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Abstract. We show that the only Fibonacci numbers that are concatenations

of two repdigits are 13, 21, 34, 55, 89, 144, 233, 377.

1. Introduction

Let g ≥ 2 be an integer. A natural number N is called a base g–repdigit if all of
its base g–digits are equal; that is, if

(1) N = a

(
gm − 1

g − 1

)
, for some m ≥ 1 and a ∈ {1, 2, . . . , g − 1}.

When g = 10, we omit the base and we simply say that N is a repdigit. Diophantine
equations involving repdigits were considered in several recent papers in which
their authors found all repdigits that are perfect powers, or Fibonacci numbers, or
generalized Fibonacci numbers, and so on (see [1, 3, 5, 7, 9, 10, 11, 13] for a sample
of such results).

Given positive integers A1, . . . , At, we write

A1 · · ·At(g)

for the concatenation of their base g strings of digits. We omit writing g when
g = 10. Thus, the repdigit N shown at (1) is just

N = a · · · a︸ ︷︷ ︸
m times

(g),

whereas the concatenation of two repdigits in base 10 is

a · · · a b · · · b, where a, b ∈ {1, . . . , 9}.
Let {Fm}m≥0 be the Fibonacci sequence given by

(2) Fm+2 = Fm+1 + Fm, for all m ≥ 0,

where F0 = 0 and F1 = 1. The first few terms of this sequence are

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987.

In 2011, S. Dı́az–Alvarado and F. Luca [1] determined all Fibonacci numbers that
are sums of two repdigits. In [2], Banks and Luca considered Diophantine equations
with concatenations of members of binary recurrences. For example, they showed
that the only Fibonacci numbers which are concatenations of two other Fibonacci
numbers are 13, 21, 55.
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In this paper we consider the same problem with Fibonacci numbers which are
concatenations of two repdigits. Given k ≥ 1 and g ≥ 2, one can ask which
Fibonacci numbers are concatenations of k repdigits in base g, that is

Fn = a1 · · · a1︸ ︷︷ ︸
m1 times

a2 · · · a2︸ ︷︷ ︸
m2 times

. . . ak · · · ak︸ ︷︷ ︸
mk times

(g), a1, . . . , ak ∈ {0, 1, . . . , g − 1}, a1 6= 0.

It follows, by arguments similar to those from [8] and [14], that the above equation
has only finitely many positive integer solutions n,m1, . . . ,mk and in practice they
are all computable. In this paper, we solve the case k = 2 and g = 10, namely we
find all solutions of the Diophantine equation

(3) Fn = a · · · a︸ ︷︷ ︸
m times

b · · · b︸ ︷︷ ︸
` times

, where a, b ∈ {0, . . . , 9}, a > 0.

Our result is the following.

Theorem 1.1. The only Fibonacci numbers which are concatenations of two repdig-
its are 13, 21, 34, 55, 89, 144, 233, 377.

We organize this paper as follows. In Section 2, we recall some elementary
properties of Fibonacci numbers, a result due to Matveev on the lower bound
of linear forms of logarithms of algebraic numbers, and a result on the Baker-
Davenport reduction. The proof of Theorem 1.1 is done in Section 3. Our argument
is based on elementary properties of the Fibonacci sequence combined with a linear
form in three complex logarithms due to Matveev [12] which helps us to obtain
bounds for n,m, `. As these bounds are high, we use a reduction method called the
Baker-Davenport method to reduce these bounds and come to a contradiction. We
start with some elementary considerations.

2. Preliminaries

2.1. Some Properties of Fibonacci Numbers. Here, we recall some properties
of the sequence. Binet’s formula says that

(4) Fm =
αm − βm

α− β
holds for all m ≥ 0, where α = (1 +

√
5)/2 and β = (1 −

√
5)/2 are the two roots

of the characteristic equation x2 − x− 1 = 0 of the Fibonacci sequence.

Lemma 2.1. For every positive integer n ≥ 2, we have

αn−2 < Fn < αn−1.

This can be easily proved by induction.

2.2. Linear Forms in Logarithms. We need some results from the theory of
lower bounds for nonzero linear forms in logarithms of algebraic numbers. We start
by recalling Theorem 9.4 from [4], which is a modified version of a result of Matveev
[12]. Let L be an algebraic number field of degree dL. Let η1, . . . , ηl ∈ L not 0 or 1
and b1, . . . , bl be nonzero integers. We put

D = max{|b1|, . . . , |bl|},
and

Γ =

l∏
i=1

ηbii − 1.
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Let A1, . . . , Al be positive integers such that

Aj ≥ h′(ηj) := max{dLh(ηj), | log ηj |, 0.16}, for j = 1, . . . l,

where for an algebraic number η of minimal polynomial

f(X) = a0(X − η(1)) · · · (X − η(k)) ∈ Z[X]

over the integers with positive a0, we write h(η) for its Weil (or logarithmic) height
which is given by

h(η) =
1

k

log a0 +

k∑
j=1

max{0, log |η(j)|}

 .

In particular, if η = p/q is a rational number with gcd(p, q) = 1 and q > 0, then
h(η) = log max{|p|, q}. The following properties of the function h will be used in
the next sections without special reference, are also known:

h(η ± γ) ≤ h(η) + h(γ) + log 2,

h(ηγ±1) ≤ h(η) + h(γ),

h(ηs) = |s|h(η) (s ∈ Z).

The following is a consequence of Matveev’s theorem (Theorem 9.4 in [4]).

Theorem 2.1. With the previous notations, if Γ 6= 0 and L ⊆ R, then
log |Γ| > −1.4 · 30l+3l4.5d2

L(1 + log dL)(1 + logD)A1A2 · · ·Al.

2.3. The Baker-Davenport lemma. Here, we recall the Baker-Davenport re-
duction method from [3], which is an immediate variation of a result due to Dujella
and Pethö (see [6, Lemma 5a]), which turns out to be useful in order to reduce the
bounds arising from applying Theorem 2.1.

Lemma 2.2. Let κ 6= 0, A,B and µ be real numbers with A > 0 and B > 1.
Assume that M is a positive integer. Let P/Q be the convergent of the continued
fraction expansion of κ such that Q > 6M and put

ξ = ‖µQ‖ −M‖κQ‖,
where ‖ · ‖ denotes the distance from the nearest integer. If ξ > 0, then there is no
solution of the inequality

0 < |mκ− n+ µ| < AB−k

in positive integers m, n and k with

log (AQ/ξ)

logB
≤ k and m ≤M.

3. The Proof of Theorem 1.1

3.1. The low range. We ignore the repdigit case (namely, the case a = b in
equation (3)) since that has been treated in [7]. We next check the case n ≤
1000. The number F1000 has 480 digits. We generated Fn mod 104 for n ≤ 1000
numerically and checked that none of these numbers has all the last four digits
equal to each other (we found several examples which have the last three digits the
same). This means that in equation (3) in this range, we must have ` ∈ {1, 2, 3}.
Next, we generated the list of all the right–hand sides of (3) for m ≤ 480, ` ≤ 3 and
a 6= b ∈ {0, . . . , 9}, a > 0. Then we compared this list with the list of Fibonacci
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numbers Fn for n ≤ 1000 obtaining only the solutions indicated in the statement
of the theorem. From now on, we assume that n > 1000.

3.2. The initial bound on n. We exploit (3). That is

Fn = a · · · a︸ ︷︷ ︸
m times

b · · · b︸ ︷︷ ︸
` times

= a · · · a︸ ︷︷ ︸
m times

× 10` + b · · · b︸ ︷︷ ︸
` times

=
1

9
(a10m+` − (a− b)10` − b).(5)

We next comment on the size of n versus m+ `.

Lemma 3.1. All solutions of equation (3) satisfy

(m+ `) log 10− 2 < n logα < (m+ `) log 10 + 1.

Proof. The proof follows easily from the fact that αn−2 < Fn < αn−1. One can see
that

αn−2 < Fn < 10m+`.

Taking the logarithm of both sides, we get (n − 2) logα < (m + `) log 10, which
leads to

n logα < (m+ `) log 10 + 2 logα < (m+ `) log 10 + 1.

The lower bound follows similarly from the bound 10m+`−1 < Fn < αn−1. �

We next examine (5) in two different steps as follows.

Step 1. Equation (5) and the Binet formula for Fn give

9αn − a(α− β)10m+` = 9βn − (α− β)((a− b)10` + b).

from which we deduce that∣∣9αn − a(α− β)10m+`
∣∣ =

∣∣9βn − (α− β)((a− b)10` + b)
∣∣

≤
√

5(8 · 10` + 9) + 9α−n

≤
√

5× 8.9× 10` + 9α−n

< 20× 10`,

where we used the fact that
√

5 × 8.9 < 19.91 and n > 1000. Thus, dividing both
sides by (α− β)a10m+` we get

(6)

∣∣∣∣( 9

a
√

5

)
αn10−m−` − 1

∣∣∣∣ < 20× 10`√
5a10m+`

<
9

10m
.

Let

Γ1 :=

(
9

a
√

5

)
αn10−m−` − 1.(7)

We compare this upper bound with the lower bound on the quantity Γ1 given
by Theorem 2.1. Observe first that Γ1 is not zero, for if it were, then αn =
a
√

510m+`/9. That is, α2n ∈ Q, which is false for any n > 0. With the notation of
that theorem, we take

η1 :=
9

a
√

5
, η2 := α, η3 := 10, b1 := 1, b2 := n, b3 := −m− `, l := 3.
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Since 10m+`−1 < Fn < αn−1, we have that m + ` ≤ n. Therefore, we can take
D = n. Observe that L := Q(η1, η2, η3) = Q(α), so dL = 2. We note also that the
conjugates of η1, η2, and η3 are η′1 = −η1, η

′
2 = β, η′3 = η3. Since

h(η1) ≤ h(9/a) + h(
√

5) ≤ log 9 +
log 5

2
,

it follows that h(η1) < 3.01. Furthermore, h(η2) < 0.49 and h(η3) = log 10 < 2.31.
Thus, we can take

A1 = 6.02, A2 = 0.98, A3 = 4.62.

Theorem 2.1 tells us that

log |Γ1| > −1.4·30634.522(1+log 2)(1+log n)(6.02)(0.98)(4.62) > −2.9×1013(1+log n).

Comparing this last inequality with (6) leads to

m log 10− log 9 < 2.9 · 1013(1 + log n)

giving

(8) m log 10 < 2.9 · 1013(1 + log n) + log 9.

Step 2. Equation (5) also can be rewritten as

αn − (α− β)

(
a10m − (a− b)

9

)
10` = βn − (α− β)b

9
,

which gives∣∣∣∣αn − (α− β)

(
a10m − (a− b)

9

)
10`
∣∣∣∣ =

∣∣∣∣∣βn − b
√

5

9

∣∣∣∣∣ ≤ √5 + α−n < 3.

Thus, dividing both sides by αn, we get∣∣∣∣∣
(√

5(a10m − (a− b))
9

)
α−n10` − 1

∣∣∣∣∣ < 3

αn
.(9)

Put

Γ2 :=

(√
5(a10m − (a− b))

9

)
α−n10` − 1.(10)

Notice that Γ2 6= 0, for otherwise we would get that

αn =

(√
5(a10m − (a− b))

9

)
10`,

so α2n ∈ Q, which is false for any n > 0. Thus, Γ2 6= 0. With the notation of
Theorem 2.1, we take
(11)

η1 :=

(√
5(a10m − (a− b))

9

)
, η2 := α, η3 := 10, b1 := 1, b2 := −n, b3 := `.
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As mentioned before ` < n, therefore we can take D = n. Furthermore, we have

h(η1) = h

(√
5(a10m − (a− b))

9

)
≤ h(

√
5/9) + h(a10m − (a− b))

≤ log 9 + h(a10m) + h(a− b) + log 2

≤ 3 log 9 + log 2 +m log 10

≤ 2.9 · 1013(1 + log n) + 4 log 9 + log 2

< 3 · 1013(1 + log n),

where in the above string of inequalities we used (8). Thus, we can take

A1 := 6 · 1013(1 + log n), A2 := 0.98, A3 := 4.62.

Theorem 2.1 tells us that:

log |Γ2| > −1.4 · 30634.522(1 + log 2)(1 + log n)(0.98)(4.62)A1

> −5 · 1012(1 + log n)A1

> −3 · 1026(1 + log n)2.

Comparing this last inequality with (9)

n logα− log 3 < 3 · 1026(1 + log n)2.

The above inequality gives us
n < 3× 1030.

Lemma 3.1 implies
m+ ` < 8× 1029.

We summarize what we have proved so far in the following lemma.

Lemma 3.2. All solutions of equation (3) satisfy

m+ ` < 8 · 1029 and n < 3× 1030.

3.3. Reducing The Bound. To lower the above bounds, we return to inequality
(6). Putting

Λ := (m+ `) log 10− n logα− log(9/(a
√

5)),

inequality (6) can be rewritten as

|e−Λ − 1| < 9

10m
.

Assuming m ≥ 2, we get that the right–hand side above is at most 9/100 < 1/10.
The inequality |ez − 1| < y for real values of z and y implies that z < 2y. Thus,

|Λ| < 18

10m
,

which gives∣∣∣∣∣(m+ `)

(
log 10

logα

)
− n−

(
log(9/(a

√
5))

logα

)∣∣∣∣∣ < (18/ logα)

10m
<

38

10m
.

We apply Lemma 2.2 with the obvious choices

κ =
log 10

logα
, µ =

log(9/(a
√

5))

logα
, A = 38, B = 10.
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Furthermore, m+ ` < M := 1030. We have

P

Q
=
P68

Q68
=

38965529140991691277819336889406492

8143313986267634455074822922575959
.

is a convergent of κ with Q > 8 ·1033 > 6M. We compute M‖Qκ‖< M/Q < 0.0003.
Furthermore, the smallest value of ‖Qµ‖ (over all the values of a) computed was
> 0.015 corresponding to a = 4. Thus, we take ξ = 0.01 < ‖Qµ‖ −M‖Qκ‖. We
therefore get

m ≤ log (AQ/ξ)

logB
= 37.4.

Therefore, m ≤ 37.
For fixed a 6= b ∈ {0, . . . , 9}, a > 0 and m ∈ {1, . . . , 37}, we take

Λ1 = ` log 10− n logα+ log

(√
5(a10m − (a− b))

9

)
.

From inequality (9), we have that

|eΛ1 − 1| < 3

αn
.

Since n > 1000, the right–hand side above is smaller than 1/2. Thus, the above
inequality implies

|Λ1| <
6

αn
,

which leads to∣∣∣∣∣`
(

log 10

logα

)
− n+

log(
√

5(a10m − (a− b))/9)

logα

∣∣∣∣∣ < (6/ logα)

αn
<

13

αn
.

Again, we apply Lemma 2.2 with the obvious choices

κ =
log 10

logα
, µ =

log
√

5(a10m − (a− b))
logα

, A = 13, B = α.

We note that ` < M := 1030. We take the same κ and P/Q as the previous time.
Clearly, the value of M‖qκ‖ < 0.0003 is the same as in the previous application
of the Baker-Davenport reduction. The smallest value of ‖Qγ‖ over all a, b,m is
> 0.0004. Thus, we can take ξ = 0.0001 < ‖Qµ‖ −M‖Qκ‖. Hence,

n ≤ log (AQ/ξ)

logB
= 186.8.

Thus, n ≤ 186, contradicting the fact that n > 1000. Hence, the theorem is proved.
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