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We suggest a new thermodynamic curvature, constructed via adiabatic compressibility, for examining
the internal microstructure of charged black holes in an anti-de Sitter background. We analyze the
microscopic properties of small-large phase transition of black holes with pressure and volume as the
fluctuation variables. We observe that strong repulsive interactions dominate among the microstructures of
near extremal small black holes, and the thermodynamic curvature diverges to positive infinity for the
extremal black holes. At the critical point, however, thermodynamic curvature diverges to negative infinity.
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I. INTRODUCTION

Phase transition is a fascinating phenomenon in black hole
thermodynamics which has received considerable attention
in recent years. This is mainly motivated by AdS=CFT
duality, which states that there exists a correspondence
between asymptotically anti-de Sitter (AdS) spacetime and
the conformal field theory living on its boundary [1,2].
Significant interest has arisen for studying the phase tran-
sitionofAdSblack holes in an extendedphase space inwhich
the cosmological constant can be regarded as thermody-
namic pressure which can vary [3,4]. In this viewpoint, the
mass of black hole is identified as the enthalpy [5]. It was
shown [4] that the four-dimensional charged AdS black hole
demonstrates the first-order (discontinuous) and second-
order (continuous) phase transitions between the small
and large black holes in an extended phase space. This
phase transition is analogous to the van der Waals gas/liquid
phase transition; thus, their critical exponents are the same as
well. The investigation on the critical behavior of black holes
in this context is often referred to as P−V criticality and has
been widely explored in the literature [6–15] and references
therein. Some interesting phenomena have been observed in
the extended phase space of black holes such as zeroth-order

phase transition [16] and reentrant phase transition [17] as
well as triple critical point [18] as well as superfluid like
phase transition [19]. More recently, a universality class of
the critical behavior of AdS black holes in an extended phase
space has been studied by a general approach without
specifying the functional form of the spacetime metric [20].
An alternative approach to investigate critical behavior of

black holes is to consider the electric charge (Q) of the black
hole as a thermodynamical variable while keeping the
cosmological constant as a fixed parameter. From the
physical point of view, the electric charge of black hole is
a natural variable which can take on arbitrary values, and it
affects the thermodynamic properties of AdS black hole. In
this case, it was argued [21] that there exists a small-large
black hole phase transition for the charged black hole in a
fixed AdS background. It has been demonstrated [22] that
this phase transition is physically conventional in an alter-
native phase space where the square of the electric charge
(Q2) is viewed as an independent thermodynamic variable of
the black hole system. In this perspective, the new thermo-
dynamic response function correctly signifies stable and
unstable regimes and the critical behavior of the black hole
resembles van der Waals fluid, belonging to the same
universality class [23]. Phase transition of black holes in
an alternative phase space have been explored in different
setups [24–26]. More recently, the authors of Ref. [27]
investigated thermodynamic phase structure of Born-Infeld
and charged dilaton [28] black holes in a fixed AdS
spacetime by studying the behavior of specific heat.
The theory of covariant thermodynamic fluctuations

provides a powerful geometric framework to study proper-
ties of underlying thermal system, completely from the
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thermodynamic viewpoint [29,30]. In this context,
Ruppeiner defined the Riemannian metric on the equilib-
rium thermodynamic state space as the second derivatives
of entropy. In his series of works [31–33], it has been
confirmed that thermodynamic curvature (Ricci scalar)
arising out of a such a metric is related to the microscopic
interactions, where the thermodynamic curvature is positive
(negative) for the repulsive (attractive) interaction. In
addition, thermodynamic curvature diverges at the critical
point for pure fluid systems. With regard to this approach,
the microscopic behavior and phase transition of various
kinds of black holes have been explored [34–37]. In all
these works, thermodynamic curvature has a finite value at
the critical point. Recently, a new normalized thermody-
namic curvature was proposed to understand the micro-
scopic behavior of a charged AdS black hole in an extended
phase space where the temperature and volume are treated
as fluctuating variables [38–40]. In this formalism, thermo-
dynamic curvature is normalized with respect to the heat
capacity at constant volume. It was shown that the micro-
structure of a small black hole has a weak repulsive
interaction and the thermodynamic curvature goes to
infinity at the critical point of phase transition. This method
has recently been employed to determine the microstructure
of several black hole systems [41–44].
In this paper, we offer a new thermodynamic curvature in

the Ruppeiner geometry approach, which is constructed via
the adiabatic compressibility, for examining the internal
microstructure of charged AdS black holes in an extended
phase space with fixed charge. Regarding the thermody-
namic fluctuation metrics in Ruppeiner’s formalism, we
obtain a line element with the entropy and pressure
parameter coordinates which differs from the approach
given in Refs. [38,39]. Indeed, the authors of Refs. [38,39]
investigate the microstructure of charged AdS black holes
using the coordinates temperature and volume in the
Ruppeiner geometry. Since the entropy only depends on
the volume in the case of charged black holes, we express a
line element in terms of the volume and pressure. Based on
the vanishing of the adiabatic compressibility of the black
holes, we propose a new normalized thermodynamic
curvature. Then, we use the normalized thermodynamic
curvature to probe the microscopic properties of small-large
phase transition of black holes in an extended phase space.
Our work differs from Refs. [38,39] in that they normalized
the thermodynamic curvature by the heat capacity at
constant volume, while here we normalize the thermody-
namic curvature by the adiabatic compressibility. Besides,
considering the pressure P as a coordinate, the authors of
Ref. [41] pointed out that the scalar curvature does not
diverge at the critical point, which is not consistent with the
observation of Ruppeiner’s result. However, in our novel
approach, the scalar curvature has no such problem. This
also gives us a chance to examine the critical behavior of
the scalar curvature. We shall observe that strong repulsive

interactions dominate among the microstructures of small
black holes where the thermodynamic curvature diverges to
positive infinity. It is shown that the thermodynamic
curvature diverges to negative infinity at the critical point.
The structure of the paper is laid out as follows. We begin

in Sec. II by giving a brief review of the thermodynamics
and critical behavior of the four-dimensional charged AdS
black holes in the extended phase space. In Sec. III, we first
introduce the Ruppeiner geometry and obtain the corre-
sponding line element for a thermodynamic system in terms
of the entropy and pressure. Then, we use the thermody-
namic curvature to investigate in detail the microstructure
of charged AdS black hole. Finally, we present some
remarks in Sec. IV.

II. THERMODYNAMICS AND PHASE
TRANSITION OF CHARGED ADS BLACK HOLES

We start with a brief review on the thermodynamics
properties and P−V criticality of a Reissner-Nordstrom
(RN-)AdS black hole in an extended phase space. The
action of Einstein-Maxwell theory in four-dimensional
spacetime with a cosmological constant (Λ) is

I ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ðR − 2Λ − FμνFμνÞ; ð1Þ

where R is the scalar Riemann curvature and Fμν is the
electromagnetic field strength that is defined as Fμν ¼
∂μAν − ∂νAμ with the gauge field Aμ. The negative cos-
mological constant Λ is related to the AdS radius L by the
relation, Λ ¼ −3=L2. In four dimensions, the line element
of the spherically symmetric RN-AdS metric is given by [4]

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2; ð2Þ

fðrÞ ¼ 1 −
2M
r

þQ2

r2
þ r2

L2
; ð3Þ

where dΩ2 is the metric of the unit 2-sphere. Herein, the
parameters M and Q are, respectively, the mass and charge
of the black hole where the position of the black hole event
horizon (rþ) is determined as a largest positive real root of
fðrþÞ ¼ 0. The only nonvanishing component of the
electromagnetic field tensor is given by Ftr ¼ Q=r2.
The Hawking temperature of the RN-AdS black hole on

an event horizon is obtained as [4]

T ¼ f0ðrþÞ
4π

¼ 1

4πrþ

�
1þ 3r2þ

L2
−
Q2

r2þ

�
; ð4Þ

and the entropy is

S ¼ πr2þ: ð5Þ
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By interpreting the cosmological constant as a thermody-
namic pressure, P ¼ −Λ=ð8πÞ, and its conjugate quantity
as a black hole thermodynamic volume, V ¼ 4πr3þ=3, the
first law of black hole thermodynamics and the correspond-
ing Smarr formula take the forms, respectively,

dM ¼ TdSþ VdPþΦdQ; ð6Þ

M ¼ 2TSþΦQ − 2VP; ð7Þ

where Φ ¼ Q=rþ is the electric potential measured with
respect to the event horizon. In this consideration, the mass
(M) of the black hole is identified as the enthalpy. Also, the
thermodynamic process is carried out in the extended phase
space. It is worthwhile to mention that, according to Eq. (5)
and the black hole thermodynamic volume formula, the
entropy is only a function of area/volume, i.e., S ¼ SðVÞ.
This feature of the black hole will be used in the next
section.
For the four-dimensional charged AdS black hole, the

equation of state, P ¼ PðT; VÞ, is obtained by using
Eq. (4) as

P ¼ T
2rþ

−
1

8πr2þ
þ Q2

8πr4þ
; ð8Þ

where rþ ¼ ð3V=4πÞ1=3. The behavior of isotherms in the
P − V diagram is shown in Fig. 1. We see that the critical
point is an inflection point on the isotherm, which is
characterized by

∂P
∂V

����
Tc

¼ 0;
∂2P
∂V2

����
Tc

¼ 0: ð9Þ

One obtains the critical quantities as

Tc ¼
ffiffiffi
6

p

18πQ
; Pc ¼

1

96πQ2
; Vc ¼ 8

ffiffiffi
6

p
πQ3:

For T < Tc, an oscillating part of the isotherm denotes the
unstable region where the isothermal compressibility is
negative, i.e.,

κT ¼ −
1

V
∂V
∂P

����
T
< 0: ð10Þ

This instability is replaced by an isobar (the horizontal line)
via the Maxwell equal area construction,

H
VdP ¼ 0,

which means that there exists a first-order phase transition
between the small black hole and large black hole. The
small-large black hole transition region, determined by
Maxwell construction, has the forms [45]

T̃2 ¼ P̃ð3 −
ffiffiffiffĩ
P

p
Þ=2;

P̃ ¼ 7þ 6Ṽ2=3 − 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 6Ṽ2=3

p
Ṽ4=3 ; ð11Þ

where the reduced thermodynamic variables are defined as

T̃ ¼ T
Tc

; P̃ ¼ P
Pc

; Ṽ ¼ V
Vc

:

It is worthwhile to note that the two phases of small and
large black holes cannot be distinguished above the critical
point. In the next section, we examine the behavior of
charged black hole in the Ruppeiner geometry.

III. RUPPEINER GEOMETRY

In this section, we apply the concept of the Ruppeiner
thermodynamic geometry as a useful tool to study the
microscopic structure of charged AdS black holes. The
Ruppeiner geometry arises from the Gaussian thermody-
namic fluctuation theory, which is constructed on the
thermodynamic state space [30]. In two dimensions, the
Riemannian curvature scalar, R, (thermodynamic curva-
ture) gives complete information about the Ruppeiner
geometry, which is connected with the interparticle inter-
action in a thermodynamic system. Especially, the positive
(negative) sign of the thermodynamic curvature indicates
the repulsive (attractive) interaction, while R ¼ 0 corre-
sponds to no interaction [31–33]. In the following, we first
derive the thermodynamic fluctuation metric in the (S,P)
coordinates, where a thermodynamic potential is the
enthalpy. Then, using the fact that the entropy of the
charged AdS black hole only depends on the volume, we

T Tc
T Tc
T Tc

10 1 100 101 102
0.0

0.2

0.4

0.6

0.8

1.0

1.2

V Vc

P
P

c

Small
BH

Large
BH

FIG. 1. P − V diagram of RN-AdS black holes. The region of
the first-order phase transition is identified where the isobars
(black horizontal lines) remedy the unstable regime by the
Maxwell equal area law. The areas above and below the black
isobar are equal to each other, which is not seen because of
logarithmic scale on the horizontal axis. The critical point is
marked by a black spot. Note the logarithmic scale on the
horizontal axis.
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investigate the thermodynamic curvature of black hole
through the (P,V) plane.

A. Ruppeiner metric

Consider a thermodynamic system characterized by the
entropy (S), internal energy (U), and volume (V) such that
the line element between two thermodynamic states is [30]

Δl2 ¼ gμνΔxμΔxν; ð12Þ

where xμ ¼ ðU;VÞ and the metric element gμν is given by

gμν ¼ −
∂2S

∂xμ∂xν :

In the entropy representation, the first law of thermody-
namics for this system is expressed as

dS ¼ 1

T
dU þ P

T
dV; ð13Þ

where T and P are the temperature and pressure, respec-
tively. Using the first law of thermodynamics, Eq. (13), the
line element, Eq. (12), can be written as

Δl2 ¼ 1

T
ΔTΔS −

1

T
ΔPΔV: ð14Þ

To express the above line element in (S,P) coordinates, we
have

ΔT ¼ ∂T
∂S

����
P
ΔSþ ∂T

∂P
����
S
ΔP;

ΔV ¼ ∂V
∂S

����
P
ΔSþ ∂V

∂P
����
S
ΔP: ð15Þ

Substituting Eqs. (15) into Eq. (14) and using the Maxwell
relation

∂T
∂P

����
S
¼ ∂V

∂S
����
P
;

one obtains the thermodynamic line element

Δl2 ¼ 1

CP
ΔS2 þ V

T
κSΔP2; ð16Þ

where CP ¼ Tð∂S=∂TÞP is the heat capacity at constant
pressure and κS ¼ −1=Vð∂V=∂PÞS is the adiabatic com-
pressibility. Here, the thermodynamic potential is the
enthalpy where the independent variables are entropy
and pressure.

B. Thermodynamic curvature in P−V diagram

Now, we use Eq. (16) to investigate microstructure of
RN-AdS black hole in an extended phase space. Because of
the fact that the entropy of black hole only depends on the
volume, i.e., S ¼ ð32π=24Þ1=3V2=3, the line element of the
Ruppeiner geometry can be written as

Δl2 ¼ 1

CP

�
π

6V

�
2=3

ΔV2 þ V
T
κSΔP2; ð17Þ

where the pressure and volume are taken as the fluctuation
variables. For the black hole, the adiabatic compressibility
(κS) vanishes similarly to the heat capacity at constant
volume, i.e., CV ¼ Tð∂S=∂TÞV ¼ 0.1 Hence, following
Refs. [38,39], we define a normalized thermodynamic
curvature, RN , based on the adiabatic compressibility

RN ¼ RκS: ð18Þ

In what follows, we analyze in detail the behavior of the
normalized thermodynamic curvature as function of the
pressure and volume. By performing simple calculations,
we obtain the normalized thermodynamic curvature

RN ¼ 16Ṽ2=3ð3Ṽ2=3 − 1Þð5 − 6Ṽ2=3 þ 9P̃Ṽ4=3Þ
ð1 − 2Ṽ2=3 þ P̃Ṽ4=3Þ2ð1 − 6Ṽ2=3 − 3P̃Ṽ4=3Þ ; ð19Þ

which is expressed in terms of the reduced thermody-
namic variables. Remarkably, the RN is independent of the
charge of a black hole in Eq. (19). It should be noted that if
one uses Eq. (16) instead of Eq. (17) for the Ruppeiner line
element the normalized thermodynamic curvature (RN),
Eq. (19), does not change. The overall behavior of the
normalized thermodynamic curvature as a function of P=Pc
and V=Vc is illustrated in Fig. 2. As can be ascertained
from Fig. 2, the RN goes to negative infinity in certain
regions of the plane. From Eq. (19), RN diverges along the
curves

P̃div ¼
2Ṽ2=3 − 1

Ṽ4=3 ; ð20Þ

P̃div ¼
1 − 6Ṽ2=3

3Ṽ4=3 : ð21Þ

The divergent curve in Eq. (21) corresponds to the extremal
black holes, which are at zero temperature. On the other
hand, RN obviously vanishes at the curves

1The entropy of the van der Waals fluid system is a function of
the temperature and volume i.e., S ¼ SðT; VÞ [39,46]. This would
imply that the adiabatic compressibility is nonzero (κS ≠ 0Þ and it
has a finite value at the critical point.
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P̃0 ¼
6Ṽ2=3 − 5

9Ṽ4=3 ;

Ṽ0 ¼
1

3
ffiffiffi
3

p ; ð22Þ

where the dominant interaction between the microstructure
of charged black hole changes from attractive to repulsive
and vice versa.
To better understand the behavior of the normalized

thermodynamic curvature, we show the diverging (gray
dashed line) and vanishing (brown dotted line) curves
corresponding to Eqs. (20) and (21) and Eq. (22), respec-
tively, as well as the small-large black hole phase transition
(light blue solid line) curve in Fig. 3. In Fig. 3, the critical
point is highlighted by a black solid circle, and the shaded
regions have positive values for RN which imply the
domination of repulsive interaction. In the other region,
RN is negative, which means the microstructure interactions
are attractive. As evident from Fig. 3, RN is negative for the
large black hole, while there is a certain range of volume in
the small black hole phase (Ṽ < 1) that has positive RN . In
this positive region, RN diverges to positive infinity when
the gray dashed line is approached from large values of
volume; i.e., the microstructure interaction of the small
black hole is strongly repulsive. A strongly repulsive
interaction also exists in the higher pressure regime (above
the critical point) at low volume Ṽ. The white region to the
left of the gray dashed curve on the left side of the Fig. 3,
where black holes are sufficiently small, is excluded due to
the fact that temperature is negative. Since the equation of
state (8) may not hold in the transition region (below the
light blue solid curve), RN does not give any information
about the black hole microstructure. Furthermore, as also
seen in Fig. 3, light blue solid and gray dashed curves

coincide at the critical point where the thermodynamic
functions of charged black hole are characterized by a set of
critical exponents [4]. Hence, the normalized thermody-
namic curvature diverges to negative infinity (RN → −∞)
at the critical point. This situation is analogous to fluid in
the critical point regime, such as the van der Waals system
[30,38,39], where thermodynamic curvature goes to neg-
ative infinity at the critical point.
To obtain an explicit expression of RN near the critical

point, we expand RN , Eq. (19), around the critical point
using Eq. (8),

RN ¼ −
9

2
t−2; ð23Þ

RN

1500

1000

500

0

FIG. 2. The normalized thermodynamic curvature as a function
of the pressure P and volume V. Note the logarithmic scale on the
horizontal axis.

10 1 100 101 102
0.0

0.2

0.4

0.6

0.8

1.0

V Vc

P
P

c

FIG. 3. Transition curve (light blue solid line), vanishing curve
(brown dotted line) and diverging curve (gray dashed line) of RN .
The region identified corresponds to positive RN ; otherwise, RN
is negative. Both the transition and diverging curves start at
Ṽ ¼ 1=6

ffiffiffi
6

p
. The region to the left of the shaded region on the left

side of the figure is excluded because temperature is negative.
The critical point is marked by a black spot. Note the logarithmic
scale on the horizontal axis.

Small BH

Large BH
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300
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0

100

200

T Tc
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N

FIG. 4. The normalized thermodynamic curvature RN for
charged AdS black hole along the transition curve in the small
and large black holes phases. RN of the small black hole changes
the sign to positive at T̃ ¼ 3

ffiffiffi
3

p ð7 − 3
ffiffiffi
5

p Þ=2 ≈ 0.7581.
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where t ¼ 1 − T̃ is the deviation from the critical temper-
ature. Therefore, RN has the universal critical exponent 2
and critical amplitude −9=2. Further, it is interesting to
investigate the behavior of RN on the transition curve. In
this respect, we plotted in Fig. 4 RN along the transition
curve in both the small and the large black hole phases from
the critical temperature to zero. One observes from Fig. 4
that RN in both phases diverges to −∞ at the critical
temperature. In the large black hole phase, RN uniformly
negative, and jRN j decreases as the temperature decreases
from the critical temperature, and RN is small at T̃ ¼ 0,
while in the small black hole phase, RN changes sign and
becomes positive below T̃ ¼ 3

ffiffiffi
3

p ð7 − 3
ffiffiffi
5

p Þ=2 ≈ 0.7581.
Remarkably, RN diverges to positive infinity as T̃ tends to
zero where strong repulsive interactions dominate.

IV. CONCLUSIONS

In this paper, we proposed a new thermodynamic curva-
ture, by using the adiabatic compressibility, for examining
the internal microstructure of charged AdS black holes in an
extended phase space. We explored the microscopic proper-
ties of small-large black holes phase transition by consider-
ing the pressure and volume as the fluctuation variables.

We defined a normalized thermodynamic curvature, RN ¼
κSR, where κS is the adiabatic compressibility, and studied
the behavior of RN as a function of the pressure and volume.
The sign of RN determines the repulsive or attractive feature
of black holes microstructure. When RN > 0, the repulsive
interaction dominates, while RN < 0 indicates that the
microstructure interactions are attractive. We also observed
that a strongly repulsive interaction exists in the higher
pressure regime (above the critical point) at low volume.
At the critical point, however, we have RN → −∞, which is
analogous to the van der Waals fluid in its critical point
regime.
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