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a b s t r a c t 

Post-mortem diffusion MRI (dMRI) enables acquisitions of structural imaging data with otherwise unreachable 
resolutions - at the expense of longer scanning times. These data are typically acquired using highly segmented 
image acquisition strategies, thereby resulting in an incomplete signal decay before the MRI encoding continues. 
Especially in dMRI, with low signal intensities and lengthy contrast encoding, such temporal inefficiency trans- 
lates into reduced image quality and longer scanning times. This study introduces Multi Echo (ME) acquisitions 
to dMRI on a human MRI system - a time-efficient approach, which increases SNR (Signal-to-Noise Ratio) and re- 
duces noise bias for dMRI images. The benefit of the introduced ME-dMRI method was validated using numerical 
Monte Carlo simulations and showcased on a post-mortem brain of a wild chimpanzee. The proposed Maximum 

Likelihood Estimation echo combination results in an optimal SNR without detectable signal bias. The combined 
strategy comes at a small price in scanning time (here 30% additional) and leads to a substantial SNR increase 
(here white matter: ~ 1.6x, equivalent to 2.6 averages, grey matter: ~ 1.9x, equivalent to 3.6 averages) and a 
general reduction of the noise bias. 
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. Introduction 

Diffusion-weighted MRI (dMRI) is capable of non-invasively prob-
ng microstructure and structural connectivity of brain tissue. As a
urely structural measure, dMRI can also provide insights into the
rganization of post-mortem brain tissue. Such post-mortem dMRI ac-
uisitions allow extremely high image resolutions at the cost of in-
reased scan times ( Dyrby et al., 2011 ; McNab et al., 2013 ; Miller et al.,
011 ). Unfortunately, the fixation of the brain in paraformaldehyde
olution produces a cross-linkage of proteins which reduces the dif-
usivity of water molecules in the tissue and the directional contrast
 Roebroeck et al., 2019 ). Hence, to achieve sufficient diffusion contrast,
ost-mortem diffusion-weightings need to be increased relative to in-vivo

cquisitions. 
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The vast potential of dMRI in neuroscience and clinical practice led
o recent developments of highly specialized human-size MRI systems
ith very strong diffusion gradients of up to 300 mT/m ( Jones et al.,
018 ; Setsompop et al., 2013 ). By reducing the echo time of diffusion
eighted acquisitions, these novel systems allow advanced dMRI ac-
uisitions with increased signal-to-noise ratio (SNR) and, thus, higher
mage resolution and stronger diffusion-weightings. 

Despite its versatile applications in neuroscience and clinics, dMRI
cquisitions and models suffer from various shortcomings. Since the
iffusion contrast is realized by direction-weighted signal attenuation,
MRI inevitably suffers from low SNR. This problem is systematically
orsened for dMRI acquisitions with increased diffusion-weighting and
igher image resolutions. In low SNR regimes (SNR < 10), the typi-
ally employed magnitude dMRI signals become biased by non-Gaussian
20 
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Fig. 1. Multi-Echo dMRI Acquisitions. (A) ME- 
dMRI acquisition employs a Stejskal-Tanner 
dMRI sequence, with a total acquisition of 
N gradient-echoes. ME-dMRI signals are de- 
scribed using a mixed decay model, where the 
first echo follows T 2 decay and the latter echoes 
follow T 2 

∗ decay. (B) ME-dMRI data are multi- 
dimensional with N echo times and multiple 
diffusion directions. 
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1 Human T 2 3T: in-vivo ~ 80–110 ms ( Wansapura et al., 1999 ), post-mortem 

typically shorter ( Blamire et al., 1999 ; Shatil et al., 2018 ) 
2 Human T 2 

∗ 3T in-vivo ~ 41–63 ms ( Kleban et al., 2020 ; Wansapura et al., 
1999 ) , post-mortem typically shorter 
oise, thereby preventing accurate signal averaging and modelling
 Basu et al., 2006 ; Eichner et al., 2015 ; Gudbjartsson and Patz, 1995 ). 

Due to the time-consuming diffusion contrast encoding, dMRI data
re typically acquired using Echo-Planar-Imaging (EPI). However, EPI
ased acquisitions are especially prone to image distortions from eddy
urrents or magnetic field inhomogeneities ( Andersson and Sotiropou-
os, 2016 ). A further general challenge of dMRI is its inefficient signal ac-
uisition strategy, in which diffusion contrast encoding can be of longer
uration than the imaging readout. 

Multiple strategies have been suggested to counteract typical issues
ssociated with dMRI acquisitions. The signal bias of low SNR data can
e overcome using phase-correction of the complex-valued dMRI dataset
 Eichner et al., 2015 ). High in-plane acceleration using parallel imaging
PI can typically reduce geometrical distortions ( Eichner et al., 2014 ;
riswold et al., 2002 ; Hamilton et al., 2017 ; Heidemann et al., 2012 ;
ruessmann et al., 1999 ). 

For post-mortem dMRI acquisitions, these in-vivo strategies are not
ufficient to achieve acceptable image quality. Captured air bubbles in-
uce strong susceptibility differences within the post-mortem sample,
aking the background phase hard to estimate. In addition, post-mortem

rain containers shift the tissue-air boundary from multiple centimeters
o a distance of just a few millimeters. These problems aggravate EPI
istortions, even when using parallel imaging acceleration. 

Segmented EPI (sEPI) acquisition strategies have been proposed to
itigate these problems and to achieve almost distortion-free EPI data

 even under challenging post-mortem conditions. Similar to other paral-
el imaging techniques, sEPI only captures small portions of the total k-
pace for each EPI shot. Here, in contrast to parallel imaging, the missing
-space segments are acquired in separate sEPI shots. Segmented EPI al-
ows much faster EPI readout than parallel imaging strategies, resulting
n considerably reduced image distortion.. Segmented dMRI acquisitions
an be achieved using interleaved segmentation along the phase encod-
ng direction ( Butts et al., 1994 ; McKinnon, 1993 ), or by segmentation
f the readout direction ( Porter and Heidemann, 2009 ). Due to gradient
lew rate limitations, interleaved segmentation along the phase encod-
ng direction can achieve higher acceleration than readout segmented
cquisitions ( Wang et al., 2018 ). 

Similarly to dMRI, fMRI recordings may also suffer from low SNR
onditions, which can result in artifacts and false-positive results for
OLD activation patterns ( Poser and Norris, 2009 ; Speck and Hen-
ig, 1998 ). In this context, Multi-Echo (ME) imaging combined with ac-
uisition acceleration strategies were shown to improve the functional
ensitivity by weighted echo summation or the estimation of tissue pa-
ameters ( Kundu et al., 2013 , Kundu et al., 2012 ; Poser et al., 2006 ). 

Combinations of ME and dMRI strategies have previously been sug-
ested to combine dMRI measurements with relaxometry ( Chabert et al.,
014 ; Hutter et al., 2018 ) and reduce acquisition times of specific dMRI
xperiments ( Baete and Boada, 2018 ; Franconi et al., 1997 ). The po-
ential impacts of ME acquisitions on SNR and contrast have not been
valuated in the context of diffusion-weighted MRI. In this context, short
eadout strategies such as sEPI can enable dense echo sampling of ME
cquisitions and the combination of segmented with ME acquisitions
ight be especially beneficial. 

In this work, we present a novel dMRI sequence for post-mortem ac-
uisitions. Multiple gradient echoes of highly segmented EPI trains are
cquired to achieve acquisitions with low distortions and minimal echo
ime. The resulting ME-dMRI signals are combined in an SNR optimal
ay without noise bias, using a T 2 

∗ decay model and statistical mod-
lling incorporating the underlying noise distribution. The developed
cquisition strategy was employed to acquire high-resolution dMRI data
f a post-mortem wild chimpanzee brain on a human-scale MRI system.
n additional estimate of potential SNR benefit under in-vivo conditions

s provided using numerical simulations. 

. Theory 

.1. Description of the sequence 

The employed ME-dMRI sequence combines Stejskal-Tanner diffu-
ion preparation ( Stejskal and Tanner, 1965 ) with repetitions of N seg-
ented EPI readouts at different echo times TE n ( Fig. 1 A). The spin-echo

ondition is realized at the first echo time TE 0 . Therefore, the signal in-
ensity of S 0 = S (TE 0 ) follows a T 2 decay 1 whereas the subsequent mul-
iple gradient-echoes decay with T 2 

∗ 2 ( Fig. 1 B). The signal envelope of
E-dMRI data as a function of TE n , the echo time of the nth echo, is

hen given by 

 

(
T E 𝑛 

)
= 𝑆̃ 0 exp 

( 

− 

T E 0 
𝑇 2 

) 

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑆 0 

exp 

( 

− 

T E 𝑛 − T E 0 
𝑇 ∗ 2 

) 

(1)

Here, 𝑆 0 describes the diffusion-weighted signal without the T 2 de-
ay component. Since this study mainly focuses on improving the SNR
y acquiring multiple gradient-echoes, the ME-dMRI signal decay will
e considered with respect to the spin-echo signal S 0 : 

 

(
TE 𝑛 

)
= 𝑆 0 exp 

( 

− 

TE 𝑛 − TE 0 
𝑇 ∗ 2 

) 

= 𝑆 0 exp 

( 

− 

ΔTE 𝑛 
𝑇 ∗ 2 

) 

(2) 

.2. Increasing signal to noise using multi-echo acquisitions 

ME-dMRI acquisitions provide additional data from multiple echoes
hich can be employed to increase the SNR. Here, we estimate the SNR
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3 Code available on https://github.com/cornelius-eichner 
ain from a ME-dMRI signal combination using the Linear Least Squares
LLS) regression formulation. 

We will employ two assumptions: (i) The underlying T 2 
∗ is known

nd will not be estimated from the ME-dMRI data. (ii) The measure-
ent noise, 𝜀 , is assumed to follow a zero-mean Gaussian distribution
ith a standard deviation, 𝜎. The measured signal, M , is described with
q. (3) : 

 

(
TE 𝑛 

)
= 𝑆 0 exp 

( 

− 

ΔTE 𝑛 
𝑇 ∗ 2 

) 

+ 𝜖 with 𝜖 ∼ 𝑁 

(
0 , 𝜎2 

)
(3) 

Since T 2 
∗ is known, exp( − ∆TE n /T 2 

∗ ), is a constant for each ∆TE n . To
stimate S 0 , we normalize each M (TE n ) with this constant. It becomes
pparent that the relative error of S 0 estimations grows with TE. The
rror distribution is given by: 

TE 𝑛 = 𝜖 exp 

( 

ΔTE 𝑛 
𝑇 ∗ 2 

) 

∼ 𝑁 

⎛ ⎜ ⎜ ⎝ 0 , 
( 

𝜎 exp 

( 

ΔTE 𝑛 
𝑇 ∗ 2 

) ) 2 ⎞ ⎟ ⎟ ⎠ (4) 

Due to the increasing error, the overall benefit of using multiple
radient-echoes will depend on the parameters ΔTE, T 2 

∗ , and the num-
er of acquired echoes. If late echoes with strong error contamination
re employed, the accuracy of the S 0 estimation will decrease compared
o early echoes. Under the assumption of Gaussian noise, S 0 can be es-
imated as 𝑆̄ 0 using LLS regression on multiple echoes. 

 0 = 𝑎𝑟𝑔 min 
𝑆 0 

1 
𝑁 

∑
𝑛 

( 

𝑀 

(
TE 𝑛 

)
exp 

( 

ΔTE 𝑛 
𝑇 ∗ 2 

) 

− 𝑆 0 

) 2 

(5) 

The LLS function is convex and has a unique solution with inverse
r Moore-Penrose pseudoinverse estimation of S 0 . 

 0 = 

1 
𝑁 

∑
𝑛 

𝑀 

(
ΔTE 𝑛 

)
exp 

( 

ΔTE 𝑛 
𝑇 ∗ 2 

) 

≡ 𝑆 0 + 

1 
𝑁 

∑
𝑛 

𝜖TE 𝑛 (6) 

The S 0 estimate from the LLS regression of ME data with Gaussian
oise follows a Gaussian distribution centred around S 0 . 

̄
 0 ∼ 𝑁 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 
𝑆 0 , 

(
𝜎

𝑁 

)2 ∑
𝑛 

( 

exp 
ΔT E 𝑛 
𝑇 ∗ 2 

) 2 

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜎2 ME 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
(7) 

The standard deviation, 𝜎ME , of this 𝑆̄ 0 distribution leads to an ana-
ytical expression of SNR gain from ME signal estimation using LLS on
aussian distributed data, G SNR . 

 SNR = 

𝑁 √ ∑
𝑛 

( 

exp ΔT E 𝑛 
𝑇 ∗ 2 

) 2 
(8) 

From Eq. (8) it is concluded that, the SNR gain is a function of both
issue T 2 

∗ and echo sampling scheme. For the limiting case of T 2 
∗ → inf ,

 SNR converges towards 
√

N , which equals the error reduction ob-
ained by N averages (i.e. echoes). This represents the theoretical max-
mum SNR gain for ME-dMRI acquisitions underlying a given sampling
cheme. Another limiting case of Eq. (8) emerges when the echo spacing
f the individual echo acquisitions is minimized (i.e., ΔTE n → 0), e.g.,
y employing stronger segmentation. Here, in a similar fashion, G SNR 

lso converges towards 
√

N, regardless of the underlying T 2 
∗ decay. 

An analysis of Eq. (8) reveals 
√

N to be the limiting optimal case
f ME reconstruction. For less asymptotic cases (i.e., T 2 

∗ << inf , or
TE n > 0) more advanced model fitting strategies such as non-linear
nd weighted optimization might further increase the SNR gain from
sing ME-dMRI data. 

Eq. (8) also shows, that for each TE sampling scheme and T 2 
∗ , there

s an optimal number of echoes, N, which can be used to increase G SNR .
ue to the exponential decay of the dMRI signal, additional acquisitions
f further echoes after this sweet spot will not anymore contribute to
n SNR increase. A tool to numerically identify the optimal number of
choes for a given protocol will be made available online. 3 

.3. Sensitivity and snr gain using statistical data modelling 

The assumption of zero-mean Gaussian noise generally does not hold
or diffusion-weighted MRI, where low SNR values induce a signal bias.
herefore, for unbiased estimates of S 0 , it is beneficial to employ more
dvanced model fitting approaches, incorporating the nature of the un-
erlying noise distribution. 

In contrast to LLS, the Maximum Likelihood Estimation (MLE)
chieves parameter estimations of models given specific data distribu-
ions ( Thompson, 1963 ). By maximizing the likelihood function, MLE
nds the most probable parameters of a function S to describe a given
et of measurement data. MLE proves especially useful for non-Gaussian
ata distributions, such as dMRI data. For optimal coil combinations in
omplex space, dMRI signals follow a Rician data distribution character-
zed by the standard deviation of the underlying complex-valued noise,

C . Using MLE, model parameters of S , under a Rician data distribution,
re computed by maximizing the logarithm of the likelihood function,
 ( Sijbers et al., 1998 ): 

og 𝐿 ∼
∑
𝑛 

log 𝐼 0 
( 

𝑆 𝑛 𝑀 𝑛 

𝜎𝐶 
2 

) 

− 

∑
𝑛 

𝑆 

2 
𝑛 

2 𝜎𝐶 2 
(9) 

In this equation, I 0 refers to the zeroth order modified Bessel func-
ion of the first kind, M n refers to the nth echo of the measured data
nd S n refers to the n th echo of the approximated signal function. In
ontrast to LLS, MLE enables unbiased estimations of model parame-
ers by including a noise distribution model into the parameter esti-
ation ( Karlsen et al., 1999 ; Sijbers and Den Dekker, 2004 ). MLE has

een shown to provide highly efficient approximations of the data by
pproaching the Cramér–Rao lower bound for parameter estimations
 Karlsen et al., 1999 ). Noise informed reconstructions have previously
een suggested to improve accuracy of relaxometry measurements (e.g.,
l Hajj et al., 2019 ; Hedström et al., 2017 ), as well as diffusion model
ts (e.g., Wegmann et al., 2017 ). 

Due to the non-linear weighted nature of MLE, an analytical SNR
ain evaluation becomes nontrivial. We, therefore, employed numerical
ethods to assess the benefits of MLE parameter estimation. 

. Methods 

To evaluate the benefit of using Multi-Echo dMRI acquisitions, we
mplemented a ME-dMRI sEPI sequence and acquired data from a post-

ortem chimpanzee brain. We performed numerical simulations on syn-
hetic ME-dMRI with matching acquisition parameters to compute the
NR gain as well as potential biases from reconstructions. 

.1. Numerical simulations of signal reconstruction 

Monte Carlo simulations of ME reconstructions were employed to
umerically assess reconstruction accuracy for low signals and the SNR
enefit from ME-dMRI, using both LLS and MLE reconstructions. To en-
ure comparability with the acquired ME-dMRI chimpanzee data, sim-
lations were performed on synthetic data with a similar ME sampling
cheme (i.e., numbers of echoes, echo times). 

.1.1. Evaluation of the reconstruction bias 

Diffusion-weighted MRI acquisitions typically suffer from low SNR -
specially in the main direction of diffusion attenuation, where diffusion
ontrast is strongest. To preserve the diffusion contrast, it is crucial that

https://www.github.com/cornelius-eichner
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E reconstructions retain an unbiased estimation of S 0 , especially for
mall signals. Synthetic ME-dMRI data with T 2 

∗ = 30 ms (white matter,
ee results) were generated, at five equidistantly spaced echo times from
TE = 0 ms to ΔTE = 23.6 ms. The choice of ΔTE reflects the echo
istance, which was achievable in the post-mortem acquisition. Three
ets of ME data were concatenated to mimic a ME-dMRI acquisition with
hree repetitions. The signal decay curves with S 0 = 1 were corrupted
ith complex noise. Both the real and magnitude part of the data were

xtracted to generate both Gaussian and Rician distributed data. Noise
orrupted datasets were generated for 100 equidistantly spaced 𝜎Noise ,
ith 𝜎Noise,max = 1 to 𝜎Noise,min = 0.01, thereby creating decay curves at
00 different SNR levels (SNR min = 1, SNR max = 100). Please note that
he SNR level is only valid for the first echo time, as the signal intensity
ecays for later echoes. LLS and MLE reconstructions of both Gaussian
nd Rician distributed data were performed for 1000 repetitions of each
NR level. 

.1.2. Computation of SNR gain 

The analytical assessment of SNR gain from ME-dMRI data acqui-
itions shows a dependency of G SNR on the ME sampling scheme and
he underlying T 2 

∗ ( Eq. (8) ). To numerically probe this relation for LLS
nd MLE reconstructions, we created synthetic ME data for 100 equidis-
antly spaced T 2 

∗ values ranging from T 2 
∗ 

min = 1 ms to T 2 
∗ 

max = 100 ms.
ynthetic data were generated at five equidistantly spaced echo times
rom ΔTE = 0 ms to ΔTE = 23.6 ms. Signal decay curves were cor-
upted with both Gaussian and Rician noise. The SNR of the noisy data
as set to SNR = 5 at the first echo time. LLS and MLE reconstruc-

ions were performed for 1000 repetitions for each T 2 
∗ value. Recon-

tructions using LLS regression were performed non iteratively using
q. (6) . Reconstructions using MLE regression were performed by max-
mizing the log-likelihood of the signal (LLS for Gaussian noise and
q. (9) for Rician data) using the Broyden-Fletcher-Goldfarb-Shanno
BFGS) algorithm ( Byrd et al., 1995 ) as implemented in Python-SciPy
 Virtanen et al., 2020 ). 

For each T 2 
∗ value, the SNR gain G SNR was computed as the ratio

f the standard deviation of a single echo, 𝜎Noise , to 𝜎𝑆 0 - the standard
eviation obtainable from the fitting of multiple echoes. 

 SNR = 

𝜎Noise 
𝜎𝑆 0 

(10)

In order to employ the numerically obtained MLE SNR gains
 Eq. (10) ) to experimental T 2 

∗ data, they were globally smoothed us-
ng a Savitzky-Golay filter and subsequently interpolated using cubic
olynomials, as implemented in Python-SciPy. The SNR gain map was
alculated by applying this interpolation function on the pre-calculated
 2 
∗ map. 

.1.3. In-vivo SNR gain 

SNR gains of ME-dMRI for in-vivo acquisitions were estimated us-
ng Eq. (8) in conjunction with typical in-vivo scan parameters. In this
ontext, the duration of the EPI train was calculated from assumed se-
uence parameters, to characterize the TE sampling scheme. The fol-
owing sequence parameters were chosen: N = 3, TE = 80 ms, Ma-
rix Size PE = 128, Echo Spacing = 0.6 ms, In Plane Acceleration Fac-
or = 2, Partial Fourier = 6/8. Calculations were performed for moder-
te (Segmentation Factor = 2) and strong segmentation (Segmentation
actor = 4) along the PE direction. The sequence parameters resulted
n an echo sampling ΔTE = [ 0 , 14 . 4 , 28 . 8 ] ms for moderate segmentation
nd ΔTE = [ 0 , 7 . 2 , 14 . 4 ] ms for strong segmentation. The G SNR calcula-
ions were based on the T 2 

∗ of three white matter tissues at 3T: Corpus
allosum: T 2 

∗ 
CC = 58.5 ms, Cingulum: T 2 

∗ 
Cing = 50.3 ms, Corticospinal

ract: T 2 
∗ 

CST = 53.3 ms ( Kleban et al., 2020 ). 
.2. Data acquisition 

.2.1. Specimen 

MRI data were acquired from the brain of a 6-year-old juvenile wild
emale chimpanzee from Taï National Park, Côte d’Ivoire ( Wittig, 2018 ).
he animal died from natural causes without human interference. The
rain was extracted on-site by a veterinarian and immersion-fixed with
% paraformaldehyde with a very short post-mortem interval of only
 h. The performing veterinarian was specifically trained in field pri-
ate brain extractions, wearing full Personal Protective Equipment, and

trictly adhering to the necropsy protocols of the field site. The pro-
edures followed the ethical guidelines of primatological research at
he Max Planck Institute for Evolutionary Anthropology, Leipzig, which
ere approved by the ethics committee of the Max Planck Society. The

pecimen was transferred to Germany strictly following CITES proto-
ol regulations. After fixation for 6 months, the superficial blood ves-
els were removed, the formaldehyde was washed out in phosphate-
uffered saline (PBS) pH 7.4 for 24 days. Subsequently, the brain was
laced for scanning in an egg-shaped acrylic container filled with per-
uoropolyether (PFPE, Solvay Solexis, Bollate, Italy). To prevent poten-
ial leakage of PFPE during the acquisition, the container was vacuum
ealed using commercially available synthetic foil packaging (Caso De-
ign, Arnsberg, Germany). 

.2.2. MR data acquisition 

A Stejskal-Tanner diffusion-weighted MRI sequence ( Stejskal and
anner, 1965 ) was implemented to enable segmented EPI acquisitions of
ultiple echoes on a human clinical MRI system (see Fig. 1 A). Diffusion-
eighted MRI data of the post-mortem specimen were acquired at 3T on
 MAGNETOM Skyra Connectom MRI system (Siemens Healthineers,
rlangen, Germany) using a maximum gradient strength of G Max = 300
T/m with a slew rate of 200T/m/s and a 32 channel phased-array

oil (Siemens Healthineers, Erlangen) with the following imaging pa-
ameters: 0.8 mm nominal isotropic resolution, FoV = 128 × 96 mm 

2 ,
R = 6105 ms, TE = [45.0, 50.9, 56.8, 62.7, 68.6] ms, 40 segments

n phase encoding direction, BW = 976 Hz/Px, Adaptive-Combine coil-
ombination ( Walsh et al., 2000 ), no partial Fourier, no parallel accel-
ration, whole-brain coverage with 80 slices. The choice of five echoes
as based on an analysis of Eq. (8) , using the provided tool, assuming
 T 2 

∗ of 30 ms for white matter. 
The ME-dMRI acquisition time was extended by approximately 30%

ompared to a Single-Echo (SE) acquisition with otherwise identical pa-
ameters. Segmented EPI echo time-shifting was employed to minimize
hase-discrepancies between segments ( Feinberg and Oshio, 1994 ). 

Three repetitions of 60 diffusion-weighted volumes
 b = 5000 s/mm 

2 ) alongside with 7 interspersed b0 images per
epetition were acquired. In a prior assessment with multiple b-values,
his diffusion weighting resulted in the highest diffusion contrast. Due
o fixation related effects of the post-mortem tissue, a typically consid-
red large diffusion weighting of b = 5000 s/mm 

2 generated an average
ignal attenuation of only ~ 70% (equivalent to in-vivob = 1500s/mm 

2 ,
ssuming white matter mean diffusivity MD = 0.84 × 10 − 3 mm 

2 /s as
n Uddin et al., 2019 ). 

To reduce potential impacts of magnetic field drift resulting from
engthy post-mortem dMRI acquisitions, the acquisition was split into
ultiple ~ 1 h scans with prior frequency adjustment. 

To minimize impacts from short term instabilities such as heating
nd tissue movement, 90 min of dummy scans were run prior to the
ctual data acquisition ( Dyrby et al., 2011 ). Data from these dummy
cans were discarded from all further analyses. The total acquisition
ime for the data acquisition was 13 h 40 m + 90 m preceding dummy
cans. An evaluation of the gradient heating revealed that the tempera-
ure approached steady state already after few minutes. Therefore, such
xtended dummy scans were not necessary to bring this MRI system on
perating temperature. 
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Fig. 2. Monte Carlo Simulation Results for 
ME Reconstructions using MLE and LLS Re- 
gression. Top Left: Reconstructed S 0 = 1 for 
1000 repetitions for multiple Gaussian SNR 
levels (Log Scale). Shaded areas of the curve 
show standard deviations across the simula- 
tion population. No signal bias is induced, even 
for very low SNR levels. Bottom Left: SNR 
Gain for LLS and MLE ME-dMRI reconstruc- 
tions for Gaussian data at various T 2 

∗ decays. 
Monte Carlo simulations of the LLS reconstruc- 
tion display high agreement with the analyti- 
cal derivation of SNR gain. MLE reconstruction 
achieves higher SNR gain, especially at lower 
T 2 

∗ values. Top Right: Reconstructed S 0 = 1 for 
1000 repetitions for multiple Rician SNR lev- 
els. LLS reconstruction bias occurs for SNR ≤ 10 
and increases with decreasing SNR values. MLE 
performs an accurate estimation of S 0 up to 
SNR = 1. Bottom Right: SNR Gain MLE ME- 
dMRI reconstructions on Rician data. MLE re- 
construction achieves comparable SNR gain as 
for Gaussian data MLE across the entire range 
of T 2 

∗ . 
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For a statistical characterization of Rician noise of the dMRI acqui-
ition, a noise map was recorded with identical parameters as the ME-
MRI sequence but without signal excitation (0.8 mm nominal isotropic
esolution, FoV = 128 × 96 mm 

2 × 80 sl, TR = 6105 ms, TE = 45.0 ms,
0 segments in phase encoding direction, BW = 976 Hz/Px, Adaptive-
ombine coil-combination, no partial Fourier, no parallel acceleration).

A 3D ME-FLASH sequence with 22 echoes was acquired for an ac-
urate calculation of quantitative T 2 

∗ with high SNR: 0.7 mm nominal
sotropic resolution, FoV = 112 × 100.1 × 98 mm 

3 , TR = 50 ms, TE = 2.2
 42.5 ms, 𝜃 = 32°

.2.3. ME-dMRI reconstruction 

The ME FLASH data were employed to calculate a whole-brain quan-
itative T 2 

∗ map. In this context, the data were fit voxel-wise to an ex-
onential T 2 

∗ decay model using SciPy curve_fit ( Virtanen et al., 2020 ).
he model parameters were enforced to be positive. ME-dMRI S 0 was
econstructed voxel-wise, using both LLS ( Eq. (6) ) and MLE regression
 Eq. (9) ). Here, all three repetitions of ME-dMRI data were jointly em-
loyed for the estimation of S 0 . The quantitative T 2 

∗ map was regis-
ered to the ME-dMRI data and included as a ground truth estimation
or both LLS and MLE reconstructions. This enabled voxel-wise S 0 cal-
ulation for ME-dMRI using the T 2 

∗ map. MLE reconstruction of Rician
ata requires a standard deviation estimate of the underlying complex
oise, 𝜎C . The whole-brain noise distribution was characterized using
he acquired noise map, using a recently published method to describe
ulti-coil data ( St-Jean et al., 2020 ). Due to the employed Adaptive-
ombine coil-combination in complex space, the magnitude dMRI data
pproximate a Rician data distribution ( Sakaie and Lowe, 2017 ). Hence,
q. (9) is applicable for computations of S 0 . MLE reconstruction was per-
ormed similarly to the preceding simulations, using BFGS optimization.

. Results 

.1. Numerical simulations of signal reconstructions 

.1.1. ME reconstruction accuracy 

The Monte Carlo simulation results on reconstruction accuracy are
ummarized in Fig. 2 (top). For Gaussian distributed data, both LLS and
LE reconstruction achieve an accurate and unbiased reconstruction of

he signal S 0 = 1 over the full range of simulated SNR values. For Rician
istributed data the LLS reconstructions of data with SNR ≤ 10 resulted
n an overestimation of S 0 . The simulations show that the overestima-
ion of S 0 for Rician data increases steadily with decreasing SNR val-
es. This fact is particularly problematic for the reconstruction of dMRI
ata, where diffusion contrast is provided through signal attenuation.
LE reconstructions did not show overestimations of S 0 at low(er) SNR

alues and allowed an unbiased ME reconstruction of S 0 values down to
NR = 1. For Rician data, only a slight signal overestimation by approx.
0% becomes visible at SNR = 1. 

Monte Carlo simulations suggest that employing MLE in ME-dMRI
econstructions is favourable due to its ability to deal with low SNR
alues of S 0 . 

.1.2. SNR gain 

Fig. 2 (bottom) summarizes the SNR gain, depending on the un-
erlying T 2 

∗ decay. Under the assumption of Gaussian noise, the re-
ults precisely follow the analytical prediction of SNR gain from Eq. (8) .
or growing T 2 

∗ values, the SNR gain of ME-dMRI asymptotically ap-
roaches the theoretical maximum SNR gain by using 5 acquisitions
i.e., echoes), 

√
5. When more echoes are recorded, the theoretical maxi-

um SNR gain will also increase. For the LLS reconstruction of ME data,
he employed sampling scheme did not automatically result in an in-
rease in SNR. Both the simulations and the analytical prediction reveal
n SNR gain with LLS only for T 2 

∗ values above 20 ms. This shortcom-
ng of LLS reconstruction can be explained by the error term, increasing
rror with TE n ( Eq. (4) ) - for short T 2 

∗ values the error of later echoes
 𝜀 TE ) is too high to achieve an SNR gain. ME-dMRI acquisition do not
enefit from later echoes in a similar fashion as ME-fMRI approaches
ince, in contrast to fMRI ( Posse et al., 1999 ), the diffusion contrast
oes not evolve with increasing TE. Therefore, it is crucial to minimize
he echo dependent error term by means of fast and dense sampling of
arly echoes. 

MLE shows a different behavior of SNR gain across the simulated T 2 
∗ 

ange for both the Gaussian and Rician data distributions. In both cases,
NR loss was not observed - even for short T 2 

∗ values. Instead, the SNR
ain converges to G SNR = 1 for small T 2 

∗ values, where neither SNR gain
or loss will occur. Furthermore, MLE reconstruction achieves a greater
NR gain than LLS over the entire range of simulated T 2 

∗ values. MLE
n Gaussian data reduces to a least-squares problem, which is similar to
he LLS algorithm. Therefore, the SNR gain compared to the LLS compu-
ation from Eq. (6) might be attributed to the employed non-linear BFGS
ptimization algorithm. The key advantage of MLE optimization is the
bility to achieve SNR gains > 1 over the whole T 2 

∗ range, especially
or Rician distributed data. 
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Table 1 

SNR Gain Factor Calculations for In-Vivo Acquisitions. The additional SNR 
benefit of using ME-dMRI also for in-vivo acquisitions depends on the applied 
sampling scheme and the underlying tissue T 2 

∗ . 

WM Tissue Segmentation EPI Readout Duration [ms] G SNR Eq. Avg 

CC 2 14.4 1.30 1.69 

4 7.20 1.52 2.30 

Cingulum 2 14.4 1.23 1.52 

4 7.20 1.48 2.19 

CST 2 14.4 1.26 1.59 

4 7.20 1.50 2.24 
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In summary, MLE reconstruction enables accurate and unbiased re-
onstructions of S 0 with high SNR. Monte Carlo simulations suggest that
LE is an optimal reconstruction method for reconstructing ME-dMRI

ata. 

.1.3. In-vivo SNR gain 

The G SNR results under simulated in-vivo conditions are summarized
n Table 1 . The provided results indicate, that G SNR depends on both
issue T 2 

∗ and TE sampling scheme. The average G SNR gain across white
atter tissues for moderate segmentation factors was G SNR = 1.26,

quivalent to 1.60 averages. For stronger in-plane segmentation factors,
he SNR gain increased to G SNR = 1.5, equivalent to 2.25 averages. The
cquisition of additional echoes increased the total acquisition time by
 factor of only 1.38 and is therefore more temporally efficient than
dditional averaging. 

The current estimates were calculated assuming non iterative LLS
cho combination. Given the previous simulation results, the SNR gain
s expected to be larger for MLE using nonlinear optimization schemes.

.2. ME-dMRI reconstruction 

Fig. 3 A compares reconstruction results from Single-Echo and Multi-
cho dMRI acquisitions. The raw data quality of the first echo is shown
n the top row. The SNR gain of the acquired ME-dMRI data (three rep-
titions, five echoes) becomes visible in comparison with the SE-dMRI
ata (three repetitions, single echo). When comparing ME-dMRI recon-
tructions, it is apparent that the diffusion attenuation contrast is consid-
rably more pronounced for MLE reconstructions. Hence, the ME-dMRI
econstruction results support the previous simulation results by demon-
trating that MLE regression prevents signal bias for small S 0 values. 

Fig. 3 B shows the signal intensity histogram for MLE and LLS ME-
MRI reconstructions. Noise-induced bias becomes visible when com-
aring the signal distributions across the whole-brain volume for both
iffusion-weighted and non-diffusion-weighted volumes. Here, LLS re-
onstructions show a tendency towards increased image intensities - i.e.,
 weakening of the diffusion contrast compared to MLE. 

.3. SNR gain map 

Fig. 4 displays the whole-brain T 2 
∗ map as well the associated SNR

ain from using ME-dMRI alongside with MLE reconstruction. Given a
pecific ME sampling scheme the voxel-specific SNR is defined by the un-
erlying T 2 

∗ map ( Fig. 4 A). The quantitative T 2 
∗ measurements show a

istribution, ranging from ~ 20 ms to ~ 80 ms across the brain ( Fig. 4 B).
he numerically generated SNR gain for this T 2 

∗ distribution using MLE
s summarized in Fig. 4 C. The SNR gain from a single repetition of ME-
MRI shows a tissue-specific SNR gain of ~ 1.6 (WM, equivalent to 2.6
verages) and ~ 1.9 (GM, equivalent to 3.6 averages). From the G SNR 

istogram in Fig. 4 D, it is apparent that different tissue types generate
istinct SNR gains. Inclusions of air bubbles can reduce T 2 

∗ within a
mall radius as a result of susceptibility differences. In such areas, the
ulti-Echo combination does not allow significant SNR gain, as T 2 

∗ is
oo short. Please note that these results are shown for a single Multi-Echo
ombination. Experimentally, a total of three repetitions were recorded,
ncreasing the final SNR by an additional factor of 

√
3. 

. Discussion 

In dMRI acquisitions, accurate and unbiased measurements of sig-
al attenuation are key to reconstruct fiber orientations or diffu-
ion models with sufficient accuracy. Diffusion-weighted MRI measure-
ents are based on selective signal attenuation and consequently suf-

er from intrinsically low SNR. In advanced dMRI, spatial resolution
nd diffusion-weighting are continuously increased ( Haldar et al., 2016 ;
etsompop et al., 2018 ; Veraart et al., 2019 ). Such measurements more
ccurately capture the structure of the brain and allow better character-
zations of underlying tissue microstructure. However, low SNR regimes
re a limiting factor in such advanced dMRI acquisitions, thereby damp-
ning the diffusion contrast and accurate model estimations from such
easurements. 

Here we present a novel strategy to increase SNR and reduce the sig-
al bias from non-Gaussian noise for advanced dMRI acquisitions with
ow SNR. In this context, we developed a diffusion-weighted sEPI se-
uence capable of recording Multi-Echo signals following each diffusion
reparation period. The Multi-Echo data are reconstructed using a signal
elaxation model and a quantitative T 2 

∗ map. The additionally required
 2 
∗ map can be recorded within a few minutes - a time effort dispropor-

ionate to typically time-consuming post-mortem dMRI measurements. 
To ensure accurate and optimal reconstructions of ME-dMRI data, we

erformed numerical Monte-Carlo simulations of different reconstruc-
ion algorithms and data types across various signal parameters. The
imulations demonstrated optimal SNR gain and minimal signal bias us-
ng Maximum Likelihood Estimation reconstruction incorporating the
ician distribution of the data. Both simulations and analytical evalua-

ion of the optimization problem showed an SNR gain dependency on
oth underlying T 2 

∗ and the Multi-Echo sampling density. In our case,
he SNR gain of white matter was 1.6 - which is equivalent to 2.6 aver-
ges. For grey matter, the SNR gain was 1.9 - equivalent to 3.6 averages.
he SNR gain of up to 3.6 averages comes at the cost of an only slightly
xtended measurement time of approximately 30%. Using these 30% to
cquire additional data (e.g., diffusion directions) would only contribute
o a moderate SNR increase of G SNR = 

√
1.3 ~ 1.14. 

The second advantage of ME reconstructions using MLE is the low
ignal bias. Since MLE can incorporate the underlying noise distribu-
ion into the S 0 computation, the reconstructed signal remains unbiased,
ven for very low SNR levels of SNR ~ 1. An LLS reconstruction of the
ame data led to signal bias already present at SNR = 10. Therefore,
LE allows an unbiased reconstruction of the ME-dMRI data of signals
ith attenuations of almost an additional order of magnitude. This is
articularly important in diffusion imaging, where low signals must be
alculated with maximum precision. Simulations showed that ME-dMRI
s very stable towards deviations in the T 2 

∗ estimations (e.g., due to
iffusion weighting, see supplementary material) 

To put our proposed method to direct use, we recorded post-mortem

MRI data of a wild chimpanzee brain with high resolution and strong
iffusion-weighting. The reconstruction of the acquired ME-dMRI data
esulted in high-quality results with a noticeable SNR gain. In addition,
he ME-dMRI reconstructions are in agreement with the simulations
uch that the desired diffusion contrast strongly increased when MLE
econstruction was used. 

The implementation of this sequence on a human-scale MRI system
apable of a maximum gradient strength of 300 mT/m allowed the ac-
uisition of dMRI data with high diffusion-weightings to study the con-
ectivity of whole brains up to human size. Thereby, sufficient direc-
ional diffusion contrast was achieved in post-mortem tissue, which re-
uires stronger b-values to achieve similar contrast compared to in-vivo

issue. 
The high spatial resolution of the acquired dMRI data provides the

asis for a more accurate reconstruction of the white matter tracts com-
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Fig. 3. Exemplary Single-Echo and Multi Echo 
Reconstructions for B0 and Exemplary Dif- 
fusion Directions. (A) Single-Echo: The non- 
averaged Single-Echo diffusion-weighted data 
display very poor SNR (top row). Threefold av- 
eraging of dMRI data introduces improvements 
of image SNR scaled by 

√
3 (second row). 

Multi Echo: Multi Echo dMRI acquisitions dis- 
plays clearly visible SNR benefits. When com- 
paring LLS (row three) and MLE reconstruc- 
tions (row four), the benefits of noise informed 
MLE reconstructions become evident. MLE re- 
constructions display a much stronger diffu- 
sion contrast due to a better reconstruction of 
diffusion signal attenuation. (B) Distributions 
of reconstructed ME-dMRI data show differ- 
ences, only for low signal intensities in both 
dMRI data without (left) and with diffusion- 
weighting (right). 
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ared to typical in-vivo scans. This reduces the potential pitfalls of dif-
usion MRI tractography ( Jones et al., 2013 ) and allows reconstructing
he endpoints of the fiber pathways with greater precision. 

The use of sEPI acquisitions allows minimizing image distortions
hich are caused by susceptibility differences. This enables more pre-

ise measurements of anatomical structures and is most relevant for post-

ortem acquisitions, which may include captured air bubbles and strong
usceptibility contrasts at the edges of the brain container. 

When going to acquisitions at higher field strengths, ME-dMRI data
ight lose SNR gain due to potentially arising through-slice-dephasing.
ere, locally reduced T 2 

∗ across a slice might result in faster signal de-
ay and, hence reduced G SNR . The use of SSFP sequences or multiple
pin echoes instead of gradient-echoes might help mitigating this prob-
em, but would introduce additional challenges, such as less exact defini-
ions of diffusion weighting or additional RF energy deposition. Within
he framework of ME-dMRI, through slice dephasing effects could be
itigated by using (i) strong readout segmentations to quickly sample

choes, (ii) thinner slices or (iii) slab-based acquisitions. 
The discussed ME approach is not limited to post-mortem dMRI sEPI
cquisitions. The concept of ME-dMRI could also be used to increase
he SNR and reduce signal bias in other settings. Segmented EPI dMRI
cquisitions might also be acquired in-vivo , utilizing phase-navigators
 Holdsworth et al., 2008 ; Porter and Heidemann, 2009 ) or advanced re-
onstruction mechanisms ( Chen et al., 2013 ; Mani et al., 2016 ). In-vivo

cquisitions especially benefit from a substantially prolonged T 2 
∗ , mak-

ng ME-dMRI SNR gains also feasible with typically employed segmen-
ation factors. In this work, simulations of in-vivo acquisitions showed
hat ME-dMRI can achieve G SNR = 1.26 (equivalent to 1.60 averages)
r G SNR = 1.5 (equivalent to 2.25 averages) within white matter, de-
ending on the in-plane acceleration. These results indicate that in-vivo

pplications of ME-dMRI data might also be beneficial. Future research
ill explore the implementation of ME-dMRI to become available also

n-vivo . 
Even though a 300 mT/m gradient system was employed in this

ork, the achievable SNR gain does not depend on the underlying MRI
radient strength. The maximum gradient strength only affects the first
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Fig. 4. T 2 
∗ -dependent SNR Gain of ME-dMRI Acquisitions. (A) Whole-brain T 2 

∗ map in orthographic view. (B) The T 2 
∗ histogram displays a bimodal T 2 

∗ distribution 
across the brain with WM T 2 

∗ ~ 30 ms and GM T 2 
∗ ~ 60 ms. Voxels with very low T 2 

∗ values ( < 25 ms) are likely caused by residual air bubbles. (C) Whole-brain 
map of T 2 

∗ dependent SNR gain. G SNR of ME-dMRI is strongest in areas of long T 2 
∗ , such as in GM. The SNR gain map is windowed to the theoretical SNR gain of √

5 from acquired 5 acquisitions (echoes). (D) Histograms of SNR gain from one repetition of ME-dMRI show a tissue-dependent SNR gain of ~ 1.6 (WM, equivalent 
to 2.6 averages) and ~ 1.9 (GM, equivalent to 3.6 averages). The SNR gain was calculated using the results from the Monte Carlo simulations. The whole-brain SNR 
gain increases if shorter readout trains enable higher density sampling of the first echoes. 
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cho by the length of the diffusion encoding time, but not the echo sam-
ling rate. ME-dMRI acquisitions can be used on a wide range of MRI
ystems, ranging from clinical to preclinical MRIs. If ME-dMRI is em-
loyed in conjunction with sEPI, head gradient systems would allow for
aster TE sampling due to increased gradient slew rates. 

ME-dMRI acquisition schemes are not exclusively applicable by using
EPI. Instead, they can be extended to non-EPI based acquisition strate-
ies. In the potential use of ME-dMRI with single line sequences, which
epresent the highest possible segmentation, the SNR increase could be
ven larger due to a denser sampling of early echoes. Also, additional
esearch should investigate whether ME-dMRI can be beneficially com-
ined with otherwise orthogonal post-mortem acquisition strategies such
s DW SSFP ( McNab and Miller, 2010 ). 

This work predominantly focused on using ME-dMRI acquisitions to
ncrease the image SNR. An alternative option to utilize ME-dMRI data
ould be to relate macroscopic T 2 

∗ decays with the applied diffusion
eighting. Such combinations of diffusion weighting and relaxometry

an provide additional tissue information to gain better understand-
ng of the underlying microstructure ( Hutter et al., 2018 ). However,
t should be noted that estimations of additional parameters from the
ame ME-dMRI data would also reduce the achievable SNR gain. 

The concept of noise informed decay modelling is applicable to
ll MRI modalities where non-Gaussian noise can induce signal bi-
ses. Noise informed MLE fitting can be beneficial for the quantita-
ive mapping of magnetic tissue properties. For example, noise in-
ormed MLE reconstruction could be advantageous for other quanti-
ative MRI strategies using Multi-Echo acquisitions such as ME-FLASH
 Helms et al., 2008 ) or ME-MP2RAGE ( Metere et al., 2017 ). Multi-Echo
econstructions are commonly performed using LLS ( Tabelow et al.,
019 ; Weiskopf et al., 2014 ). Especially at high resolutions or for post-

ortem acquisitions, signal bias effects may be circumvented using ad-
anced regression strategies such as MLE. We expect advanced fitting
trategies to also be beneficial to diffusion relaxometry, where signal
ttenuation is generated not only from diffusion-weighting but also
 p  
rom additional mechanisms such as T 1 relaxation and T 2 relaxation
 Hutter et al., 2018 ; Slator et al., 2019 ; Tax et al., 2019 ). 

. Conclusion 

Here we present Multi-Echo dMRI - a new concept to both increase
mage SNR and simultaneously reduce signal-biases of noise-corrupted
MRI data for post-mortem acquisitions. Diffusion MRI acquisitions typ-
cally suffer from a low temporal encoding efficiency, where a time-
onsuming contrast encoding is followed by a rather rapid acquisition
f only one signal. Through the rapid sequential recording of multiple
choes, this new acquisition and reconstruction strategy makes better
se of the diffusion-weighted signal and results in a more time-efficient
ontrast encoding. The presented ME-dMRI technique might also be ben-
ficial to in-vivo dMRI acquisitions as well as quantitative relaxometry. 
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