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ASYMPTOTICS OF CLASSICAL SPIN NETWORKS

STAVROS GAROUFALIDIS AND ROLAND VAN DER VEEN

With an appendix by Don Zagier

Abstract. A spin network is a cubic ribbon graph labeled by representations of SU(2). Spin networks
are important in various areas of Mathematics (3-dimensional Quantum Topology), Physics (Angular Mo-
mentum, Classical and Quantum Gravity) and Chemistry (Atomic Spectroscopy). The evaluation of a spin
network is an integer number. The main results of our paper are: (a) an existence theorem for the asymp-
totics of evaluations of arbitrary spin networks (using the theory of G-functions), (b) a rationality property
of the generating series of all evaluations with a fixed underlying graph (using the combinatorics of the chro-
matic evaluation of a spin network), (c) rigorous effective computations of our results for some 6j-symbols
using the Wilf-Zeilberger theory, and (d) a complete analysis of the regular Cube 12j spin network (including
a non-rigorous guess of its Stokes constants), in the appendix.
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1. Introduction

1.1. Spin networks in mathematics, physics and chemistry. A (classical) spin network (Γ, γ) consists
of a cubic ribbon graph Γ (i.e., an abstract trivalent graph with a cyclic ordering of the edges at each vertex)
and a coloring γ of its set of edges by natural numbers. According to Penrose, spin networks correspond
to a diagrammatic description of tensors of representations of SU(2). Here a color k on an edge indicates
the k + 1 dimensional irreducible representation of SU(2), and their evaluation is a contraction of the
above tensors. Spin networks originated in work by Racah and Wigner in atomic spectroscopy in the late
forties [Rac46,Rac42a,Rac42b,Rac49,Wig41]. Exact or asymptotic evaluations of spin network is a useful and
interesting topic studied by Ponzano-Regge, Biedenharn-Louck and many others; see [BL81a,BL81b,PR68,
VMK88]. In the past three decades, spin networks have been used in relation to classical and quantum
gravity and angular momentum in 3-dimensions; see [EPR08,Pen71a,Pen71b,RS95]. In mathematics, q-
deformations of spin networks (so called quantum spin networks) appeared in the eighties in the work of
Kirillov-Reshetikhin [KR89]. Quantum spin networks are knotted framed trivalent graphs embedded in 3-
space with a cyclic ordering of the edges near every vertex, and their evaluations are rational functions of a
variable q. The quantum theta and 6j-symbols are the building blocks for topological invariants of closed
3-manifolds in the work of Turaev-Viro [TV92, Tur94]. Quantum spin networks are closely related to a
famous invariant of knotted 3-dimensional objects, the celebrated Jones polynomial, [Jon87]. A thorough
discussion of quantum spin networks and their relation to the Jones polynomial and the Kauffman bracket

is given in [KL94] and [CFS95]. Recent papers on asymptotics of spin networks in physics and mathematics
include: [AHH+09], [LY11] and [CM11]. Aside from the appearances of spin networks in the above mentioned
areas, their evaluations and their asymptotics lead to challenging questions even for simple networks such as
the cube, discussed in detail in the appendix. Some examples of spin networks that will be discussed in the
paper are shown in Figure 1.

Figure 1. From left to right: The theta, the tetrahedron or 6j-symbol, the Cube, the 5-sided prism

and the complete bipartite graph K3,3 or 9j-symbol. The cyclic order of the edges around each vertex is

counterclockwise. The left three spin networks are admissible, and the right two are not.

1.2. The evaluation of a spin network.

Definition 1.1. (a) We say a spin network is admissible when the sum of the three labels a, b, c around
every vertex is even and a, b, c satisfy the triangle inequalities: |a− b| ≤ c ≤ a+ b.
(b) The Penrose evaluation 〈Γ, γ〉P of a spin network (Γ, γ) is defined to be zero if it is not admissible. If it
is admissible, its evaluation is given by the following algorithm.

• Use the cyclic ordering to thicken the vertices into disks and the edges into untwisted bands.
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• Replace the vertices and edges by the linear combinations of arcs as follows:

(1)

• Finally the resulting linear combination of closed loops is evaluated by assigning the value (−2)n to
a term containing n loops.

In the above definition the summation is over all permutations σ of the a arcs at an edge colored a. The
Penrose evaluation 〈Γ, γ〉P of a spin network is always an integer. Note that the admissibility condition
is equivalent to saying that the strands can be connected at each vertex as in Figure 1. Note also that
cubic ribbon graphs Γ are allowed to have multiple edges, loops and several connected components including
components that contain no vertices. In addition, Γ is allowed to be non-planar (contrary to the requirement
of many authors [Wes98,Mou79,KL94]), as long as one fixes a cyclic ordering of the edges at each vertex.
The latter condition is implicit in [Pen71a]. It turns out that changing the cyclic ordering at a vertex of a
spin network changes its evaluation by single sign; see Lemma 2.1 below.

1.3. Three fundamental problems. It is easy to see that if (Γ, γ) is an admissible spin network and n
is a natural number, then (Γ, nγ) is also admissible. A fundamental problem is to study the asymptotic
behavior of the sequence of evaluations 〈Γ, nγ〉P when n is large. This problem actually consists of separate
parts. Fix an admissible spin network (Γ, γ).

Problem 1.2. Prove the existence of an asymptotic expansion of the sequence 〈Γ, nγ〉P when n is large.

Problem 1.3. Compute the asymptotic expansion of the sequence 〈Γ, nγ〉P to all orders in n effectively.

Problem 1.4. Identify the terms in the asymptotic expansion of 〈Γ, nγ〉P with geometric invariants of the
spin network.

These problems are motivated by the belief that the quantum mechanics of particles with large spin
will approximate the classical theory. To the best of our knowledge, the literature for Problem 1.2 is
relatively new and short and concerns only thetas and 6j-symbols with certain labellings. For Problem
1.3, it should be noted that even for the 6j-symbols not much is known about the subleading terms in
the asymptotic expansion. Some terms are found in [DL09] but no general algorithm is given. As for
the geometric interpretation in Problem 1.4 again there is a well known conjecture in the case of the 6j-
symbol [PR68]. Roberts used geometric quantization techniques to prove this conjecture on the leading
asymptotic behavior of 6j-symbols in the so-called Euclidean case [Rob99, Rob02]. Some results on the
9j-symbol have been found in [HL10]. Finally more general interpretation for the leading order asymptotics
appears in [CM11] however this assumes a hypothesis that has not been shown to hold in cases other than the
6j-symbol. Problems 1.2–1.4 can also be viewed as the classical analogue of the problem of understanding
the asymptotics of quantum spin networks and quantum invariants. Even less is known in the quantum case
but see [GvdV11] and a well known conjecture in this context is the volume conjecture [Kas97], [MM01].

1.4. A solution to Problem 1.2. In this paper we give a complete solution to Problem 1.2 in full generality.
A convenient role is played by the following normalization of the spin network evaluation. This normalization
was introduced independently in [Cos09] in the q-deformed case.

Definition 1.5. We define the standard normalization of a spin network evaluation to be

(2) 〈Γ, γ〉 = 1

I! 〈Γ, γ〉
P
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where I! is defined to be the product

(3) I! =
∏

v∈V (Γ)

(−av + bv + cv
2

)

!

(

av − bv + cv
2

)

!

(

av + bv − cv
2

)

!

where av, bv, cv are the colors of the edges emanating from vertex v, and V (Γ) is the set of vertices of Γ.

The standard normalization has a number of useful properties (see Theorem 1.7 below) that can be stated
conveniently in terms of a generating function that we now define. If we fix a cubic ribbon graph Γ one can
consider many spin network evaluations, one for each admissible labeling γ of Γ. We organize these in a
generating function by taking a formal variable for every edge and encoding γ in the exponents of monomials
in these variables.

Definition 1.6. Given a cubic ribbon graph Γ define a formal power series in the variables z = (ze)e∈E(Γ)

by

FΓ(z) =
∑

γ≥0

〈Γ, γ〉zγ

where zγ =
∏

e∈E(Γ) z
γ(e)
e , and E(Γ) denote the set of edges of Γ.

By virtue of our use of the standard normalization we can prove the following theorem about our generating
function FΓ.

Theorem 1.7. (1) For all spin networks (Γ, γ), the standard evaluation 〈Γ, γ〉 is an integer.

(2) The sequence 〈Γ, nγ〉 is exponentially bounded.

(3) For any cubic ribbon graph Γ the generating series FΓ is rational function explicitly defined in terms

of Γ.

To illustrate the last part of the theorem let us mention the special case in which Γ is planar with the
counterclockwise orientation. In this case a result from [Wes98] that states that

FΓ(z) =
1

PΓ(z)2

where PΓ(z) =
∑

c∈CΓ
zc and CΓ is the set of 2-regular subgraphs of Γ. Our theorem generalizes this result

to arbitrary Γ, the precise statement can be found in Theorem 2.9. The next result gives a complete answer
to Problem 1.2. To state it, we need to recall a useful type of sequence; see [Gar09,Gar11].

Definition 1.8. We say that a sequence (an) is of Nilsson type if it has an asymptotic expansion of the form

(4) an ∼
∑

λ,α,β

λnnα(logn)βSλ,α,βhλ,α,β(1/n)

where

• the summation is over a finite set of triples (λ, α, β),
• the growth rates λ are algebraic numbers of equal magnitude,
• the exponents α are rational and the nilpotency exponents β are natural numbers,
• the Stokes constants Sλ,α,β are complex numbers,
• the hλ,α,β(x) are formal power series with coefficients in a number field K such that the coefficient

of xn is bounded by Cnn! for some C > 0 and the constant coefficient is 1.

Note that the set of sequences of Nilsson type is closed under addition and pointwise multiplication. Using
the theory of G-functions, (discussed in Section 3.2), we prove:

Theorem 1.9. For any spin network (Γ, γ) the sequence 〈Γ, nγ〉 is of Nilsson type.
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1.5. A partial solution to Problem 1.3. Regarding Problem 1.3, we introduce a new method (the Wilf-
Zeilberger theory) which

• computes a linear recursion for the sequence 〈Γ, nγ〉,
• given a linear recursion, effectively computes the corresponding triples (λ, α, β), the number field K
and any number of terms of the power series hλ,α,b(x) ∈ 1 + xK[[x]] in Definition 1.8,

• numerically computes the Stokes constants Sλ,α,β .

Given this information, one may guess exact values of the Stokes constants. In some cases, we obtain
alternative exact computation of the Stokes constants, too. As an illustration of the theorem we will present
computations of the asymptotic expansions of three representative 6j-symbols up to high order using the
Wilf-Zeilberger method in Section 4.1. In the appendix we will present additional numerical results on
the asymptotic expansion of the case of the cube spin network. About 20 more examples of spin network
evaluations (including the s-sided prisms for s = 2, . . . , 7 and the twisted s-sided prisms for s = 2, . . . , 5)
have been computed, and the data is available from the first author upon request.

1.6. A conjecture regarding Problem 1.4. The example of the cube spin network also provides evidence
for the following conjecture on the growth rates λ in the Nilsson type expansion. The conjecture connects the
growth rates of suitable spin networks to the total mean curvature of a related Euclidean polyhedron. Let
P be a convex polyhedron in three dimensional Euclidean space. Denote by M(P ) the total mean curvature
of P . Recall that M(P ) = 1

2

∑

e ℓeφe, where φe is the exterior dihedral angle at edge e and ℓe is the length
of the edge.

Conjecture 1.10. Let (Γ, γ) be a planar spin network such that the dual of Γ is realized as the 1-skeleton
of a convex Euclidean polyhedron P with edge lengths given by γ. The numbers e±iM(P ) are growth rates
in the asymptotic expansion of the unitary evaluations of 〈Γ, nγ〉U .

In the conjecture we are using the so called unitary evaluation of a spin network defined in Section 4.
This evaluation differs from the standard one by an explicit factor ensuring that it is still of Nilsson type.

After this work was completed, an approach to Problems 1.2–1.4 was proposed by Costantino-Marche,
[CM11] using generating functions. Their approach requires certain nondegeneracy conditions, and in par-
ticular does not give a solution to Problem 1.2 or Problem 1.3 for the regular cube spin network, see the
Appendix.

1.7. Acknowledgement. The results were conceived in a workshop in Aarhus, Denmark, and presented in
HaNoi, Vietnam and Strasbourg, France in the summer of 2007. The authors wish to thank the organizers
for their hospitality. S.G. wishes to thank C. Koutschan, D. Zeilberger and D. Zagier for many enlightening
conversations.

2. Evaluation of spin networks

In this section we treat two ways of calculating the evaluation of a spin network. The first is by recoupling
theory and leads to practical but non-canonical formulas for the evaluations as multi-sums. The second way
is the method of chromatic evaluation. This leads to the proof of the generating function result, Theorem
1.7 announced above.

We start by recording some elementary facts about spin network evaluations. First of all our definition
of the standard evaluation assumes that there are no edges without vertices. By definition we will add an
(a, a, 0) colored vertex to any a-colored component that has none. This makes sense because of Part (a) of
the following.

Lemma 2.1. Let (Γ, γ) be a spin network and consider the standard evaluation.

(a) Inserting a vertex colored (0, a, a) in the interior of an edge of Γ colored a does not change the
standard evaluation of the spin network.

(b) Changing the cyclic ordering at a vertex whose edges are colored a, b, c changes the evaluation by a
sign (−1)(a(a−1)+b(b−1)+c(c−1))/2
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Proof. (a) The chosen normalization introduces an extra factor 1/a! for the new vertex labeled (0, a, a),
while it follows from the definition that one also inserts an extraneous summation over permutations in the
pre-existing edge labeled a. Since

∑

σ∈Sa

∑

τ∈Sa

sign(σ)σsign(τ)τ = a!
∑

σ∈Sa

sign(σ)σ

the evaluation is unchanged.
(b) Changing the cyclic order at a vertex with edge labels a, b, c has the following effect. The alternating
sum at each of the adjacent edges is multiplied by the permutation that turns the arcs in the edge by 180
degrees. This element has sign a(a− 1)/2 in Sa. �

As a consequence of part (a) of the above lemma, an edge labeled 0 in a spin network can be removed
without affecting the evaluation. There is an alternative bracket normalization 〈Γ, γ〉B of the evaluation of
a spin network (Γ, γ) which agrees with a specialization of the Jones polynomial or Kauffman bracket.

Definition 2.2. The bracket normalization of a spin network (Γ, γ) is defined by

(5) 〈Γ, γ〉B =
1

E ! 〈Γ, γ〉
P

where

(6) E ! =
∏

e∈E(Γ)

γ(e)!

This normalization has the property that it coincides with the Kauffman bracket (Jones polynomial) of a
quantum spin network evaluated at A = −1 [KL94]. However, 〈Γ, γ〉B is not necessarily an integer number,
and the analogous generating series does not satisfy the rationality property of Theorem 1.7.

2.1. Evaluation of spin networks by recoupling. In this subsection we describe a way of evaluating
spin networks by recoupling. We will reduce the evaluation of spin networks to multi-dimensional sums of
6j and theta-symbols. The value of the 6j and theta-symbols is given by the following lemma of [KL94]
and [Wes98], using our normalization. The choice of letters in labeling the 6j-symbol is traditional following
for example [KL94].

Lemma 2.3. (a) Let ( , γ) denote a tetrahedron labeled and oriented as in Figure 1 with γ = (a, b, c, d, e, f).
Its standard evaluation is given by

(7) 〈 , γ〉 =
minSj
∑

k=maxTi

(−1)k(k + 1)

(

k

S1 − k, S2 − k, S3 − k, k − T1, k − T2, k − T3, k − T4

)

where, as usual
(

a

a1, a2, . . . , ar

)

=
a!

a1! . . . ar!

denotes the multinomial coefficient when a1 + . . . ar = a, and Si are the half sums of the labels in the three
quadrangular curves in the tetrahedron and Tj are the half sums of the thee edges emanating from a given
vertex. In other words, the Si and Tj are given by

(8) S1 =
1

2
(a+ d+ b+ c) S2 =

1

2
(a+ d+ e+ f) S3 =

1

2
(b+ c+ e+ f)

(9) T1 =
1

2
(a+ b+ e) T2 =

1

2
(a+ c+ f) T3 =

1

2
(c+ d+ e) T4 =

1

2
(b + d+ f).

(b) Let (Θ, γ) denote the Θ spin network of Figure 1 admissibly colored by γ = (a, b, c). Then we have

(10) 〈Θ, γ〉 = (−1)
a+b+c

2

(

a+ b+ c

2
+ 1

)( a+b+c
2

−a+b+c
2 , a−b+c

2 , a+b−c
2

)

.
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Finally note that the evaluation of an n-labeled unknot is equal to (−1)n(n + 1). Recoupling is a way
to modify a spin network locally, while preserving its evaluation. This is done as in Figure 2. The top-
most formula is called the recoupling formula and follows from the recoupling formula in [KL94], using our
conventions. The other two pictures in the figure show the bubble formula and the triangle formula. The

Figure 2. The recoupling formula (top), the bubble formula (left) and the triangle formula (right). The

sum is over all k for which the network is admissible, and δk,l is the Kronecker delta function.

bubble formula shown on the left of Figure 2 serves to remove all bigon faces. Likewise the triangle formula
can be used to remove triangles. To see why the recoupling and bubble formulas suffice to write any spin
network as a multi sum of products of 6j-symbols divided by thetas we argue as follows. Applying the
recoupling formula to a cycle in the graph reduces its length by one. Keep going until you get a multiple
edge which can then be removed by the bubble formula. Although the triangle formula follows quickly from
the bubble formula and the recoupling formula it is important enough to state on its own. For example
the triangle formula shows that the evaluation of the class of triangular networks is especially simple. The
triangular networks are the planar graphs that can be obtained from the tetrahedron by repeatedly replacing
a vertex by a triangle. By the triangle formula the evaluation of any triangular network is simply a product
of 6j-symbols divided by thetas. No extraneous summation will be introduced. To illustrate how recoupling
theory works, let us evaluate the regular s-sided prism and K3,3. Consider the s-sided prism network as
shown in Equation (11) (for s = 5) where every edge is colored by the integer n. In the figure we have left out
most of the labels n for clarity. By convention unlabeled edges are colored by n. Performing the recoupling
move on every inward pointing edge we transform the prism into a string of bubbles that is readily evaluated.

(11) =
∑

k admissible





















s

=
∑

k admissible





























s

Observing that if n is odd the network is not admissible (and thus evaluates to zero), and denoting the
tetrahedron and the theta with one edge colored by k and the others by n by S(n, k) and θ(n, k) we conclude
the following formula for the n-colored s-sided prism.

Proposition 2.4. If n = 2N is even we have

〈Prisms, 2N〉 =
2N
∑

j=0

(2j + 1)

(

S(2N, 2j)

θ(2N, 2j)

)s
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and if n is odd we have 〈Prisms, n〉 = 0.

For small values of s the prism can be evaluated in a more straight forward way, thus providing some
well known identities of 6j-symbols. Namely when s = 1 we get zero, when s = 2 we find some thetas and
when s = 3 we have by the triangle formula a product of two 6j-symbols thus giving a special case of the
Biedenharn-Elliott identity [KL94]. For s = 4 we find a formula for the regular cube, that will be used in
the appendix. We know of no easier expression for the evaluation in this case. A similar computation for
K3,3 cyclically ordered as a plane hexagon with its three diagonals gives the following.

Proposition 2.5. If n = 2N is even we have

〈K3,3, 2N〉 =
2N
∑

j=0

(−1)j(2j + 1)

(

S(2N, 2j)

θ(2N, 2j)

)3

and if n is odd we have 〈K3,3, n〉 = 0.

Note the similarity between Prism3 and K3,3. The only difference is the sign that comes up in the
calculation when one needs to change the cyclic order. The extra sign makes 〈K3,3, 2N〉 = 0 for all odd N .
This is because changing the cyclic ordering at a vertex takes the graph into itself, while it produces a sign
(−1)N when all edges are colored 2N .

2.2. Generating series and chromatic evaluation. Recall the generating function FΓ(z) for all spin
network evaluations with the same underlying graph Γ from Definition 1.6. We are using variables z =

(ze)e∈E(Γ), one for each edge, and abbreviate monomials
∏

e∈E(Γ) z
γ(e)
e as zγ. Our goal is to express FΓ

explicitly in terms of Γ. To do so we need a couple of definitions.

Definition 2.6. Given a cubic ribbon graph Γ define a cycle to be a (possibly disconnected) 2-regular
subgraph of Γ. The set of all cycles is denoted by CΓ.

In terms of the cycles we define a polynomial and a quadratic form.

Definition 2.7. Given a cubic ribbon graph Γ and X ⊂ CΓ we define

(12) PΓ,X(z) =
∑

c∈CΓ

ǫX(c)
∏

e∈c

ze

where ǫX(c) = −1 (resp. 1) when c ∈ X (resp. c 6∈ X). Also define the function QΓ on the subsets of CΓ as
follows. Let QΓ(X) be the number of unordered pairs {c, c′} ⊂ X with the property that c and c′ intersect
in an odd number of places when drawn on the thickening of Γ.

Note that the cyclic orientation of Γ defines a unique thickening. Also, the polynomials PΓ,X all have
constant coefficient 1. We will call PΓ = PΓ,∅ the cycle polynomial of Γ. It is independent of the cyclic
orientation of Γ. Notice how the other PΓ,X only differ from the cycle polynomial in the signs of the
individual monomials. It is interesting to note that the cycle polynomial determines the cubic graph, up
to a well-determined ambiguity. This follows from a classic theorem of Whitney, which we quote for the
benefit of the reader. Recall that a graph Γ is 2-connected (resp. 3-connected) if it remains connected after
removing any one (resp. any two) vertices of Γ. A Whitney flip is the following move on a graph (where R
and L contain at least two edges):

A Whitney flip is the graph-theoretic analogue of a knot mutation (see [Ada94]) and can only be applied to
graphs which are not 3-connected.
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Proposition 2.8. [Whi33] (a) Let Γ1,Γ2 be two 2-connected cubic graphs with same cycle polynomial.
Then Γ2 is obtained from Γ1 by a sequence of Whitney flips.
(b) Let Γ be a 3-connected cubic graph. The cycle polynomial PΓ uniquely determines Γ.

Proof. This follows from a more general theorem of Whitney [Whi33] that states the following. Two finite
2-connected graphs with a bijection on the set of vertices that preserves the set of cycles are related by a
sequence of Whitney flips. This also works for non-cubic graphs if we define a cycle C of a finite graph Γ to
be a subgraph of Γ with the same vertex set as Γ such that every vertex of C has even valency. In case Γ is
a cubic graph, a cycle of Γ in the above sense exactly coincides with Definition 2.6. Thus, part (a) follows.

Part (b) follows from (a) and the fact that 3-connected graphs cannot be Whitney flipped. �

With the definitions in place we can finally state the precise version of the last part of Theorem 1.7:

Theorem 2.9. For every cubic ribbon graph Γ we have

(13) FΓ(z) =
∑

X⊂CΓ

aX
P 2
Γ,X

∈ Z[[z]] ∩Q(z).

where the coefficients are given by

aX =
1

2|CΓ|

∑

Y ⊂CΓ

(−1)QΓ(Y )+|X∩Y |

Corollary 2.10. For every spin network (Γ, γ), the evaluation 〈Γ, γ〉 is an integer number and 〈Γ, nγ〉 is
exponentially bounded.

In particular Theorem 1.7 reduces to Theorem 2.9 above. To see how the particular case of planar spin
networks comes about we note that

Corollary 2.11. When Γ is planar with the counterclockwise orientation, then all cycles intersect an even
number of times so (−1)Q(X) = 1 and hence only a∅ is non-zero. It follows that

FΓ =
1

P 2
Γ,∅

recovering an earlier theorem by Westbury [Wes98].

The proof of this theorem uses the chromatic evaluation method which goes back to [Pen71b]. Our proof
builds on earlier work by [Wes98] and [KL94] on planar spin networks and will be given in the next subsection.

2.3. Chromatic evaluation.

Definition 2.12. For N ∈ Z define the evaluation 〈Γ, γ〉PN just as in Definition 1.1 except that the value of
the a loop is now N instead of −2.

Note that by definition 〈Γ, γ〉P−2 = 〈Γ, γ〉P . However for positive N the evaluations are easier to work
with. Let V be an N -dimensional vector space with basis B = {b1, . . . bN}. For definiteness, let us state that
by a loop we mean an immersion of the circle. Recall that in the definition of the evaluation, the first step
is to replace a diagram of the graph Γ by a linear combination of closed loops. We will call this collection of
embedded loops the expanded diagram of Γ. Instead of directly evaluating each closed loop as N we can also
view the expanded diagram as the composition (and linear combination) of copies of three types of maps:

∪ : V ⊗ V → C ∩ : C → V ⊗ V × : V ⊗ V → V ⊗ V

ei ⊗ ej 7→ δi,j 1 7→∑

i ei ⊗ ei ei ⊗ ej 7→ ej ⊗ ei

Here the direction of composition is upwards. Composing all the maps gives a linear map from the ground
field C to itself, which is multiplication by the scalar 〈Γ, γ〉PN . This interpretation of the invariant coupled
with a counting argument leads us to an expression of the evaluation in terms of cycle configurations that
we will define now.
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Definition 2.13. Define a cycle configuration to be a function L : CΓ → N such that L(∅) = 0. A cycle
configuration L defines a coloring γ(L) as follows

γ(L)(e) =
∑

c∈CΓ:e∈c

L(c) and |L| =
∑

c∈CΓ

L(c) and L! =
∏

c∈CΓ

L(c)!

Finally define the quadratic form QΓ on cycle configurations as QΓ(L) =
∑

{c,d}L(c)L(d), where {c, d} ⊂ C

runs over the unordered pairs of cycles that intersect in an odd number of places.

Viewing a (non-empty) subset X ⊂ CΓ as the cycle configuration that is 1 on X and 0 elsewhere, this
definition of QΓ coincides with the one given in Definition 2.7. We can now state and prove the main lemma
that expresses the evaluation for positive N in terms of cycle configurations.

Lemma 2.14. For positive integers N we have

〈Γ, γ〉PN =
∑

L:γ(L)=γ

(−1)QΓ(L)

(

N

L

)

I!

Here
(

N
L

)

is defined as N(N−1)...(N−|L|+1)
L! and recall I! is the normalization factor from Definition 1.5.

Proof. We view 〈Γ, γ〉PN as a linear combination of the composition of maps consisting of the three elementary
maps as explained above. This can be made more precise by orienting the edges of Γ and defining Cups to be
the set of the cups (local minima) in the expanded diagram of Γ. Now define the product of symmetric groups
Sγ =

∏

e∈E(Γ) Sγ(e). For a function f : Cups → B and σ ∈ Sγ , define 〈f, σ〉 to be 1 if f is constant along

the loops we get by connecting the cups using the crossings prescribed by σ. In all other cases 〈f, σ〉 = 0.
Composing the elementary maps shows directly that the evaluation can be expressed as:

〈Γ, γ〉PN =
∑

σ∈Sγ

sgn(σ)
∑

f :Cups→B

〈f, σ〉

Call a pair (f, σ) good if 〈f, σ〉 = 1, no loops self intersect and given any two distinct loops ℓ, ℓ′ sharing an
edge of Γ we have f(ℓ) 6= f(ℓ′). Reversing the order of summation in the above equation we see that all but
the good pairs (f, σ) cancel out. A good pair (f, σ) determines a unique cycle configuration Lf,σ as follows.
Define Lf,σ(∅) = 0 and for non-empty cycles c we define Lf,σ(c) to be the number of b ∈ B such that f−1(b)
traces out c. Notice that for any b ∈ B the fiber f−1(b) consists of a set of loops that trace out a cycle c
without hitting any edge of Γ twice.

Two good pairs that determine the same cycle configuration must have the same sign sgn(σ). To see this
we interpret the sign as (−1)# internal crossings, where a crossing in the expanded diagram is internal if it
comes from a choice of σ (not the crossings between distinct edges in a projection of Γ). Changing σ without
changing the cycles that are to be traced out will always change the number of (internal) crossings by an
even amount. It therefore makes sense to define the sign of a cycle configuration as (−1)Q(L). To summarize
what we have done so far we can rewrite the evaluation as follows

〈Γ, γ〉PN =
∑

L:γ(L)=γ

(−1)Q(L)|G′(L)|

where G′(L) is the set of all good pairs (f, σ) satisfying Lf,σ = L. Ordering the basis B and the |L| loops
determined by L shows that |G′(L)| = N !

(N−|L|)! |G(L)|. Here G(L) is the subset of G′(L) in which the order

of the basis elements agrees with the order of the loops. Elements of G(L) are uniquely determined by σ
and L so we will suppress f in the notation. We should however keep in mind that using f we are able to
distinguish all the loops as we follow along the edges of Γ. In particular we know which arcs at the vertices
of Γ trace out which cycles. To finish the proof we need to show that

|G(L)| = I!
L!

Intuitively this can be understood as the number of ways to arrange the loops at the vertices, corrected by
the symmetry of the cycle configuration. We will however give a careful proof of this fact below.
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We will proceed to count elements of the set G(L) by defining a transitive action of a group of order I!
on G(L) with stabilizer of size L!. To this end call a pair of half edges at a common vertex of Γ an angle

and denote the set of all angles by A. Looking at the expanded diagram of Γ we define |a| to be the number
of arcs passing through the angle a. By the cyclic orientation on Γ the angles are automatically oriented.
Finally define SA =

∏

a∈A S|a| and notice that as promised |SA| = I!. The action of SA on G(L) is defined
as follows. At every angle a we take a permutation Ta and its inverse and push Ta into the permutation at
the edge of Γ it points to and T−1

a into the edge the angle points away from. So more formally an element
T = (Ta)a∈A ∈ SA acts on σ = (σe)e∈E ∈ G(L) by sending σe to TaT

−1
b σeTcT

−1
d . Here a, b, c, d are the

angles adjacent to e, such that b and d are pointing away from e, see Figure 3. The action is well defined
since the pairs (Ta, Tb) and (Tc, Td) commute and the order of multiplication is determined by the orientation
of the edge e. Also the action does not change the cycle configuration, just the way the loops are shaped by
the permutations so it is indeed an action on G(L). To prove that the action is transitive note that L and

e

c d

b a

c d

ab

T T

T T
-1

-1

Figure 3. On the left we see an edge e of Γ and its adjacent angles a, b, c, d together with their orientations.

In the example on the right the permutation σe = (1354) is drawn in the middle, and the numbers of strands

in the four angles are given by and |a| = 1, |b| = 4, |c| = 3, |d| = 2. The action of T is indicated by the white

boxes.

f determine how the arcs making up the angles are connected. Any σ′ ∈ G(L) is therefore related to our σ
by σ′

e = τe,aτe,bσeτe,cτe,d, for some τe,j ∈ S|j| permuting the strands at the angle j. Let e, e′ be the edges
adjacent to a. Since σ and σ′ both belong to the same cycle configuration L, the product τe,aτe′,a can only
permute loops that trace the same cycle. The loops do not self intersect so the permutations of the loops
along any (component of a) cycle multiply to 1. This means that one can modify the permutations τ so
that they become inverses along each angle, without changing the product of the two permutations adjacent
to any edge. Carrying out these modifications for each cycle gives the required T . It remains to show that
the stabilizer of the action consists of L! elements. So suppose we are given a T ∈ SA such that at every
edge σe = TaT

−1
b σeTcT

−1
d . First of all the Tj can only permute arcs belonging to loops in the same cycle.

Indeed, the Tj on one side of σe have to be canceled by the T ’s on the other side. This is only possible if the
permuted strands connect the same pair of angles at the edge. By definition of the action the permutations
also have to cancel along each angle. This allows us to follow all the non-trivial Tj’s around, showing that
the permuted loops must trace the same cycle. By the same follow along argument, permuting the arcs
in a cycle at a single edge determines how they are to be permuted along the whole cycle. Therefore the
cardinality of the stabilizer is L!. �

Since the evaluation 〈Γ, γ〉PN is a polynomial in N , the conclusion of the previous Lemma 2.14 actually
holds for all N , in particular N = −2. We record this for future use as the following corollary, where we
have switched back to the standard normalization.
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Corollary 2.15.

〈Γ, γ〉 =
∑

L:γ(L)=γ

(−1)QΓ(L)

(−2

L

)

2.4. Proof of Theorem 2.9. To find a generating function for these evaluations, we first need to expand
the sign (−1)QΓ(L) in terms of characters. That is we use Fourier analysis on the group (Z/2Z)|CΓ|. We
often write elements of this group as subsets of CΓ. For every fixed X ⊂ CΓ we have a character (−1)X(L) =

(−1)
∑

x∈X
L(x). In case L is a cycle configuration we extend the character to a Dirichlet character. So for

some coefficients aX we have

(−1)QΓ(L) =
∑

X⊂CΓ

aX(−1)X(L)

Taking inner products, the coefficients are given by

aX =
1

2|CΓ|

∑

Y ⊂CΓ

(−1)QΓ(Y )+|X∩Y |

To rewrite the generating function let us introduce variable for each cycle: w = (wc)c∈CΓ and set wc =
∏

e∈c ze. If γ(L) = L then the color of an edge is the sum of the number of cycles (with multiplicity)
containing that edge, hence

(−1)X(L)zγ = (−1)X(L)wL =
∏

c∈CΓ

(ǫX(c)wc)
L(c)

were ǫX(c) is the function that is 1 if c /∈ X and −1 if c ∈ X . Recall the cycle polynomial PΓ,X(z) =
∑

c∈CΓ
ǫX(c)wc so we can compute

∑

γ

∑

L:γ(L)=γ

(

N

L

)

(−1)X(L)zγ =
∑

L

(

N

L

)

∏

c∈CΓ

(ǫX(c)wc)
L(c) = (1 +

∑

∅6=c∈CΓ

ǫX(c)wc)
N = PN

Γ,X

Now setting N = −2 everywhere and applying Corollary 2.15 we can finish the proof

FΓ(z) =
∑

γ

〈Γ, γ〉zγ =
∑

X⊂CΓ

aXP
−2
Γ,X

�

3. Asymptotic expansions

The goal of this section is to prove Theorem 1.9 that provides a Nilsson type asymptotic expansion for
spin network evaluations. The general idea is to define the (single variable) generating function

Definition 3.1. Let (Γ, γ) be a spin network. The single variable generating function FΓ,γ is the formal
power series

(14) FΓ,γ(z) =
∑

z

〈Γ, nγ〉zn

Our goal is to show that this function is a G-function (defined in Section 3.2 below). It then follows from
the theory of G-functions that the sequence 〈Γ, nγ〉 is of Nilsson type. Before doing so we first make some
comments on Nilsson type sequences in general.

3.1. Sequences of Nilsson type. Recall from Definition 1.8 that a Nilsson type sequence (an) has the
following asymptotic expansion as n→ ∞

an ∼
∑

λ,α,β

λnnα(logn)βSλ,α,βhλ,α,β(1/n)
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The meaning of this expansion is entirely analogous to the more familiar special case where there is only one
growth rate:

an ∼ λnnα(logn)β
∞
∑

k=0

µk

nk

(which goes back to Poincaré, [Olv97]). In this case the meaning is that for every r ∈ N we have

lim
n→∞

nr

(

anλ
−nn−α(logn)−β −

r−1
∑

k=0

µk

nk

)

= µr.

The general case is similar but to express it we would need more notation see [Gar11]. It can be shown that
a Nilsson type sequence has a unique asymptotic expansion [Gar11]. With respect to point wise addition and
multiplication the Nilsson type sequences form a C-algebra. Formally multiplying the asymptotic expansions
will produce the asymptotic expansion of the product sequence. When adding sequences of Nilsson type, the
asymptotic expansion of the sum sequence is only the sum of the asymptotic expansions if all the growth
rates have the same absolute value. Otherwise only the terms with maximal growth rate occur. The field K
generated by the coefficients of the power series hλ,α,β in a Nilsson type expansion a number field. See for
example Section 4. An important source of Nilsson type sequences are G-functions that we will introduce
next.

3.2. G-functions. In this section we recall the notion of a G-function, introduced by Siegel ( [Sie29]) in
relation to transcendence problems in number theory. Many of their arithmetic and algebraic properties were
established by André in [And00]. G-functions appear naturally in Geometry (as Variations of Mixed Hodge
Structures), in Arithmetic and most recently in Enumerative Combinatorics. For a detailed discussion,
see [And00,Gar09] and references therein.

Definition 3.2. We say that a series G(z) =
∑∞

n=0 anz
n is a G-function if

(a) the coefficients an are algebraic numbers,
(b) there exists a constant C > 0 so that for every n ≥ 1 the absolute value of every conjugate of an is

less than or equal to Cn,
(c) the common denominator of the algebraic numbers a0, . . . , an is less than or equal to Cn,
(d) G(z) is holonomic, i.e., it satisfies a linear differential equation with coefficients polynomials in z.

For the purposes of this paper the most important property of G-functions is expressed in the following
lemma.

Lemma 3.3. [Gar09, Prop.2.5] The sequence of Taylor coefficients of a G-function at z = 0 is a sequence
of Nilsson type.

With the help of Lemma 3.3 we can now reduce the proof of Theorem 1.9 to the following lemma

Lemma 3.4. For any admissible spin network (Γ, γ) the generating function FΓ,γ(z) is a G-function.

In the next subsection we will give a proof of Lemma 3.4.

3.3. Hypergeometric terms. In this subsection we prove Lemma 3.4 (and hence Theorem 1.9) by showing
that the standard evaluations of spin networks are a certain type of hypergeometric multisums that we will
first describe in general.

Definition 3.5. An r-dimensional balanced hypergeometric datum t (in short, balanced datum) in variables
(n, k), where n ∈ N and k = (k1, . . . , kr) ∈ Nr, is

• a finite list {(ǫj , Aj(n, k)) |j ∈ J} where Aj : Nr+1 −→ Z is an affine linear form in (n, k) and
ǫj ∈ {−1, 1} for all j ∈ J .

• a vector (C0, . . . , Cr) of algebraic numbers

that satisfies the balancing condition
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(15)

J
∑

j=1

ǫjAj = constant

and moreover, the set

(16) Pt = {x ∈ Rr
≥0 |Aj(1, x) ≥ 0 for all j ∈ J}

is a compact rational convex polytope.

A balanced datum t gives rise to a balanced term t(n, k) (defined for n ∈ N and k ∈ Zr ∩ nPt), to a
sequence (at,n) and to a generating series Gt(z) defined by:

t(n, k) = Cn
0

r
∏

i=1

Cki

i

J
∏

j=1

Aj(n, k)!
ǫj(17)

at,n =
∑

k∈Zr∩nPt

t(n, k)(18)

Gt(z) =

∞
∑

n=0

at,nz
n(19)

We will call the sequences (at,n) balanced multisums. The connection between balanced multisum sequences
and their asymptotics was given in [Gar09] using the theory of G-functions. More precisely,

Lemma 3.6. [Gar09, Thm.2] If t is a balanced datum, then the corresponding series Gt(z) is a G-function.

Using this Lemma we can now easily prove Lemma 3.4.

Proof. (of Lemma 3.4) Using the recoupling formulae from Section 2.1 we can write 〈Γ, γ〉 as a multi-
dimensional sum of products of 6j-symbols, theta-symbols and unknots (i.e., 1j-symbols) with a denominator
consisting of theta-symbols. It follows from Equations (7) and (10) that the 6j-symbols (resp. theta-symbols)
are balanced 1-dimensional (resp. 0-dimensional) sums, thus the ratio of the product of the theta-symbols
by the product of the theta-symbols is a balanced multi-dimensional sum. The unknots can be written as
(−1)k(k + 1)!/k! and are therefore balanced as well. It is easy to check that admissibility guarantees that
the multi-dimensional sum has finite range. �

Beware that the term t(n, k) constructed in the above proof is neither unique nor canonical in any sense.

3.4. Integral representation of spin network evaluations. In this final subsection we comment on the
connection between Lemma 3.4 and Theorem 1.7 on the rationality of the multivariate generating function.
The idea is that the single variable generating function FΓ,γ is a diagonal of the multivariate generating
function FΓ, where the diagonal is defined as follows.

Definition 3.7. Given a power series f(x1, . . . , xr) ∈ Q[[x1, . . . , xr]] and an exponent J = (j1, . . . , jr) ∈ Nr
+,

we define the J-diagonal of f by

(20) (∆Jf)(z) =

∞
∑

n=0

[xnJ ](f)zn ∈ Q[[z]]

where [xnJ ](f) denotes the coefficient of xnj11 . . . xnjrr in f .

For every spin network (Γ, γ) we have

(21) FΓ,γ = ∆γFΓ

Consequently, the G-function FΓ,γ(z) is the diagonal of a rational function, and thus it comes from geometry
in the following sense. Fix a power series f(x1, . . . , xr) ∈ Q[[x1, . . . , xr]] convergent at the origin and an
exponent J = (j1, . . . , jr) ∈ Nr

+ and consider the diagonal (∆Jf)(z) ∈ Q[[z]] as in Definition 3.7. Let C
denote a small real r-dimensional torus around the origin. Then we have the following.
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Lemma 3.8. With the above assumptions,

(22) (∆Jf)(z) =
1

(2πi)r

∫

C

f(x1, . . . , xr)

xj11 . . . xjrr − z
dx1 ∧ · · · ∧ dxr .

Proof. With the notation of Definition 20, an application of Cauchy’s theorem gives for every natural number
n

[xnJ ](f) =
1

(2πi)r

∫

C

f(x1, . . . , xr)

(xj11 . . . xjrr )n+1
dx1 ∧ · · · ∧ dxr.

Multiplying by zn and summing up for n and interchanging summation and integration concludes the proof.
�

If in addition f(x1, . . . , xr) is a rational function, then the singularities of the analytic continuation of the
right hand-side of (22) can be analyzed by deforming the integration cycle C and studying the corresponding
variation of Mixed Hodge Structure as in [BK08]. Such G-functions come from geometry; see [And00,BK08].

4. Examples and a conjecture on growth rates

In this section we illustrate the result of Theorem 1.9 on the asymptotic expansions in the case of the
6j-symbol. We also review the well known geometric interpretation of the leading asymptotics in this case.
Finally we formulate a conjecture on the geometric meaning of the growth rates in the asymptotic expansion
of more general spin networks. To discuss the geometric aspects of the asymptotics of spin networks it is
convenient to introduce one more normalization of spin network evaluations

Definition 4.1. We define the unitary normalization 〈Γ, γ〉U of a spin network evaluation (Γ, γ) to be

〈Γ, γ〉U =
1

Θ(γ)
〈Γ, γ〉

where

Θ(γ) =
∏

v∈V (Γ)

√

|〈Θ, av, bv, cv〉|

and av, bv, cv are the colors of the edges at vertex v.

Since the asymptotics of the normalization factor Θ(γ) is of Nilsson type by Stirling’s formula [Olv97],
we see that 〈Γ, nγ〉U is still of Nilsson type.

4.1. The 6j-symbol and the tetrahedron. The special case of the tetrahedral spin network or 6j-symbol
motivates much of the questions we asked in the introduction. There is a well known interpretation of the
leading asymptotics in terms of a metric tetrahedron T dual to Γ such that the length of a (dual) edge e
is given by γ(e) [PR68]. Provided the 6j symbol is admissible, such a tetrahedron T can always be found
uniquely in either R3,R2 or Minkowski space R2,1 [Blu70, Ch.8]. We say the 6j-symbol is Euclidean, Plane
or Minkowskian depending on the type of T . The type is determined by the sign of the Cayley-Menger
determinant of T . Let us be more specific in the Euclidean case. Denote by φe is the exterior dihedral angle
of T at edge e.

Theorem 4.2. Let (Γ, γ) be a Euclidean 6j symbol. The sequence 〈Γ, nγ〉U is of Nilsson type with growth

rates, Stokes constants and powers of n and logn are:

λ± = ei
∑

j

γ(ej)φj
2 S± =

ei
∑

j

φj

2 + iπ
4

√

6πVol(T)
α =

3

2
β = 0

These formulae have been proven in [Rob99]. By analytically continuing the Euclidean formula for dihedral
angles in terms of edge lengths, the results can be extended to the Minkowskian case. This will be postponed
to a future publication. The Plane case must be different since the volume vanishes in this case. Also any
interpretation of the terms in the asymptotic expansion of the 6j-symbol beyond the ones just given is very
much an open problem [DL09]. This warrants a detailed and exact investigation of the asymptotics of three



16 STAVROS GAROUFALIDIS AND ROLAND VAN DER VEEN

representative 6j-symbols using the Wilf-Zeilberger method. In this method we compute a recursion for the
sequence from which all terms in the asymptotic expansion except for the Stokes constants may be computed.

We have chosen the simplest examples of a Euclidean 6j-symbol, a Plane one and a Minkowskian 6j-
symbol. Their colorings are given by

γEuclidean = (2, 2, 2, 2, 2, 2), γPlane = (3, 4, 4, 3, 5, 5), γMinkowskian = (4, 4, 4, 4, 6, 6).

Using the unitary evaluation (Definition 4.1) we thus consider the sequences (an), (bn) and (cn)

an := 〈 , n γEuclidean〉U =
n!6

(3n+ 1)!2

4n
∑

k=3n

(−1)k(k + 1)!

(k − 3n)!4(4n− k)!3

bn := 〈 , n γPlane〉U =
n!2(2n)!2(3n)!2

(6n+ 1)!2

7n
∑

k=6n

(−1)k(k + 1)!

(k − 6n)!4(7n− k)!(8n− k)!(9n− k)!

cn := 〈 , n γMinkowskian〉U =
n!2(3n)!4

(7n+ 1)!2

8n
∑

k=7n

(−1)k(k + 1)!

(k − 7n)!4(8n− k)!(10n− k)!2

In what follows we denote by det(C) the Cayley-Menger determinant and by K the field generated by the
coefficients of the power series hλ,α,β in the asymptotic expansion. The command

<< zb.m

loads the package of [PR] into Mathematica. The command

teucl@n_, k_D := n!^6�H3 n + 1L!^2 H-1L^k Hk + 1L! 1�HH4 n - kL!^3 Hk - 3 nL!^4L

defines the summand of the sequence (an), and the command

Zb@teucl@n, kD, 8k, 3 n, 4 n<, n, 2D

computes the following second order linear recursion relation for the sequence (an)

-9 H1 + nL H2 + 3 nL2 H4 + 3 nL2 I451 + 460 n + 115 n2M a@nD +

H3 + 2 nL I319212 + 1427658 n + 2578232 n2 + 2423109 n3 + 1255139 n4 + 340515 n5 + 37835 n6M a@1 + nD -

9 H2 + nL H5 + 3 nL2 H7 + 3 nL2 I106 + 230 n + 115 n2M a@2 + nD � 0

This linear recursion has two formal power series solutions of the form

a±,n =
1

n3/2
Λn
±

(

1 +
−432± 31i

√
2

576n
+

109847∓ 22320i
√
2

331776n2
+

−18649008± 4914305i
√
2

573308928n3

+
14721750481± 45578388960i

√
2

660451885056n4
+

−83614134803760± 7532932167923i
√
2

380420285792256n5

+
−31784729861796581∓ 212040612888146640i

√
2

657366253849018368n6
+O

(

1

n7

)

)

where

Λ± =
329∓ 460i

√
2

729
= e∓i6 arccos(1/3)

are two complex numbers of absolute value 1. Notice the growth rates indeed match the interpretation in
terms of dihedral angles of the regular tetrahedron predicted in Theorem 4.2. The coefficients of the formal
power series a±,n are in the number field K = Q(

√
−2) and the Cayley-Menger determinant is det(C) = 25.

More is actually true. Namely, the sequence (an) generates two new sequences (µ+,n) and (µ−,n) defined by

a±,n =
1

n3/2
Λn
±

∞
∑

l=0

µ±,l

nl

where µ±,0 = 1. Each of the sequences (µ±,n) are factorially divergent. However, the generating series
∑∞

n=0 z
nµ±,n+1/n! are G-functions (as follows from [And00]), and the sequences (µ±,n+1/n!) are of Nilsson
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type, with exponential growth rates Λ± − Λ∓. The asymptotics of each sequence (µ±,n+1/n!) gives rise
to finitely many new sequences, and so on. All those sequences span a finite dimensional vector space,
canonically attached to the sequence (an). This is an instance of resurgence, and is explained in detail
in [GM10, Sec.4]. The second order recursion relation for the Plane and the Minkowskian examples has
lengthy coefficients, and leads to the following sequences (b±,n) and (c±,n)

b+,n =
1

n4/3
Λn
+

(

1− 1

3n
+

3713

46656n2
− 25427

2239488n3
+

9063361

17414258688n4
− 109895165

104485552128n5

+
1927530983327

2437438960041984n6
+ . . .

)

b−,n =
1

n5/3
Λn
−

(

1− 37

96n
+

3883

46656n2
− 13129

4478976n3
− 5700973

8707129344n4
− 14855978561

3343537668096n5

+
2862335448661

2437438960041984n6
+ . . .

)

c±,n =
1

n3/2
Λn
±

(

1 +
336∓ 1369

√
2

4032n
+

1769489∓ 831792
√
2

1806336n2
+

67925105712∓ 66827896993
√
2

21849440256n3

+
5075437500833257∓ 2589265090380768

√
2

176193886224384n4

+
100978405759997442992∓ 98904713360431641651

√
2

552544027199668224n5

+
685103512739058526758457∓ 349782631602887151717776

√
2

247539724185451364352n6
+ . . .

)

where in the Plane case we have

Λ− = Λ+ = −1, K = Q, det(C) = 0

and in the Minkowskian case we have

Λ+ =
696321931873− 111529584108

√
2

678223072849
= 0.794127 . . .

Λ− =
696321931873+ 111529584108

√
2

678223072849
= 1.25924 . . .

K = Q(
√
2), det(C) = −2534.

Again as in the Euclidean case the growth rates may be interpreted in terms of dihedral angles.

4.2. A conjecture on growth rates. In the special case where (Γ, γ) is an admissible tetrahedron, we have
seen a geometric interpretation for the growth rates of 〈Γ, nγ〉U . We can reformulate this more concisely
using mean curvature. Recall that for a convex Euclidean polyhedron P in R3 the mean curvature is defined
byM(P ) = 1

2

∑

e ℓeφe, where φe is the exterior dihedral angle at edge e and ℓe is the length of the edge. So in
the case of the tetrahedron Theorem 4.2 says that if there exists a Euclidean tetrahedron T whose 1-skeleton
is dual to Γ and whose edge lengths are given by γ, then the growth rates are given by: {e±iM(T )}. We
would like to conjecture that the growth rates of a spin network always include a growth rate corresponding
to the mean curvature of the dual polyhedron whenever these terms make sense. For simplicity we formulate
the conjecture for planar spin networks only.

Conjecture 4.3. Let (Γ, γ) be a planar spin network with the counterclockwise orientation. Suppose that Γ
is 3-connected and that its dual can be viewed as the 1-skeleton of a convex Euclidean polyhedron P whose
edge lengths are given by γ. The set of growth rates of the Nilsson type sequence 〈Γ, nγ〉U contains e±iM(P ).

By Cauchy’s theorem the dual polyhedron P is determined up to isometry by its 1-skeleton and its edge
lengths, i.e. by (Γ, γ). This follows from the fact that P has only triangular faces and is convex.
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As a first test of the conjecture we show that it behaves well under the triangle formula on spin networks
defined in Section 2.1. In particular this will verify the conjecture for all triangular networks as defined in
Section 2.1. Let (Γ, γ) and (Γ′, γ′) be two spin networks that both satisfy the hypotheses of Conjecture 4.3
and denote their dual polyhedra by P and P ′. Furthermore, suppose that (Γ′, γ′) is obtained from (Γ, γ)
by replacing a vertex v ∈ Γ by a triangle. Dually this implies that P can be produced by cutting off a
tetrahedron from P ′.

Lemma 4.4. If Conjecture 4.3 is true for (Γ, γ) then it is also true for (Γ′, γ′).

Proof. Let the labels around the vertex v be a, b, c and call the labels of the edges of new triangle A,B,C
as in Figure 2 (lower right) and denote by ( , ψ) the tetrahedron spin network with labels a, b, c, A,B,C
that shows up in the triangle formula. This formula shows that

〈Γ′, nγ′〉U = (−1)
n(a+b+c)

2 〈 , nψ〉U 〈Γ, nγ〉U

since the theta only contributes to a sign in the unitary evaluation. We already know Conjecture 4.3 holds
for tetrahedra with Euclidean duals, including ( , ψ). Let us call the dual Euclidean tetrahedron T .
Multiplying the asymptotic expansions on the right hand side we see that the growth rates will include

(−1)
(a+b+c)

2 ei(M(P )+M(T )) = eiM(P ′)

To see why the equality holds note that we can dissect P ′ into P and T along the triangle with labels
a, b, c that is dual to the vertex v. The minus sign coming from the theta accounts for the fact that we are
working with exterior dihedral angles and these add an additional factor of π when comparing the angles in
a dissection. �

The Euclidean volume also appears in the asymptotic expansion of the tetrahedral spin network, as part
of the Stokes constants, see Section 4.1. However this does not generalize well to larger networks since the
volumes do not add under the triangle formula. In the appendix we will see a less trivial confirmation of the
above conjecture for the cube spin network.

5. Challenges and future directions

In this section we list some challenges and future directions. Our first problem concerns a bound on the
unitary evaluations.

Problem 5.1. Show that the unitary evaluation of a spin network (Γ, γ) satisfies

|〈Γ, γ〉U | ≤ 1

This problem may be solved using unitarity and locality in a way similar to the proof that the Reshetikhin-
Turaev invariants of a closed 3-manifold grow at most polynomially with respect to the level; see [Gar98,
Thm.2.2]. Our next problem is a version of the Volume Conjecture for classical spin networks with all edges
colored by 2. Problem 5.1 also suggests that the growth rates must be ≤ 1. In case γ = 2n more seems to
be true.

Problem 5.2. The growth rates of the sequence 〈Γ, 2n〉U are on the unit circle.

A positive solution to this problem is known for the following ribbon graphs: the Θ, the tetrahedron, the
3-faced prism and more generally for the infinite family of drums; see [Abd10]. More generally one may pose
the following

Problem 5.3. Give a geometric meaning to the set of growth rates of a spin network.

We have formulated Conjecture 4.3 as a partial answer to this question but that concerns only a single
special growth rate among many. Along the same lines one may ask for an interpretation of the rest of the
asymptotic expansion. Looking at the case of the 6j-symbol it seems reasonable to consider the number
field KΓ,γ generated by the coefficients of the power series hλ,α,β in the Nilsson type asymptotic expansion
of 〈Γ, nγ〉U .
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Problem 5.4. Give a geometric interpretation of the number field KΓ,γ of a spin network (Γ, γ).

Also the Stokes constant might have a geometric meaning as it does in the case of the tetrahedron.

Problem 5.5. Give a geometric meaning to the Stokes constants of the sequence 〈Γ, nγ〉U .

The next problem is a computational challenge to all the known asymptotic methods, and shows their
practical limitations.

Problem 5.6. Compute the asymptotics of the evaluation 〈K3,3, 2n〉 (given explicitly in Proposition 2.5)
and 〈Cube, 2n〉.

The next problem is formulated by looking at the examples from Section 4.1.

Problem 5.7. Prove that for every coloring γ of the tetrahedron spin network ( , γ), the sequence 〈 , nγ〉
satisfies a second order recursion relation with coefficients polynomials in n. Can you compute the coefficients
of this recursion from γ alone?

Let us end this section with a remark. The main results of our paper can be extended to evaluations of
spin networks corresponding to higher rank Lie groups. This will be discussed in a later publication.

Appendix A. Asymptotics of the regular cube

by Don Zagier

We give the asymptotic expansion of the standard evaluation an of the 1-skeleton of the 3-dimensional
cube, with all edges colored by 2n. Proposition 2.4 implies that (an) is given by

(23) an =

2n
∑

k=0

(2k + 1) a4n,k

with

an,k =
∑

j

(−1)j
(

k

j − 3n

)2(
2n− k

4n− j

)(

j + 1

2n+ k + 1

)

,

making it clear that the numbers (an) are integral and positive. The first few values of an are given by

a0 = 1 ,
a1 = 6144 ,
a2 = 505197000 ,
a3 = 77414400000000 ,
a4 = 13937620296600000000 ,
a5 = 3685480142898164744060928 ,
a6 = 1038107879077276408534853271552 ,
a7 = 297223547548257752224492840550400000 ,
a8 = 104193297934159421485149830847575156250000 ,
a9 = 35577316035253000096415678610598379040000000000 ,
a10 = 12357485751601160513255660198337121351402277161410240 .

We first look for a recursion of the form

(24)

J
∑

j=0

cj(n) an+j = 0
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with J not too large and cj(n) polynomials of n of some not too large degree d. Using the first few hundred
values of (an), we find experimentally a recursion of this form with J = 4, d = 61 and with cj(n) given by

c0(n) = 316 (2n+ 7) (3n+ 2)8 (3n+ 4)8 (3n+ 5)7 (3n+ 7)7 (3n+ 8) (3n+ 10) (4n+ 3) (4n+ 5)P0(n+ 3) ,
c1(n) = − 2 · 38 (n+ 1)5 (2n+ 3) (2n+ 7) (3n+ 5)7 (3n+ 7)7 (3n+ 8) (3n+ 10)P1(n) ,
c2(n) = − 2 · 34 (n+ 1)5 (n+ 2)7 (2n+ 5) (3n+ 8) (3n+ 10)P2(n) ,
c3(n) = − 2 · (n+ 1)5 (n+ 2)7 (n+ 3)9 (2n+ 3) (2n+ 7)P1(−n− 5) ,
c4(n) = (n+ 1)5 (n+ 2)7 (n+ 3)9 (n+ 4)11 (2n+ 3) (4n+ 15) (4n+ 17)P0(n+ 2) ,

where P0, P1 and P2 are irreducible polynomials (normalized to have integral coefficients with no common
factor) with leading terms

P0(n) = 211 37 55 7 · 235 47
(

n26 + O
(

n24
))

,

P1(n) = 215 37 55 73 235 473
(

n38 + 94n37 + O
(

n36
))

,

P2(n) = 215 313 55 7 · 19 · 235 47 · 71 · 73
(

n46 + 115n45 + O
(

n44
))

as n→ ∞, and with the polynomial P0 being even. The full values are given at the end of the appendix. To

analyze the asymptotics of the solutions of the above recursion, we will use the standard Frobenius theory
(see e.g. [Mil06,Olv97,Was87,WZ85]). If Cj denotes the top coefficient of the polynomial cj(n), then we find

that
∑4

j=0 Cjλ
j factors as (λ − 312)2 (λ − (1 +

√
−2)24) (λ − (1 −

√
−2)24) and that the indicial equation

of the root 312 has a double root at −9/2, while the indicial equations of the roots (1 ±
√
−2)24 both have

root −4. This implies that (an) has an asymptotic expansion

(25) an ∼ S0
312n

n4

(

(logn+ c)M1

( 1

n

)

+ M2

( 1

n

)

)

+ ℜ
(

S1

(

1 +
√
−2
)24n

n9/2
M3

( 1

n

)

)

for some constants S0, c ∈ R, S1 ∈ C and power series M1(x), M2(x) ∈ Q[[x]], M3(x) ∈ Q[
√
−2][[x]],

normalized by requiring thatM1 and M3 have constant term 1. Notice that the three roots 312, (1±
√
−2)24

have the same absolute value, so that the different terms of this expansion all have the same order of
magnitude up to powers of n. Using the acceleration method1 described at [Zag01, p.954] and in Section 4
of [GM08], applied to the values of an for n = 1000, . . . , 1050, we find the numerical values of the constants
Sj and c and the first few coefficients of the power series Mi. The former are then recognized as

(26) S0 =
35

24π6
, c =

7

4
log 2 + log 3 + γ , S1 =

(1 + i) (1 +
√
−2)12

231/4 π11/2
,

and the latter as

M1(x) = 1 − 14

9
x +

419

324
x2 − 5659

8748
x3 +

84769

629856
x4 . . . ,

M2(x) =
1

2
x − 689

864
x2 +

4771

7776
x3 − 3799441

22394880
x4 + . . . ,

M3(x) = 1 − 2080− 43
√
−2

1152
x +

1985023− 114208
√
−2

1327104
x2 + . . . .

The acceleration method can give many more terms, but it is easier to simply substitute the Ansatz (25)
into the recursion for the an, thus obtaining as many terms as desired. The approximation works very well
in practice, e.g., the maximal relative error between an and the right-hand side of (25) with 50 terms of
the power series Mj(1/n) is about one part in 10105 for n between 900 and 1000. To first order, the above
formulas say that the asymptotics of an are given by

an ∼ 312n+5 log(27/43n) + γ + O(1/
√
n)

π6 (2n)4
.

1This method is equivalent to the Richardson transform, explained in detail in [GIKM, Sec.5.2], and also in [BO99].
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We end by giving the complete values of the polynomials Pj(n) that appear in the recursion relation:

P0(n) = 29639019676089600000 n
26

− 150687090646682256000 n
24

+ 306650022810104871540 n
22

− 331831776907297971277 n
20

+ 219414205267920364521 n
18

− 96826696589802950226 n
16

+ 29683042452642732342 n
14

− 6233837158945489065 n
12

+ 868763697226715493 n
10

− 77173811768742984 n
8

+ 4094153904684504 n
6
− 111886799053248 n

4
+ 797085625600 n

2
+ 17508556800 ,

P1(n) = 51330514060153830297600000 n
38

+ 4825068321654460047974400000 n
37

+ 219957552931873414824036864000 n
36

+ 6478694077195677171946040064000 n
35

+ 138596018058877517667573746466240 n
34

+ 2295022658488679405177615124025920 n
33

+ 30614929984046498162519595722728508 n
32

+ 338072087836667419737764233439922530 n
31

+ 3151590998989517431768295237323718623 n
30

+ 25169023605885819585932158912744414906 n
29

+ 174146716308878486922546565722791225448 n
28

+ 1053195250756920493731804102357697945572 n
27

+ 5606361750518381240594997946959656401095 n
26

+ 26414736794861925209673962053754850002124 n
25

+ 110642699366898526542975775645886257667832 n
24

+ 413447345600050228521136991970449404260966 n
23

+ 1381980145537336658418260176761712507602933 n
22

+ 4140268295003002172648827386155584658850114 n
21

+ 11132423733718852590472537735822272877436592 n
20

+ 26885849594024541421613060268809580068669016 n
19

+ 58334970199614352499186715966601305101299773 n
18

+ 113675657006866049496120543251199160823538984 n
17

+ 198774677991170902825182509342222362759066932 n
16

+ 311443610656870193242629490576780944439111836 n
15

+ 436334419544283264503767964716530868856380648 n
14

+ 545097336381579864877890591441121830311242864 n
13

+ 605044458481431111735014250352650750979996544 n
12

+ 594007313574579683774145689072368182659197376 n
11

+ 512886129222805060276163096656047277821413760 n
10

+ 386709368743514690018446501443764021880730368 n
9

+ 252342374226937131766477472379392715246649344 n
8
+ 140888462647571785365811030970706748098760704 n

7

+ 66312852042204808325857346405562441033596928 n
6
+ 25796733254687036537088890539848097231134720 n

5

+ 8069974595385074631605661061376909102284800 n
4
+ 1950251347843211319569463651786279088128000 n

3

+ 341555150844826683309630400427989401600000 n
2
+ 38554163497112285346472887524366745600000 n

+ 2104728968892765569954334578933760000000 ,
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P2(n) = 34044436942851501889228800000 n
46

+ 3915110248427922717261312000000 n
45

+ 219662706791565782848926392832000 n
44

+ 8013067972307054904678991211520000 n
43

+ 213693214418431619419298087215485120 n
42

+ 4441366173640824819720536004281937600 n
41

+ 74894384718928871397218606262165524844 n
40

+ 1053306557874097263334396534371665684400 n
39

+ 12603933341218324699775023159567066766967 n
38

+ 130270526199929371052793324163523141276865 n
37

+ 1176678761157600477488177183321806479261195 n
36

+ 9375125430920826953262133708501549064882175 n
35

+ 66383537873561799570407105177080643368970738 n
34

+ 420307309950545627790271278025374052312931480 n
33

+ 2391581100396727961084015883784259869439400176 n
32

+ 12280714697778331715472758947513061657620945580 n
31

+ 57105561410677181109714147899130291409292461050 n
30

+ 241147151880727945569092590718565623964677498750 n
29

+ 926919151084739302148924528551196602048329414090 n
28

+ 3249130587428846232389342739110375794038903230050 n
27

+ 10401395584522433137223729045847274251204938831280 n
26

+ 30443078183785042173235936392545801110737278600700 n
25

+ 81523471295041101121702148739822166982527381249680 n
24

+ 199828567976168135158731196334605133971159536918300 n
23

+ 448394647578816808473555576099796146381767002557015 n
22

+ 920880328621349858197546061838422939683875830250825 n
21

+ 1730060383317082970163176773077295571528776228823811 n
20

+ 2970768265449411986606322605605748766920711781281175 n
19

+ 4657049644272293081174713334539070013552116895070038 n
18

+ 6654448413726919814684796853369712557012807014275460 n
17

+ 8650083204510826813891208265741376798744454496660220 n
16

+ 10204350936081623227151423121609083529329974289414800 n
15

+ 10892578929911563608834673775127900025242488747892352 n
14

+ 10483723584809889429623667272318319527058201296732320 n
13

+ 9059104715506400545606048153659029802430897952414784 n
12

+ 6992047378850409545281115023066707881078577900939520 n
11

+ 4790327226399433431900479655636468590589446522365440 n
10

+ 2891085435841974142824330005531725765542027596096000 n
9

+ 1522663617068026467557018527073299284644425562419200 n
8
+ 691604038146644417153727841870625107738881053184000 n

7

+ 266822516520374901619621632554668192771563340800000 n
6
+ 85697330246713152918864338753344668302045030400000 n

5

+ 22287663074878779648397028175676823501117952000000 n
4
+ 4507926265942350227509023190826979902899200000000 n

3

+ 665045895624929293830598512362684841984000000000 n
2
+ 63635282511747835599280673505876676608000000000 n

+ 2962949736504660768760707593463767040000000000 .

Appendix B. Further comments on the asymptotics of the regular cube

The guessed recursion relation of the sequence (an) from the previous section agrees with the result of
the independent guessing program Guess of Kauers; [Kau09a,Kau09b]. The recursion for (an) was verified
for n = 0, . . . , 2996, where the height (i.e., the number of digits) of a3000 is 17162. On the other hand, the
coefficients of the polynomials ck(n) are integers with a much smaller height 73. In addition, the root λ1 of
the characteristic polynomial can be written in the form:

λ1 = (1 + i
√
2)24 = 312e12i arccos(−1/3)

where e12i arccos(−1/3) is the exponentiated total mean curvature of the regular Euclidean octahedron (dual
to the regular Euclidean cube) with unit sides. This confirms Conjecture 4.3 on the asymptotics of evalu-
ations of classical spin networks. The factor 312 comes from the fact that we are considering the standard
normalization and not the unitary one as is done in the Conjecture.

The asymptotic expansion (25) is clearly of Nilsson type, with the presence of logarithms, and Stokes
constants which are no longer algebraic, up to rational powers of π. This makes it unlikely that stationary
phase type methods will be able to obtain the asymptotic expansion for the regular cube.

References

[Abd10] Abdelmalek Abdesselam, On the volume conjecture for classical spin networks, arXiv/1009.2811, 2010.
[Ada94] Colin C. Adams, The knot book, W. H. Freeman and Company, New York, 1994, An elementary introduction to the

mathematical theory of knots.
[AHH+09] Vincenzo Aquilanti, Hal M. Haggard, Austin Hedeman, Nadir Jeevanjee, Robert G. Littlejohn, and Liang Yu,

Semiclassical mechanics of the Wigner 6j-symbol, arXiv/0904.1734, 2009.
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