HALVES OF POINTS OF AN ODD DEGREE HYPERELLIPTIC CURVE IN ITS JACOBIAN

YURI G. ZARHIN

ABSTRACT. Let f(x) be a degree (2g+1) monic polynomial with coefficients in an algebraically closed field K with $\operatorname{char}(K) \neq 2$ and without repeated roots. Let $\mathfrak{R} \subset K$ be the (2g+1)-element set of roots of f(x). Let $\mathcal{C} : y^2 = f(x)$ be an odd degree genus g hyperelliptic curve over K. Let J be the jacobian of \mathcal{C} and $J[2] \subset J(K)$ the (sub)group of points of order dividing 2. We identify \mathcal{C} with the image of its canonical embedding into J (the infinite point of \mathcal{C} goes to the identity element of J). Let $P = (a, b) \in \mathcal{C}(K) \subset J(K)$ and

 $M_{1/2,P} = \{ \mathfrak{a} \in J(K) \mid 2\mathfrak{a} = P \} \subset J(K),$

which is $J[2]\mbox{-}torsor.$ In a previous work we established an explicit bijection between the sets $M_{1/2,P}$ and

$$\mathfrak{R}_{1/2,P} := \{\mathfrak{r} : \mathfrak{R} \to K \mid \mathfrak{r}(\alpha)^2 = a - \alpha \ \forall \alpha \in \mathfrak{R}; \ \prod_{\alpha \in \mathfrak{R}} \mathfrak{r}(\alpha) = -b\}.$$

The aim of this paper is to describe the induced action of J[2] on $\mathfrak{R}_{1/2,P}$ (i.e., how signs of square roots $r(\alpha) = \sqrt{a - \alpha}$ should change).

1. INTRODUCTION

Let K be an algebraically closed field of characteristic different from 2, g a positive integer, $\mathfrak{R} \subset K$ a (2g+1)-element set,

$$f(x) = f_{\mathfrak{R}}(x) := \prod_{\alpha \in \mathfrak{R}} (x - \alpha)$$

a degree (2g + 1) polynomial with coefficients in K and without repeated roots, $\mathcal{C} : y^2 = f(x)$ the corresponding genus g hyperelliptic curve over K, and J the jacobian of \mathcal{C} . We identify \mathcal{C} with the image of its canonical embedding

$$\mathcal{C} \hookrightarrow J, \ P \mapsto \operatorname{cl}((P) - (\infty))$$

into J (the infinite point ∞ of C goes to the identity element of J). Let $J[2] \subset J(K)$ be the kernel of multiplication by 2 in J(K), which is a 2g-dimensional \mathbb{F}_2 -vector space. All the (2g+1) points

$$\mathfrak{W}_{\alpha} := (\alpha, 0) \in \mathcal{C}(K) \subset J(K) \ (\alpha \in \mathfrak{R})$$

²⁰¹⁰ Mathematics Subject Classification. 14H40, 14G27, 11G10.

Key words and phrases. Hyperelliptic curves, jacobians, Mumford representations.

Partially supported by Simons Foundation Collaboration grant # 585711.

This paper was started during my stay in May-July 2018 at the Max-Planck-Institut für Mathematik (Bonn, Germany), whose hospitality and support are gratefully acknowledged.

lie in J[2] and generate it as the 2g-dimensional \mathbb{F}_2 -vector space; they satisfy the only relation

$$\sum_{\alpha \in \mathfrak{R}} \mathfrak{W}_{\alpha} = 0 \in J[2] \subset J(K).$$

This leads to a well known canonical isomorphism [4] between \mathbb{F}_2 -vector spaces J[2] and

$$(\mathbb{F}_2^{\mathfrak{R}})^0 = \{\phi : \mathfrak{R} \to \mathbb{F}_2 \mid \sum_{\alpha \in \mathfrak{R}} \phi(\alpha) = 0\}.$$

Namely, each function $\phi \in ({\mathbb{F}_2}^{\mathfrak{R}})^0$ corresponds to

$$\sum_{\alpha \in \mathfrak{R}} \phi(\alpha) \mathfrak{W}_{\alpha} \in J[2]$$

For example, for each $\beta \in \mathfrak{R}$ the point $\mathfrak{W}_{\beta} = \sum_{\alpha \neq \beta} \mathfrak{W}_{\alpha}$ corresponds to the function $\psi_{\beta} : \mathfrak{R} \to \mathbb{F}_2$ that sends β to 0 and all other elements of \mathfrak{R} to 1.

If $\mathfrak{b} \in J(K)$ then the finite set

$$M_{1/2,\mathfrak{b}} := \{\mathfrak{a} \in J(K) \mid 2\mathfrak{a} = \mathfrak{b}\} \subset J(K)$$

consists of 2^{2g} elements and carries the natural structure of a $J[2]\mbox{-torsor.}$ Let

$$P = (a, b) \in \mathcal{C}(K) \subset J(K).$$

Let us consider, the set

$$\mathfrak{R}_{1/2,P} := \{ \mathfrak{r} : \mathfrak{R} \to K \mid \mathfrak{r}(\alpha)^2 = a - \alpha \,\,\forall \alpha \in \mathfrak{R}; \,\, \prod_{\alpha \in \mathfrak{R}} \mathfrak{r}(\alpha) = -b \}.$$

Changes of signs in the (even number of) square roots provide $\mathfrak{R}_{1/2,P}$ with the natural structure of a $(\mathbb{F}_2^{\mathfrak{R}})^0$ -torsor. Namely, let

$$\chi: \mathbb{F}_2 \to K^*$$

be the additive character such that

$$\chi(0) = 1, \chi(1) = -1.$$

Then the result of the action of a function $\phi : \mathfrak{R} \to \mathbb{F}_2$ from $(\mathbb{F}_2^{\mathfrak{R}})^0$ on $\mathfrak{r} : \mathfrak{R} \to K$ from $\mathfrak{R}_{1/2,P}$ is just the product

$$\chi(\phi)\mathfrak{r}: \mathfrak{R} \to K, \ \alpha \mapsto \chi(\phi(\alpha))\mathfrak{r}(\alpha).$$

On the other hand, I constructed in [9] an explicit bijection of finite sets

$$\mathfrak{R}_{1/2,P} \cong M_{1/2,P}, \ \mathfrak{r} \mapsto \mathfrak{a}_{\mathfrak{r}} \in M_{1/2,P} \subset J(K).$$

Identifying (as above) J[2] and $(\mathbb{F}_2^{\mathfrak{R}})^0$, we obtain a second structure of a $(\mathbb{F}_2^{\mathfrak{R}})^0$ -torsor on $\mathfrak{R}_{1/2,P}$. Our main result asserts that these two structures actually coincide. In down-to-earth terms this means the following.

Theorem 1.1. Let $\mathfrak{r} \in \mathfrak{R}_{1/2,P}$ and $\beta \in \mathfrak{R}$. Let us define $\mathfrak{r}^{\beta} \in \mathfrak{R}_{1/2,P}$ as follows.

$$\mathfrak{r}^{\beta}(\beta) = \mathfrak{r}(\beta), \ \mathfrak{r}^{\beta}(\alpha) = -\mathfrak{r}(\alpha) \ \forall \alpha \in \mathfrak{R} \setminus \{\beta\}.$$

Then

$$\mathfrak{a}_{\mathfrak{r}^{eta}} = \mathfrak{a}_{\mathfrak{r}} + \mathfrak{W}_{eta} = \mathfrak{a}_{\mathfrak{r}} + \left(\sum_{lpha
eq eta} \mathfrak{W}_{lpha}
ight).$$

Remark 1.2. In the case of elliptic curves (i.e., when g = 1) the assertion of Theorem 1.1 was proven in [2, Th. 2.3(iv)].

Example 1.3. If $P = \mathfrak{W}_{\beta} = (\beta, 0)$ then

$$\mathfrak{a}_{\mathfrak{r}} + \mathfrak{W}_{\beta} = \mathfrak{a}_{\mathfrak{r}} - \mathfrak{W}_{\beta} = \mathfrak{a}_{\mathfrak{r}} - 2\mathfrak{a}_{\mathfrak{r}} = -\mathfrak{a}_{\mathfrak{r}}$$

while

 $-\mathfrak{a}_{\mathfrak{r}} = \mathfrak{a}_{-\mathfrak{r}}$ (see [9, Remark 3.5]). On the other hand, $\mathfrak{r}(\beta) = \sqrt{\beta - \beta} = 0$ for all \mathfrak{r} and $\mathfrak{r}^{\beta} = -\mathfrak{r} : \alpha \mapsto -\mathfrak{r}(\alpha) \ \forall \alpha \in \mathfrak{R}.$

This implies that

$$\mathfrak{a}_{\mathfrak{r}^{\beta}} = \mathfrak{a}_{-\mathfrak{r}} = \mathfrak{a}_{\mathfrak{r}} + \mathfrak{W}_{\beta}.$$

This proves Theorem 1.1 in the special case $P = \mathfrak{W}_{\beta}$.

The paper is organized as follows. In Section 2 we recall basic facts about Mumford representations of points of J(K) and review results of [9], including an explicit description of the bijection between $\mathfrak{R}_{1/2,P}$ and $M_{1/2,P}$. In Section 3 we give explicit formulas for the Mumford representation of $\mathfrak{a} + \mathfrak{W}_{\beta}$ when \mathfrak{a} lies neither on the theta divisor of J nor on its translation by \mathfrak{W}_{β} , assuming that we know the Mumford representation of \mathfrak{a} . In Section 4 we prove Theorem 1.1, using auxiliary results from commutative algebra that are proven in Section 5.

2. HALVES AND SQUARE ROOTS

Let \mathcal{C} be the smooth projective model of the smooth affine plane K-curve

$$y^2 = f(x) = \prod_{\alpha \in \Re} (x - \alpha)$$

where \mathfrak{R} is a (2g+1)-element subset of K. In particular, f(x) is a monic degree (2g+1) polynomial without repeated roots. It is well known that \mathcal{C} is a genus g hyperelliptic curve over K with precisely one *infinite* point, which we denote by ∞ . In other words,

$$\mathcal{C}(K) = \{(a,b) \in K^2 \mid b^2 = \prod_{\alpha \in \mathfrak{R}} (a - \alpha_i)\} \bigsqcup \{\infty\}.$$

Clearly, x and y are nonconstant rational functions on \mathcal{C} , whose only pole is ∞ . More precisely, the polar divisor of x is $2(\infty)$ and the polar divisor of y is $(2g+1)(\infty)$. The zero divisor of y is $\sum_{\alpha \in \mathfrak{R}} (\mathfrak{W}_{\alpha})$. In particular, y is a local parameter at (every) \mathfrak{W}_{α} .

We write ι for the hyperelliptic involution

$$\iota: \mathcal{C} \to \mathcal{C}, (x, y) \mapsto (x, -y), \ \infty \mapsto \infty.$$

The set of fixed points of ι consists of ∞ and all \mathfrak{W}_{α} ($\alpha \in \mathfrak{R}$). It is well known that for each $P \in \mathcal{C}(K)$ the divisor $(P) + \iota(P) - 2(\infty)$ is principal. More precisely, if $P = (a, b) \in \mathcal{C}(K)$ then $(P) + \iota(P) - 2(\infty)$ is the divisor of the rational function x - a on C. In particular, if $P = \mathfrak{W}_{\alpha} = (\alpha, 0)$ then

$$2(\mathfrak{W}_{\alpha}) - 2(\infty) = \operatorname{div}(x - \alpha).$$

In particular, $x - \alpha$ has a double zero at \mathfrak{W}_{α} (and no other zeros). If D is a divisor on \mathcal{C} then we write $\operatorname{supp}(D)$ for its support, which is a finite subset of $\mathcal{C}(K)$.

Recall that the jacobian J of C is a g-dimensional abelian variety over K. If D is a degree zero divisor on C then we write cl(D) for its linear equivalence class, which is viewed as an element of J(K). Elements of J(K) may be described in terms of so called **Mumford representations** (see [4, Sect. 3.12], [8, Sect. 13.2] and Subsection 2.3 below).

We will identify \mathcal{C} with its image in J with respect to the canonical regular map $\mathcal{C} \hookrightarrow J$ under which ∞ goes to the identity element of J. In other words, a point $P \in \mathcal{C}(K)$ is identified with $\operatorname{cl}((P) - (\infty)) \in J(K)$. Then the action of the hyperelliptic involution ι on $\mathcal{C}(K) \subset J(K)$ coincides with multiplication by -1 on J(K). In particular, the list of points of order 2 on \mathcal{C} consists of all \mathfrak{W}_{α} ($\alpha \in \mathfrak{R}$).

2.1. Since K is algebraically closed, the commutative group J(K) is divisible. It is well known that for each $\mathfrak{b} \in J(K)$ there are exactly 2^{2g} elements $\mathfrak{a} \in J(K)$ such that $2\mathfrak{a} = \mathfrak{b}$. In [9] we established explicitly the following bijection $\mathfrak{r} \mapsto \mathfrak{a}_{\mathfrak{r}}$ between the 2^{2g} -element sets $\mathfrak{R}_{1/2,P}$ and $M_{1/2,P}$.

If $\mathfrak{r} \in \mathfrak{R}_{1/2,P}$ then for each positive integer $i \leq 2g+1$ let us consider $\mathfrak{s}_i(\mathfrak{r}) \in K$ defined as the value of *i*th basic symmetric function at (2g+1) elements $\{\mathfrak{r}(\alpha) \mid \alpha \in \mathfrak{R}\}$ (notice that all $\mathfrak{r}(\alpha)$ are distinct, since their squares $\mathfrak{r}(\alpha)^2 = a - \alpha$ are distinct). Let us consider the degree g monic polynomial

$$U_{\mathfrak{r}}(x) = (-1)^g \left[(a-x)^g + \sum_{j=1}^g \mathbf{s}_{2j}(\mathfrak{r})(a-x)^{g-j} \right],$$

and the polynomial

$$V_{\mathfrak{r}}(x) = \sum_{j=1}^{g} \left(\mathbf{s}_{2j+1}(\mathfrak{r}) - \mathbf{s}_{1}(\mathfrak{r})\mathbf{s}_{2j}(\mathfrak{r}) \right) (a-x)^{g-j}$$

whose degree is strictly less than g. Let $\{c_1, \ldots, c_g\} \subset K$ be the collection of all g roots of $U_{\mathfrak{r}}(x)$, i.e.,

$$U_{\mathfrak{r}}(x) = \prod_{j=1}^{g} (x - c_j) \in K[x].$$

Let us put

$$d_j = V_{\mathfrak{r}}(c_j) \ \forall j = 1, \dots, g.$$

It is proven in [9, Th. 3.2] that $Q_j = (c_j, d_j)$ lies in $\mathcal{C}(K)$ for all j and

$$\mathfrak{a}_{\mathfrak{r}} := \operatorname{cl}\left(\left(\sum_{j=1}^{g} (Q_j)\right) - g(\infty)\right) \in J(K)$$

satisfies $2\mathfrak{a}_{\mathfrak{r}} = P$, i.e., $\mathfrak{a}_{\mathfrak{r}} \in M_{1/2,P}$. In addition, none of Q_j coincides with any \mathfrak{W}_{α} , i.e.,

 $U_{\mathfrak{r}}(\alpha) \neq 0, \ c_j \neq \alpha, \ d_j \neq 0.$

The main result of [9] asserts that the map

$$\mathfrak{R}_{1/2,P} \to M_{1/2,P}, \ \mathfrak{r} \mapsto \mathfrak{a}_{\mathfrak{r}}$$

is a **bijection**.

Remark 2.2. Notice that one may express explicitly \mathfrak{r} in terms of $U_{\mathfrak{r}}(x)$ and $V_{\mathfrak{r}}(x)$. Namely [9, Th. 3.2], none of $\alpha \in \mathfrak{R}$ is a root of $U_{\mathfrak{r}}(x)$ and

(1)
$$\mathfrak{r}(\alpha) = \mathbf{s}_1(\mathfrak{r}) + (-1)^g \frac{V_{\mathfrak{r}}(\alpha)}{U_{\mathfrak{r}}(\alpha)} \text{ for all } \alpha \in \mathfrak{R}.$$

In order to determine $\mathbf{s}_1(\mathbf{r})$, let us fix two distinct roots $\beta, \gamma \in \mathfrak{R}$. Then [9, Cor. 3.4]

$$\frac{V_{\mathfrak{r}}(\gamma)}{U_{\mathfrak{r}}(\gamma)} \neq \frac{V_{\mathfrak{r}}(\beta)}{U_{\mathfrak{r}}(\beta)}$$

and

(2)
$$\mathbf{s}_{1}(\mathbf{r}) = \frac{(-1)^{g}}{2} \times \frac{\left(\beta + \left(\frac{V_{\mathbf{r}}(\beta)}{U_{\mathbf{r}}(\beta)}\right)^{2}\right) - \left(\gamma + \left(\frac{V_{\mathbf{r}}(\gamma)}{U_{\mathbf{r}}(\gamma)}\right)^{2}\right)}{\frac{V_{\mathbf{r}}(\gamma)}{U_{\mathbf{r}}(\gamma)} - \frac{V_{\mathbf{r}}(\beta)}{U_{\mathbf{r}}(\beta)}}$$

2.3. Mumford representations (see [4, Sect. 3.12], [8, Sect. 13.2, pp. 411–415, especially, Prop. 13.4, Th. 13.5 and Th. 13.7]). Recall [8, Sect. 13.2, p. 411] that if D is an effective divisor on C of (nonnegative) degree m, whose support does not contain ∞ , then the degree zero divisor $D - m(\infty)$ is called *semi-reduced* if it enjoys the following properties.

- If \mathfrak{W}_{α} lies in $\operatorname{supp}(D)$ then it appears in D with multiplicity 1.
- If a point Q of C(K) lies in supp(D) and does not coincide with any of 𝔐_α then ι(Q) does not lie in supp(D).

If, in addition, $m \leq g$ then $D - m(\infty)$ is called *reduced*.

It is known ([4, Ch. 3a], [8, Sect. 13.2, Prop. 3.6 on p. 413]) that for each $\mathfrak{a} \in J(K)$ there exist exactly one nonnegative m and (effective) degree m divisor D such that the degree zero divisor $D - m(\infty)$ is reduced and $\operatorname{cl}(D - m(\infty)) = \mathfrak{a}$. If

$$m \ge 1, \ D = \sum_{j=1}^{m} (Q_j)$$
 where $Q_j = (a_j, b_j) \in \mathcal{C}(K)$ for all $j = 1, \dots, m$

(here Q_j do not have to be distinct) then the corresponding

$$\mathfrak{a} = \operatorname{cl}(D - m(\infty)) = \sum_{j=1}^{m} Q_j \in J(K)$$

The Mumford representation of $\mathfrak{a} \in J(K)$ is the pair (U(x), V(x)) of polynomials $U(x), V(x) \in K[x]$ such that

$$U(x) = \prod_{j=1}^{m} (x - a_j)$$

is a degree m monic polynomial while V(x) has degree $< m = \deg(U)$, the polynomial $V(x)^2 - f(x)$ is divisible by U(x), and

$$b_j = V(a_j), \ Q_j = (a_j, V(a_j)) \in \mathcal{C}(K)$$
 for all $j = 1, \dots m$.

(Here (a_j, b_j) are as above.) Such a pair always exists, is unique, and (as we have just seen) uniquely determines not only \mathfrak{a} but also divisors D and $D - m(\infty)$.

Conversely, if U(x) is a monic polynomial of degree $m \leq g$ and V(x) a polynomial such that $\deg(V) < \deg(U)$ and $V(x)^2 - f(x)$ is divisible by U(x) then there exists exactly one $\mathfrak{a} = \operatorname{cl}(D-m(\infty))$ where $D-m(\infty)$ is a reduced divisor and (U(x), V(x)) is the Mumford representation of $\mathfrak{a} = \operatorname{cl}(D-m(\infty))$.

2.4. In the notation of Subsect. 2.1, let us consider the effective degree g divisor

$$D_{\mathfrak{r}} := \sum_{j=1}^{\infty} (Q_j)$$

on \mathcal{C} . Then $\operatorname{supp}(D_{\mathfrak{r}})$ (obviously) does contain *neither* ∞ *nor* any of \mathfrak{W}_{α} 's. It is proven in [9, Th. 3.2] that the divisor $D_{\mathfrak{r}} - g(\infty)$ is *reduced* and the pair $(U_{\mathfrak{r}}(x), V_{\mathfrak{r}}(x))$ is the Mumford representation of

$$\mathfrak{a}_{\mathfrak{r}} := \mathrm{cl}(D_{\mathfrak{r}} - g(\infty)).$$

In particular, if $Q \in C(K)$ lies in $\operatorname{supp}(D)$ (i.e., is one of Q_j 's) then $\iota(Q)$ does not.

Lemma 2.5. Let D be an effective divisor on C of degree m > 0 such that $m \le 2g+1$ and $\operatorname{supp}(D)$ does not contain ∞ . Assume that the divisor $D - m(\infty)$ is principal.

- (1) Suppose that m is odd. Then:
 - (i) m = 2g + 1 and there exists exactly one polynomial $v(x) \in K[x]$ such that the divisor of y v(x) coincides with $D (2g+1)(\infty)$. In addition, $\deg(v) \leq g$.
 - (ii) If \mathfrak{W}_{α} lies in supp(D) then it appears in D with multiplicity 1.
 - (iii) If b is a nonzero element of K and $P = (a, b) \in \mathcal{C}(K)$ lies in supp(D)then $\iota(P) = (a, -b)$ does not lie in supp(D).
- (iv) $D (2g+1)(\infty)$ is semi-reduced (but not reduced).
- (2) Suppose that m = 2d is even. Then:
 - (i) there exists exactly one monic degree d polynomial $u(x) \in K[x]$ such that the divisor of u(x) coincides with $D m(\infty)$;
 - (ii) every point $Q \in \mathcal{C}(K)$ appears in $D m(\infty)$ with the same multiplicity as $\iota(Q)$;
 - (iii) every \mathfrak{W}_{α} appears in $D m(\infty)$ with even multiplicity.

Proof. All the assertions except (2)(iii) are already proven in [9, Lemma 2.2]. In order to prove the remaining one, let us split the polynomial v(x) into a product $v(x) = (x - \alpha)^d v_1(x)$ where d is a nonnegative integer and $v_1(x) \in K[x]$ satisfies $v_1(\alpha) \neq 0$. Then \mathfrak{W}_{α} appears in $D - m(\infty)$ with multiplicy 2d, because $(x - \alpha)$ has a double zero at \mathfrak{W}_{α} . (See also [5].)

Let $d \leq g$ be a positive integer and $\Theta_d \subset J$ be the image of the regular map

$$\mathcal{C}^d \to J, \ (Q_1, \dots, Q_d) \mapsto \sum_{i=1}^d Q_i \subset J.$$

It is well known that Θ_d is an irreducible closed *d*-dimensional subvariety of *J* that coincides with \mathcal{C} for d = 1 and with *J* if d = g; in addition, $\Theta_d \subset \Theta_{d+1}$ for all d < g. Clearly, each Θ_d is stable under multiplication by -1 in *J*. We write Θ for the (g-1)-dimensional theta divisor Θ_{g-1} .

Theorem 2.6 (See Th. 2.5 of [9]). Suppose that g > 1 and let

$$\mathcal{C}_{1/2} := 2^{-1}\mathcal{C} \subset J$$

be the preimage of C with respect to multiplication by 2 in J. Then the intersection of $C_{1/2}(K)$ and Θ consists of points of order dividing 2 on J. In particular, the intersection of C and $C_{1/2}$ consists of ∞ and all \mathfrak{W}_{α} 's.

HALVES OF POINTS

3. Adding Weierstrass points

In this section we discuss how to compute a sum $\mathfrak{a} + \mathfrak{W}_{\beta}$ in J(K) when $\mathfrak{a} \in J(K)$ lies neither on Θ nor on its translation $\Theta + \mathfrak{W}_{\beta}$. Let $D - g(\infty)$ be the reduced divisor on \mathcal{C} , whose class represents \mathfrak{a} . Here

$$D = \sum_{j=1}^{g} (Q_j) \text{ where } Q_j = (a_j, b_j) \in \mathcal{C}(K) \setminus \{\infty\}$$

is a degree g effective divisor. Let (U(x), V(x)) be the Mumford representation of $cl(D - g(\infty))$. We have

$$\deg(U) = g > \deg(V)$$

$$U(x) = \prod_{j=1}^{g} (x - a_j), \ b_j = V(a_j) \ \forall j$$

and $f(x) - V(x)^2$ is divisible by U(x).

Example 3.1. Assume additionally that none of Q_j coincides with $\mathfrak{W}_{\beta} = (\beta, 0)$, i.e.,

$$U(\beta) \neq 0.$$

Let us find explicitly the Mumford representation $(U^{[\beta]}(x), V^{[\beta]}(x))$ of the sum $\mathfrak{a} + \mathfrak{W}_{\beta} = \mathrm{cl}(D - m(\infty)) + \mathrm{cl}((\mathfrak{W}_{\beta}) - (\infty)) = \mathrm{cl}((D + (\mathfrak{W}_{\beta})) - (g+1)(\infty)) = \mathrm{cl}(D_1 - (g+1)(\infty)).$ where

$$D_1 := D + (\mathfrak{W}_\beta) = \left(\sum_{j=1}^g (Q_j)\right) + (\mathfrak{W}_\beta)$$

is a degree (g+1) effective divisor on C. (We will see that $\deg(\tilde{U}^{[\beta]}) = g$.) Clearly, $D_1 - (g+1)(\infty)$ is semi-reduced but not reduced.

Let us consider the polynomials

$$U_1(x) = (x - \beta)U(x), \ V_1(x) = V(x) - \frac{V(\beta)}{U(\beta)}U(x) \in K[x].$$

Then U_1 is a degree (g+1) monic polynomial, $\deg(V_1) \leq g$,

$$V_1(\beta) = 0, \ V_1(a_j) = V(a_j) = b_j \ \forall j$$

and $f(x) - V_1(x)^2$ is divisible by $U_1(x)$. (The last assertion follows from the divisibility of both f(x) and $V_1(x)$ by $x - \beta$ combined with the divisibility of $f(x) - V(x)^2$ by U(x).) If we put

$$a_{g+1} = \beta, \ b_{g+1} = 0, \ Q_{g+1} = \mathfrak{W}_{\beta} = (\beta, 0)$$

then

$$U_1(x) = \prod_{j=1}^{g+1} (x - a_j), \ D_1 = \sum_{j=1}^{g+1} (Q_j) \text{ where } Q_j = (a_j, b_j) \in \mathcal{C}(K), \ b_j = V_1(a_j) \forall j \in \mathcal{C}(K), \ b_j \in \mathcal{C}(K), \ b_j = V_1(a_j) \forall j \in \mathcal{C}(K), \ b_j \in \mathcal{C}(K), \ b$$

and $f(x) - V_1(x)^2$ is divisible by $U_1(x)$. In particular, $(U_1(x), V_1(x))$ is the pair of polynomials that corresponds to semi-reduced $D_1 - (g+1)(\infty)$ as described in [8, Prop. 13.4 and Th. 3.5]. In order to find the Mumford representation of $cl(D_1 - (g+1)(\infty))$, we use an algorithm described in [8, Th. 13.9]. Namely, let us put

$$\tilde{U}(x) = \frac{f(x) - V_1(x)^2}{U_1(x)} \in K[x].$$

Since $\deg(V_1(x)) \leq g$ and $\deg(f) = 2g + 1$, we have

$$\deg(V_1(x)^2) \le 2g, \ \deg(f(x) - V_1(x)^2) = 2g + 1, \ \deg(\tilde{U}(x)) = g.$$

Since f(x) is monic, $f(x) - V_1(x)^2$ is also monic and therefore $\tilde{U}(x)$ is also monic, because $U_1(x)$ is monic. By [8, Th. 13.9], $U^{[\beta]}(x) = \tilde{U}(x)$ (since the latter is monic and has degree $g \leq g$) and $V^{[\beta]}(x)$ is the remainder of $-V_1(x)$ with respect to division by $\tilde{U}(x)$. Let us find this remainder. We have

$$-V_1(x) = -\left(V(x) - \frac{V(\beta)}{U(\beta)}U(x)\right) = -V(x) + \frac{V(\beta)}{U(\beta)}U(x).$$

Recall that

$$\deg(V) < g = \deg(U) = \deg(\tilde{U}).$$

This implies that the coefficient of $-V_1$ at x^g equals $V(\beta)/U(\beta)$ and therefore

$$V^{[\beta]}(x) = \left(-V(x) + \frac{V(\beta)}{U(\beta)}U(x)\right) - \frac{V(\beta)}{U(\beta)}\tilde{U}(x) = -V(x) + \frac{V(\beta)}{U(\beta)}\left(U(x) - \tilde{U}(x)\right)$$

Using formulas above for U_1, V_1, U , we obtain that

(3)
$$U^{[\beta]}(x) = \frac{f(x) - \left(V(x) - \frac{V(\beta)}{U(\beta)}U(x)\right)^2}{(x - \beta)U(x)},$$

(4)
$$V^{[\beta]}(x) = -V(x) + \frac{V(\beta)}{U(\beta)} \left(U(x) - \frac{f(x) - \left(V(x) - \frac{V(\beta)}{U(\beta)}U(x)\right)^2}{(x - \beta)U(x)} \right).$$

Remark 3.2. There is an algorithm of David Cantor [8, Sect. 13.3] that explains how to compute the Mumford representation of a sum of arbitrary divisor classes (elements of J(K)) when their Mumford representations are given.

Remark 3.3. Suppose that $\mathfrak{a} \in J(K)$ and $P = 2\mathfrak{a}$ lies in $\mathcal{C}(K)$ but is not the zero of the group law. Then \mathfrak{a} does not lie on the theta divisor (Theorem 2.6) and satisfies the conditions of Example 3.1 for all $\beta \in \mathfrak{R}$ (see Subsect. 2.1).

4. Proof of Main Theorem

Let us choose an order on \mathfrak{R} . This allows us to identify \mathfrak{R} with $\{1, \ldots, 2g, 2g+1\}$ and list elements of \mathfrak{R} as $\{\alpha_1, \ldots, \alpha_{2g}, \alpha_{2g+1}\}$. Then

$$f(x) = \prod_{i=1}^{2g+1} (x - \alpha_i)$$

and the affine equation for $\mathcal{C} \setminus \{\infty\}$ is

$$y^2 = \prod_{i=1}^{2g+1} (x - \alpha_i).$$

Slightly abusing notation, we denote \mathfrak{W}_{α_i} by \mathfrak{W}_i .

Let us consider the closed affine K-subset \tilde{C} in the affine K-space \mathbb{A}^{2g+1} with coordinate functions $z_1, \ldots, z_{2g}, z_{2g+1}$ that is cut out by the system of quadratic equations

$$z_1^2 + \alpha_1 = z_2^2 + \alpha_2 = \dots = z_{2g+1}^2 + \alpha_{2g+1}$$

We write x for the regular function $z_i^2 + \alpha_i$ on $\tilde{\mathcal{C}}$, which does not depend on a choice of i. By Hilbert's Nullstellensatz, the K-algebra $K[\tilde{\mathcal{C}}]$ of regular functions on $\tilde{\mathcal{C}}$ is canonically isomorphic to the following K-algebra. First, we need to consider the quotient A of the polynomial K[x]-algebra $K[x][T_1, \ldots, T_{2g+1}]$ by the ideal generated by all quadratic polynomials $T_i^2 - (x - \alpha_i)$. Next, $K[\tilde{\mathcal{C}}]$ is canonically isomorphic to the quotient $A/\mathcal{N}(A)$ where $\mathcal{N}(A)$ is the nilradical of A. In the next section (Example 5.4) we will prove that A has no zero divisors (in particular, $\mathcal{N}(A) = \{0\}$) and therefore $\tilde{\mathcal{C}}$ is *irreducible*. (See also [3].) We write y for the regular function

$$y = -\prod_{i=1}^{2g} z_i \in K[\tilde{\mathcal{C}}]$$

Clearly, $y^2 = \prod_{i=1}^{2g} (x - \alpha_i)$ in $K[\tilde{\mathcal{C}}]$. The pair (x, y) gives rise to the finite regular map of affine K-varieties (actually, curves)

(5)
$$\mathfrak{h}: \tilde{\mathcal{C}} \to \mathcal{C} \setminus \{\infty\}, \ (r_1, \dots, r_{2g}, r_{2g+1}) \mapsto (a, b) = \left(r_1^2 + \alpha_1, -\prod_{i=1}^{2g+1} r_i\right)$$

of degree 2^{2g} . For each

$$P = (a, b) \in K^2 = \mathbb{A}^2(K)$$
 with $b^2 = \prod_{i=1}^{2g+1} (a - \alpha_i)$

the fiber $\mathfrak{h}^{-1}(P) = \mathfrak{R}_{1/2,P}$ consists of (familiar) collections of square roots

$$\mathfrak{r} = \{ r_i = \sqrt{a - \alpha_i} \mid 1 \le i \le 2g + 1 \}$$

with $\prod_{i=1}^{2g+1} r_i = -b$. Each such \mathfrak{r} gives rise to $\mathfrak{a}_{\mathfrak{r}} \in J(K)$ such that

$$2\mathfrak{a}_{\mathfrak{r}} = P \in \mathcal{C}(K) \subset J(K)$$

(see [9, Th. 3.2]). On the other hand, for each $\mathfrak{W}_l = (\alpha_l, 0)$ (with $1 \leq l \leq 2g + 1$) the sum $\mathfrak{a}_{\mathfrak{r}} + \mathfrak{W}_l$ is also a half of P and therefore corresponds to a certain collection of square roots. Which one? The answer is given by Theorem 1.1. We repeat its statement, using the new notation.

Theorem 4.1. Let P = (a, b) be a K-point on C and $\mathfrak{r} = (r_1, \ldots, r_{2g}, r_{2g+1})$ be a collection of square roots $r_i = \sqrt{a - \alpha_i} \in K$ such that $\prod_{i=1}^{2g+1} r_i = -b$. Let l be an integer that satisfies $1 \leq l \leq 2g+1$ and let

(6)
$$\mathbf{\mathfrak{r}}^{[l]} = \left(r_1^{[l]}, \dots, r_{2g}^{[l]}, r_{2g+1}^{[l]}\right) \in \mathfrak{h}^{-1}(P) \subset \tilde{\mathcal{C}}(K)$$

be the collection of square roots $r_i^{[l]} = \sqrt{a - \alpha_i}$ such that

(7)
$$r_l^{[l]} = r_l, \ r_i^{[l]} = -r_i \ \forall \ i \neq l.$$

Then

Example 4.2. Let us take as P the point $\mathfrak{W}_l = (\alpha_l, 0)$. Then

$$r_l = \sqrt{\alpha_l - \alpha_l} = 0 \ \forall \ \mathfrak{r} = (r_1, \dots, r_{2g}, r_{2g+1}) \in \mathfrak{h}^{-1}(\mathfrak{W}_l)$$

and therefore

$$\mathfrak{r}^{[l]} = (-r_1, \dots, -r_{2g}, -r_{2g+1}) = -\mathfrak{r}.$$

It follows from Example 1.3 (if we take $\beta = \alpha_l$) that

$$\mathfrak{a}_{\mathfrak{r}} + \mathfrak{W}_l = \mathfrak{a}_{\mathfrak{r}} - \mathfrak{W}_l = \mathfrak{a}_{\mathfrak{r}} - 2\mathfrak{a}_{\mathfrak{r}} = -\mathfrak{a}_{\mathfrak{r}} = \mathfrak{a}_{\mathfrak{r}^{[l]}}.$$

This proves Theorem 4.1 in the case of $P = \mathfrak{W}_l$. We are going to deduce the general case from this special one.

4.3. Before starting the proof of Theorem 4.1, let us define for each collections of signs

$$\varepsilon = \{\epsilon_i = \pm 1 \mid 1 \le i \le 2g + 1, \prod_{i=1}^{2g+1} \epsilon_i = 1\}$$

the biregular automorphism

$$T_{\varepsilon}: \tilde{\mathcal{C}} \to \tilde{\mathcal{C}}, \ z_i \mapsto \epsilon_i z_i \ \forall i.$$

Clearly, all T_{ε} constitute a finite automorphism group of $\tilde{\mathcal{C}}$ that leaves invariant every K-fiber of $\mathfrak{h} : \tilde{\mathcal{C}} \to \mathcal{C} \setminus \{\infty\}$, acting on it **transitively**. Notice that if T_{ε} leaves invariant all the points of a certain fiber $\mathfrak{h}^{-1}(P)$ with $P \in \mathcal{C}(K)$ then all the $\epsilon_i = 1$, i.e., T_{ε} is the identity map.

Proof of Theorem 4.1. Let us put

 $\beta := \alpha_l.$

Then we have

$$\mathfrak{W}_l = (\alpha_l, 0) = (\beta, 0).$$

Let us consider the automorphism (involution)

$$\mathfrak{s}^{[l]}: \tilde{\mathcal{C}} \to \tilde{\mathcal{C}}, \ \mathfrak{r} \mapsto \mathfrak{r}^{[l]}$$

of $\tilde{\mathcal{C}}$ defined by (6) and (7). We need to define another (actually, it will turn out to be the same) involution (and therefore an automorphism)

$$\mathfrak{t}^{[l]}: \tilde{\mathcal{C}} o ilde{\mathcal{C}}$$

that is defined by

$$\mathfrak{a}_{\mathfrak{t}^{[l]}(\mathfrak{r})} = \mathfrak{a}_{\mathfrak{r}} + \mathfrak{W}_{l}$$

as a composition of the following **regular** maps. First, $\mathbf{r} \in \tilde{C}(K)$ goes to the pair of polynomials $(U_{\mathbf{r}}(x), V_{\mathbf{r}}(x))$ as in Remark 2.2, which is the Mumford representation of $\mathfrak{a}_{\mathbf{r}}$ (see Subsect. 2.4). Second, $(U_{\mathbf{r}}(x), V_{\mathbf{r}}(x))$ goes to the pair of polynomials $(U^{[\beta]}(x), V^{[\beta]}(x))$ defined by formulas (3) and (3) in Section 3, which is the Mumford representation of $\mathfrak{a}_{\mathbf{r}} + \mathfrak{W}_l$. Third, applying formulas (1) and (2) in Remark 2.2 to $(U^{[\beta]}(x), V^{[\beta]}(x))$ (instead of (U(x), V(x))), we get at last $\mathfrak{t}^{[l]}(\mathbf{r}) \in \tilde{\mathcal{C}}(K)$ such that

$$\mathfrak{a}_{\mathfrak{t}^{[l]}(\mathfrak{r})} = \mathfrak{a}_{\mathfrak{r}} + \mathfrak{W}_{l}$$

Clearly, $\mathfrak{t}^{[l]}$ is a regular selfmap of $\tilde{\mathcal{C}}$ that is an involution, which implies that $\mathfrak{t}^{[l]}$ is a biregular automorphism of $\tilde{\mathcal{C}}$. It is also clear that both $\mathfrak{s}^{[l]}$ and $\mathfrak{t}^{[l]}$ leave invariant every fiber of $\mathfrak{h} : \tilde{\mathcal{C}} \to \mathcal{C} \setminus \{\infty\}$ and coincide on $\mathfrak{h}^{-1}(\mathfrak{W}_l)$, thanks to Example 4.2. This implies that $\mathfrak{u} := (\mathfrak{s}^{[l]})^{-1} \mathfrak{t}^{[l]}$ is a biregular automorphism of $\tilde{\mathcal{C}}$ that leaves

invariant every fiber of $\mathfrak{h} : \tilde{\mathcal{C}} \to \mathcal{C} \setminus \{\infty\}$ and acts as the identity map on $\mathfrak{h}^{-1}(\mathfrak{W}_l)$. The invariance of each fiber of \mathfrak{h} implies that $\tilde{\mathcal{C}}(K)$ coincides with the finite union of its closed subsets $\tilde{\mathcal{C}}_{\varepsilon}$ defined by the condition

$$\tilde{\mathcal{C}}_{\varepsilon} := \{ Q \in \tilde{\mathcal{C}}(K) \mid \mathfrak{u}(Q) = T_{\varepsilon}(Q) \}$$

Since $\tilde{\mathcal{C}}$ is irreducible, the whole $\tilde{\mathcal{C}}(K)$ coincides with one of $\tilde{\mathcal{C}}_{\varepsilon}$. In particular, the fiber

$$\mathfrak{h}^{-1}(\mathfrak{W}_l)\subset \widetilde{\mathcal{C}}_{arepsilon}$$

and therefore T_{ε} acts identically on all points of $\mathfrak{h}^{-1}(\mathfrak{W}_l)$. In light of arguments of Subsect. 4.3, T_{ε} is the *identity map* and therefore \mathfrak{u} acts identically on the whole $\tilde{\mathcal{C}}(K)$. This means that $\mathfrak{s}^{[l]} = \mathfrak{t}^{[l]}$, i.e.,

$$\mathfrak{a}_{\mathfrak{r}} + \mathfrak{W}_l = \mathfrak{a}_{\mathfrak{r}^{[l]}}.$$

4.4. Let $\phi : \mathfrak{R} \to \mathbb{F}_2$ be a function that satisfies $\sum_{\alpha \in \mathfrak{R}} \phi(\alpha) = 0$, i.e. $\phi \in (\mathbb{F}_2^{\mathfrak{R}})^0$. Then the finite subset

$$\operatorname{supp}(\phi) = \{ \alpha \in \mathfrak{R} \mid \phi(\alpha) \neq 0 \} \subset \mathfrak{R}$$

has even cardinality and the corresponding point of J[2] is

S

$$\mathfrak{T}_{\phi} = \sum_{\alpha \in \mathfrak{R}} \phi(\alpha) \mathfrak{W}_{\alpha} = \sum_{\alpha \in \mathrm{supp}(\phi)} \mathfrak{W}_{\alpha} = \sum_{\gamma \notin \mathrm{supp}(\phi)} \mathfrak{W}_{\gamma}.$$

Theorem 4.5. Let $\mathfrak{r} \in \mathfrak{R}_{1/2,P}$. Let us define $\mathfrak{r}^{(\phi)} \in \mathfrak{R}_{1/2,P}$ as follows.

$$\mathfrak{r}^{(\phi)}(\alpha) = -\mathfrak{r}(\alpha) \,\,\forall \alpha \in \operatorname{supp}(\phi); \,\, \mathfrak{r}^{(\phi)}(\gamma) = \mathfrak{r}(\gamma) \,\,\forall \gamma \not\in \operatorname{supp}(\phi).$$

Then

$$\mathfrak{a}_{\mathfrak{r}} + \mathfrak{T}_{\phi} = \mathfrak{a}_{\mathfrak{r}^{(\phi)}}.$$

Remark 4.6. If ϕ is identically zero then

$$\mathfrak{T}_{\phi} = 0 \in J[2], \ \mathfrak{r}^{(\phi)} = \mathfrak{r}$$

and the assertion of Theorem 4.5 is obviously true. If $\alpha_l \in \mathfrak{R}$ and $\phi = \psi_{\alpha_l}$, i.e. $\operatorname{supp}(\phi) = \mathfrak{R} \setminus \{\alpha_l\}$ then

$$\mathfrak{T}_{\phi} = \mathfrak{W}_l \in J[2], \ \mathfrak{r}^{(\phi)} = \mathfrak{r}^{[l]}$$

and the assertion of Theorem 4.5 follows from Theorem 4.1.

Proof of Theorem 4.5. We may assume that ϕ is not identically zero. We need to apply Theorem 4.1 d times where d is the (even) cardinality of $\operatorname{supp}(\phi)$ in order to get $\mathfrak{r}' \in \mathfrak{R}_{1/2,P}$ such that

$$\mathfrak{a}_{\mathfrak{r}} + \sum_{lpha \in \mathrm{supp}(\phi)} \mathfrak{W}_{lpha} = \mathfrak{a}_{\mathfrak{r}'}.$$

Let us check how many times do we need to change the sign of each $\mathfrak{r}(\beta)$. First, if $\beta \notin \operatorname{supp}(\phi)$ then we need to change to sign of $\mathfrak{r}(\beta)$ at every step, i.e., we do it exactly d times. Since d is even, the sign of $\mathfrak{r}(\beta)$ remains the same, i.e.,

$$\mathfrak{r}'(\beta) = \mathfrak{r}(\beta) \ \forall \beta \notin \operatorname{supp}(\phi)$$

Now if $\beta \in \text{supp}(\phi)$ then we need to change the sign of $\mathfrak{r}(\beta)$ every time when we add W_{α} with $\alpha \neq \beta$ and it occurs exactly (d-1) times. On the other hand, when

we add \mathfrak{W}_{β} , we don't change the sign of $\mathfrak{r}(\beta)$. So, we change the sign of $\mathfrak{r}(\beta)$ exactly (d-1) times, which implies that

$$\mathfrak{r}'(\beta) = -\mathfrak{r}(\beta) \ \forall \beta \in \operatorname{supp}(\phi).$$

Combining the last two displayed formula, we obtained that

$$\mathfrak{r}' = \mathfrak{r}^{(\phi)}$$

5. Useful Lemma

As usual, we define the Kronecker delta δ_{ik} as 1 if i = k and 0 if $i \neq k$.

The following result is probably well known but I did not find a suitable reference. (However, see [3, Lemma 5.10] and [1, pp. 425–427].)

Lemma 5.1. Let n be a positive integer, E a field provided with n distinct discrete valuation maps

$$\nu_i: E^* \twoheadrightarrow \mathbb{Z}, \ (i = 1, \dots, n).$$

For each *i* let $O_{\nu_i} \subset E$ the discrete valuation ring attached to ν_i and $\pi_i \in O_{\nu_i}$ its uniformizer, i.e., a generator of the maximal ideal in O_{ν_i} . Suppose that for each *i* we are given a prime number p_i such that the characteristic of the residue field O_{ν_i}/π_i is different from p_k for all $k \neq i$. Let us assume also that

$$\nu_i(\pi_k) = \delta_{ik} \ \forall i, k = 1, \dots n,$$

i.e., each π_i is a ν_k -adic unit if $i \neq k$.

Then the the quotient $B = E[T_1, \ldots, T_n]/(T_1^{p_1} - \pi_1, \ldots, T_n^{p_n} - \pi_n)$ of the polynomial *E*-algebra $E[T_1, \ldots, T_n]$ by the ideal generated by all $T_i^{p_i} - \pi_i$ is a field that is an algebraic extension of *E* of degree $\prod_{i=1}^n p_i$. In addition, the set of monomials

$$S = \{\prod_{i=1}^{n} T_{i}^{e_{i}} \mid 0 \le e_{i} \le p_{i} - 1\} \subset E[T_{1}, \dots T_{n}]$$

maps injectively into B and its image is a basis of the E-vector space B.

Remark 5.2. By definition of a uniformizer, $\nu_i(\pi_i) = 1$ for all *i*.

Proof of Lemma 5.1. First, the cardinality of S is $\prod_{i=1}^{n} p_i$ and the image of S generates B as the E-vector space. This implies that if the E-dimension of B is $\prod_{i=1}^{n} p_i$ then the image of S is a basis of the E-vector space B. Second, notice that for each i the polynomial $T^{p_i} - \pi_i$ is irreducible over E, thanks to the Eisenstein criterion applied to ν_i and therefore $E[T_i]/(T^{p_i} - \pi_i)$ is a field that is an algebraic degree p_i extension of E. In particular, the E-dimension of $E[T_i]/(T^{p_i} - \pi_i)$ is p_i . This proves Lemma for n = 1.

Induction by *n*. Suppose that n > 1 and consider the finite degree p_i field extension $E_n = E[T_n]/(T^{p_n} - \pi_n)$ of *E*.

Clearly, the *E*-algebra *B* is isomorphic to the quotient $E_n[T_1, \ldots, T_{n-1}]/(T_1^{p_1} - \pi_1, \ldots, T_{n-1}^{p_{n-1}} - \pi_{n-1})$ of the polynomial ring $E_n[T_1, \ldots, T_{n-1}]$ by the ideal generated by all polynomials $T_i^{p_i} - \pi_i$ with i < n. Our goal is to apply the induction assumption to E_n instead of *E*. In order to do that, let us consider for each i < nthe integral closure \tilde{O}_i of O_{ν_i} in E_n . It is well known that \tilde{O}_i is a Dedekind ring. Our conditions imply that E_n/E is unramified at all ν_i for all i < n. This means that if \mathcal{P}_i is a maximal ideal of \tilde{O}_i that contains $\pi_i \tilde{O}_i$ (such an ideal always exists) and

$$\operatorname{ord}_{\mathcal{P}_i}: E_n^* \twoheadrightarrow \mathbb{Z}$$

is the discrete valuation map attached to \mathcal{P}_i then the restriction of $\operatorname{ord}_{\mathcal{P}_i}$ to E^* coincides with ν_i . This implies that for all positive integers $i, k \leq n-1$

$$\operatorname{ord}_{\mathcal{P}_i}(\pi_k) = \nu_i(\pi_k) = \delta_{ik}.$$

In particular,

$$\operatorname{ord}_{\mathcal{P}_i}(\pi_i) = \nu_i(\pi_i) = 1,$$

i.e, π_i is a uniformizer in the corresponding discrete valuation (sub)ring $O_{\operatorname{ord}_{\mathcal{P}_i}}$ of E_n attached to $\operatorname{ord}_{\mathcal{P}_i}$. Now the induction assumption applied to E_n and its (n-1) discrete valuation maps $\operatorname{ord}_{\mathcal{P}_i}$ $(1 \le i \le n-1)$ implies that B/E_n is a field extension of degree $\prod_{i=1}^{n-1} p_i$. This implies that the degree

$$[B:E] = [B:E_n][E_n:E] = \left(\prod_{i=1}^{n-1} p_i\right)p_n = \prod_{i=1}^n p_i.$$

This means that the *E*-dimension of *B* is $\prod_{i=1}^{n} p_i$ and therefore the image of *S* is a basis of the *E*-vector space *B*.

Corollary 5.3. We keep the notation and assumptions of Lemma 5.1. Let R be a subring of E that contains 1 and all π_i $(1 \le i \le n)$. Then the quotient $B_R = R[T_1, \ldots, T_n]/(T_1^{p_1} - \pi_1, \ldots, T_n^{p_n} - \pi_n)$ of the polynomial R-algebra $R[T_1, \ldots, T_n]$ by the ideal generated by all $T_i^{p_i} - \pi_i$ has no zero divisors.

Proof. There are the natural homomorphisms of R-algebras

$$R[T_1,\ldots T_n] \twoheadrightarrow B_R \to B$$

such that the first homomorphism is surjective and the *injective* image of

$$S \subset R[T_1, \ldots, T_n] \subset E[T_1, \ldots, T_n]$$

in B is a basis of the E-vector space B. On the other hand, the image of S generates B_R as R-module. It suffices to prove that $B_R \to B$ is injective, since B is a field by Lemma 5.1.

Suppose that $u \in B_R$ goes to 0 in *B*. Clearly, *u* is a linear combination of (the images of) elements of *S* with coefficients in *R*. Since the image of *u* in *B* is 0, all these coefficients are zeros, i.e., u = 0 in B_R .

Example 5.4. We use the notation of Section 4. Let us put $n = 2g + 1, R = K[x], E = K(x), \pi_i = x - \alpha_i, p_i = 2$ and let

$$\nu_i: E^* = K(x)^* \twoheadrightarrow \mathbb{Z}$$

be the discrete valuation map of the field of rational functions K(x) attached to α_i . Then $K[\tilde{\mathcal{C}}] = B_R/\mathcal{N}(B_R)$ where $\mathcal{N}(B_R)$ is the nilradical of B_R . It follows from Corollary 5.3 that $\mathcal{N}(B_R) = \{0\}$ and $K[\tilde{\mathcal{C}}]$ has no zero divisors, i.e., $\tilde{\mathcal{C}}$ is irreducible.

YURI G. ZARHIN

References

- T. Bandman, S. Garion, F. Grunewald, On the surjectivity of Engel words on PSL(2, q). Groups Geom. Dyn. 6 (2012), 409–439.
- B.M. Bekker, Yu.G. Zarhin, The divisibility by 2 of rational points on elliptic curves. Algebra i Analiz 29:4 (2017), 196–239; St. Petersburg Math. J. 29 (2018), 683–713.
- [3] N. Bruin and E.V. Flynn, Towers of 2-covers of hyperelliptic curves. Trans. Amer. Math. Soc. 357 (2005), no. 11, 4329–4347.
- [4] D. Mumford, Tata Lectures on Theta. II. Progress in Math. 43, Birkhäuser, Boston Basel Stutgart, 1984.
- M. Stoll, Arithmetic of Hyperelliptic Curves. Available at Summer Semester 2014, University of Bayreuth. http://www.mathe2.uni-bayreuth.de/stoll/teaching/ArithHypKurven-SS2014/Skript-ArithHypCurves-pub-screen.pdf.
- [6] E. Schaefer, 2-descent on the Jacobians of hyperelliptic curves. J. Number Theory 51 (1995), no. 2, 219–232.
- [7] J.-P. Serre, Algebraic groups and class fields. Graduate Texts in Math. 117, Springer-Verlag, New York, 1988.
- [8] L.C. Washington, Elliptic Curves: Number Theory and Cryptography. Second edition. Chapman & Hall/CRC Press, Boca Raton London New York, 2008.
- Yu. G. Zarhin, Division by 2 on odd degree hyperelliptic curves and their jacobians. Izvestiya RAN 83:3 (2019), 93–112; Izvestiya Mathematics 83:3 (2019), 501–520.

Pennsylvania State University, Department of Mathematics, University Park, PA 16802, USA

E-mail address: zarhin@math.psu.edu