
Databases and ontologies

EVICAN—a balanced dataset for algorithm development

in cell and nucleus segmentation

Mischa Schwendy1,*, Ronald E. Unger2 and Sapun H. Parekh 1,3,*

1Max Planck Institute for Polymer Research, Mainz 55128, Germany, 2Institute of Pathology, Universitätsmedizin-Mainz, Mainz 55131,
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Abstract

Motivation: Deep learning use for quantitative image analysis is exponentially increasing. However, training accur-
ate, widely deployable deep learning algorithms requires a plethora of annotated (ground truth) data. Image collec-
tions must contain not only thousands of images to provide sufficient example objects (i.e. cells), but also contain an
adequate degree of image heterogeneity.

Results: We present a new dataset, EVICAN—Expert visual cell annotation, comprising partially annotated grayscale
images of 30 different cell lines from multiple microscopes, contrast mechanisms and magnifications that is readily
usable as training data for computer vision applications. With 4600 images and �26 000 segmented cells, our collec-
tion offers an unparalleled heterogeneous training dataset for cell biology deep learning application development.

Availability and implementation: The dataset is freely available (https://edmond.mpdl.mpg.de/imeji/collection/
l45s16atmi6Aa4sI?q¼). Using a Mask R-CNN implementation, we demonstrate automated segmentation of cells and
nuclei from brightfield images with a mean average precision of 61.6 % at a Jaccard Index above 0.5.

Contact: schwendymischa@gmail.com or sparekh@utexas.edu

1 Introduction

In recent years, microscopy has seen major advancements in both
the optical and automation performance. The rise of automation in
the industry: both in acquisition and analysis, has turned micro-
scopes into powerful high-content screening systems. Researchers
are now in need of rapid and accurate analyses to infer quantitative
measures from the ever-increasing amount of imaging data. The two
most essential steps in deriving quantitative data from images are
segmentation and classification. Segmentation is the process of find-
ing the outlines of objects within an image while classification iden-
tifies the object by assigning a class label (e.g. ‘Nucleus’ or ‘Cell’). In
cell biology applications of microscopy, cellular and subcellular enti-
ties can be segmented and classified to enable single-cell analyses
and relate measured quantities, such as cell shape or intensity of a
fluorescent molecule within cells, in response to specific treatments.

Traditionally, image processing in cell biology applications of
microscopy have been based on fluorescent staining of cells
(Schwendy et al., 2019; Wählby et al., 2002). Fluorescent staining
offers two primary benefits: firstly, classification can be performed
based on the compartmental or molecular specificity of different flu-
orophores (e.g. the fluorescence channel for membrane-stain corre-
sponds to the ‘cell’-class, while the channel for a nucleus-stain
corresponds to the ‘nucleus’-class). Secondly, image contrast in
stained images arises from the abundance of fluorophores that accu-
mulate in specific compartments against a zero background in the

ideal case, which facilitates object segmentation. In contrast, cell
segmentation and classification in (unstained) brightfield (BF) or
phase-contrast (PhC) images is not trivial, as images exhibit a highly
irregular appearance, non-specific contrast from cells and a non-
zero background. While fluorescence staining is immensely powerful
and convenient for cellular analyses and identification, it is neverthe-
less often associated with non-ideal requirements, such as the need
for cell fixation and permeabilization and introduction of exogenous
molecules, rendering it difficult to observe processes in native, live-
cell experiments. Even if a dye does not require a sample preparation
that results in cell death, it can introduce perturbations into the sys-
tem that alter the experimental outcome (Erba et al., 1988; Knight
et al., 2003; Wiedenmann et al., 2009). A segmentation and classifi-
cation algorithm that performs robustly on unstained cell images
would, therefore, be beneficial economically (reducing costs for
fluorescent dyes and reducing hands-on work) and scientifically
(possibility of unperturbed, quantitiative live-cell imaging).

A promising potential solution lies in using ‘big data’ in conjunc-
tion with deep learning analyses. Specifically, convolutional neural
networks (CNNs) offer the ability to train an algorithm to identify
complex patterns and classify objects within images (Krizhevsky
et al., 2012; LeCun et al., 1998). In recent years, CNNs have
advanced beyond classifying image content to also localizing
(Girshick, 2015; Girshick et al., 2014; Ren et al., 2017), and finally
segmenting, objects within an image (He et al., 2017). The new
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possibilities provided by CNNs have influenced a broad range of en-
gineering and scientific fields, such as autonomous driving (Bojarski
et al., 2016), face recognition (Schroff and Philbin, 2015) and cancer
detection (Esteva et al., 2017). CNNs have also begun to have an
impact in cell biology as demonstrated by two very recent deep
learning approaches to predict cellular architecture using a trained
CNN. Christiansen et al. (2018) trained a deep neural network for
in silico prediction of fluorescent labels, such as nucleus-, mem-
brane- and axon-staining. Their algorithm used several BF or PhC
microscopic slices of varying z-depth to generate a predicted
maximum-intensity projected fluorescent image (single plane).
Another approach by Ounkomol et al. (2018) achieved 3D fluores-
cent label prediction from 3D confocal stacks. Prediction of fluores-
cent labels is a powerful tool in cell microscopy but is not the same a
single-cell quantification within images, for which appropriate seg-
mentation steps are required. CNNs have also been applied for cell
segmentation as first demonstrated by Ronneberger et al. (2015).

A major drawback of CNNs, however, is their need for massive
amounts of annotated data. Annotated image collections for
everyday-scene analysis exceed 100 000, or even 1 000 000 images
(Deng et al., 2009). For instance, the Common objects in context
(COCO) dataset (Lin et al., 2014), a popular collection of images
for the training of segmentation algorithms, contains more than
330 000 images with more than 2.5 million labeled instances of 91
different classes. Such large collections are needed to provide the
CNN architecture with sufficient exemplary structures to create ap-
propriate filters and thereby identify objects in images correctly. An
adequate dataset is not only a question of size but also of heterogen-
eity, as a dataset needs to capture (instrument- and object-specific)
image and shape variations to it to be generally applicable. In cell
biology applications of microscopy, images vary by factors, such as
light intensity, magnification, contrast, and uneven illumination.
Additionally, objects within the images (cells, nuclei, granules, etc.)
are highly heterogeneous entities that adopt various forms and sizes,
e.g. cell shape can change from the ‘fried egg’ appearance to an elon-
gated form under various stimuli. Low image heterogeneity in a
dataset, e.g. by training on a single imaging setup can result in a
need to retrain the resulting algorithm before usage with other imag-
ing equipment (De Fauw et al., 2018).

To our knowledge, most databases used for CNN approaches
for cell biology applications are limited in terms of image heterogen-
eity such that images often come from a single setup, using the same
objective, and exhibit limited variation in terms of cell types. To in-
crease the ability for computer vision experts to develop image seg-
mentation and quantitative image processing using CNNs that are
applicable to more types of cells and microscopy conditions, we
assembled a collection of more than 4600 images of 30 cell lines,
acquired on 4 separate microscopy setups in three different labora-
tories with 9 different objectives having magnifications ranging
from 10� to 40�. Cellular outlines and nuclei in our dataset were
segmented manually by cell culture experts against fluorescently
stained images. To our knowledge, this represents the first freely
available, large-scale segmented dataset with more than 20 cell lines
in the cell culture sector. With this new dataset, we hope to help
close the gap between cell biologists and computer scientists, as it
provides access to biological data specifically prepared for training
of computer vision algorithms. As a proof-of-principle, we also
trained a segmentation and classification algorithm on our dataset
and achieved an average precision (AP) of 61.6% for intersection
over union (IoU) scores above 0.5.

2 Materials and methods

2.1 Cell culture
All cells were maintained at 37�C, 90% relative humidity and
10 U/ml Penicillin/Streptomycin (Gibco) added to the respective me-
dium. A complete list of used cell lines together with media and indi-
cated culture supplements, such as fetal calf serum (FCS) and non-
essential amino acids (NEAA), is given in Table 1. At 24 h before
imaging, cells were seeded into 96-well plates (Cellstar, Gibco;

Screenstar, Greiner Bio-One) at 30%, 50% and 100% confluency.
After incubation, cells were fixed with 4% para-formaldehyde in
phosphate-buffered saline (PBS) for 10 min. Prior to imaging, cell
membranes were stained with 0.01% CellMask Orange (Thermo
Fisher Scientific) in PBS, and nuclei were stained with 1 mg/ml DAPI
(Thermo Fisher Scientific) in PBS for 20 min at 37�C. Cells were
subsequently washed with PBS three times prior to imaging.

2.2 Imaging
2.2.1 Image acquisition

Image acquisition was performed on four different microscope set-
ups: Opera Phenix (Perkin Elmer), AF7000 (Leica), IX81 (Olympus)
and Biorevo BZ-9000 (Keyence). Table 2 summarizes the micros-
copy platforms as well as objectives used in this work.

2.2.2 Image annotation and dataset assembly

BF or PhC microscopy images were merged with region-matched
fluorescence images of the nucleus and membrane to facilitate recog-
nition of nuclei and cell borders using FIJIV

R

(Schindelin et al., 2012).
Cell culture experts and supervised personnel annotated 3–10 cells
(on average 5.70 per image) and nuclei (on average 5.72 per image)
within each image via the process depicted in Figure 1. To reduce
human bias, cells and nuclei for annotation were picked at random
by one of seven annotators. Need for corrections of the segmenta-
tion masks by the lead author was extremely rare (estimated at
<0.5%). For more detailed information on comparability between
trained and untrained annotators, we refer the reader to work by
Hughes et al. (2018). The final dataset contained three subsets:

1. Training dataset: 4464 images [3714 partially annotated; 750

background (blank) images; 42 317 instances]

2. Validation dataset: 1176 images [926 partially annotated; 250

background (blank) images; 10 642 instances]

3. Evaluation dataset: 98 images (fully annotated; 3222 instances).
In total, 52 959 instances were segmented in the 4640 partially

annotated images of the training and validation datasets. All
annotations were exported as JavaScript Object Notation (JSON)
document with IDs referring to the BF or PhC version of the
original image, segmentations as x, y-polygons and category-IDs
indicating cellular entity or nucleus. The export format was chosen
to fit COCO annotation style to ensure maximal accessibility for
modern machine-learning training. The dataset is available under a
CC-BY license to allow far-ranging use. We encourage scientists
to more annotations to the training and validation subsets
and therefore supplied segmentation masks and raw images.
The complete collection of dataset and annotation documents
is provided under https://edmond.mpdl.mpg.de/imeji/collection/
l45s16atmi6Aa4sI?q¼.

2.3 Convolution neural network training and evaluation
2.3.1 Classifier training

Training our detection and segmentation algorithm was performed
on a Mask R-CNN implementation, previously released under an
MIT license by Matterport Inc. (Mask R-CNN implementation by
Matterport Inc., 2018, https://github.com/matterport/Mask_
RCNN). In this implementation, the Mask R-CNN approach is exe-
cuted using the open-source Tensorflow and Keras libraries. As
images were acquired on a variety of optical setups and with differ-
ent cameras, all images were automatically adjusted to a size of
1024�024 pixels, with zero padding in cases where the raw image
files were smaller by the Mask R-CNN implementation. We used a
modification of the training scheme published previously by
Johnson (2018). Briefly, a Resnet-101 feature pyramid network
model with 101 layers organized in five stages was employed as the
backbone; weights were initialized with pre-trained weights on the
COCO dataset; training was performed for 52 epochs. A total of 40
epochs were used to train the so-called network heads, 8 epochs for
layers 4 and above (4þ), and 4 epochs for training of all layers [for
more information on the network architecture, we refer the reader
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to He et al. (2016) and He et al. (2017)]. The learning rate for
weight adjustment during training was set to an initial value of
0.001 at the start of heads, as well as 4þ layer training; this value
was decreased by 50% after 20 epochs for heads training and after 4
epochs for 4þ layer training, respectively. For end-to-end training
after epoch 48, we decreased the learning rate to 10% of the original

value and after an additional 2 epochs, decreased it to 5% of the ori-
ginal value. All training steps were carried out on a desktop PC with
an Intel Core i7-6700 CPU with four 3.4 GHz processors and 50 GB
RAM for a full process duration of 31 days. No GPUs were used in
our implementation. The code used to train the classifier is available
at https://github.com/MischaSchwendy/EVICAN-MRCNN.

2.3.2 Classifier segmentation evaluation

The evaluation was performed on 98 fully annotated BF and PhC
images that were removed and kept separate from the training data.
According to the image quality characteristics summarized in
Table 3, we categorized each evaluation image into one of three dif-
ficulty classes.

The three resulting evaluation datasets are intended to assess the
capabilities of the trained classification-segmentation algorithm
under varying imaging conditions. To guarantee accuracy of the
ground truth masks, all annotations for quantitative comparison
were generated on fluorescently stained images.

Classification performance was evaluated according to the aver-
age precision (AP) metric. Predicted instances co-localized with

Table 1. Cell lines represented in the EVICAN dataset

No Cell line Species Tissue Type Medium FCS (% in

medium)

NEAA

added

Code

1 Colo 320 Human Colon Colon adenocarcinoma RPMI 10 x ACC 144 (DSMZ)

2 SW-480 Human Colon Colorectal adenocarcinoma RPMI 10 x CCL-228 (ATCC)

3 HT-29 Human Colon Colorectal adenocarcinoma RPMI 10 x HTB-38 (ATCC)

4 Caco-2 Human Colon Colorectal adenocarcinoma EMEM 20 a HTB-37 (ATCC)

5 DLD-1 Human Colon Colorectal adenocarcinoma RPMI 10 x CCL-21 (ATCC)

6 HCT116 Human Colon Colorectal carcinoma RPMI 10 x CRL-247 (ATCC)

7 RKO Human Colon Colon carcinoma EMEM 20 a CRL-2577 (ATCC)

8 T47D Human Mammary gland Ductal carcinoma RPMI 10 x HTB-133 (ATCC)

9 SK-BR-3 Human Mammary gland

(derived from

pleural effusion)

Adenocarcinoma RPMI 10 x HTB-30 (ATCC)

10 MDA-MB-231 Human Mammary gland

(derived from

pleural effusion)

Adenocarcinoma RPMI 10 x HTB-26 (ATCC)

11 MCF-7 Human Mammary gland Adenosarcoma RPMI 10 x HTB-22 (ATCC)

12 786-O Human Kidney Renal cell adenocarcinoma RPMI 10 x CRL-1932 (ATCC)

13 769p Human Kidney Renal cell adenocarcinoma RPMI 10 x CRL-1933 (ATCC)

14 ACHN Human Kidney Renal cell adenocarcinoma EMEM 20 a CRL-1611 (ATCC)

15 CAKI-2 Human Kidney Clear-cell carcinoma RPMI 10 x HTB-47 (ATCC)

16 PC-3 Human Prostate Adenocarcinoma 50/50 RPMI/F12 10 x CRL-1435(ATCC)

17 LNCaP Human Prostate Carcinoma RPMI 10 x ACC 256 (DSMZ)

18 DU-145 Human Prostate (derived

from metastatic site

in brain)

Carcinoma RPMI 10 x HTB-81 (ATCC)

19 SH-SY5Y Human Bone marrow

neuroblastoma

Neuroblastoma DMEM 20 x CRL-2266 (ATCC)

20 MG-63 Human Bone Osteosarcoma EMEM 20 a CRL-1427 (ATCC)

21 HeLa Human Cervix Adenocarcinoma DMEM 10 x CCL-2 (ATCC)

22 HT-1080 Human Connective tissue Fibrosarcoma DMEM 10 x CCL-121 (ATCC)

23 NIH/3T3 Mouse Embryo Fibroblast DMEM 10 x CRL-1658(ATCC)

24 RAW 264.7 Mouse Ascites (Abelson

murine leukemia

virus-induced

tumor)

Macrophage DMEM 10 x TIB-71 (ATCC)

25 HEL 299 Human Lung Fibroblast DMEM 10 x CCL-137 (ATCC)

26 FaDu Human Pharynx Squamous cell carcinoma DMEM 10 x HTB-43 (ATCC)

27 MCC26 Human Skin Merkel carcinoma from skin DMEM 10 x 10092304 (Sigma

Aldrich)

28 C2C12 Mouse Muscle Myoblast RPMI 10 x CRL-1772 (ATCC)

29 CHO-K1 Hamster Ovary Epithelium F12 10 x CCL-61 (ATCC)

30 hMSC Human Bone marrow Mesenchymal stem cells DMEM 10 x PT-2501 (Lonza)

Table 2. Microscopes and objectives used for image acquisition

Microscope Objective Contrast mode

Opera Phenix (Perkin Elmer) 10�/0.3 (air) BF

20�/0.4 (air) BF

40�/1.1 (water) BF

IX81 (Olympus) 10�/0.3 (air) PhC

20�/0.4 (air) PhC

AF 7000 (Leica) 10�/0.3 (air) PhC

20�/0.4 (air) PhC

Biorevo BZ-9000 (Keyence) 10�/0.3 (air) PhC

20�/0.45 (air) PhC
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corresponding ground truth instances were counted as true positives
when exhibiting intersection over union (IoU) scores above a certain
threshold. We monitored AP at IoU thresholds above 0.5 (AP0.5)
and 0.75 (AP0.75) and report averaged values over all evaluation
images. Additionally, a cumulative AP was computed, where the
IoU threshold was incrementally increased from 50% to 95% in 5%
steps, and the precision per image averaged over each step.

3 Results

3.1 Dataset curation
We assembled a dataset consisting of more than 4600 partially seg-
mented BF and PhC microscopy images using several different mi-
croscopy setups. Up to 10 cellular and nuclear outlines were
segmented per image, respectively, with a per image average of 11.4
total instances. As depicted in Figure 1, the pipeline we established
for dataset production was to overlay PhC (or BF) microscopy
images (Fig. 1a) with fluorescent channels from membrane and/or
nucleus staining. Regarding the images in Figure 1c, the ratio of
annotated instances to true instances within the image declined with
lower magnification since more cells were included in the lower
magnification images. Manual annotation was executed and vali-
dated by experienced cell biologists, which—while being quite

laborious—was the only way to guarantee human-level accuracy for
all images.

Annotated images and corresponding grayscale versions (i.e. BF
and PhC images) were compiled to a dataset consisting of a text file
and an image collection in JPEG-format (Fig. 2). Manual annota-
tions (i.e. segmentations) performed on corresponding stained over-
lay images were transformed into polygons (i.e. ‘X1, Y1; X2, Y2;. . .;
Xn, Yn’) and saved together with image and object information, in a
JSON text file. While annotations were performed on stained
images, the information saved in the text file referred to the
assembled PhC/BF image collection. Referring to the BF and PhC
images for classifier training was necessary to ensure the usability of
the resulting computer vision algorithms for unstained cell images
after training on this dataset. Fluorescently stained images were not
included in the compiled dataset.

Figure 3a shows the number of images for each cell line, with the
majority containing >100 images. We provide two datasets in the
COCO annotation format: the EVICAN2-version with two classes:
‘cell’ and ‘nucleus’, and the EVICAN60-version with nuclei and cells
classified for each cell line, respectively, resulting in 60 class labels.
As Figure 3b shows, we achieved a highly homogeneous distribution
of nucleus and cell instances across nearly all cell lines. For most
classes in the EVICAN60-version, we provide �1000 instances; for
the cell and nucleus class in EVICAN2, we exceeded 26 000 instan-
ces per class. Figure 3c shows the moderate underrepresentation of
PhC images in our dataset, which as described later, contributes to
less prominent feature observability due to reduced contrast in BF
compared to PhC images. Additional to the COCO-format annota-
tions, we provide all masks as binary images with format
‘imageID_cellline.jpg’ to offer freedom for developers and research-
er not using COCO-like datasets. The complete collection of images,

Fig. 1. Dataset preparation pipeline. (a) Acquisition of BF and PhC microscopy

images from various microscopes at different magnifications. (b) Overlay images of

fluorescent nuclei and membrane, where available. (c) Manual segmentation of cell

bodies (red) and nuclei (blue) were saved as binary masks and transformed into the

COCO segmentation format. (Color version of this figure is available at

Bioinformatics online.)

Table 3. Quality characteristics of evaluation datasets

Evaluation dataset Cellular appearance (in PhC or BF) Image quality, contrast mechanism

Difficulty 1 33 images, 1084 instances 2D cell growth, few cell–cell contacts, clear-cell

outlines, most nuclei visible

All cells in focus, most often PhC

Difficulty 2 33 images, 1036 instances 2D cell growth, several cell–cell contacts, most cell

outlines visible, few nuclei visible

Cells minimally defocused, mixed BF and PhC

Difficulty 3 32 images, 1102 instances Occasional 3D growth, many cell–cell contacts/

colony formations, nuclei often invisible without

staining

Frequently defocused, mainly BF images

Fig. 2. Dataset compilation. (a) Grayscale (PhC and BF) image versions were col-

lected in a large-scale image collection. (b) Manual annotations (cell and nucleus

segmentations) were transformed into polygons and saved in a JSON file. The com-

piled text file included information about images (ID, size and name) and objects

(ID, class and polygon). All text information is referred to the grayscale image ver-

sions produced in (a)
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masks and annotation documents is available at: https://edmond.
mpdl.mpg.de/imeji/collection/l45s16atmi6Aa4sI?q¼.

3.2 Comparison to other segmented cell datasets
The EVICAN dataset generated above was compared to four other
commonly used cell biology segmentation datasets:

1. The Allen Cell Explorer dataset [Allen Institute for Cell Science,

Allen Cell Explorer data, 2019, https://www.allencell.org/data-

downloading.html#DownloadImageData); Roberts et al., 2017]:

a collection of �39 000 manually curated cells in �18 000 con-

focal 3D z-stacks (Personal correspondence with Nathalie

Gaudreault, Associate Director Microscopy Pipeline, 2019).

Transmitted light images, as well as manually curated segmenta-

tion masks for 12 cellular components, are provided.

2. The total number of PhC and DIC microscopy images of cell

lines from the International Symposium on Biomedical Imaging

(ISBI) cell-tracking challenges from 2014 and 2015: containing 6

time-lapse microscopy recordings, with 56 annotated frames of

3 cell types (HeLa, pancreatic stem cells and U373 cells)

(Ronneberger et al., 2015; Ulman et al., 2017).

3. Three combined datasets of PhC images by Gurari et al. (2015):

151 partially segmented images of 3 cell lines (fibroblasts, rabbit

smooth muscle cells and rat smooth muscle cells).

4. All DIC microscopy images of cell lines from the Broad

Bioimage Benchmark Collection (BBBC) (Ljosa et al., 2012): 65

fully segmented images for 2 cell lines: CHO and red blood cells.

In comparing datasets, the size, i.e. the number of images and
segmented instances/cells, as well as heterogeneity was reviewed.
The heterogeneity of a dataset should ideally reflect object- and
instrument-specific variations to be complete. To account for object-
(i.e. cell) specific variations, we assessed the number of cell lines
included in a dataset, as well as cellular structures (e.g. cell, nucleus,
and actin) annotated in a dataset: object variation=# cell lines�# cell
structures. For instrument-specific variations, we checked for the

number of different microscope models, magnifications, and con-
trast mechanisms used in each dataset: instrument variation=# mag-
nifications�# microscope models�# contrast mechanisms (Table 4).

In particular, increasing object variation, i.e. ‘cell lines’ and ‘cel-
lular structures’, is valuable for algorithm development, as it allows
computer scientists to generate multiple classes. For instance, in our
EVICAN2 dataset only segmented structures were introduced as
classes, i.e. the two classes ‘nucleus’ and ‘cell’, while in the
EVICAN60 dataset, each cell line and segmented structures were
used to form 60 classes (nuclei and cellular outlines specific for each
of the 30 cell lines).

Only the Allen Cell Explorer dataset outranks the EVICAN data-
set in terms of image number (18 000 versus 4600) and number of
segmented cells (39 000 versus 26 400). The ISBI image collection
shows a strong instrument-specific variation with multiple objective
magnifications, microscope models and contrast mechanisms. In
contrast, the Allen Cell Explorer data collection provides a strong
object-specific variation, due to the multitude of segmented cellular
structures that are available as 3D masks. However, none of the
compared image collections achieves a heterogeneity greater than
our EVICAN dataset, which offers large image and instance num-
bers combined with a balanced object and instrument variation. The
comparison datasets either provide only a limited number of images
(ISBI, Gurari and BBBC) or show limited instrument-specific hetero-
geneity (Allen Cell Explorer). Limited data and variation within a
dataset reduce the robustness of trained algorithms for general use
outside of, e.g. the specific imaging system or specific cell lines used
in training.

3.3 Dataset usage in segmentation analysis
3.3.1 Classifier training

As a proof-of-principle demonstration that the EVICAN dataset is
useful for deep learning applications, we used the EVICAN2 version
to train a deep learning classifier using a modified version of
Matterport Inc.’s implementation of Mask R-CNN for image seg-
mentation and object classification. To reduce the influence of unan-
notated cells on the background class, we prepared our dataset by
Gaussian blurring (sigma ¼30 pixels) everything except for the
annotated instances plus an extra 10-pixel border around their out-
lines. The blurred content in our images was our solution to using
partially annotated images and minimizing the incorrect training of
the classifier to consider non-segmented cells as a requirement for
segmented cells. Additionally, several hundred unblurred back-
ground images (having no cells) were included in the training and
validation dataset to allow for an appropriate training of the back-
ground class. The Mask R-CNN algorithm was then trained as
described in Section 2. The trained classifier produced an algorithm
for cellular and nuclear detection based on both BF and PhC images.

Fig. 3. Overview of the EVICAN dataset. (a) Number of images per cell line, (b)

numbers of instances per category in the dataset, and (c) relative number of images

for BF and PhC imaging in the dataset

Table 4. Number of images and segmented cells in the five com-

pared datasets

EVICAN Allen cell explorer ISBI Gurari BBBC

Images 4640 � 18 000 56 151 65

Segmented cells 26 428 � 39 000 899 151 995

Cell lines 30 1 3 3 2

Cell structures 2 12 1 1 1

Magnifications 3 1 3 2 2

Microscope models 4 1 3 1 1a

Contrast mechanisms 2 1 2 1 1

Object variation 60 12 3 3 2

Instrument variation 24 1 18 2 2

Note: Highest scoring datasets for each category are highlighted in gray.
aPotentially more microscope models.
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3.3.2 Classifier evaluation

We tested our trained algorithm on microscopy image evaluation
datasets categorized in three classes of rising difficulty level. AP was
computed at IoU thresholds above 0.5 (AP0.5), above 0.75 (AP0.75),
and averaged over thresholds rising from AP ¼ 0.5 to 0.95 in 0.05
steps. All values were averaged over all images within the respective
evaluation dataset. Figure 4 shows that with rising difficulty level of
the evaluation data and with increased IoU thresholds, AP values
decreased, as expected.

When assessing the lowest difficulty evaluation dataset, we
achieved an AP0.5 of 0.61. The decreasing AP with increasing IoU
thresholds (i.e. scores of AP0.75 and AP) indicated that a majority of
positive detections in AP0.5 was based on IoU values below 0.75.
With the combined annotation of cell bodies and nuclei in one

dataset, we could also show that it was possible to detect cells and
subcellular features mutually in one step. For qualitative assessment,
Figure 5a shows exemplary input and output images for our algo-
rithm. It is apparent that the algorithm produces better results on
images with higher contrast (i.e. in PhC images, see Fig. 5, left and
right columns).

BF images, even with high magnification, often result in incor-
rect detections or missed cells/nuclei (see Fig. 5, middle column).
While other datasets include colored or stained images, EVICAN
relies solely on grayscale images, thereby limiting feature
dimensionality.

4 Discussion

The EVICAN dataset provides a large-scale, multi-class, manually
annotated and segmented, mixed BF and PhC microscopy image col-
lection covering a broad range of cell lines (30 adherent cell lines).
Training computer vision algorithms on our dataset should enable
computer scientists to produce faster and more accurate, and more
broadly usable, cell image segmentation and characterization tools
using unstained images. This capability has the potential to strongly
increase the ability of simple light microscopes to serve as quantita-
tive instruments in cell biology labs. Machine-learning algorithms
have been applied before to microscopy images, in part with remark-
able success, such as work by Christiansen et al. (2018) and
Ounkomol et al. (2018) who predicted fluorescent labels from trans-
mitted light images. However, image processing is still far behind
the technology for image acquisition. Despite the massive applica-
tion of computer vision in other data-intensive sectors like face rec-
ognition (Schroff and Philbin, 2015), progress in applying computer
vision in cell microscopy has been comparatively slow. We believe
that this slow progress is due to the two decoupled sectors: computer
scientists usually have no access to a biolab with adequate image ac-
quisition machinery and most biologists lack the knowledge and
skills to create or retrain computer vision algorithms. Image collec-
tions like the ISBI cell-tracking challenge datasets offer relatively
heterogeneous datasets but lack appropriate image numbers. In con-
trast, the Allen Cell Explorer dataset offers gigantic numbers of
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Fig. 5. EVICAN2-trained classifier performance for grayscale image segmentation. Input (a) and output (b) example images for our algorithm. Varying colors indicate individ-

ual cell or nucleus segmentations, values (white) denote confidence of each detection (maximum ¼ 1.0; all values above 0.7). Left: SW480 cells, imaged in PhC mode (20� ob-

jective), 100% correctly detected cells; middle: PC3 cells, imaged in BF mode (40� objective), nuclei not or incorrectly detected; right: CHO cells, imaged in PhC mode (20�
objective), several false-positive detections. (Color version of this figure is available at Bioinformatics online.)
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images and instances but lacks image heterogeneity. The scope of
the Allen Cell Explorer dataset is to provide confocal z-stacks with a
multitude of manually curated cellular structures that allow training
of machine-learning algorithms to detect subcellular entities. The
limited heterogeneity is a result of the focus on high-throughput
experiments on a single-cell line (human-induced pluripotent stem
cells), using identical microscope models, and providing the image
data from a single objective magnification (100�). We note that an
extensively annotated fluorescent dataset of nuclei was recently
released by Carpenter and colleagues with 23 165 segmented nuclei
as well as an evaluation of deep learning strategies (Caicedo et al.,
2019).

The limitations of current state-of-the-art image datasets for cell
microscopy leave room for a balanced dataset of sufficient size. We
hope to fill this gap by providing computer scientists (and other al-
gorithm developers) with our image collection. We provide two edi-
tions of our dataset: EVICAN2 with classes ‘nucleus’ and ‘cell’ as
well as EVICAN60 with 60 classes for 30 cell lines and their respect-
ive nuclei. Additionally, we provide three evaluation datasets
accounting for varying image quality. As the dataset is only partially
annotated, we encourage scientists and volunteers to add annota-
tions and evaluate how the performance of classifiers changes.

Using the EVICAN2 dataset—with partially annotated images—
in a pilot machine-learning application for cell and nucleus identifi-
cation, we generated a classification and segmentation algorithm
with an AP up to 61.6% at IoU scores above 0.5. This result demon-
strates that training a classifier with our dataset of partially anno-
tated and blurred background images was sufficient to segment cells
and nuclei in the (fully annotated) evaluation images with reason-
able performance. Other groups have reported more robust results
(He et al., 2017; Johnson, 2018). However, these algorithms rely on
colored or stained images while EVICAN2 training produced a de-
tection algorithm for unstained, grayscale images. Feature availabil-
ity is reduced in grayscale images, as one channel is used instead of
three, which partially explains the lower performance of resulting
detection algorithms. Increasing the number of annotations is likely
one way to improve the precision though we cannot speculate on the
exact benefit.

The performance of our algorithm was best for the lowest diffi-
culty images in our evaluation dataset. This can be explained with a
higher degree of feature presentation in images with few cell–cell
contacts, strong contrast (e.g. from PhC), high resolution and better-
focused image conditions. The COCO dataset was designed with
object types recognizable by a 4-year old (Lin et al., 2014), while the
EVICAN dataset includes cellular outlines and incorporated nuclei,
that overlap, share a strong resemblance, and are often challenging
to see without staining, even by a trained individual.

Better performance on high resolution and magnification images
could arise from higher feature visibility that is lost in lower reso-
lution. PhC images provide higher contrast; features appear more
prominently, which facilitates feature detection in the convolutional
process. Nevertheless, the limited dimensionality (as a consequence
of the grayscale nature of the images) prevents the algorithm from
searching for color-encoded features.

5 Conclusion

The proof-of-principle use of our dataset in the Mask-RCNN imple-
mentation performed adequately with our settings and computation-
al resources, but we strongly encourage the scientific community to
add further annotations or use more powerful computational tools
to expand the capacity of resulting algorithms and increase segmen-
tation accuracy. We believe that with the right tools (e.g. multi-GPU
support) and advanced image augmentation, the EVICAN dataset,
particularly the EVICAN60 version, can lead to transformative al-
gorithm developments, similar to that seen in other computer vision
fields. Such an algorithm, which is capable of not only segmenting
cells and nuclei within an image but also discriminating among cell
types in co-cultures would open the door to a new era of high-
throughput cell microscopy. All cells in a microscopy field could be
adequately measured label-free (i.e. quantification of cell spreading,

elongation, circularity, etc.), multiple cell types in co-cultures could
be instantly identified and changes in cell morphology could be e.g.
linked to drug treatment or differentiation. We hope computer sci-
entists and computational biologists use our dataset in efforts to
achieve this goal.
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