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Abstract

Madagascar's endemic ground-dwelling leaf chameleons (Brookesiinae: Brookesia

Gray, 1865 + Palleon Glaw, et al., Salamandra, 2013, 49, pp. 237–238) form the sister

taxon to all other chameleons (i.e., the Chamaeleoninae). They possess a limited abil-

ity of color change, a rather dull coloration, and a nonprehensile tail assisting locomo-

tion in the leaf litter on the forest floor. Most Brookesia species can readily be

recognized by peculiar spiky dorsolateral projections (“Rückensäge”), which are caused

by an aberrant vertebral structure and might function as body armor to prevent pre-

dation. In addition to a pronounced Rückensäge, the Antsingy leaf chameleon

Brookesia perarmata (Angel, 1933) exhibits conspicuous, acuminate tubercle scales on

the lateral flanks and extremities, thereby considerably enhancing the overall

armored appearance. Such structures are exceptional within the Chamaeleonidae and

despite an appreciable interest in the integument of chameleons in general, the mor-

phology of these integumentary elements remains shrouded in mystery. Using vari-

ous conventional and petrographic histological approaches combined with

μCT-imaging, we reveal that the tubercle scales consist of osseous, multicusped cores

that are embedded within the dermis. Based on this, they consequently can be inter-

preted as osteoderms, which to the best of our knowledge is the first record of such

for the entire Chamaeleonidae and only the second one for the entire clade Iguania.

The combination of certain aspects of tissue composition (especially the presence of

large, interconnected, and marrow-filled cavities) together with the precise location

within the dermis (being completely enveloped by the stratum superficiale), however,

discriminate the osteoderms of B. perarmata from those known for all other

lepidosaurs.
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1 | INTRODUCTION

Chameleons as a whole (Squamata: Iguania: Chamaeleonidae) are

captivating animals and their exceptional integument in general is

morphologically well studied, especially with regard to color change

(e.g., Best, 1968; Ligon & McGraw, 2013; Stuart-Fox & Moussalli, 2008;

Teyssier, Saenko, Van Der Marel, & Milinkovitch, 2015; van der

Hoeven, 1831) and microstructure (e.g., Canham, 1999; Riedel, Böhme,

Bleckmann, & Spinner, 2015; Schleich & Kästle, 1985; Spinner,

Westhoff, & Gorb, 2013). One of their more unusual clades is represented

by the so-called leaf chameleons of the genus Brookesia Gray, 1865, which

is endemic to Madagascar (Glaw, 2015) and which together with Palleon

Glaw, Hawlitschek, & Ruthensteiner, 2013 forms the Brookesiinae, which

in turn comprises the sister taxon to all remaining chameleons (Tolley,

Townsend, & Vences, 2013; Townsend & Larson, 2002; Townsend,

Vieites, Glaw, & Vences, 2009). These species are characterized by their

more scansorial lifestyle in forest floor leaf litter than truly being arboreal

and only retreat to low perches at night. Leaf chameleons are readily rec-

ognizable by a rather dull, mostly brownish coloration, a limited ability of

color change, and a nonprehensile tail aiding as sort of additional limb dur-

ing locomotion on the ground (Boistel et al., 2010). These rather inconspic-

uous chameleons include with Brookesia micra one of the world's smallest

known amniote (Glaw, Köhler, Townsend, & Vences, 2012).

A striking morphological feature of this group concerns a more-or-

less developed row of spiky projections running along their back. This

Brookesia-specific “Rückensäge” (“spinal saw”; Boettger, 1878, 1893) and

its underlying peculiar vertebral structure has been subject to several

osteological studies, particularly in Brookesia superciliaris (Kuhl, 1820)

(Parker & Taylor, 1942; Siebenrock, 1893). One of the larger species of the

genus, the Antsingy leaf chameleon Brookesia perarmata (Angel, 1933),

does not only exhibit a well-pronounced Rückensäge, but stands out

among its congeners because also the lateral flanks and extremities

exhibit additional and unique thorny elements or large tubercle scales,

suggestive of some kind of veritable integumentary armor. Comparable

structures are not known for any other member of Brookesia, and so far,

it is unknown what these integumentary appendages truly are. The princi-

ple aim of the present study was to identify the histological structure and

three-dimensional (3D) tissue composition of the different elements of

the integumentary armor of this intriguing leaf chameleon.

2 | MATERIALS AND METHODS

Four adult specimens of both sexes of B. perarmata from the Zoologi-

sche Staatssammlung München (ZSM 862/2000: snout-vent length

[SVL] = 61 mm, ♂; ZSM 17/2006: SVL = 60 mm, ♂; ZSM 914/2006:

SVL = 59 mm, ♀; ZSM 915/2006: SVL = 52 mm, ♂) were analyzed for

the present study. The specimens were kept preserved in ethanol

according to standard museum procedures prior to this study.

One complete specimen (ZSM 17/2006) was scanned submersed

in ethanol using a phoenix nanotom m (GE Measurement and Control)

μCT-system with the following settings: tube voltage = 110 kV; tube

current = 70 μA; target = tungsten, no filter; total sample

rotation = 360�; angular step size = 0.24�; exposure time = 750 ms;

binning = 1; averaging = 4; voxel size = 37.8 μm. The tomographic

reconstruction was performed with the phoenix datos|x 2.2 software

and converted to 8 bit in VG Studio 2.2. Digital rotation and cropping

of the resulting image stack was performed in ImageJ (Schindelin

et al., 2012) and textured mesh objects were extracted in Drishti 2.6.4

(Limaye, 2012). Final renderings were created in Blender 2.79

(blender.org). Using Daz Studio 4.10 (Daz Productions, Inc, Salt Lake

City, UT), a reduced version of the digital hard tissue model was

converted into a *.u3d file and embedded into an interactive 3D PDF

by a custom LaTeX script.

Samples from the vertebrae, the skin of the lateral flanks, and

anterior extremities containing both larger and smaller elements of

the putative integumentary armor of the three other specimens

were removed for histological analysis using a scalpel and forceps

while keeping the entire specimens intact. The removed samples

were transferred to 5% nitric acid. They were kept in this solution

for about 48–60 hr to decalcify the tissue. Afterwards the samples

were washed under running tap water for about 2 hr and returned

to 70% ethanol. In addition, we took a sample of the skin of the lat-

eral body wall devoid of any conspicuous armored elements for

comparison.

Samples were dehydrated in ethanol and embedded in glycol

methacrylate (Technovit 7,100, Heraeus Kulzer GmbH). The methac-

rylate blocks were sectioned at a thickness of 2–5 μm using a HM

350 rotary microtome (Microm International GmbH). The sections

were stretched on a water bath and transferred to regular glass slides.

Staining was done with a solution of 0.1% toluidine blue in 0.1% borax

and the slides were cover-slipped using Roti Histokitt II (Carl Roth

GmbH + Co. KG). Staining time varied according to section thickness

and we furthermore produced, with regard to the soft tissues, over-

stained preparations as those yielded better results for the osseous

parts contained in several of the sections. All analyses and imaging

was done using a Zeiss Axio Lab.A1 light microscope equipped with a

Canon EOS 60D digital camera. The resulting images were processed

using RawTherapee 5.4 and GIMP 2.8 (adjustments of white balance,

contrast, slight color adjustments and the removal of the background).

One additional isolated armored element of the lateral flanks was

removed from each ZSM 862/2000 and ZSM 914/2006 as described

above, dehydrated in a graded series of ethanol and finally transferred

to and immersed in hexamethyldisilazane (HMDS) for 10 min

(Nation, 1983). The samples were air-dried overnight and placed in

separate sealed containers filled with silica gel the next morning and

kept there until further analysis for about a week.

The dry sample from ZSM 914/2006 was embedded in Araldite®

2020 (Huntsman), cut with an IsoMet™ Low Speed Precision Cutter

(Buehler), and ground with silicon carbide powder to produce petro-

graphic ground sections. These sections were analyzed using a Leica

DM LP polarizing microscope equipped with a Leica DFC 420 camera

and further digitally processed as described for the conventional his-

tological sections above.

Following the approach introduced by Rühr and Lambertz (2019),

the dry sample from ZSM 862/2000 was gold-coated with a

2 SCHUCHT ET AL.

http://blender.org


108 auto sputter coater (Cressington Scientific Instruments) prior to

μCT-scanning using a Skyscan 1272 device (Bruker microCT). The

sputter-coating was required because the absorption indices of the

sample's substructures differed so strongly that it was impossible to

visualize the skin in the subsequent analysis steps. At high tube ener-

gies (>60 kV), the skin did not absorb enough photons to be visual-

ized, while at lower energies (30–60 kV), the absorption of the

underlying structure was so strong that its blurred outlines overlaid

the weak skin signal in the digital slice reconstructions. The final μCT

scan of the gold-coated sample was carried out with the following

settings: tube voltage = 70 kV; tube current = 142 μA; target = tung-

sten; total sample rotation = 180�; angular step size = 0.19�; expo-

sure time = 1925 ms; binning = 2 × 2; filter = Al 0.5 mm;

averaging = 8; random movement = 15; voxel size = 4.4 μm. Thermal

drift correction and digital section reconstruction was done in

NRecon 1.7 (Bruker microCT). Textured mesh creation of the skin

and the osteoderm, final rendering and 3D PDF creation procedures

were carried out as described above for the whole body scan. Addi-

tionally, a digital endocast of the observed cavernous structure was

generated with the region competition algorithm of ITK-SNAP

(Yushkevich et al., 2006).

3 | RESULTS

3.1 | Macroscopic morphology

The macroscopic morphology of the integumentary armor in

B. perarmata is illustrated by the digital reconstruction of a full-body

μCT scan (Figure 1). The Rückensäge is formed by the dorsal vertebrae,

which are modified as described in the following. The zygapophyses

of the vertebrae rest on short, slightly outward projecting protrusions.

The protrusions of the pre- and postzygapophysis are longitudinally

connected by an osseous bridge forming a passage that is medially

bordered by the centrum. These bridges also give rise to a long, broad,

and laterally extending process. Originating from the anterior part of

the longitudinal bridge, additional arches on either side are projecting

dorso-caudad. These accessory arches merge dorsally and extend cau-

dad to meet the dorsal tip of the neural spine, forming a shallow V-

shape in dorsal view.

Aside from the cranial, axial, and appendicular skeleton, also

the conspicuous tubercle scales on the lateral flanks and extremi-

ties appear as x-ray-dense structures with an absorbance similar to

bone. Large tubercles are arranged in one longitudinal row along

the flanks at about the dorso-ventral midline, whereas additional,

smaller tubercles are scattered more ventrally. Both larger and

smaller tubercles are rather cone-shaped in principle, but each of

these cones consists of several minor cusps. The tubercles on the

limbs are located proximal to the knee and elbow joints, respec-

tively. Tubercles of the forelimb form a half-open bracelet with

more numerous cusps, whereas those of the hindlimb again are

more scattered and closer resemble the shape of those of the lat-

eral flanks.

3.2 | Histology

3.2.1 | Vertebrae

The accessory structures of the vertebrae consist of bony tissue.

Parts of the epaxial musculature run enclosed between the acces-

sory arch and the neural spine (Figure 2a,b). A thick layer of carti-

lage covers the joint surfaces of the zygapophyses of adjacent

vertebrae (Figure 2a,c). Both lateral processes and accessory

arches are ornamented and spiny. In the caudal portion of the

vertebrae, the arches and processes are almost completely com-

pact (Figure 2a). Anterior to the neural spine, the lateral pro-

cesses and accessory arches consist of a compact cortical layer

hollowed out by interconnecting cavities filled by cavernous bone

marrow (Figure 2b). The walls of the cavities are lined by second-

ary infillings with a regular, lamellar appearance. Osteocyte-

lacunae are well visible throughout the lateral processes and

accessory arches, but seem to be more numerous around the cav-

ities. Potential growth marks are present within the vertebrae

and seem to be continuous between the neural arches and the

lateral processes, and continue further also into the accessory

F IGURE 1 Brookesia perarmata, macroscopic view. Adult
individual in life (a); skeletal reconstruction in lateral (b), with the right
side digitally removed, and dorsal view (c). Note the osseous elements
along the lateral flanks and the proximal extremities. Scale bar equals
1 cm. To view an interactive 3D model (PDF version only), click on
the Figure. Standard views available in toolbar at the top. Additional
mouse controls: Left click: rotate scene; right click / mouse wheel:
zoom; both mouse buttons: pan. Figure best viewed with Adobe
Acrobat Reader Version 9 or later
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arches (Figure 2a,b). Growth lines, however, are not continuous

where the accessory arches merge with the neural spine

(Figure 2a,d). An additional patch of cartilage is found at the

merging point of the accessory arches and the neural spine

(Figure 2d). No discrete sutures, however, can be distinguished

between the vertebra itself and any of its accessory structures

(Figure 2a,b). Both the lateral processes and the accessory arches

bulge out the skin and extend into the dermis, where they are

covered by the dermal stratum superficiale and the overlying epi-

dermis (Figure 2a,b,d,e).

3.2.2 | Normal skin of the lateral flanks

The skin is divided into a dermis and an epidermis. The dermis is

divided into a basal stratum compactum of more regularly arranged

collagen fibers and a stratum superficiale of irregular connective tissue.

Numerous pigment cells are present in the apical regions of the stra-

tum superficiale. The overlying, multilayered epidermis is covered by a

micro-ornamented Oberhäutchen.

3.2.3 | Armor-like elements of the lateral flanks

The histological structure of the integument immediately surrounding

the armor-like element of the lateral flanks agrees with the condition

for the normal skin described above. The tubercle scale itself consists

of an osseous core that is embedded within the stratum superficiale of

the dermis and fully enveloped by it (Figures 3a and 4a). As on the rest

of the body, the stratum superficiale covering the osseous core is

scattered with various pigment cells and apically overlain by the epider-

mis (Figure 4b). The stratum compactum underneath the osseous ele-

ment shows large, hollow lacunae reminiscent of vascular or lymphatic

spaces (Figure 3a). Large blood vessels penetrate the bone from the

basal (medial) side and extend into large, interconnected cavities

(Figures 3a and 4c). These cavities are filled with marrow-like tissue

that—albeit imperfectly preserved in the museum specimens—exhibits

frequent vascular sinus, adipose cells, and a matrix of unidentifiable cells

(Figure 4d). Smaller blood vessels penetrate the bone from the superfi-

cial (lateral) side and extend into the internal cavities (Figure 3a). The

bony element itself consists of a compact cortical layer with mostly

F IGURE 2 Brookesia perarmata, vertebral histology. Cross
section of the last dorsal vertebra in a posterior plane (a) and hemi-
section at about its midpoint (b). Note the cartilaginous
zygapophyseal joint with the adjacent vertebra (c). The externally
visible dorsal projection (d) shows a small island of cartilage at its
base, just dorsal to the neural spine (arrow). The entire accessory,

nontypical vertebral structures bulge out the dermis (e), which causes
the external visibility. Scale bars equal 500 μm in a and b, 50 μm in c
and e, and 100 μm in d

F IGURE 3 Brookesia perarmata, histological comparison of the
integumentary armor. Both the armored elements of the lateral flanks
(a, resting on the lateral body wall immediately above a rib) and those
of the extremities (b) show the same principal architecture, most
notably characterized by the osseous element (osteoderm) containing
numerous large internal cavities. Note the larger blood vessels
penetrating the bone at its basal (medial) side (asterisk) as well as the
smaller ones at its superficial (lateral) one (arrow). All scale bars
equal 500 μm
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F IGURE 4 Brookesia perarmata,
histological details of the lateral flank
integumentary armor. Note that the
osteoderm is fully enveloped by the
stratum superficiale of the dermis (a),
whereas the superficial dermal and
epidermal layers resemble the ordinary
squamate condition (b). Large blood
vessels on the basal (medial) side (c) are,

just as smaller ones on the superficial
(lateral) side (not shown, but see arrow in
Figure 3), connected to a marrow-like,
potentially haematopoetic tissue within
the osteoderm's cavities (d). All scale bars
equal 50 μm

F IGURE 5 Brookesia perarmata, polarized microscopy of the lateral flank osteoderm. Note the remarkably complex architecture of the bone
that is composed of parallel-fibered (plus sign), metaplastic (asterisk), and secondary lamellar bone (arrow). Fibers (black arrowhead) anchor the
osteoderm within the dermis. At least one growth mark (white arrowhead) is visible in the parallel-fibered portion of the cortex. All scale bars
equal 100 μm
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rounded, osteocyte-lacunae dispersed throughout; canaliculi are

well visible (Figure 5). Several potential growth marks are discernible

(Figure 3a). Overall, the bone architecture of the central element dis-

plays a high complexity. Several parts of the peripheral cortex show

a rather irregular arrangement of collagen fibers, comparable to that

of the surrounding stratum superficiale (Figure 2a), and are indicative

of metaplastic bone. The inner walls around the cavities are lined by

secondary infillings with a more regular, lamellar appearance bor-

dered by a cement line. There are both primary and secondary tra-

beculae. Bone and irregular connective tissue are interconnected by

collagen bundles crossing from bone to dermis (Figure 5).

3.2.4 | Armor-like elements of the anterior
extremities

The histological structure of the integument surrounding the armor-like

element of the extremities again agrees with the condition for the normal

skin of the flanks described above. In addition, also the histological compo-

sition of the armor-like element itself agrees with those of the flanks: a

stratum superficiale-embedded, multicusped, osseous element containing

numerous cavities filled with marrow-like tissue. The above-mentioned

shape reminiscent of a half-open bracelet is clearly evident (Figure 3b).

3.3 | 3D-morphology of the lateral flank
integumentary armor

The central bony element of the lateral flank armor can clearly be sep-

arated from the surrounding soft tissue of the skin in the μCT scans

(Figure 6a). The osseous core directly resembles that of the externally

visible, cone-shaped structure with its several minor cusps of the

“tubercle scale” itself (Figure 6a,b). There are numerous larger vascular

foramina on the basal (medial) face of the osseous core, and several

smaller ones on the superficial (lateral) side (Figure 6b,c; see also Fig-

ures 3a and 4c). The cavities within the bone are all connected with

each other (Figure 6d), which became evident due to the fact that the

semiautomatic reconstruction employed produced a complete and

continuous “endocast” after several starting points were set in the

central portion of the osteoderm.

4 | DISCUSSION

The macroscopic external appearance of the conspicuous putative

body armor of Brookesia perarmata has been known since the original

description of this species by Angel (1933). We were able to corrobo-

rate the osteological findings on the vertebral projections in

B. superciliaris by Siebenrock (1893) and Parker and Taylor (1942) also

for the Antsingy leaf chameleon. A bridge-like arch extends between

the pre- and postzygapophyses, connects both of them, projects later-

ally, and extends into the dermis.

These also externally visible projections constitute unique struc-

tural elements not known for any other lepidosaur outside the genus

Brookesia and contribute to generating the appearance of body armor.

The question remains though how they are formed. Romer (1956),

without further elaborating, which species he examined nor how he

came to this conclusion, considered them as “[s]uperficial dermal ossi-

fication[s]” (p. 539). Our histological analyses revealed continuous

growth lines and the absence of discrete sutures for the lateral

F IGURE 6 Brookesia perarmata,
3D-reconstruction of the lateral flank
integumentary armor of Brookesia
perarmata. Note that the shape of the
multicusped osteoderm directly reflects
the external morphology of the tubercle
scale (a, b) and that there are numerous
smaller superficial (lateral) and larger basal
(medial) vascular canals within the bone
(b, c). All the internal cavities are
connected to each other (d). Scale bar
equals 1 mm. To view an interactive 3D
model (PDF version only), click on the
Figure. Standard views available in toolbar
at top. Individual meshes of skin, bone
and endocast of osteoderm can be
toggled on/off when “Model Tree” is
activated in tool bar. Additional mouse
controls: Left click: rotate scene; right
click/ mouse wheel: zoom; both mouse
buttons: pan. Figure best viewed with
Adobe Acrobat Reader Version 9 or later
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projections with the vertebral body, suggesting that the vertebrae and

these accessory structures in fact form a developmental unity. Dor-

sally, however, the externally visible projection appears to be some-

what separable from the dorsal tip of the vertebral neural spine in

terms of its bone architecture, and the presence of cartilaginous rem-

nants may be suggestive of a fusion of two discrete structures. Based

on the material available to us, we can neither rule out that the acces-

sory structures are of dermal origin fusing with the vertebrae, nor that

they form as endochondral ossification and as outgrowths of the ver-

tebrae themselves, or even that it is a combination of both processes.

In order to unambiguously answer the question of developmental ori-

gin, ontogenetic studies based on an appropriate series of specimens

at different ages seem ultimately needed.

Turning to the thorny elements of the lateral flanks and extremi-

ties of B. perarmata, we see different general macroscopic shapes, but

a corresponding histological architecture. Both do not represent mere

keratinous tubercle scales, but rather exhibit a multicusped osseous

core. The location of these bony elements embedded within the der-

mis warrants their interpretation as osteoderms. No such structures

are known for any other species of chamaeleonid, including the

numerous congeners. To the best of our knowledge, this is the first

known case for the presence of osteoderms for any member of the

Chamaeleonidae and, except for the marine iguana, Amblyrhynchus

cristatus Bell, 1825 (see de Queiroz, 1987), only the second for the

entire clade Iguania.

Osteoderms are known for a number of tetrapod lineages, but

among lepidosaurs they were so far considered to be restricted to

anguids (de Buffrénil, Sire, & Rage, 2010; Moss, 1969;

Schmidt, 1914a; Strahm & Schwartz, 1977), anniellids (Bhullar &

Bell, 2008), cordylids (Broeckhoven, El Adak, Hui, Van Damme, &

Stankowich, 2018; Romer, 1956; Stanley, 2013), gekkotans (Laver

et al., 2020; Levrat-Calviac, Castanet, & Zylberberg, 1986; Levrat-

Calviac & Zylberberg, 1986; Paluh, Griffing, & Bauer, 2017;

Schmidt, 1912a; Vickaryous, Meldrum, & Russell, 2015), gerrhosaurids

(Moss, 1969; Schmidt, 1912b), helodermatids (Mead, Schubert, Wal-

lace, & Swift, 2012; Moss, 1969; Schmidt, 1912c), lacertids

(Costantini, Alonso, Moazen, & Bruner, 2010; Gadow, 1909),

lanthanotids (Maisano, Bell, Gauthier, & Rowe, 2002), scincids

(Lambiris, 1992; Moss, 1969; Schmidt, 1910), shinisaurids (Bever,

Bell, & Maisano, 2005; Conrad, Head, & Carrano, 2014), varanids

(Erickson, Ricqles, de Buffrénil, Molnar, & Bayless, 2003; Maisano,

Laduc, Bell, & Barber, 2019), xenosaurids (Bhullar, 2011), and, as

already mentioned, the iguanid A. cristatus (de Queiroz, 1987).

While the normal skin in the Antsingy leaf chameleon follows the

general morphology of the squamate integument, the osteoderms

themselves are rather unusual. Osteoderm morphology differs greatly

within squamates, not only in relation to shape, size and distribution

on the body (Paluh et al., 2017; Vickaryous & Sire, 2009), but also

with respect to tissue composition (Vickaryous et al., 2015;

Vickaryous & Sire, 2009). Most frequently, osteoderms are limited to

the dorsal surface of the head and trunk (Gadow, 1909), whereas in

other taxa (e.g., anguids, some gekkotans, and scincids) they enclose

the entire body (Vickaryous et al., 2015; Vickaryous & Sire, 2009). In

many squamate taxa, osteoderms are relatively small or thin

(Otto, 1909; Paluh et al., 2017) and do not change or influence the

outer silhouette of the animal. Even though their distribution is much

more localized in B. perarmata, the osteoderms are conspicuous and

large compared with the animal's size and, especially in combination

with the Rückensäge, dramatically alter its body contour. Osteoderm

shape ranges from vermicular in varanids (Erickson et al., 2003), imbri-

cating and flat in anguids and scincids (Levrat-Calviac et al., 1986;

Otto, 1909; Schmidt, 1910, 1914a), to robust and bead-like in

helodermatids (Mead et al., 2012; Vickaryous & Sire, 2009), or elon-

gated with branching processes in anniellids (Bhullar & Bell, 2008).

However, large, conical, and multicusped osteoderms such as those of

B. perarmata seem to be exceptional.

Vickaryous and Sire (2009) found that in all lepidosaurians they

investigated, osteoderms were embedded into the dermis directly at

the juncture of the stratum superficiale and stratum compactum. The

osteoderms of B. perarmata, however, are completely enveloped by

the stratum superficiale, so that there is no contact with the stratum

compactum. Though fundamentally different with regard to the

osteoderm structure itself, this is reminiscent of the condition found

in Geckolepis maculata Peters, 1880 (Paluh et al., 2017).

For the gecko Tarentola mauritanica (Linnaeus, 1758), Levrat-

Calviac and Zylberberg (1986) described bundles of collagen fibers

comparable to Shapey's fibers anchoring the osteoderms within the

dermis, and Vickaryous et al. (2015) confirmed this interpretation.

Corresponding fibers are also present in B. perarmata and appear to

secure the osteoderm within the surrounding superficial dermis.

Tissue composition of squamate osteoderms also varies greatly

and is by no means restricted to osseous components, comprising a

diverse spectrum of other mineralized and unmineralized tissues

(Moss, 1969; Vickaryous & Sire, 2009). As a rough generalization, two

types of osteoderms can be distinguished: (a) those that (at least pri-

marily) consist of bone (e.g., in Anguis fragilis Linnaeus, 1758 and some

gekkonids) (Vickaryous et al., 2015; Zylberberg & Castanet, 1985), and

(b) those that additionally contain a mostly avascular and acellular,

hypermineralized dental-like tissue (de Buffrénil et al., 2010; Iacoviello

et al., 2020; Levrat-Calviac & Zylberberg, 1986; Moss, 1969;

Vickaryous et al., 2015), recently termed osteodermine (de Buffrénil,

Dauphin, Rage, & Sire, 2011). The osteoderms of B. perarmata clearly

fall into the former category. But in contrast to, for instance, A. fragilis

in which the osteoderms are divided into a basal layer of lamellar bone

and a superficial layer of woven-fibered bone (Zylberberg &

Castanet, 1985), the osteoderms of the Antsingy leaf chameleon do

not show such a two-part organization and lamellar bone is only found

around the inner cavity walls.

Generally, reptilian dermal bone rarely possesses any cavities

and is rather poorly vascularized (Moss, 1969). Schmidt

(1910, 1912a, 1912b, 1912c, 1914a) noted the presence of small

vascular canals for gekkotans, gerrhosaurids, scincids, heloder-

matids, and anguids. For Gerrhosaurus Wiegman, 1828 and

Zonosaurus Boulenger, 1887, Schmidt (1912b) also described

small cavities (“Markräume”), probably resulting from resorption,

but did not provide further information about the soft tissue
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occupying these spaces. As a generalized remark, Moss (1969)

stated that, if present, cavities were filled by fat cells and hema-

topoietic tissue, but he did not mention differences between the

taxa he investigated. Otto (1909) reported small cavities in the

osteoderms of Chalcides chalcides (Linnaeus, 1758) and

C. ocellatus (Forskål, 1775). He interpreted the internal tissue as

vascularized adipose cells, possibly combined with connective tis-

sue and pigment cells. More recently, Broeckhoven, du Plessis,

and Hui (2017) described well-vascularized osteoderms exhibiting

cavities filled with adipose tissue in a cordylid. However, and

despite a superficial similarity, the osteoderms of B. perarmata

with their large, interconnecting cavities filled by what appears to

be bone marrow remain remarkable. The closest superficial

resemblance may actually be found in the osteoderms of certain

fossil glyptosaurine anguids, which exhibit a diploe structure with

relatively large cavities, even though these spaces are most pro-

nounced in the cranial region and it remains uncertain what these

were filled with in the living animal (de Buffrénil et al., 2010).

The medullary region of B. perarmata's osteoderms shows con-

siderable areas of resorption and redeposition with secondary

infillings of lamellar bone bordered by a cement line along the tra-

beculae and inner walls of the cavities. In reptiles, the formation of

lamellar bone is considered to require the presence of a periosteum

(Moss, 1969; or endosteum), which would indicate a formation by

intramembranous ossification. Except for secondary infillings, colla-

gen arrangement within the osteoderms of B. perarmata is rather

irregular and directly continuous with that of the surrounding super-

ficial dermis, which, on the other hand, suggests a formation by

metaplasia (Haines & Mohuiddin, 1968; Levrat-Calviac &

Zylberberg, 1986; Moss, 1969). These findings may indicate that

osteoderm formation in B. perarmata is achieved by a combination of

intramembranous ossification and metaplasia, which would be in

congruence with the current knowledge for Lepidosauria in general

(Vickaryous & Sire, 2009).

The general structure of the Antsingy leaf chameleon's

osteoderms can be characterized as somewhat “spongy” and thus at

least superficially resembles that of crocodylian osteoderms (see also

those of the South American horned frogs, Quinzio & Fabrezi, 2012).

Osteoderm coverage in crocodylians is extensive, and depending on

the species is not restricted to the dorsolateral surface but also

extends to the ventral abdomen (Schmidt, 1914b; Vickaryous &

Hall, 2008). Crocodylian osteoderms are more or less disc like and

often possess a central protuberance or keel and apical ornamentation

(Vickaryous & Hall, 2008). Microstructurally, crocodylian osteoderms

exhibit a distinct diploe structure consisting of a compact cortex and a

cancellous central portion (de Buffrénil et al., 2015; Vickaryous &

Sire, 2009) similar to that found in B. perarmata. In contrast to most

lepidosaurians, crocodylian osteoderms lie within the stratum super-

ficiale and are anchored by Sharpey's fibers (de Buffrénil et al., 2015;

Vickaryous & Sire, 2009), again reminiscent of the situation in

B. perarmata. Apical and basal sides of crocodylian osteoderms are

penetrated by small neurovascular foramina (Schmidt, 1914b;

Vickaryous & Hall, 2008), but cavities are not limited to vascular

spaces alone (Schmidt, 1914b). Schmidt (1914b) found that, at least in

Crocodylus niloticus Laurenti, 1768, cavities were filled by a combina-

tion of connective tissue, blood vessels, nerves, and pigment cells. In

contrast to that, the cavities of the osteoderms in B. perarmata appear

to lack pigment cells, but are filled by potential hematopoietic tissue.

Crocodylian osteoderms are composed of a mixture of woven bone,

parallel-fibered bone, lamellar bone, and mineralized and

unmineralized connective tissue (de Buffrénil et al., 2015;

Vickaryous & Hall, 2008). While Vickaryous and Hall (2008) did not

find signs of intramembranous ossification in Alligator mississippiensis

(Daudin, 1802) and consider bone metaplasia to be the only mode of

osteoderm formation in crocodylians, de Buffrénil et al. (2015) investi-

gated numerous extant and fossil Crocodylomorpha and found endos-

teal bone deposits in older (i.e., larger) individuals suggestive of

osteoblast activity. As already stated, a similar combination of meta-

plasia and intramembranous ossification might also be present in

B. perarmata. However, all of this taken together, renders the

osteoderm morphology of the Antsingy leaf chameleon quite remark-

able and unique among lepidosaurs, and thus expands our knowledge

about the structural diversity of the amniote integument.

Concerning the functional significance of these structures for

B. perarmata, the situation is even more confounded. Tradition-

ally, reptilian osteoderms have been regarded solely as defensive

structures, that is, dermal armor in the literal sense. However,

even though this might be true for some taxa, it does not explain

the occurrence of relatively thin and fragile osteoderms

(Broeckhoven, Diedericks, & Mouton, 2015; Paluh et al., 2017).

More recent hypotheses widen the presumed function of

osteoderms. Vickaryous et al. (2015) proposed a possible protec-

tion during aggressive intraspecific behavior as well as against

well-fortified, large prey items in several species of geckos.

Dacke et al. (2015) studied labile calcium sources in reproducing

alligators and suggested that osteoderms serve as calcium

deposits for eggshell production. A similar function as mineral

reservoirs has also been discussed for sauropod dinosaur

osteoderms (Curry Rogers, D'Emic, Rogers, Vickaryous, &

Cagan, 2011). Furthermore, a possible role in thermoregulation in

crocodilians and squamates has been discussed by several

authors (Broeckhoven et al., 2017; Clarac, de Buffrénil, Cubo, &

Quilhac, 2018; Clarac & Quilhac, 2019; Drane & Webb, 1980;

Vickaryous & Hall, 2008; Vickaryous & Sire, 2009). For

B. perarmata, no information on thermoregulation and calcium

metabolism is available (although it is restricted to karstic lime-

stone habitats), therefore a possible influence of such physiologi-

cal processes on osteoderm advantageousness can hardly be

discussed.

In his work on B. superciliaris, Siebenrock (1893) interpreted the

accessory arches and zygapophyseal bridges of the vertebrae as

strengthenings of the vertebral column, and considered the lateral

spines as adornments (“Zierde”; possibly in the sense of display struc-

tures). The fact that both males and females of the species exhibit

these armor-like elements appears to contradict the hypothesis of a

display structure that would play a signaling role during mating
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behaviors. However, we cannot exclude a simultaneous visual and

mechanical function, and especially the potential for bone-based fluo-

rescence known for other chameleons warrants further examination

(Prötzel et al., 2018).

Chameleons mainly rely on camouflage and crypsis to avoid pre-

dation, and leaf chameleons are no exception. The Rückensäge and

osteoderms could actually facilitate such a strategy. In addition,

Raxworthy (1991) documented that at least some Brookesia species

not only rely on passive defense behavior when gripped, but switch to

active vibrating or even thrusting of the dorsolateral-spines to deter

predators. It is conceivable that B. peramata may use both, the pointed

osteoderms and dorsolateral-spines, in such a spine thrusting

response.

Birds and snakes have been identified as the main predators for

Malagasy chameleons, and specifically several Brookesia serve as a

substantial dietary component of for instance the short-legged gro-

und roller (Jenkins, Rabearivony, & Rakotomanana, 2009). Against

avian and ophidian predators, the exceptional osteoderms of

B. perarmata in fact may contribute toward their general defense

strategy. All species of Brookesia exhibit a somewhat sculptured skull

presenting several prominent crests that may be harmful to potential

predators trying to swallow them in one piece. The same applies to

the vertebral projections of the Rückensäge that is characteristic for

most species of the genus. The entire physiognomy of the Antsingy

leaf chameleon with its pronounced “spikyness” over larger parts of

the body, as a result of the numerous large osteoderms, may

enhance such effects.
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