lower and upper half bundles.

Observation 9. If i champions j and j does not champion himself (self-champion), then we
have Gij 6= ∅ and Gij ≥j g.

Proof. Since j does not self-champion, by Observation 4 (part 2), we have that (Xj ∪g)\Gij ≤j

Xj . Since g /∈ Xj and Gij ⊆ Xj∪g we have vj((Xj∪g)\Gij) = vj(Xj)+vj(g)−vj(Gij) ≤ vj(Xj),
implying that Gij ≥j g. Since the value of g for j is non-zero, Gij is non-empty.

Observation 10. Let i champion j, and Xi ≥i Xj. Let i′ champion k and Xi′ ≥i′ Xk. If i
does not champion k, then Xj \Gij >i Xk \Gi′k.

3A source is a vertex in EX with in-degree zero.
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Proof. Since i ∈ AX(Xj∪g) and Xi ≥i Xj , by Observation 8, we have g /∈ Gij . Thus, Gij ⊆ Xj .
By the same reasoning, g /∈ Gi′k and Gi′k ⊆ Xk. Therefore, (Xj ∪ g) \Gij = (Xj \Gij)∪ g, and
(Xk ∪ g) \Gi′k = (Xk \Gi′k) ∪ g. By the definition of Gij , we have (Xj \Gij) ∪ g >i Xi. Since
i /∈ AX(Xk ∪ g), we have Xi ≥i (Xk \Gi′k) ∪ g by Observation 4 (part 2). Combining the two
inequalities, we have (Xj \Gij) ∪ g >i (Xk \Gi′k) ∪ g, which implies Xj \Gij >i Xk \Gi′k.

In the upcoming sections, we show how to derive a dominating EFX allocation from an
existing EFX allocation. Corollary 7 already deals with the cases that EX has a single source
or MX has a 1-cycle. We proceed under the following general assumptions: EX is cycle-free and
has at least two sources and there is no 1-cycle in MX . We distinguish the remaining cases by
the number of sources in EX .

3 Existence of EFX: Three sources in EX

If EX has three sources, the allocation X is envy-free, i.e., Xi ≥i Xj for all i and j. We make
a case distinction by whether or not MX contains a 2-cycle.

3.1 2-cycle in MX

Assume without loss of generality that agent 2 champions agent 1 and agent 1 champions
agent 2. Since X1 ≥1 X2 and X2 ≥2 X1, the bundles X1 and X2 decompose according to
(1). Since neither 1 nor 2 self-champion (as MX has no 1-cycle), by Observation 10, we have
X2 \ G12 >1 X1 \ G21 and X1 \ G21 >2 X1 \ G12. We swap the upper-halves of X1 and X2 to
obtain

X ′ =

X2 \G12

G21

(1)

X1 \G21

G12

(2)

X3

(3)

.

Note that agent 3 has the same valuation as before, while 1 and 2 are strictly better off. If X ′

is EFX we are done. So assume otherwise. We first determine the potential strong envy edges.

• From 1 : We replaced the more valuable (according to 1) X2 \ G12 in X2 with the less
valuable X1 \ G21 and left X3 unchanged. Thus 1 is strictly better off and according
to him, the valuations of the bundles of 2 and 3 in X ′ is at most the valuation of their
bundles in X. As 1 did not envy 2 and 3 before in X, 1 does not envy 2 and 3 in X ′.

• From 2 : A symmetrical argument shows that 2 does not envy 1 and 3.

• From 3 : For agent 3, the sum of the valuations of agents 1 and 2 has not changed by
the swap and 3 envied neither 1 nor 2 before the swap. Thus 3 envies at most one of the
agents 1 and 2 after the swap. Assume without loss of generality that he envies agent 2.
We then replace the lower-half bundle of agent 2 (G12) with g to obtain

X ′′ =

X2 \G12

G21

(1)

X1 \G21

g

(2)

X3

(3)

.

In X ′′, agent 2 is still strictly better off than in X since by the definition of G21, we have
(X1 \ G21) ∪ g >2 X2. Thus, X ′′ Pareto dominates X. We still need to show that X ′′ is
EFX. To this end, observe that as we have not changed the bundles of agents 1 and 3,
there is no strong envy between them. So we only need to exclude strong envy edges to
and from agent 2.
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Agent 1 X3 \G13 >1 max1(X1 \G21, X2 \G32)

Agent 2 X1 \G21 >2 max2(X2 \G32, X3 \G13)

Agent 3 X2 \G32 >3 max3(X3 \G13, X1 \G21)

Table 1: No 2-cycle in MX : Ordering for the upper half bundles.

– Nobody strongly envies agent 2 : Note that 2 championed 1. Thus, ((X1 \G21)∪ g) \
h ≤1 X1 and ((X1 \G21) ∪ g) \ h ≤3 X3 for all h ∈ (X1 \G21) ∪ g by Observation 4
(part 1). Since both 1 and 3 are not worse off than before, they do not strongly envy
2.

– Agent 2 does not envy anyone: We have that (X1 \G21) ∪ g >2 X2. Also according
to 2, the valuation of the current bundles of 1 and 3 is at most their previous one,
and 2 did not envy them before (when he had X2). Hence, 2 does not envy 1 and 3.

We have thus shown that X ′′ is EFX and Pareto dominates X. Actually, the strategy
described above handles a more general situation. It yields a Pareto dominating EFX allocation
as long as 3 envies neither 1 nor 2 initially, even if 1 and 2 envied (not strongly envied) 3 initially:

Remark 11. Let X be an EFX allocation, and let g be an unallocated good. If MX has a
2-cycle, say involving agents 1 and 2, and agent 3 envies neither 1 nor 2, then there exists an
EFX allocation Y Pareto dominating X.

Remark 11 will be helpful when we deal with certain instances where EX has two sources
later in Section 4.

3.2 No 2-cycle in MX

We now consider the case when MX has no two cycle. Since MX is cyclic and we neither have
a 1-cycle nor a 2-cycle, we must have a 3-cycle. Let us assume w.l.o.g. that agent i + 1 is the
unique champion of agent i (indices are modulo 3, so i+ 1 corresponds to (i mod 3) + 1). Since,
in addition, i+ 1 does not envy i, all three bundles decompose according to (1) and the current
allocation can be written as

X =

X1 \G21

G21

(1)

X2 \G32

G32

(2)

X3 \G13

G13

(3)

.

Let us collect what we know for agent 1’s valuation of the upper-half bundles: 1 uniquely
champions 3, while 2 and 3 uniquely champion 1 and 2, respectively. Also, the current allocation
is envy-free. Thus Xi ≥ Xj for all i, j ∈ [3]. By Observation 10, we know that X3 \ G13 >1

max1(X1 \G21, X2 \G32)
4 (X3 \G13 is 1’s favorite upper-half bundle).

Now, let us collect what we know for agent 1’s valuation of the lower-half bundles: 1 cham-
pions 3 and does not envy 3’s bundle. Thus, by Observation 8, G13 <1 g and g 6∈ G13. Also,
1 does not champion himself, and 3 champions 1. Thus, by Observation 9, g ≤1 G21. We can
make similar statements about agents 2 and 3. Since g 6∈ G21, and our instance is assumed to
be non-degenerate, we even have g <1 G21. Tables 1 and 2 summarize this information.

We first move to an allocation where everyone gets their favorite upper-half bundle (we
achieve this by performing a cyclic shift of the upper-half bundles). Thus, the new allocation
is:

X ′ =

X3 \G13

G21

(1)

X1 \G21

G32

(2)

X2 \G32

G13

(3)

4max1(X1 \G21, X2 \G32) is 1’s favorite bundle out of X1 \G21 and X2 \G32
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Agent 1 G21 >1 g >1 G13

Agent 2 G32 >2 g >2 G21

Agent 3 G13 >3 g >3 G32

Table 2: No 2-cycle in MX : Ordering for the lower half bundles. Furthermore, g 6∈ G13, g 6∈ G21,
and g 6∈ G32.

Clearly, every agent is strictly better off, and thus, X ′ Pareto dominates X. If X ′ is EFX, we
are done. So we assume otherwise. What envy edges could exist? We first observe that no
agent will envy the agent from whom it took its upper-half during the cyclic shift.

Observation 12. In X ′, agent i + 1 does not envy agent i for all i ∈ [3] (indices are modulo
3).

Proof. We just show the proof for i = 1, and the other cases follow symmetrically. Note that 2
values its current upper-half more than 1’s upper-half (it has its favorite upper-half): X1\G21 >2

X3 \ G13. Similarly 2’s also values its lower-half more than 1’s lower-half: G32 ≥2 g >2 G21.
Therefore, 2 values his entire bundle more than 1’s bundle, and hence does not envy 1.

Therefore, the only envy edges (and hence strong envy edges) can be from agent i to agent
i+ 1 as shown in the following figure.5

1 2 3

We now distinguish two cases depending on the number of such strong envy edges.

Three strong envy edges: In this case, the envy-graph is a 3-cycle. We perform a cyclic
shift of the bundles and obtain an EFX allocation Pareto dominating the initial allocation X.

At most two strong envy edges: Note that in this case, there is a strong envy edge from
at least one agent i ∈ [3] to i+1 and there is no strong envy edge from at least one agent j ∈ [3]
to j + 1. Let us assume without loss of generality that there is a strong envy edge from 1 to
2 , there may or may not be a strong envy edge from 2 to 3, and there is no strong envy edge
from 3 to 1.

1 2 3

Note that 1 is strictly better off in X ′ than in X. The existence of envy from 1 and 2, despite
this improvement, allows us to say more about the preference ordering of the upper-half and
the lower-half bundles.

Observation 13. If 1 envies 2 in X ′, X1 \G21 >1 X2 \G32, and G32 >1 G21.

Proof. We argue by contradiction. Therefore, assume that i.e. X1 \ G21 ≤1 X2 \ G32 or
G32 ≤1 G21. If X1 \G21 ≤1 X2 \G32, then

(X1 \G21) ∪G32 ≤1 (X2 \G32) ∪G32

= X2

≤1 X1 (since 1 did not envy 2 before)

<1 (X3 \G13) ∪G21 (since 1 is better off than before)

5In the figures that follow, we use red edges to indicate strong envy, and blue edges to indicate weak envy.
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implying that 1 does not envy 2, a contradiction. If G32 ≤1 G21, then

(X1 \G21) ∪G32 ≤1 (X1 \G21) ∪G21

= X1

<1 (X3 \G13) ∪G21 (since 1 is better off than before)

again implying that 1 does not envy 2, a contradiction.

So we now have

X2 \G32 <1 X1 \G21 <1 X3 \G13 and G13 <1 g <1 G21 <1 G32. (2)

We replace the lower-half bundle of 2 (G32) by g to obtain

X ′′ =

X3 \G13

G21

(1)

X1 \G21

g

(2)

X2 \G32

G13

(3)

.

Note that agents 1 and 3 are still strictly better off (as we have not changed their bundles
after the cyclic shift of the upper-half bundles) than in X. Agent 2 championed 1, thus,
X1 \G21 ∪ g >2 X2, and agent 2 is also strictly better off. Hence, X ′′ Pareto dominates X. If
there are no strong envy edges, we are done. So assume otherwise. We first note that the only
possible strong envy edge is from 2 to 3:

• Agent 1 does not envy anyone: 1 did not envy 3 in X ′ and the bundles of 1 and 3 are
the same in X ′ and X ′′. 1 does not envy 2 anymore as he prefers his own upper-half
bundle and lower-half bundle to 2’s upper-half bundle and lower-half bundle respectively,
i.e., X3 \G13 >1 X1 \G21 (from Table 1) and G21 ≥1 g (from Table 2).

• Agent 3 does not envy anyone: We use a similar argument. 3 did not envy 1 in X ′ and
the bundles of 1 and 3 are the same in X ′ and X ′′. 3 does not envy 2 as well as he prefers
his own upper-half bundle and lower-half bundle to 2’s upper-half bundle and lower-half
bundle respectively, namely X2 \ G32 >3 X1 \ G21 (from Table 1) and G13 ≥3 g (from
Table 2).

• Agent 2 does not envy 1: Note that agent 2 has his favorite upper-half bundle and values
it more than 1’s upper-half bundle: X1 \G21 >2 X3 \G13 (from Table 1) and 2 also values
his lower-half bundle more than 1’s lower-half bundle: g >2 G21 (from Table 2).

Therefore, the only possible strong envy edge is from 2 to 3 as shown below.

1 2 3

Similar to Observation 13, we can now infer more about 2’s preference ordering for the bundles:

Observation 14. If 2 strongly envies 3 in X ′′, we have X2 \G32 >2 X3 \G13 and G13 >2 G32.

Proof. As in Observation 13, we argue by contradiction. Therefore, assume that i.e. X2\G32 ≤2

X3 \G13 or G13 ≤2 G32. If X2 \G32 ≤2 X3 \G13, then

(X2 \G32) ∪G13 ≤2 (X3 \G13) ∪G13

= X3

≤2 X2 (since 2 did not envy 3 before)

<2 (X1 \G21) ∪ g (as 2 is better off than before)

12



implying that 2 does not envy 3, a contradiction. If G13 ≤2 G32, then

(X2 \G32) ∪G13 ≤2 (X2 \G32) ∪G32

= X2

<1 (X1 \G21) ∪ g (as 2 is better off than before)

again implying that 2 does not envy 3, a contradiction.

So we now have

X3 \G13 <2 X2 \G32 <2 X1 \G21 and G21 <2 g <2 G32 < G13. (3)

We are ready to construct the final allocation. To this end, consider the bundle (X1\G21)∪G13.
Note that,

(X1 \G21) ∪G13 >2 (X1 \G21) ∪G32 (as G13 >2 G32 from Observation 14)

≥2 (X1 \G21) ∪ g (as G32 ≥2 g from Table 2)

>2 X2 (as 2 championed 1)

Let Z be a smallest cardinality subset of (X1 \ G21) ∪ G13 such that Z >2 X2. Since g 6∈ X1

and g 6∈ G13, g 6∈ Z. We now give two allocations, depending on how much 3 values Z.

Case Z >3 X3: Consider

X ′′′ =

X3 \G13

g

(1)

X2 \G32

G32

(2)

Z

(3)

.

Since 1 was the champion of 3, we have (X3 \G13) ∪ g >1 X1. Thus, 1 and 3 are strictly
better off, and 2 has the same bundle as in X. Therefore, X ′′′ Pareto dominates X. We
still need to show that X ′′′ is EFX.

• Nobody strongly envies agent 1 : Since 1 is the champion of 3, we have that ((X3 \
G13) ∪ g) \ h <2 X2 and ((X3 \ G13) ∪ g) \ h <3 X3 for all h ∈ (X3 \ G13) ∪ g by
Observation 4 (part 1). As both 2 and 3 are not worse off than in X, neither of them
strongly envies (X3 \G13) ∪ g.

• Nobody envies agent 2 : Both 1 and 3 are strictly better off than in X and they did
not envy X2 in X. Thus they do not envy X2 now.

• Nobody strongly envies agent 3 : We first show that 1 does not envy (X1 \G21)∪G13.
This follows from the observation that 1 prefers his own upper-half bundle to X1\G21

and lower-half bundle to G13: X3 \ G13 >1 X1 \ G21 (from Table 1) and g >1 G13

(from Table 2). Thus (X3 \G13)∪ g >1 (X1 \G21)∪G13. Therefore, 1 does not envy
Z either, as Z ⊆ (X1 \G21) ∪G13.

Agent 2 does not strongly envy Z since Z is a smallest cardinality subset of (X1 \
G21) ∪G13 that 2 values more than X2. Thus Z \ h ≤2 X2 for all h ∈ Z.

Case Z ≤3 X3: Consider

X ′′′ =

X3 \G13

G32

(1)

Z

(2)

X2 \G32

g

(3)

.
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We first show that 1 is strictly better off in X ′′′ than in X. Observe that

(X3 \G13) ∪G32 >1 (X3 \G13) ∪G21 (by Observation 13)

≥1 (X3 \G13) ∪ g (G21 ≥1 g from Table 2)

>1 X1 (as 1 championed 3)

2 is better off as Z >2 X2 by definition of Z. 3 is also better off than in X as it championed
2 and thus X2 \ G32 ∪ g >3 X3. Thus, all agents are strictly better off, and hence X ′′′

Pareto dominates X. We next show that X ′′′ is EFX.

• Nobody envies agent 1 : Agent 2 does not envy 1 since

(X3 \G13) ∪G32 <2 (X2 \G32) ∪G32 (by Observation 14)

= X2

<2 Z (by definition of Z).

Agent 3 does not envy 1 either since he prefers his current upper-half bundle to and
lower-half bundle to 1’s upper-half bundle and lower-half bundle, respectively, i.e.,
X2 \G32 >3 X3 \G13 (from Table 1) and g >3 G32 (from Table 2).

• Nobody envies agent 2 : Observe that 1 does not envy (X1 \ G21) ∪ G13 since 1 is
strictly better off, G21 ≥1 g >1 G13 from Table 2, and G32 >1 G21 by Observation 13.
Thus (X3 \G13) ∪G32 >1 (X1 \G21) ∪G21 >1 (X1 \G21) ∪G13. Therefore, 1 does
not envy Z either as Z ⊆ (X1 \G21) ∪G13.

Agent 3 does not envy 2 since (X2 \G32) ∪ g >3 X3 (see above) and X3 ≥3 Z.

• Nobody strongly envies agent 3 : Since 3 is the champion of 2, we have ((X2 \G32)∪
g)\h <2 X2 and ((X2 \G32)∪g)\h <1 X1 for all h ∈ (X2 \G32)∪g by Observation 4
(part 1). As both 1 and 2 are strictly better off (in X ′′′) than in X, neither of them
strongly envies (X2 \G32) ∪ g.

We have thus shown that given an allocation X such that EX has three sources and MX

has a 3-cycle, there exists an EFX allocation Y Pareto dominating X. We summarize our main
result for this section:

Lemma 15. Let X be a partial EFX allocation and g be an unallocated good. If EX has three
sources, then there is an EFX allocation Y Pareto dominating X.

4 Existence of EFX: Two sources in EX

Let us assume that agents 1 and 2 are the sources, and let (1, 3) ∈ EX . We have two configu-
rations for EX now, depending on whether or not (2, 3) ∈ EX . If (2, 3) ∈ EX , it is relatively
straightforward to determine a new EFX allocation Pareto dominating X. Agent 3 is reachable
from both 1 and 2 in EX , and hence, if 3 champions either 1 or 2, we have a Pareto dominating
EFX allocation by Observation 6. If 3 champions neither 1 nor 2, 1 and 2 must be champions
of each other (Recall that no agent self-champions). Also note that 3 envies neither 1 nor 2.
Therefore, by Remark 11, we have a Pareto dominating EFX allocation.

From now on, we assume that (2, 3) /∈ EX .
The envy graph of the scenario is now as shown in Figure 1. Next, we discuss the possible

configurations of the champion graph MX . We show that most configurations are easily handled.
If 3 champions 1, then by Observation 6, there is a Pareto dominating EFX allocation. If 3 does
not champion 1, and since 1 does not self-champion, agent 2 champions 1. If now 1 champions
2, we have a 2-cycle in MX involving 1 and 2, and 3 envies neither of them. Therefore by
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1 2

3

Figure 1: Envy Graph for two sources when (2, 3) /∈ EX : Green nodes correspond to the agents.
Blue edges are the edges in EX .

Remark 11, there is a Pareto dominating EFX allocation. Thus, we may assume that 1 does
not champion 2. Since 2 does not self-champion, agent 3 champions 2. There are only three
possible configurations for MX now, depending on who champions 3 (only 1, only 2, both 1 and
2 as 3 does not self-champion) (see Figure 2).

1 2

3

1 2

3

1 2

3

Figure 2: The possible states of MX that require further discussion: Green nodes correspond
to the agents. Blue edges are the edges in EX and green edges are the edges in MX . There is
a unique configuration of EX and three different configurations of MX .

We now show how to deal with these configurations of MX . In Section 3, we showed how to
move from the current allocation X to an allocation that Pareto dominates X. In Section 5, we
show that this is impossible in this particular configuration of EX and MX . More specifically, we
exhibit an EFX allocation X that is not Pareto dominated by any complete EFX allocation. We
also show that there is no complete EFX allocation with higher Nash welfare than X, thereby
falsifying a conjecture of Caragiannis et al. [CGH19].

Recall that our potential is φ(X) = (va(Xa), vb(Xb), vc(Xc)). We move to an allocation in
which agent a is strictly better off. We distinguish the cases: a = 1, a = 2, and a = 3.

Also, recall that we are in the scenario where 2 champions 1 and 2 does not envy 1. Similarly
3 champions 2 and 3 does not envy 2. Therefore, by Observation 8, we have that g /∈ G21 and
g /∈ G32, and hence, the bundles X1 and X2 decompose according to (1). Also, since 2 champions
1 and 1 does not self-champion, by Observation 9, we have that G21 6= ∅, and a similar argument
also shows that G32 6= ∅.

4.1 Agent a is agent 1 or 3

We start from the allocation

X =

X1 \G21

G21

(1)

X2 \G32

G32

(2)

X3

(3)

.

Our goal is to determine an EFX allocation in which 1 and 3 are strictly better off (2 may be
worse off). To this end, we consider
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X ′ =
X3

(1)

X1 \G21

G32

(2)

X2 \G32

g

(3)

.

In X ′, every agent is better off than in X: 1 is better off because X3 >1 X1 (1 envied 3 in
EX). We now show that 2 is better off: 2 championed 1 and 3 championed 2. Also, 2 did not
self-champion, 2 did not envy 1 and 3 did not envy 2 . Therefore, by Observation 10, (setting
i = k = 2, j = 1, i′ = 3), we have that X1 \ G21 >2 X2 \ G32. Hence, (X1 \ G21) ∪ G32 >2

(X2 \G32) ∪G32 = X2. Thus 2 is also better off. Agent 3 is better off as 3 championed 2, and
by the definition of G32, we have (X2 \G32 ∪ g) >3 X3. Thus X ′ Pareto dominates X. If X ′ is
EFX, we are done. So assume otherwise. We show that the only possible strong envy edge will
be from 1 to 2.

• Nobody envies 1 : Note that 1 has X3 and neither 2 nor 3 envied X3 earlier (3 had X3 and
2 did not envy 3). Since both 2 and 3 are better off than before, they do not envy 1.

• Nobody strongly envies 3: 1 does not strongly envy 3 and 2 does not envy 3: 3 championed
2 and 1 did not. Therefore, by Observation 4 (part 1) we have ((X2 \G32)∪ g) \ h ≤1 X1

for all h ∈ (X2 \ G32) ∪ g. Since 1 is better off than in X, it does not strongly envy 3.
Agent 2 does not envy 3 since its prefers both of its parts over the corresponding part of
agent 3. This was argued above for the top part and follows from Observation 9

• 3 does not envy 2 : 3 championed 2 and 3 did not envy 2 earlier. Therefore by Observation 8
we have that G32 <3 g. Therefore (X1 \G21)∪G32 <3 (X1 \G21)∪ g. Since 2 championed
1 and 3 did not, by Observation 4 (part 2), we have ((X1 \ G21) ∪ g) ≤3 X3. Since 3 is
better off than in X, 3 does not envy 2.

Thus, the only strong envy edge is from 1 to 2. The current state of the envy-graph is
depicted below:

1 2 3

Let Z be a smallest cardinality subset of (X1\G21)∪G32 that 2 values more than max2((X2\
G32) ∪ g,X3), where max2((X2 \ G32) ∪ g,X3) is defined as the more valuable bundle out of
(X2 \G32) ∪ g and X3 according to 2. Note that max2((X2 \G32) ∪ g,X3) ≤2 (X1 \G21) ∪G32

since 2 does not envy neither 1 nor 3 in X ′. Since the instance is non-degenerate, the inequality
is strict, and hence Z exists. We now consider two allocations depending on 1’s value for Z.

Case Z ≤1 X3: We replace 2’s current bundle with Z and obtain

X ′′ =
X3

(1)

Z

(2)

X2 \G32

g

(3)

Agents 1 and 3 have the same bundles as in X ′ and hence are strictly better off than in
X. Thus, X ′′ dominates X, as a = 1 or a = 3 and we improve a strictly. We next show
that X ′′ is EFX. Since the only bundle we have changed is that of 2, and there were no
strong envy edges between 1 and 3 earlier, it suffices to show that there are no strong
envy edges to and from 2.

• Nobody envies 2 : 3 did not envy the set (X1 \G21)∪G32. As Z ⊆ (X1 \G21)∪G32,
agent 3 does not envy Z either . 1 does not envy Z because we are in the case where
Z ≤1 X3.
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• 2 does not envy anyone: This follows from the definition of Z itself since Z >2

max2((X2 \G32) ∪ g,X3).

Case Z >1 X3: In this case, we consider

X ′′ =
Z

(1)

max 2((X2 \G32) ∪ g,X3)

(2)

min2((X2 \G32) ∪ g,X3)

(3)

Agent 1 is still strictly better off than in X as we are in the case Z >1 X3 >1 X1, and
agent 3 is not worse off than before as both X3 and (X2 \G32)∪ g are at least as valuable
to him as his previous bundle X3. We first show that X ′′ is EFX.

• 1 does not envy anyone: We are in the case where Z >1 X3 and 1 did not envy
(X2 \G32) ∪ g when he had X3 itself (and now 1 is better off than with X3). Thus,
1 does not envy anyone.

• 2 does not strongly envy anyone: Since 2 chooses the better bundle out of X3 and
(X2 \ G32) ∪ g, 2 does not envy 3. Agent 2 does not strongly envy 1 since by the
definition of Z, we have Z \ h ≤2 max 2((X2 \G32) ∪ g,X3) for all h ∈ Z. However,
note that 2 envies 1. Thus, 2 does not envy 3 and does not strongly envy 1 (but
envies 1).

• 3 does not strongly envy anyone: 3 did not envy the set (X1 \ G21) ∪ G32,
6 and

X3 ≤ X ′′3 as we argued above. Thus, 3 will not envy Z either as Z ⊆ (X1\G21)∪G32.
We next show that 3 does not strongly envy 2, observe that (X2 \ G32) ∪ g >3 X3.
Therefore, if min2((X2 \ G32) ∪ g,X3) = (X2 \ G32) ∪ g, we are done. So assume
min2((X2 \G32)∪ g,X3) = X3. Since 3 championed 2 and from Observation 4 (part
1), we have that ((X2 \G32) ∪ g) \ h ≤3 X3 for all h ∈ (X2 \G32) ∪ g: Thus 3 does
not strongly envy 2.

Now if a = 1, we are done, as X ′′ is EFX and agent 1 strictly improved. So assume a = 3.
If min2((X2 \G32)∪ g,X3) = (X2 \G32)∪ g, then agent 3 is strictly better off and we are
done. This leaves the case that agent 3 gets X3, and hence

X ′′ =
Z

(1)

X2 \G32

g

(2)

X3

(3)

The envy graph EX′′ with respect to allocation X ′′ is a path (shown below): 1 does not
envy anyone, 2 envies 1 (not strongly) and does not envy 3, and 3 envies 2.

1 2 3

Also, note that we have some unallocated goods, e.g., the goods in G21. Recall that we
argued G21 6= ∅ in the paragraph just before Section 4.1. Consider any good g′ ∈ G21.
Since 3 is the only source in EX′′ , by Corollary 7, there is an EFX allocation X ′′′ Pareto
dominating X ′′, where X ′′′3 >3 X

′′
3 = X3. Thus, we have an EFX allocation X ′′′ that

dominates X (as agent 3 is strictly better off and a = 3).

6We repeat the argument made earlier: 3 championed 2 and 3 did not envy 2 earlier. Therefore, by Observa-
tion 8 we have that G32 <3 g. Hence, (X1 \G21) ∪G32 <3 (X1 \G21) ∪ g. Since 2 championed 1 and 3 did not,
by Observation 4 (part 2), we have ((X1 \G21) ∪ g) ≤3 X3.
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4.2 Agent a is agent 2

Recall that we argued just before the beginning of Section 4.1 that g /∈ G21 and g /∈ G32. Thus,
the current EFX allocation X is

X =

X1 \G21

G21

(1)

X2 \G32

G32

(2)

X3

(3)

Our aim is to determine an EFX allocation, in which agent 2 has a bundle more valuable
than X2. First, observe that (X1 \ G21) ∪ g is such a bundle. As 2 championed 1, we have
(X1 \G21) ∪ g >2 X2 by the definition of G21. We also observe that both agents 1 and 3 value
X3 as least as much as X2 and (X1 \G21) ∪ g.

Observation 16. X3 >i maxi(X2, ((X1 \G21) ∪ g) for i ∈ {1, 3}.

Proof. We argue ≥i; strict inequality then follows from non-degeneracy.
Nobody envies 2 in X. Thus, X2 ≤3 X3, and X2 ≤1 X1 <1 X3 (the strict inequality holds

as 1 envies 3 in X).
2 is the unique champion of 1 in X (both 1 and 3 do not champion 1). Therefore, by

Observation 4 (part 2), we have (X1 \ G21) ∪ g ≤3 X3 and (X1 \ G21) ∪ g ≤1 X1 <1 X3 (the
strict inequality holds as 1 envies 3 in X).

For i ∈ {1, 3}, let κi be the size of a smallest subset Zi of X3 such that Zi >i maxi((X1 \
G21) ∪ g,X2). We use the relative size of κ1 and κ3 to differentiate between agents 1 and 3.
We use w (winner) to denote the agent with the smaller value of κi, i.e., w = 1 if κ1 ≤ κ3 and
w = 3 if κ1 > κ3. We use ` (loser) for the other agent. Consider

X ′ =
X3

(w)

max `(X2, (X1 \G21) ∪ g)

(`)

min`(X2, (X1 \G21) ∪ g)

(2)

In X ′, the only possible strong envy edge is from ` to w. By Observation 16, w envies neither
` nor 2. Note that 2 championed 1 and therefore, (X1 \G21) ∪ g >2 X2, but by Observation 4
(part 1), we have ((X1 \G21) ∪ g) \ h ≤2 X2 for all h ∈ (X1 \G21) ∪ g. Thus, 2 gets a bundle
worth at least X2 and does not strongly envy `. 2 also does not envy w (as he did not envy X3

when he had X2). ` does not envy 2 as he chooses the better bundle out of X2 and X1 \G21∪g.
Thus, the only possible strong envy edge is from ` to w. How we proceed then depends on
whether or not ` strongly envies w.

` does not strongly envy w: Then X ′ is EFX. If min`(X2, (X1 \G21)∪ g) = (X1 \G21)∪ g,
we are done as X ′ dominates X (2 is strictly better off and a = 2). So assume otherwise. Then

X ′ =
X3

(w)

X1 \G21 ∪ g

(`)

X2

(2)

By Observation 16, ` envies w. Since 2 only envies `, ` only envies w, and w does not envy
anyone, the envy graph EX′ is a path with source 2.

2 ` w

Also, note that there are unallocated goods, namely the goods in G21 (we argued just before the
beginning of Section 4.1 that G21 6= ∅). Therefore, by Corollary 7, there is an EFX allocation
X ′′, in which 2 is strictly better off. Thus, X ′′ dominates X as 2 is strictly better off and a = 2.
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` strongly envies w: We keep removing the least valuable good according to w from w’s
bundle, until ` does not strongly envy w anymore. Let Z be the bundle obtained in this way.
Consider

X ′ =
Z

(w)

max `(X2, (X1 \G21) ∪ g)

(`)

min`(X2, (X1 \G21) ∪ g)

(2)

Claim 17. w does not envy 2 and `.

Proof. Recall that κw is the smallest cardinality of a subset of X3 that w still values more
than maxw(X2, (X1 \ G21) ∪ g); κw was defined just after Observation 16. Such a set can be
obtained by removing w’s |X3| − κw least valuable goods from X3. Observe that Z is obtained
by removing |X3| − |Z| of w’s least valuable goods from X3. If |Z| ≥ κw, w will envy neither
2 nor `. If |Z| < κw ≤ κ` (recall that κw ≤ κ`), let h be the last good removed. Then `
strongly envies Z ∪ h (otherwise we would not have removed h), meaning that there exists an
h′ ∈ Z ∪ h such that (Z ∪ h) \ h′ >` max`(X2, (X1 \ G21) ∪ g). Thus, there is a subset of X3

of size |(Z ∪ h) \ h′| < κw + 1 − 1 = κw that ` values more than max`(X2, (X1 \ G21) ∪ g), a
contradiction to κw ≤ κ`.

The allocation X ′ is EFX: w envies neither 2 nor `, ` does not strongly envy w, ` does not
envy 2, and 2 envies neither ` nor w. If min`(X2, (X1 \ G21) ∪ g) is X1 \ G21 ∪ g, then we are
done as X ′ dominates X (2 is strictly better off and a = 2). So assume otherwise. Then

X ′ =
Z

(w)

X1 \G21 ∪ g

(`)

X2

(2)

In X ′, w envies nobody (by Claim 17), 2 envies `, and ` may or may not envy w. We distinguish
cases according to whether or not ` envies w.

2 ` w

Case ` envies w: Then, the current envy graph is a path with 2 as the source.

2 ` w

Since there are unallocated goods, namely the goods in G21 (we argued just before the
beginning of Section 4.1 that G21 6= ∅), by Corollary 7, there is an EFX allocation X ′′ in
which agent 2 is strictly better off. The allocation X ′′ dominates X (as 2 is strictly better
off and a = 2).

Case ` does not envy w: Then the current envy graph has two sources, namely w and 2, and
one envy edge from 2 to `.

2 ` w

There are at least two unallocated goods, the goods in G21 (we argued just before the
beginning of Section 4.1 that G21 6= ∅) and the goods in X3 \ Z (note that this set is
not empty; we definitely have removed at least one good from X3 as ` strongly envied
it in X ′). Now consider the allocation X ′ and some g′ ∈ G21. If the champion of 2 is 2
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itself or ` (definition of champion based on allocation X ′ and the unallocated good g′),
by Observation 6 there is an EFX allocation Y where the source, namely 2, is strictly
better off and hence Y will dominate X. So assume that the champion of 2 is w, i.e.,
w ∈ AX′(X

′
2∪ g′). Let g′′ ∈ X3 \Z be the last element that we removed from X3 when we

constructed Z from X3. Then ` strongly envies Z ∪ g′′ and, according to w, g′′ is the least
valuable good in Z ∪ g′′. We observe that ` is the unique champion of w (definition of
champion based on allocation X ′ and the unallocated good g′′) ,i.e., AX′(X

′
w ∪ g′′) = {`}.

Observation 18. For any good g′′ ∈ X3 \ Z, we have AX′(X
′
w ∪ g′′) = {`}.

Proof. We have X ′w = Z. First we show that 2 /∈ AX′(Z ∪ g′′). Note that Z ∪ g′′ ⊆ X3.
Since X2 ≥2 X3 (as 2 did not envy 3 in X), 2 will not envy Z ∪ g′′ either.

By the construction of Z, g′′ is w’s least valuable good in Z ∪ g′′. Thus, the removal
of any good from Z ∪ g′′ will result in a bundle whose value for w is no more than
the value of Z for w. Therefore, κX′(w,Z ∪ g′′) = |Z ∪ g′′|7. Note that ` strongly
envies Z ∪ g′′. Hence, there exists h ∈ Z ∪ g′′ such that (Z ∪ g′′) \ h >` X

′
`. Therefore,

κX′(`, Z∪g′′) ≤ |(Z∪g′′)\h| = |Z∪g′′|−1 < κX(w,Z∪g′′). Thus, w does not self-champion
and hence AX′(Z ∪ g′′) = {`}.

Consider

X ′′ =
(X ′2 ∪ g′) \Gw2

(w)

(X ′w ∪ g′′) \G`w

(`)

X ′`

(2)

or equivalently

X ′′ =
(X2 ∪ g′) \Gw2

(w)

(Z ∪ g′′) \G`w

(`)

(X1 \G21) ∪ g

(2)

.

Note that every agent is strictly better off than in X ′. w championed 2, and by the
definition of Gw2, we have (X ′2 ∪ g′) \Gw2 >w X

′
w. Similarly, ` championed w, and by the

definition of G`w, we have (X ′w ∪ g′′) \G`w >` X
′
`. 2 is better off as 2 envied ` in X ′ i.e.

X ′2 <2 X
′
`. Now we have an allocation X ′′ in which agent 2 is strictly better off than it

was in X. Thus, X ′′ dominates X (as a = 2). It suffices to show that X ′′ is EFX now.
To this end, observe that,

• Nobody strongly envies w: w championed 2. Thus, by Observation 4 (part 1), we
have that ((X ′2 ∪ g′) \ Gw2) \ h ≤2 X ′2 and ((X ′2 ∪ g′) \ Gw2) \ h ≤` X

′
` for all

h ∈ ((X ′2 ∪ g′) \Gw2). Since both 2 and ` are better off than before (in X ′), they do
not strongly envy w.

• Nobody strongly envies `: The argument is very similar to the previous case. `
championed 2. Thus, by Observation 4 (part 1), we have that ((X ′w∪g′′)\G`w)\h ≤2

X ′2 and ((X ′w ∪ g′′) \G`w) \ h ≤w X
′
w for all h ∈ ((X ′w ∪ g′′) \G`w). Since both 2 and

w are better off than before (than they were in X ′), they do not strongly envy w.

• Nobody strongly envies 2: Both w and ` did not envy X ′` (` had X ′` and w did not
envy `) when they had X ′w and X ′` itself. Both w and ` are strictly better off than
they were in X ′. Therefore, they also do not envy 2.

We conclude that there is an EFX allocation dominating X in the case, a = 2 as well.
This allows us to summarize our main result for this section as follows,

7Recall that κX(i, S) is the size of the smallest subset of S which is more valuable to i than Xi.
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g1 g2 g3 g4 g5 g6 g7

a1 8 2 12 2 0 17 1

a2 5 0 9 4 10 0 3

a3 0 0 0 0 9 10 2

Table 3: An instance where no complete EFX allocation dominates the EFX allocation X for
the first six goods defined in the text. The valuations are assumed to be additive and the entry
in row i and column j is the value of good j for agent i.

Lemma 19. Let X be a partial EFX allocation, and let g be an unallocated good, where the
envy graph EX has two sources. Then there is an EFX allocation Y dominating X.

Having covered all the cases, we arrive at our main result:

Theorem 20. For any instance I = 〈[3],M,V〉 where all vi ∈ V are additive, an EFX allocation
always exists.

Proof. We start off with an empty allocation (Xi = ∅ for all i ∈ [3]), which is trivially EFX. As
long as X is not a complete EFX allocation, there is an allocation Y that dominates X: If EX

has a single source or MX has a 1-cycle, there is a dominating EFX allocation Y by Corollary 7.
Lemmas 15 and 19 establish the existence of Y when EX has multiple sources and MX does
not have a 1-cycle. Since φ is bounded from above, the process must stop. When it stops, we
have arrived at a complete EFX allocation.

5 Barriers in Current Techniques

In this section, we highlight some barriers to the current techniques for computing EFX al-
locations. We give an instance with three agents and seven goods such that there is a partial
EFX allocation for six of the goods that is not Pareto dominated by any complete EFX al-
location for the full set of goods. We also generalize this example and give an instance with
a partial EFX allocation which has a Nash welfare larger than the Nash welfare of any com-
plete EFX allocation. These examples make it unlikely that there is an iterative algorithm
towards a complete EFX allocation that improves the current EFX allocation in each iteration
either in the sense of Pareto domination or in the sense of Nash welfare (like the algorithms in
[PR18] and [CKMS20]). The second example also falsifies the EFX monotonicity conjecture
(see Conjecture 23) by Caragiannis et al. [CGH19].

Theorem 21. For the instance given in Table 3, the partial allocation X = 〈X1, X2, X3〉, where

X1 = {g2, g3, g4} X2 = {g1, g5} X3 = {g6} ,

is an EFX allocation of the first six goods. No complete EFX allocation Pareto dominates X.

Proof. Note that v1(X1) = 16, v2(X2) = 15, and v3(X3) = 10. We will show that there is no
complete EFX allocation X ′ with v1(X

′
1) ≥ 16, v2(X

′
2) ≥ 15 and v3(X

′
3) ≥ 10. To this end, we

systematically consider potential bundles X ′1 that can keep a1’s valuation at or above 16.
Let us first assume g6 ∈ X ′1, and hence, v1(X

′
1) ≥ 17. Now, to ensure v3(X

′
3) ≥ 10, we need to

allocate g5 and g7 to a3. We are left with goods g1, g2, g3 and g4. In order to ensure v2(X
′
2) ≥ 15,

we definitely need to allocate g1, g3 and g4 to a2. Now even if we allocate the remaining good
g2 to a1, we will have v1(X

′
1) = v1({g2, g6}) = 19 < 20 = v1({g1, g3}) ≤ v1(X ′2 \ g4). Therefore,

a1 will strongly envy a2. Thus g6 /∈ X ′1.
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If g6 /∈ X ′1 and v1(X
′
1) ≥ 16, X ′1 must contain g3 (the total valuation for a1 of all the goods

other than g3 and g7 is less than 16). We need to consider several subcases.
Assume g1 ∈ X ′1 first. Since X ′1 already contains g1 and g3, the goods that can be allocated

to a2 and a3 are g2, g4, g5, g6, and g7. In order to ensure v2(X
′
2) ≥ 15 we need to allocate

g4, g5, and g7 to a2. Even if we allocate all the remaining goods (g2 and g6) to a3, we have
v3(X

′
3) = v3({g3, g6}) = 10 < 11 = v3({g5, g7}) ≤ v3(X

′
2 \ g4). Therefore, a3 will strongly envy

a2.
Thus g1 /∈ X ′1. Since neither g1 nor g6 belongs to X ′1, the only way to ensure v1(X

′
1) ≥ 16 is

to at least allocate g2, g3, and g4 to a1(we can allocate more). Similarly, given that the goods
not allocated yet are g1, g5, g6, and g7, the only way to ensure v1(X

′
2) ≥ 15 is to allocate at

least g1 and g5 to a2. Similarly, the only way to ensure v3(X
′
3) ≥ 10 now is to allocate at least

g6 to a3. We next show that adding g7 to any one of the existing bundles will cause a violation
of the EFX property.

• Adding g7 to X ′1: a2 strongly envies a1 as v2(X
′
2) = 15 < 16 = v2({g3, g4, g7}) = v2(X

′
1 \

g2).

• Adding g7 to X ′2: a3 strongly envies a2 as v3(X
′
3) = 10 < 11 = v3({g5, g7}) = v3(X

′
2 \ g1).

• Adding g7 to X ′3: a1 strongly envies a3 as v1(X
′
1) = 16 < 17 = v1(g6) = v1(X

′
3 \ g7).

Thus, there exists no complete EFX allocations Pareto dominating X.

We now move on to the second example. We will modify the example in Table 3 to highlight
some barriers in the existence of “efficient” EFX allocations. There has been quite a lot of
recent work aiming to compute fair allocations that are also efficient. The common measures
of efficiency in economics are “Pareto optimality” (where we cannot make any single agent
strictly better off without harming another agent) and “Nash welfare” (the geometric mean of
the valuations of the agents). Quite recently, Caragiannis et al. [CGH19] showed that there
exist partial EFX allocations that are efficient (with good guarantees on Nash welfare). In
particular, they show,

Theorem 22 ([CGH19]). Let X∗ = 〈X∗1 , X∗2 , . . . , X∗n〉 be an allocation that maximizes the Nash
welfare. Then, there exists a partial allocation Y = 〈Y1, Y2, . . . , Yn〉 such that

• For all i ∈ N we have Yi ⊆ X∗i .

• Y is EFX.

• vi(Yi) ≥ 1
2vi(X

∗
i ).

In the same paper, the authors mention that if the following conjecture is true, then there
exist complete EFX allocations that are efficient as well.8

Conjecture 23. Adding an item to an instance that admits an EFX allocation results in another
instance that admits an EFX allocation with Nash welfare at least as high as that of the partial
allocation before.

We will now show that this conjecture is false, which suggests that EFX demands “too much
fairness” and some “trade-offs with efficiency” may be necessary. In particular, we construct
an instance I ′, such that there exists a partial EFX allocation X with Nash welfare NSW (X)
strictly larger than the Nash welfare NSW (X ′) of any complete EFX allocation X ′. From the
example in Table 3, it is clear that in any complete EFX allocation, we need to decrease the
valuation of one of the agents. The high level idea is to modify I to I ′ such that the decrease in
valuation of one of the agents is significantly more than the increase in valuation of the other
agents.

8In their talk at EC’19 they explicitly mention this as the “Monotonicity Conjecture”.
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g1 g2 g3 g4 g5 g6 g7

a1 ε3 + 6ε5 2ε5 10− ε3 ε3 10− 2ε3 10 + 3ε5 ε5

a2 ε 0 10− ε2 + ε6 2ε2 10 0 ε− ε2
a3 0 0 0 0 10− ε4 10 2ε4

Table 4: An instance where no complete EFX allocation has larger Nash welfare than the
EFX allocation X for the first six goods defined in the text. The valuations are assumed to be
additive and the entry in row i and column j is the value of good j for agent i; ε is positive,
but infinitesimally small.

Theorem 24. For the instance I ′ with three agents and seven goods given in Table 4, the
allocation X = 〈X1, X2, X3〉, where

X1 = {g2, g3, g4} X2 = {g1, g5} X3 = {g6} ,

is an EFX allocation of the first six goods whose Nash welfare is larger than the Nash welfare
of any complete EFX allocation.9

Proof. Observe that NSW (X) = ((10 + 2ε5) · (10 + ε) · (10))1/3. Let X ′ be a complete EFX
allocation with maximum Nash welfare.

Lemma 25. X ′ allocates the goods g3, g5 and g6 to distinct agents. Additionally,

• X ′2 contains exactly one good from {g3, g5}.

• X ′3 contains exactly one good from {g5, g6}.

Proof. Consider the following complete EFX allocation X̂ = 〈X̂1, X̂2, X̂3〉:

X̂1 = {g6} X̂2 = {g3, g4, g7} X̂3 = {g1, g2, g5}

It is easy to verify that X̂ is EFX and NSW (X̂) = ((10 + 3ε5)(10 + ε+ ε6)(10− ε4))1/3. Since
X ′ is a complete EFX allocation with maximum Nash welfare, we have NSW (X ′) ≥ NSW (X̂).
If g3, g5, and g6 are not allocated to distinct agents, there is an agent ai who does not get any
of these goods. The valuation of this agent is at most 4ε (since ε is the maximum valuation of
any agent for any good outside the set {g3, g5, g6}). The valuation of the other two agents can
be at most 3 · (10 + ε) + 4ε = 30 + 7ε (since ε is the maximum valuation of any agent for any
good outside the set {g3, g5, g6}, and 10 + ε upper bounds the maximum valuation of any good
in {g3, g5, g6}). Thus NSW (X ′) ≤ ((4ε) · (30 + 7ε)2)1/3 < NSW (X̂) for sufficiently small ε.

A similar argument shows that X ′2 contains at least one good from {g3, g5} and X ′3 contains
at least one good from {g5, g6} (since these are the only goods that the agents value close to
10). Since the goods g3, g5, and g6 are allocated to distinct agents, a2 will get exactly one good
from {g3, g5} and a3 will get exactly one good from {g5, g6}.

Let us denote the set {g5, g6, g7} as VAL3, the goods valuable for agent a3. Note that
v3(X

′
3) = v3(X

′
3∩VAL3). We will now prove our claim by studying the cases that arise depending

on X ′3 ∩VAL3. By Lemma 25, X ′3 ∩VAL3 is non-empty and contains exactly one of g5 and g6.
Thus, X ′3 ∩VAL3 can be {g5}, {g6}, {g5, g7}, or {g6, g7} only.

Lemma 26. If X ′3 ∩VAL3 = {g5}, then NSW (X ′) < NSW (X).

9The reader is encouraged to keep an eye on Table 4 for the entire proof of Theorem 24.
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Proof. We have that v3(X
′
3) = v3(X

′
3 ∩ VAL3) = 10 − ε4. Lemma 25 implies that X ′2 contains

g3 and X ′1 contains g6. Note that X ′1 cannot contain any additional good other than g6 as this
would lead to a3 strongly envying a1 (note that v3(g6) = 10 > 10 − ε4 = v3(X

′
3)). Therefore

v1(X
′
1) = 10 + 3ε5. Now we distinguish two cases depending on whether or not X ′2 contains g1.

• g1 ∈ X ′2: In this case, X ′2 = {g1, g3}, as otherwise a1 strongly envies a2 (note that v1(X
′
1) =

10 + 3ε5 < 10 + 6ε5 = v1({g1, g3}), and hence, v2(X
′
2) = v2({g1, g3}) = 10 + ε + ε6 − ε2.

Thus,

v1(X
′
1)

v1(X1)
= 1 +

ε5

10 + 2ε5
,

v2(X
′
2)

v2(X2)
= 1− ε2 − ε6

10 + ε
, and

v3(X
′
3)

v3(X3)
≤ 1,

and hence, NSW (X ′)/NSW (X) < 1.

• g1 /∈ X ′2: Then v2(X
′
2) ≤ v2(remaining items) = v2({g2, g3, g4, g7}) = 10 + ε + ε6, and

hence,
NSW (X ′)

NSW (X)
= ((1 +

ε5

10 + 2ε5
)(1 +

ε6

10 + ε
)(1− ε4

10
))1/3 < 1

.

Lemma 27. If X ′3 ∩VAL3 = {g5, g7}, then NSW (X ′) < NSW (X).

Proof. This proof follows the proof of Lemma 26 closely. We have v3(X
′
3) = v3(X

′
3 ∩ VAL3) =

10 + ε4. Lemma 25 implies that X ′2 contains g3 and X ′1 contains g6. We now distinguish two
cases depending on whether or not {g1, g4} ⊆ X ′2.

• {g1, g4} ⊆ X ′2: Then a1 strongly envies a2 as v1(X
′
1) ≤ v1(remaining items) = v1({g2, g6}) =

10 + 5ε5 < 10 + 6ε5 = v1({g1, g3}) ≤ v1(X ′2 \ g4).

• {g1, g4} 6⊆ X ′2. Then v2(X
′
2) ≤ v2({g1, g2, g3}) = 10 + ε − ε2 + ε6 (not giving the less

valuable g4 and giving everything else that remains). Also, v1(X
′
1) ≤ v1({g1, g2, g4, g6}) =

10 + 2ε3 + 11ε5. Thus,

v1(X
′
1)

v1(X1)
= 1 +

2ε3 + 9ε5

10 + 2ε5
,

v2(X
′
2)

v2(X2)
= 1− ε2 − ε6

10 + ε
, and

v3(X
′
3)

v3(X3)
= 1 +

ε4

10

, and hence, NSW (X ′) < NSW (X).

Lemma 28. If X ′3 ∩VAL3 = {g6, g7}, then NSW (X ′) < NSW (X).

Proof. We have v3(X
′
3) = v3(X

′
3 ∩ VAL3) = 10 + 2ε4. By Lemma 25, one of g3 and g5 will be

allocated to each of a2 and a1. We argue that g1 ∈ X ′1. If g1 /∈ X ′1, then

v1(X
′
1) ≤ max (v1(g3), v1(g5)) + v1({g2, g4})

= (10− ε3) + ε3 + 2ε5

< 10 + 3ε5

= v1(g6)

= v1(X
′
3 \ g7),

and hence, a1 strongly envies a3.
Therefore g1 ∈ X ′1. But we still have v1(X

′
1) ≤ max (v1(g3), v1(g5)) + v1({g1, g2, g4}) =

(10 − ε3) + (2ε3 + 8ε5) = 10 + ε3 + 8ε5. However, since g1 ∈ X ′1, we have that v2(X
′
2) ≤

max (v2(g3), v2(g5)) + v2({g2, g4}) = 10 + 2ε2. Thus,

v1(X
′
1)

v1(X1)
= 1 +

ε3 + 6ε5

10 + 2ε5
,

v2(X
′
2)

v2(X2)
≤ 1− ε− 2ε2

10 + ε
, and

v3(X
′
3)

v3(X3)
= 1 +

2ε4

10

, and hence, NSW (X ′) < NSW (X).
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Lemma 29. If X ′3 ∩VAL3 = {g6} and g3 ∈ X ′2, then NSW (X ′) < NSW (X).

Proof. We have v3(X
′
3) = v3(X

′
3 ∩ VAL3) = 10. Since g3 and g5 are allocated to a1 and a2,

respectively, and g3 ∈ X ′2, we have g5 ∈ X ′1 by Lemma 25. We now distinguish two cases
depending, on whether or not g1 ∈ X ′2.

• g1 ∈ X ′2: Then X ′2 cannot contain any other goods than g1 and g3, else a1 will strongly
envy a2: v1(X

′
1) ≤ v1(remaining items) ≤ v1({g2, g4, g5, g7}) = 10 − ε3 + 3ε5 < 10 +

6ε5 = v1({g1, g3}). Therefore v2(X
′
2) = v2({g1, g3}) = 10 + ε − ε2 + ε6. Also, note that

v1(X
′
1) ≤ v1({g2, g4, g5, g7}) = 10 − ε3 + 3ε5. In that case, the valuations of both a1 and

a2 decrease, and that of a3 does not increase. Thus NSW (X ′) < NSW (X).

• g1 /∈ X ′2: Then X ′2 cannot contain both of g4 and g7, else a1 will strongly envy a2:
v1(X

′
1) ≤ v1(remaining goods) = v1({g1, g2, g5}) = 10 − ε3 + 8ε5 < 10 = v1({g3, g4}) =

v1(X
′
2\g7). Therefore, v2(X

′
2) ≤ max (v2(g4), v2(g7))+v2(remaining items) ≤ max (v2(g4),

v2(g7)) + v2({g2, g3}) = 10 + ε− 2ε2 + ε6 and v1(X
′
1) ≤ v1({g1, g2, g4, g5, g7}) = 10 + 9ε5.

Thus,

v1(X
′
1)

v1(X1)
= 1 +

7ε5

10 + 2ε5
,

v2(X
′
2)

v2(X2)
≤ 1− 2ε2 − ε6

10 + ε
, and

v3(X
′
3)

v3(X3)
= 1

, and hence, NSW (X ′) < NSW (X).

Lemma 30. If X ′3 ∩VAL3 = {g6} and g3 /∈ X ′2, then NSW (X ′) < NSW (X).

Proof. We have v3(X
′
3) = v3(X

′
3 ∩ VAL3) = 10. Since g3 /∈ X ′2, we have g5 ∈ X ′2 and g3 ∈ X ′1

by Lemma 25. We now distinguish two cases depending on whether or not g7 ∈ X ′2.

• g7 ∈ X ′2: ThenX ′2 cannot contain any other goods than g5 and g7, else a3 will strongly envy
a2: v3(X

′
3) = 10 < 10 + ε4 = v3({g5, g7}). Therefore, v2(X

′
2) = v2({g5, g7}) = 10 + ε− ε2

and v1(X
′
1) ≤ v1(remaining items) = v1({g1, g2, g3, g4}) = 10 + ε3 + 8ε5. Thus,

v1(X
′
1)

v1(X1)
= 1 +

ε3 + 6ε5

10 + 2ε5
,

v2(X
′
2)

v2(X2)
≤ 1− ε2

10 + ε
, and

v3(X
′
3)

v3(X3)
= 1

, and hence, NSW (X ′) < NSW (X).

• g7 /∈ X ′2: Then X ′2 cannot contain both of g1 and g4 else a1 will strongly envy a2: v1(X
′
1) ≤

v1(remaining goods) = v1({g2, g3, g7}) = 10 − ε3 + 3ε5 < 10 − ε3 + 6ε5 = v1({g1, g5}) =
v1(X

′
2 \ g4). Now we consider two cases depending on whether or not g1 ∈ X ′2.

– g1 ∈ X ′2: Then X ′2 cannot have g4. Thus v2(X
′
2) ≤ v2(g1) + v2(remaining items) =

v2(g1)+v2({g2, g5}) = 10+ε = v2(X2). Note that X ′1 cannot have all of the remaining
goods g2, g3, g4, g7, else a2 will strongly envy a1: v2(X

′
2) ≤ 10 + ε < 10 + ε + ε6 =

(10−ε2+ε6)+(2ε2)+(ε−ε2) = v2({g3, g4, g7}) = v2({g2, g3, g4, g7}\g2). Therefore, X ′1
is a strict subset of {g2, g3, g4, g7}, and it should contain g7 (as we are in the case where
neither X ′2 nor X ′3 can have g7). Since a1’s valuation for g7 is strictly less than his
valuation for any of g2, g3, and g4, we have that v1(X

′
1) < v1({g2, g3, g4}) = v1(X1).

Since we are in the case where v2(X
′
2) ≤ v2(X2) and v3(X

′
3) = v3(X3), we have

NSW (X ′) < NSW (X).

– g1 /∈ X ′2: Then v2(X
′
2) ≤ v2(remaining items) = v2({g2, g4, g5}) = 10 + 2ε2 and

v1(X
′
1) ≤ v1({g1, g2, g3, g4, g7}) = 10 + ε3 + 9ε5. Thus,

v1(X
′
1)

v1(X1)
= 1 +

ε3 + 7ε5

10 + 2ε5
,

v2(X
′
2)

v2(X2)
≤ 1− ε− 2ε2

10 + ε
, and

v3(X
′
3)

v3(X3)
= 1

, and hence, NSW (X ′) < NSW (X).
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Lemmas 29 and 30 immediately imply the following:

Lemma 31. If X ′3 ∩VAL3 = {g6}, then NSW (X ′) < NSW (X).

We are now ready to complete the proof. Lemma 25 implies that a3 gets exactly one
good from {g5, g6}. Thus, X ′3 ∩ VAL3 6= ∅, and {g5, g6} 6⊆ X ′3 ∩ VAL3. So X ′3 ∩ VAL3 ∈
{{g5} , {g6} , {g5, g7} , {g6, g7}}. However, Lemmas 26, 27, 28, and 31 imply that in all of these
cases, NSW (X ′) < NSW (X).

6 Conclusion

In this paper, we have shown that EFX allocations always exist when we have three agents with
additive valuations. Our proof is constructive and leads to a pseudo-polynomial algorithm. We
have identified some crucial barriers in the current techniques and have overcome them with
novel techniques. We feel that this is step towards resolving the bigger question whether EFX
allocations always exist when we have n agents.

Our proofs crucially use additivity and do not work for more general valuation functions
like submodular or subadditive. Therefore, an ideal next step would be to investigate EFX
allocations with three agents, but more general valuations.

We also showed some barriers to finding efficient EFX allocations (EFX allocations with high
Nash social welfare). While efficient approximate EFX allocations or efficient EFX allocations
with bounded charity exist, it is unclear how much efficiency we can guarantee for complete
EFX allocations—i.e., what trade-off with efficiency is required to guarantee fairness.
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Shah, and Junxing Wang. The unreasonable fairness of maximum Nash welfare.
In Proceedings of the 17th ACM Conference on Economics and Computation (EC),
pages 305–322, 2016.

[CKMS20] Bhaskar Ray Chaudhury, Telikepalli Kavitha, Kurt Mehlhorn, and Alkmini
Sgouritsa. A little charity guarantees almost envy-freeness. In Proceedings of the
31st Symposium on Discrete Algorithms (SODA), pages 2658–2672, 2020.

[GHM18] Jugal Garg, Martin Hoefer, and Kurt Mehlhorn. Approximating the Nash social
welfare with budget-additive valuations. In Proceedings of the 29th Symposium on
Discrete Algorithms (SODA), pages 2326–2340, 2018.

[GHS+18] Mohammad Ghodsi, Mohammad Taghi Hajiaghayi, Masoud Seddighin, Saeed Sed-
dighin, and Hadi Yami. Fair allocation of indivisible goods: Improvements and
generalizations. In Proceedings of the 19th ACM Conference on Economics and
Computation (EC), pages 539–556, 2018.

[GKK20] Jugal Garg, Pooja Kulkarni, and Rucha Kulkarni. Approximating Nash social
welfare under submodular valuations through (un)matchings. In Proceedings of the
31st Symposium on Discrete Algorithms (SODA), pages 2673–2687, 2020.

[GM19] Jugal Garg and Peter McGlaughlin. Improving Nash social welfare approximations.
In IJCAI, pages 294–300. ijcai.org, 2019.

27



[GMT19] Jugal Garg, Peter McGlaughlin, and Setareh Taki. Approximating maximin share
allocations. In Proceedings of the 2nd Symposium on Simplicity in Algorithms
(SOSA), volume 69, pages 20:1–20:11, 2019.

[GP14] Jonathan R. Goldman and Ariel D. Procaccia. Spliddit: unleashing fair division
algorithms. In SIGecom Exchanges 13(2), pages 41–46, 2014.

[GT19] Jugal Garg and Setareh Taki. An improved approximation algorithm for maximin
shares. CoRR, abs/1903.00029, 2019.

[KPS18] David Kurokawa, Ariel D. Procaccia, and Nisarg Shah. Leximin allocations in the
real world. ACM Trans. Economics and Comput., 6(3-4):11:1–11:24, 2018.

[KPW18] David Kurokawa, Ariel D. Procaccia, and Junxing Wang. Fair enough: Guarantee-
ing approximate maximin shares. Journal of ACM, 65(2):8:1–27, 2018.

[Lee17] Euiwoong Lee. APX-hardness of maximizing Nash social welfare with indivisible
items. Inf. Process. Lett., 122:17–20, 2017.

[LMMS04] Richard J. Lipton, Evangelos Markakis, Elchanan Mossel, and Amin Saberi. On
approximately fair allocations of indivisible goods. In Proceedings of the 5th ACM
Conference on Electronic Commerce (EC), pages 125–131, 2004.

[PR18] Benjamin Plaut and Tim Roughgarden. Almost envy-freeness with general valua-
tions. In Proceedings of the 29th Symposium on Discrete Algorithms (SODA), pages
2584–2603, 2018.

[Ste48] Hugo Steinhaus. The problem of fair division. Econometrica, 16(1):101–104, 1948.

28


	1 Introduction
	1.1 Our Contributions
	1.2 Further Related Work

	2 Preliminaries and Technical Overview
	3 Existence of EFX: Three sources in EX
	3.1 2-cycle in MX
	3.2 No 2-cycle in MX

	4 Existence of EFX: Two sources in EX
	4.1 Agent a is agent 1 or 3
	4.2 Agent a is agent 2

	5 Barriers in Current Techniques
	6 Conclusion

