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Abstract. This paper presents the subtleties of obtaining robust experimental
scaling laws for the core resonant error field threshold that leads to field
penetration, locked modes, and disruptions. Recent progress in attempts to
project this threshold to new machines has focused on advances in the metric
used to quantify the dangerous error fields, incorporating the ideal MHD plasma
response in a metric referred to as the “dominant mode overlap”. However,
the scaling of this or any quantity with experimental parameters known to be
important for the complicated tearing layer physics requires regressions performed
for databases that, for historical reasons, unevenly sample the available parametric
space. This paper presents the distribution of the existing international n = 1
database and details biases in the available sampling and details the sensitivity of
ITER projections to simple least-squares regressions. Downsampling and a simple
kernel density estimation weighted regression are used here to demonstrate the
difference in projections that acknowledging the machine sampling bias can make.
This results in more robust projection to parameters far from the “usual” devices
built thus far. Two multi-device and multi-parameter scalings of the EF threshold
in Ohmic and powered plasmas are presented, projecting the threshold to ITER
and investigating the impact of sampling biases.
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1. Error Field Thresholds Scaling

Small non-axisymmetric magnetic fields known as error
fields (EFs) cause tearing modes to grow and lock in
tokamaks, causing disruptions. In all tokamaks, which
are designed to be nominally axisymmetric devices,
some unavoidable level of construction asymmetry
creates “intrinsic” EFs. Even intrinsic EFs that are
much smaller (typically on the order of 104 times
smaller) than the axisymmetric fields are capable of
causing disruptions. The critical question in each
device is not whether a small EF exists, but how small
of an EF is small enough.

Realizing the critical role EFs can play in limiting
tokamak performance, devices such as COMPASS [1],
DIII-D [1–5], EAST [6], Alcator C-Mod [7], JET
[8], NSTX [9], ASDEX-Upgrade [10], KSTAR [11]
and others have devoted considerable resources to
quantifying and correcting their intrinsic EFs. These
experiments recognized that it is critical to the success
of their device that the low toroidal mode number
components of the asymmetric EF be below a threshold
at which they lead to lock modes, and set out
to find that threshold. Additional resources have
been devoted to studying parametric dependencies
of this threshold in individual devices [7–9, 12–20]
and comparing these trends with reduced theoretical
predictions [21–24]. This effort has provided a solid
physics basis for understanding of EF penetration and
locking, which enables better predictions of where EFs
are most dangerous (i.e. low density, low rotation).
Still, the rich physics of the nonlinear resistive tearing
layer has made quantitative model prediction of
the threshold in new scenarios difficult. As such,
the community has developed multi-device, multi-
parameter scalings for the projection of thresholds to
new devices [25–27].

Modern empirical scaling projections to ITER use
a threshold metric known as the “dominant mode
overlap” (detailed extensively in Refs. [5, 28–30]),
which takes into account the well known physics of the
ideal magnetohydrodynamic (MHD) plasma response
to external EFs. This overlap parameter, δ, is fit to
a multi-parameter power law scaling function, δ =
10αcΠip

αi
i , where pi are empirical parameters known

to influence the threshold and the exponents αc and
αi are free parameters of the fit. Note, the overlap is a
dimensionless parameter that can be thought of as the
ratio of dangerous EF to the axisymmetric field. Such

scalings have provided predictions for the threshold in
the ITER device before its operation, influencing its
strict construction tolerances and EF correction coil
designs [25, 31, 32].

When developing a scaling law for extrapolation of
observed physics to new devices, the broadest possible
trends are desired. The multi-device confinement
scalings for example, smooth over the details of
local behaviors in individual machines in favor of a
broad description of confinement times across many
machines and many orders of magnitude in the
relevant parameters [33]. Empirical scalings of the EF
penetration threshold aim to provide a similarly broad
and robust estimation of the critical EF to guide the
design and optimization of future devices that will be
operated in a hitherto unexplored parametric space.
In order to do so, however, the fit scalings must be
careful to avoid sensitivities to uneven or correlated
distributions of the empirical data available for these
regressions. Despite extensive use of scaled threshold
in the ITER EF correction strategy and coil design
[25, 31, 32, 34–36], neither an in-depth description
of the database distribution used to determine these
thresholds nor a study of the sensitivity of the
projection to particular data has yet been published.

The remainder of this paper details the data and
scaling sensitivities in the existing ITPA database of
empirical EF threshold data used to make projections
to ITER. It demonstrates the robustness of the
existing ITER scalings to permutations of the data and
compares the standard least-squares regression to an
alternate scheme that better matches the most unique
data on the near-ITER boundaries of the explored
parametric space.

2. Distribution of Available Data

The International Tokamak Physics Activity (ITPA)
magnetohydrodynamics (MHD) topical group began
a joint experiment “MDC-19: Error Field Control
at Low Plasma Rotation” in 2012 that has since
overcome many challenges to provide error field
threshold projections to ITER. In the last five
years, three similar-size tokamak devices (DIII-D,
EAST, and KSTAR) have contributed to the database
with extensive error field (EF) threshold studies
documenting their intrinsic EF as well as the scaling
of thresholds in applied EFs using advanced 3D field
coil systems. This has resulted in an abundance of
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Figure 1. Distribution of the experimental n = 1 EF threshold database across the regression parameters of density, toroidal
field, major radius, and normalized pressure. Single-parameter KDEs are plotted in axes along the diagonal to elucidate the uneven
sampling densities. Individual points are color coded by device according to the top legend. ITER scenario values are shown as grey
“+” symbols and dashed lines.

data in relatively similar plasma sizes, densities, and
toroidal fields. During this time, machines like NSTX,
JET and C-MOD with vastly different size and toroidal
field focused on new priorities or where shut down. Of
course, all the devices built to date have been smaller
and lower in at least some of the vital parameters
(e.g. density, temperature, and confinement) than
a fusion reactor envisioned along the lines of ITER
and DEMO. Thus, the available EF threshold data
is unevenly distributed across the relatively limited
parametric space accessible by current devices while
scalings using this data are desired for projections
outside of its domain.

Figure 1 shows the distribution of the empirical
n = 1 (n is the toroidal mode number) EF thresholds
across four typical regression parameters for 177
plasmas. These plasmas comprise the latest ITPA
database used in Ref. [27], including the same
additional EAST, DIII-D and COMPASS data and
excluding the same cases with significant non-resonant
EF effects to ensure the focus is on the resonant EF

physics we are trying to capture. The log quantities are
plotted in figure 1, as this provides the most intuition
for the power scaling fit (log linear regression). In
addition, all log quantities have been divided by the
log of the corresponding ITER parameter. Projected
ITER scenario parameters from Ref. [37] are used
here and throughout this paper. They are, ne ≈
9.8 × 1019m−3, BT ≈ 5.3T , R0 ≈ 6.2m, and βN/`i ≈
1.8. Throughout this work, the line average density
ne has units of 1019m−3, the on-axis toroidal field BT
has units of Tesla, the major radius R0 has units of
meters and the normalized pressure βN/`i is unitless.
This normalized log space provides a sense of how well
our database constrains the log linear power scaling
regression around ITER-like parameters (i.e. unity on
each axis).

The axes along the diagonal of this figure 1 show
kernel density estimates (KDEs) of the corresponding
single-parameter probability density function (PDF)
across all machines of the database. These curves
provide a continuous estimate of the PDF from the
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data, peaking where sampling is heavily sampled and
falling where the data is sparse. In order to better
visualize the relative density across the database range,
the amplitudes are independently scaled to fill the
available axes. It is the shape, not the amplitude,
that is of interest here. The top left KDE shows
that the density sampling is quite concentrated below
ITER values, with only a relatively small tail at higher
densities. The toroidal field data has more of a bi-
or tri-modal distribution, and also just marginally
encompasses the ITER value. Of course, the available
data does not extend to ITER values of major radius.
However, the data is relatively evenly distributed in
the log radius other than the concentration of data
from DIII-D, EAST, and KSTAR near R0 ≈ 1.7.
Finally, the normalized pressure is sampled in a bi-
modal distribution of low βN/`i Ohmic or L-mode
discharges and high βN/`i H-modes (well surpassing
the chosen ITER scenario projection).

The kernel density distributions shown here
highlight key gaps in the database that can be filled.
One such gap is found in the toroidal field values
between NSTX and DIII-D. There is an opportunity
for NSTX-U to fill this gap soon when it begins
operation. Similarly, there is an opportunity for future
compact, high-field devices to supplement the limited
data near the high ITER field values. In addition
to the opportunities for new devices, the database
distribution clearly reveals that there is a valuable
opportunity for all existing devices to contribute
meaningful data to this ITPA effort in high normalized
pressure plasma scenarios.

The off diagonal axes show pair-wise scatter plots
of the individual data points from each machine.
A larger range is preferable for a well constrained
regression, as is a dense sampling of the entire domain
(i.e. a flatter KDE). These pair plots show the ITER-
like density and toroidal field samples both come from
a single C-MOD density scan experiment. They also
show that DIII-D and NSTX are the only devices to
have contributed data from high βN/`i H-modes.

Importantly, these pair plots also reveal correla-
tions between each of the parameters used in the re-
gression. The density and pressure are highly corre-
lated. The toroidal field and density are also highly
correlated. These are natural consequences of the
Ohmic plasmas that make up the majority of the
database. However, these couplings do have the po-
tential to influence the ultimate regression. In the
worst case, tight co-linearity could increase the condi-
tion number of the fit basis far above unity and enable
exponent mixing (the ability to arbitrarily increase one
exponent while decreasing another without changing
the fit error). Although Section 3 shows the situation
in this case is not as dire as arbitrary mixing, care must

10-5

10-4

10-3

10-2

N
or

m
al

iz
ed

 δ

Ordinary Least Squares
α = - 0.95 ± 0.08 COMPASS

DIII-D
EAST
CMOD

JET
KSTAR
NSTX

10-5

10-4

10-3

10-2

N
or

m
al

iz
ed

 δ

Downsampled
α = - 0.94 ± 0.08

10-1 100 101

Toroidal Field  [T]
10-5

10-4

10-3

10-2

N
or

m
al

iz
ed

 δ

Weighted
α = - 0.95 ± 0.07

Figure 2. Empirical EF thresholds normalized by[
nαne R

αR
0 (βn/`i)

αβ
]

as a function of toroidal field for the or-
dinary least squares (top), downsampled least squares (middle)
and weighted least squares (bottom) regression. In each case, a
grey line shows the fit toroidal field scaling, and all other α’s can
be found in Table 1.

be taken to obtain reliable fits for this heavily biased
and coupled data.

This insight should be used to guide new exper-
iments that purposefully decouple these parameters.
This can be done using different mixes of electron
cyclotron heating (ECH) and neutral beam injection
(NBI) heating, for example. Such experiments would
improve the condition number (and thus have high im-
pact on the ultimate uncertainty) of the regressions.

3. Regression

This section details a relatively simple, multi-machine,
multi-parameter power law scaling of the EF threshold.
The scaling is shown to be robust, providing confidence
in the threshold values previously used for ITER
studies.

3.1. Ordinary Least Squares Regression

Thresholds in the tolerable EF have historically been
projected using ordinary least squares (OLS) fits of
power law exponents for the simple 0D parameters
shown in Section 2. The fit itself is simply a least
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Figure 3. Empirical EF thresholds normalized by[
B
αB
T R

αR
0 (βn/`i)

αβ
]

as a function of density for the ordinary
least squares (top), downsampled least squares (middle) and
weighted least squares (bottom) regression. In each case, a grey
line shows the fit density scaling, and all other α’s can be found
in Table 1.

squares solution of the linear equation,

D ·α = δ (1)

where the rows of the data matrix D are filled with
the parameters shown in figure 1,

Dj =
[
log(10) log (ne,j) log (BT,j) log (R0,j) log

(
βN,j
`i,j

)]
,

(2)
the power law exponents vectors α contains

the unknown power law exponents correspond-
ing to the constant and each scaling parameter,{
αc, αn, αB , αR, αβ

}
, and the threshold vector con-

tains the log overlap thresholds, log (δj), determined
experimentally.

Historically, the unknown scaling coefficients have
been fit using simple least squares fitting. This is
motivated in part by power scalings that can be
derived from reduced models in distinct parameter
regimes [21–24]. This implicitly assumes that the
power-law scaling model is a true description of the
system, and that deviations from the scaling are
Gaussian distribution errors. Although the underlying
ordering assumptions of individual theoretical scalings
are often violated even within a single machine and/or

single-parameter scans, least-squares power scaling fits
have been used extensively to compare experimental
observations to the reduced resistive layer models [7–
9, 12–20]. The primary goal of a multi-machine,
multi-parameter scaling is not to validate a particular
reduced model, but rather to provide a rough estimate
of critical plasma properties at the design points of
new machines. Such an empirical scaling, spanning
large parameter ranges for which there is no single
theoretical power scaling model, have been invaluable
tools for the fusion community [33, 38, 39].

One common issue for such tokamak scaling
studies using such linear regression techniques is the
possibility of co-linearity in the data [38]. The co-
linearity of the data used in the EF threshold scaling
can be inspected visually in figure 1. The condition
number (ratio of largest to smallest eigenvalues)
of a normalized fit matrix D̃ (wherein columns of
independent variable spans have unit length) quantify
the co-linearity of the fit, with values of 20 or greater
generally being considered problematic [40, 41]. A
simple, least-squares regression of the the full database
shown in figure 1 is given in table 1. The condition
number of the full database regression is 7.0. A fit
of a reduced database, excluding H-mode data (but
including the 4 L-mode plasmas), is also provided as
most historically quoted thresholds have not included
H-mode data. The condition number of this fit is 8.6.
These values are well below 20, confirming the fits are
robust to issues of co-linearity.

The biases introduced by vastly different sampling
in different machines is also always a concern for
such scalings as well. This has been addressed in
confinement scalings previously by performing two step
regressions, performed first on individual machines
before being aggregated [39]. Here, we employ
a simple Monte-Carlo technique: performing the
regression on sub-sets of data randomly downsampled
to 6 points per machine. The results of 300 of
such randomly downsampled ordinary least squares
(DSOLS) regressions are presented in Table 1 with
values and uncertainties reflecting the means and
standard deviations of the individual scaling exponents
and projections. We can see the exponents remain
mostly consistent with the OLS fits, with the exception
of the low value and high uncertainty pressure scaling
coefficient. Importantly, the final projection to ITER,
remain close to the OLS prediction that ITER can
withstand EF overlap values on the order of 10−4.

3.2. Weighted Regression

The high cost of tokamak experiments means that it is
an expensive waste to downsample available data in an
attempt to even the distribution of empirical points.
As an alternate approach, we can use a weighting
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scheme that enables use of all the available data
while obtaining fits that describe the broadest trends
across the irregularly sampled machines distributed
throughout the parameter space.

Here, we use weighted least squares (WLS)
regressions to investigate and remove the sampling
biases of our empirical database and obtain reliable
projections to new machines such as ITER. The
weight of each empirical point is inversely proportional
to the probability density function (PDF) at that
point calculated using a multivariate KDE in the
normalized log space shown in figure 1. The KDE is
calculated using product Gaussian kernels calculated
using the statsmodels python package [41]. The
results reported here use cross-validation maximum
likelihood bandwidths that maximize the leave-one-
out likelihood [42, 43]. These correspond to 0.13,
0.05, 0.001, and 0.18 for the ne, BT , R0, and βN/`i
terms respectively in the full database regression. The
conclusions drawn here are not sensitive to this choice
however, and the bandwidths can be varied by nearly
an order of magnitude while maintaining overlap with
the reported uncertainties. This provides a continuous
estimate of the PDF from the data, used to weight
unique data where the sampling is sparse more than
the data where the density is high in a heavily sampled
parameter space.

The inverse PDF weighting preferentially values
matching data far from other data in the parameter
space and devalues matching data in densely populated
parametric ranges (i.e. the wealth of data from
DIII-D, EAST, and KSTAR near R0 ≈ 1.7, ne ≈
2). This is done to better describe the broadest
trends across the sampled domain and thus provide
the most reasonable projections outside the edges of
that domain. This provides an alternate way of
investigating the potential for sampling biases from the
different machines. However, it may not always be
the “best” fit. The use of least squares still implicitly
assume the applicability of a power scaling model
across the full data set, which the theoretical scalings
tell us have distinct scaling in various parameter
regimes [21–24] and local scalings or interpolation
methods might more accurately predict new thresholds
within the well studied regimes. One might also
imagine this choice of weighting skew projections
to high(low) values in one parameter pi if a small
number of points lie in a novel regime of low(high)
pi inconsistent with an otherwise regular trend. It
is taken as a reasonable choice in this case because
it weights more heavily the sparse data nearest the
ITER parameters of primary interest for EF scaling
projections.

Figure 2 and Figure 3 show how this principle
impacts the fit power scaling description of the existing

database. Each figure shows results of a full multi-
device, multi-parameter regression of the form shown
in Eq. (1). Each panel is similar to a component and
component-plus-residual plot, showing the penetration
threshold δ normalized by all the scalings pαii for
parameters pi not shown on the x-axis. The y-axis
of Figure 2, for instance, is δ/ [nαne RαR0 (βn/`i)

αβ ].
The plots in this figure show cases for which a OLS
regressiom was used to perform the regression (top)
and a case where a WLS regression was used (bottom).
The plots show how the unweighted fit describes the
dense cloud of data between 1 and 2T well at the
cost of large discrepancies with the uniquely high
field C-MOD data. The weighted regression scaling
better describes the breadth of the data across the full
domain (spanning more than an order of magnitude in
toroidal field), accurately reproducing the high field
C-MOD thresholds. Figure 3, for which the y-axis
is δ/ [BαBT RαR0 (βn/`i)

αβ ], shows a similar result in
which the weighted fit more faithfully represents the
the C-MOD points at the highest densities. The
downsampled regressions also capture the JET cases,
as they effectively increase the weight of the JET
data compared to the highly downsampled DIII-D
and EAST data. Note, when examining these figures
for a sense of overall fit accuracy, that the variance
evident in Figure 3 may be an underestimate of the
true variance due to correlations with the normalized
pressure. For a full picture of the multi-parameter fit
residuals, please refer to Figure 2 in Ref. [27].

The full set of weighted least squares regression
results for the n = 1 EF threshold scaling exponents
can be compared to corresponding OLS regression
exponents in Table 1. In neither case are the scalings
drastically altered by the weighting. The weighting
procedure does not cause any departure from the
expected physics, maintaining consistency with the
previously documented theoretical and single-device,
single-parameter scalings [7–9, 12–24, 26, 27]. The
largest differences with the OLS fits apear in the
pressure scaling of the Ohmic and L-mode database,
which is a relatively weak dependence with relatively
high uncertainty in all cases. The density scaling,
which is the most thoroughly documented [7–9, 12–20]
is practically unaffected. This is reassuring, as is the
fact that only minor adjustments to the other scalings
are sufficient to better describe the experiments like C-
MOD that are expanding the edges of the database’s
domain.

4. Conclusions

This paper details the distribution of the international
database of error field penetration threshold data
and provides a reference for the simple least-squares
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Data Fit αc αn αB αR αβ 104δITERpen

O,L OLS −3.57± 0.05 +0.63± 0.09 −0.98± 0.12 +0.15± 0.08 −0.13± 0.1 2.71± 1.31

O,L DSOLS −3.39± 0.06 +0.58± 0.08 −1.08± 0.10 +0.19± 0.07 +0.26± 0.10 4.30± 0.91

O,L WLS −3.46± 0.05 +0.64± 0.06 −1.14± 0.08 +0.20± 0.07 +0.15± 0.07 3.54± 0.54

O,L,H OLS −3.64± 0.04 +0.60± 0.08 −0.95± 0.08 +0.12± 0.08 −0.30± 0.05 1.93± 0.84

O,L,H DSOLS −3.58± 0.04 +0.45± 0.06 −0.94± 0.08 +0.09± 0.07 −0.15± 0.05 1.66± 0.20

O,L,H WLS −3.62± 0.04 +0.53± 0.06 −0.95± 0.07 +0.14± 0.08 −0.19± 0.05 1.87± 0.23

Table 1. Scaling exponents from ordinary least squares (OLS), KDE weighted least squares (WLS) and downsampled OLS (DSOLS)
regressions using the present MDC-19 databases for n = 1 dominant mode overlap EF thresholds. The last column shows the
corresponding threshold projection to ITER.

scalings used to project thresholds to ITER. The
key conclusions of the database distribution study,
clarified by the use of kernel density estimations, is that
major opportunities for new data to strengthen the
database exist. Of course, more data mined from past
experiments on uniquely positioned machines such as
C-MOD would be of particular interest and could result
in better conditioned fits. The density distributions
shown here also highlight key gaps in the database that
can be filled by near-future experiments. One such gap
is found in the toroidal field values between NSTX and
DIII-D. There is an opportunity for NSTX-U to fill this
gap soon when it begins operation. Similarly, there is
an opportunity for future compact, high-field devices
to supplement the limited data near the high ITER
field values. In addition to the opportunities for new
devices, the database distribution clearly reveals that
there is a valuable opportunity for all existing devices
to contribute meaningful data to this ITPA effort in
high normalized pressure plasma scenarios.

The bottom line result of the scalings presented
here is that the projection of the EF threshold to
our chosen ITER scenario is robustly on the order of
δ ≈ 10−4. Averaging the methods reported in Table 1
gives values of 1.82±0.30 and 3.50±0.60 for regressions
with and without H-modes respectively. Using a
WLS regression does tend to slightly modify the ITER
projected threshold, but not beyond overlapping error
bars. The DSOLS projection excluding H-mode data
does vary more significantly, but is still within a factor
of two of the simple OLS projection. All such projected
values are consistent with the order of magnitude
experienced in current devices and with previous ITER
estimates [25]. This level of EF tolerance is well
understood and has been safely taken into account by
the combination of ITER engineering tolerances and
error field correction coil design [31, 32].

This work provides confidence in the simple, four
parameter regression’s robustness to co-linearity and
sampling biases while reconfirming the validity of the

existing ITER EF correction strategy. The robustness
of the scalings to the uneven machine sampling in
particular, opens additional opportunities for the
community to revisit the wealth of experiments that
are not expressly EF threshold studies but did drive
core tearing modes when applying resonant magnetic
perturbations. This data, if found, could safely be
added to the multi-device database without worry of
“swamping” more stringently limited data from other
machines and may further improve our confidence in
the regression.

While this work introduces the critical features
of the EF threshold database and basic scalings,
opportunities to improve the rigour of EF threshold
predictions certainly still exist. There may be
applications predicting thresholds in new machines
or scenarios within the well populated range of the
database for example, that could avoid the assertion
that there is one global trend valid for all the
device using more sophisticated non-parametric kernel
regression techniques [41, 44]. Within the stated
objective of a broad scaling similar to confinement
scalings, future work could further investigate more
advanced statistical methods, perhaps minimizing the
L∞ norm to minimize the maximum deviation. This
paper serves as only an initial identification of the
sampling bias and its basic compensation with the
expectation that regression methods will continue to
improve as the available data continues to expand.
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