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Microstructure of charged AdS black hole via P — V criticality
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We suggest a new thermodynamic curvature, constructed via adiabatic compressibility, for exam-
ining the internal microstructure of charged black holes in an anti-de Sitter (AdS) background. We
analyze the microscopic properties of small-large phase transition of black holes with pressure and
volume as the fluctuation variables. We observe that strong repulsive interactions dominate among
the micro-structures of near extremal small black holes, and the thermodynamic curvature diverges

to positive infinity for the extremal black holes.

curvature diverges to negative infinity.

I. INTRODUCTION

Phase transition is a fascinating phenomenon in black
holes thermodynamics which has received considerable
attentions in recent years. This is mainly motivated by
AdS/CFT duality, which states that there exists a cor-
respondence black holes in asymptotically anti-de Sitter
(AdS) spacetime and the conformal field theory living on
its boundary [1, 2]. A significant interest has been arisen
for study phase transition of AdS black hole in an ex-
tended phase space in which the cosmological constant
can be regarded as thermodynamic pressure which can
vary [3, 4]. In this viewpoint, the mass of black hole is
identified as the enthalpy [5]. It was shown [4] that the
four dimensional charged AdS black hole demonstrates
the first order (discontinuous) and second order (contin-
uous) phase transitions between the small and large black
holes in an extended phase space. This phase transition
is analogous to the Van der Waals gas/liquid phase tran-
sition, thus, their critical exponents are the same as well.
The investigation on the critical behavior of black holes
in this context is often referred to as “P-V criticality”
and has widely explored in the literatures [6-15] and ref-
erences therein. Some interesting phenomena have been
observed in the extended phase space of black holes such
as zeroth order phase transition [16] and reentrant phase
transition [17] as well as triple critical point [18] as well
as superfluid like phase transition [19]. More recently,
a universality class of the critical behavior of AdS black
holes in an extended phase space has been studied by a
general approach without specifying the functional form
of the spacetime metric [20].

An alternative approach to investigate critical behav-
ior of black holes is to consider the electric charge (Q)
of the black hole as a thermodynamical variable while
keeping the cosmological constant as a fixed parameter.
From the physical point of view, the electric charge of

*Electronic address: asheykhi@shirazu.ac.ir
TElectronic address: weishw@Izu.edu.cn

At the critical point, however, thermodynamic

black hole is a natural variable which can take on arbi-
trary values and it affects the thermodynamic properties
of AdS black hole. In this case, it was argued [21] that
there exists a small-large black hole phase transition for
the charged black hole in a fixed AdS background. It
has been demonstrated [22] that this phase transition
is physically conventional in an alternative phase space
where the square of the electric charge (Q?) is viewed
as an independent thermodynamic variable of the black
hole system. In this perspective, the new thermodynamic
response function correctly signifies stable and unstable
regimes and the critical behavior of the black hole re-
sembles with Van der Waals fluid, belonging to the same
universality class [23]. Phase transition of black holes in
an alternative phase space have been explored in different
setups [24-26]. More recently, the authors of Ref. [27] in-
vestigated thermodynamic phase structure of Born-Infeld
and charged dilaton [28] black holes in a fixed AdS space-
time by studying the behavior of specific heat.

The theory of covariant thermodynamic fluctuations
provides a powerful geometric framework to study prop-
erties of underlying thermal system, completely from the
thermodynamic viewpoint [29, 30]. In this context, Rup-
peiner defined the Riemannian metric on the equilibrium
thermodynamic state space as the second derivatives of
entropy. In his series of works [31-33], it has been con-
firmed that thermodynamic curvature (Ricci scalar) aris-
ing out of a such metric is related to the microscopic
interactions, where the thermodynamic curvature is pos-
itive (negative) for the repulsive (attractive) interaction.
In addition, thermodynamic curvature diverges at the
critical point for pure fluid systems. With regard to this
approach, the microscopic behavior and phase transition
of various kinds of black holes have been explored [34-
37]. In all these works, thermodynamic curvature has a
finite value at the critical point. Recently, a new nor-
malized thermodynamic curvature was proposed to un-
derstand the microscopic behavior of charged AdS black
hole in an extended phase space where the temperature
and volume are treated as fluctuating variables [38-40].
In this formalism, thermodynamic curvature is normal-
ized with respect to the heat capacity at constant volume.
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It was shown that the microstructure of small black hole
has a weak repulsive interaction and the thermodynamic
curvature goes to infinity at the critical point of phase
transition.

In this paper, we offer a new thermodynamic curva-
ture, which is constructed via the adiabatic compressibil-
ity, for examining the internal microstructure of charged
AdS black holes in an extended phase space with fixed
charge. In particular, we analyze the microscopic prop-
erties of small-large phase transition of black holes with
pressure and volume as the fluctuation variables. Our
work differs from [38, 39] in that we allow the pressure
and volume to fluctuate and normalize the thermody-
namic curvature by the adiabatic compressibility, while
the authors of [38, 39] considered the temperature and
volume as the fluctuating quantities and normalized the
thermodynamic curvature by the heat capacity at con-
stant volume. We observe that strong repulsive interac-
tions dominate among the micro-structures of small black
holes where the thermodynamic curvature diverges to
positive infinity. It is shown that the thermodynamic cur-
vature diverges to negative infinity at the critical point.

The structure of the paper is laid out as follows. We
begin in Sec. II by giving a brief review of the thermo-
dynamics and critical behavior of the four dimensional
charged AdS black holes in the extended phase space.
In Sec. III, we first introduce the Ruppeiner geometry
and obtain the corresponding line element for a thermo-
dynamic system in terms of the entropy and pressure.
Then, we use the thermodynamic curvature to investi-
gate in detail the microstructure of charged AdS black
hole. Finally, we present some remarks in Sec. IV.

II. THERMODYNAMICS AND PHASE
TRANSITION OF CHARGED ADS BLACK
HOLES

We start with a brief review on the thermodynamics
properties and P — V' criticality of Reissner-Nordstrom
(RN)-AdS black hole in an extended phase space. The
action of Einstein-Maxwell theory in four-dimensional
spacetime with a cosmological constant (A) is

1
= —
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where R is the scalar Riemann curvature, F),, is the
electromagnetic field strength that is defined as Fj,, =
OuA, — 0, A, with the gauge field A,. The negative cos-
mological constant A is related to the AdS radius L by
the relation, A = —3/L% 1In four dimensions, the line
element of the spherically symmetric RN-AdS metric is
given by [4]

ds* = —f(r)dt* + ;I(L:) + r2dQ?, (2)
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FIG. 1: P-V diagram of RN-AdS black holes. The region of
the first order phase transition is identified where the isobars
(black horizontal lines) remedy the unstable regime by the
Maxwell equal area law. The areas above and below the black
isobar are equal one another which is not seen because of
logarithmic scale on the horizontal axis. The critical point is
marked by a black spot. Note the logarithmic scale on the
horizontal axis.

where d2? is the metric of the unit two sphere. Herein,
the parameters M and @ are, respectively, the mass and
charge of black hole where the position of the black hole
event horizon (ry) is determined as a largest positive real
root of f(r4) = 0. The only nonvanishing component of
the electromagnetic field tensor is given by Fy,. = Q/r?.

The Hawking temperature of the RN-AdS black hole
on an event horizon is obtained as [4]

I 1 (1,32
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and the entropy is
S =mri. (5)

By interpreting the cosmological constant as a thermody-
namic pressure, P = —A/(87), and its conjugate quan-
tity as a black hole thermodynamic volume, V' = 47rrf_ /3,
the first law of black hole thermodynamics and the cor-
responding Smarr formula take the form, respectively,

dM = TdS + VdP + ®dQ, (6)
M = 2TS + ®Q — 2V P, (7)

where ® = @/ry is the electric potential measured with
respect to the event horizon. In this consideration, the
mass (M) of the black hole is identified as the enthalpy.
Also, the thermodynamic process is carried out in the ex-
tended phase space. It is worthwhile to mention that ac-
cording to Eq. (5) and black hole thermodynamic volume
formula, the entropy is only a function of area/volume,
ie. S = S(V). This feature of the black hole will be
used in the next section.

For the four-dimensional charged AdS black hole, the
equation of state, P = P (T,V), is obtained by using
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where ;. = (3V/4m)"/3. The behavior of isotherms in
the P-V diagram is shown in Fig. 1. We see that the
critical point is an inflection point on the isotherm which
is characterized by
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One obtains the critical quantities as

G 1 .

c=12r Pe=g—Fz Ve=8V0OmQ".
187Q 967Q? VorQ

For T' < T, an oscillating part of the isotherm denotes

unstable region where the isothermal compressibility is

negative, i.e.

1 0V
KJT__VﬁT<O' (10)

This instability is replaced by an isobar (the horizontal
line) via the Maxwell equal area construction, § VdP =
0, which means that there exists a first order phase tran-
sition between the small black hole and large black hole.
The small-large black hole transition region, determined
by Maxwell construction, has the following forms [41]

T2 = P3-VP)/2,
~ T4 6V23 43 4+6V2/3

P = ‘74/3 ’ (11)

where the reduced thermodynamic variables are defined
as
~ P ~ V

T
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It is worthwhile to note that the two phase of small and
large black holes cannot be distinguished above the crit-
ical point. In the next section, we examine the behavior
of charged black hole in the Ruppeiner geometry.

IIT. RUPPEINER GEOMETRY

In this section, we apply the concept of the Ruppeiner
thermodynamic geometry as a useful tool to study the
microscopic structure of charged AdS black holes. The
Ruppeiner geometry arises from the Gaussian thermo-
dynamic fluctuation theory which is constructed on the
thermodynamic state space [30]. In two dimensions, the
Riemannian curvature scalar, R, (thermodynamic cur-
vature) gives complete information about the Ruppeiner

geometry which is connected with the inter-particle in-
teraction in a thermodynamic system. Specially, the pos-
itive (negative) sign of the thermodynamic curvature in-
dicates the repulsive (attractive) interaction, while R = 0
corresponds to no interaction [31-33]. In the following,
we first derive the thermodynamic fluctuation metric in
the (S,P) coordinates, where a thermodynamic potential
is the enthalpy. Then, using the fact that the entropy of
the charged AdS black hole only depends on the volume,
we investigate the thermodynamic curvature of black hole
through the (P,V) plane.

A. Ruppeiner metric

Consider a thermodynamic system characterized by
the entropy (), internal energy (U) and volume (V') such
that the line element between two thermodynamic states
is [30]

Al? = g, Azt Az”, (12)

where /* = (U, V) and the metric element g, is given
by
B 9?8
I =~ ogndar

In the entropy representation, the first law of thermody-
namics for this system is expressed as follows

1 P
dS = —dU + —dV. 13
U + 5dV, (13)

where T" and P are temperature and pressure, respec-
tively. Using the first law of thermodynamics Eq.(13),
the line element Eq.(12) can be written as

Al? = %ATAS - %APAV. (14)

To express the above line element in (S,P) coordinates,
we have

AT — g—g’PAS—i- Z—ITJ]SAP,

oV ov
av = S| As+ 5| AP 15
2517 T 9Pl (15)
Substituting Eqgs.(15) into Eq.(14) and using the Maxwell
relation

or| _ov
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one obtains the thermodynamic line element
1 v
AP = —AS? + —ksAP? 16
OP + TK/S B ( )

where Cp = T (05/0T) p is the heat capacity at constant
pressure and kg = —1/V (0V/OP) 4 is the adiabatic com-
pressibility. Here, the thermodynamic potential is the en-
thalpy where the independent variables are entropy and
pressure.
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FIG. 2: The normalized thermodynamic curvature as a func-
tion of the pressure P and volume V. Note the logarithmic
scale on the horizontal axis.

B. Thermodynamic curvature in P-V diagram

Now, we use Eq. (16) to investigate microstructure of
RN-AdS black hole in an extended phase space. Due to
the fact that the entropy of black hole only depends on
the volume, i.e. S = (327/2%)1/3V2/3  the line element
of the Ruppeiner geometry can be written as

g L m 2/3 2,V 2

Al* = C’p(GV) AV + TﬁSAP ,

where the pressure and volume are taken as the fluctu-

ation variables. For the black hole, the adiabatic com-

pressibility (xg) vanishes similar to the heat capacity at

constant volume, i.e. Cy =T (9S/0T);, = 0 '. Hence,

following [38, 39], we define a normalized thermodynamic
curvature, Ry, based on the adiabatic compressibility

(18)

(17)

RN = Rlis.

In what follows, we analyze in detail the behavior of the
normalized thermodynamic curvature as function of the
pressure and volume. By performing simple calculations,
we obtain the normalized thermodynamic curvature

_16V2B3V2B —1)(5 - 6V/3 4 9PVA/3)

M (1= 2v2/3 £ PUA/3)2(1 - 6V2/3 — 3PV4/3)
(19)

which is expressed in terms of the reduced thermo-
dynamic variables. Remarkably, the Ry is independent

I The entropy of the Van der Waals fluid system is a function of the
temperature and volume i.e. S =5 (T,V) [39, 42]. This would
imply that the adiabatic compressibility is non-zero (kg # 0)
and it has a finite value at the critical point.
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FIG. 3: Transition curve (light blue solid line), vanishing
curve (brown dotted line) and diverging curve (gray dashed
line) of Rx. The region identified corresponds to positive Ry,
otherwise Ry is negative. Both the transition and diverging
curves start at V = 1/6\/6. The region to the left of the
shaded region on the left side of the figure is excluded be-
cuase temperature is negative. The critical point is marked
by a black spot. Note the logarithmic scale on the horizontal

axis.

of the charge of a black hole in Eq.(19). It should be
noted that if one uses Eq.(16) instead of Eq.(17) for the
Ruppeiner line element, the normalized thermodynamic
curvature (Ry), Eq.(19), does not change. The overall
behavior of the normalized thermodynamic curvature as
a function of P/P, and V/V, is illustrated in Fig.2. As
can be ascertained from Fig.2, the Ry goes to negative
infinity in certain regions of the plane. From Eq.(19),
Ry diverges along the curves

~ 2V2/3 _ 1

Pdiv - = ) (20)
V4/3

_ 1— 1/2/3

By = 1V (21)
3V4/3

The divergent curve in Eq. (21) corresponds to the ex-
tremal black holes which are at zero temperature. On
the other hand, Ry obviously vanishes at the following
curves

~ 72/3 _
B o V-5
9y/4/3
~ 1
Vo = (22)

3v3’

where the dominant interaction between the microstruc-
ture of charged black hole changes from attractive to re-
pulsive and vice versa.

To better understand the behavior of the normalized
thermodynamic curvature, we show the diverging (gray
dashed line) and vanishing (brown dotted line) curves
corresponding to Eqs.(20), (21) and (22), respectively, as
well as the small-large black hole phase transition (light
blue solid line) curve in Fig.3. In Fig.3, the critical point
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FIG. 4: The normalized thermodynamic curvature Ry for

charged AdS black hole along the transition curve in the small
and large black holes phases. Ry of the small black hole
changes the sign to positive at T = 3+/3(7—3v/5)/2 ~ 0.7581.

is highlighted by a black solid circle and the shaded re-
gions have positive values for Ry which imply the domi-
nation of repulsive interaction. In the other region, Ry is
negative which means the microstructure interactions are
attractive. As evident from Fig.3, Ry is negative for the
large black hole, while there is a certain range of volume
in the small black hole phase (‘7 < 1) that has positive
Ry . In this positive region, Ry diverges to positive in-
finity when the gray dashed line is approached from large
values of volume. i.e, the microstructure interaction of
the small black hole is strongly repulsive. A strongly
repulsive interaction also exists in the higher pressure
regime (above the critical point) at low volume V. The
white region to the left of the gray dashed curve on the
left side of the Fig. 3, where black holes are sufficiently
small, is excluded due to the fact that temperature is
negative. Since the equation of state (8) may not hold in
the transition region (below the light blue solid curve),
Ry does not give any information about the black hole
microstructure. Furthermore, as also seen in Fig.3, light
blue solid and gray dashed curves coincide at the criti-
cal point where the thermodynamic functions of charged
black hole are characterized by a set of critical exponents
[4]. Hence, the normalized thermodynamic curvature di-
verges to negative infinity (Ry — —oo) at the critical
point. This situation is analogous to fluid in the critical
point regime, such as Van der Waals system [30, 38, 39],
where thermodynamic curvature goes to negative infinity
at the critical point.

To obtain an explicit expression of Ry near the critical
point, we expand Ry, Eq.(19), around the critical point
using Eq.(8)

9

Ry = —it*, (23)

where t = 1—T is the deviation from the critical temper-
ature. Therefore, Ry has the universal critical exponent
2 and critical amplitude —9/2. Further, it is interest-
ing to investigate the behavior of Ry on the transition
curve. In this respect, we plotted in Fig.4, Ry along the
transition curve in both the small and the large black
holes phases from the critical temperature to zero. One
observes from Fig.4 that Ry in both phases diverges
to —oo at the critical temperature. In the large black
hole phase, Ry uniformly negative and |Ry| decreases
as the temperature decreases from the critical temper-
ature, which it is small at 7" = 0. While, in the small
black hole phase, Ry changes sign and becomes posi-
tive below T' = 3v/3(7 — 3v/5)/2 ~ 0.7581. Remarkably,

Ry diverges to positive infinity as T' tends to zero where
strong repulsive interactions dominate.

IV. FINAL REMARKS

In this paper, we proposed a new thermodynamic cur-
vature, by using the adiabatic compressibility, for exam-
ining the internal microstructure of charged AdS black
holes in an extended phase space. We explored the micro-
scopic properties of small-large black holes phase transi-
tion by considering the pressure and volume as the fluc-
tuation variables. We defined a normalized thermody-
namic curvature, Ry = kgR, where kg is the adiabatic
compressibility, and studied the behavior of Ry as a func-
tion of the pressure and volume. The sign of Ry deter-
mines the repulsive or attractive feature of black holes
microstructure. When Ry > 0, the repulsive interaction
dominates, while Ry < 0 indicates that the microstruc-
ture interactions are attractive. We also observed that
a strongly repulsive interaction exists in the higher pres-
sure regime (above the critical point) at low volume. At
the critical point however, we have Ry — —oo, which is
analogous to the Van der Waals fluid in its critical point
regime.
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