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Multiple Dedekind Zeta Values
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Periods of Mixed Tate Motives
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Abstract

Recently, the author defined multiple Dedekind zeta values [5] associated to a
number K field and a cone C. These objects are number theoretic analogues of
multiple zeta values. In this paper we prove that every multiple Dedekind zeta value
over any number field K is a period of a mixed Tate motive. Moreover, if K is
a totally real number field, then we can choose a cone C' so that every multiple
Dedekind zeta associated to the pair (K;C') is unramified over the ring of algebraic
integers in K. In [7], the author proves similar statements in the special case of a
real quadratic fields for a particular type of a multiple Dedekind zeta values.

The mixed motives are defined over K in terms of a the Deligne-Mumford com-
pactification of the moduli space of curves of genus zero with n marked points.
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1 Introduction

The Riemann zeta function 1
() =) v
n>0

is widely used in number theory, algebraic geometry and quantum field theory. Euler’s
multiple zeta values
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where s1,...,S,, are positive integers and s,, > 2, appear as values of some Feynman
amplitudes, and in algebraic geometry, as periods of mixed Tate motives over Spec(Z)

(see [], [3], [11, 8]).

Dedekind zeta values

1
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are a generalization of the Riemann zeta function to a number field K. In some Feyn-
man amplitudes one of the summands is log(1 + v/2) or log (#) These values are

essentially the residues at s = 1 of Dedekind zeta functions over Q(v/2) and over Q(+/5),
respectively. For s = 2,3,4,... the values (x(s) are periods of mixed Tate motives over
the ring of algebraic integers in K with ramification only at the discriminant of K (see
2).

In [5], the author has constructed multiple Dedekind zeta values, which are a gener-
alization of Euler’s multiple zeta values to number fields in the same way as Dedekind
zeta values generalizes Riemann zeta values. For a quadratic number field K, the key
examples of multiple Dedekind zeta values are

1
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where sq,...,s,, are positive integers and s,, > 2 and C is a cone generated by totally
positive algebraic integers eq, ..., e, in K defined by

C=N{ey,...,en} ={y € K|v=aies +...a;e;, for positive integers a;}.

Similar types of cones were considered by Zagier in [9] and [10].

In [5], the author has proven that multiple Dedekind zeta values can be interpolated to
multiple Dedekind zeta functions, which have meromorphic continuation to all complex
values of the variables s1, ..., $p.

In this paper we prove the following two theorems.

Theorem 1 FEvery multiple Dedekind zeta over any number field K is a period of a
mized Tate motive over K.

Theorem 2 If K is a totally real field, then we can find a cone C such that every multiple
Dedekind zeta Ci.c(S1, - .., Sm) is a period of mized Tate motive, which is unramified over
any prime.

2 Background

2.1 Multiple zeta values and iterated integrals

The Riemann zeta function at the value s = 2 can be expressed in term of an iterated
integral in the following way
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Let us examine the domain of integration of the iterated integral. Note that 0 < x <y
and 0 < y < 1. We can put both inequalities together. Then we obtain the domain
0 <z <y <1, which is a simplex. Thus, we can express the iterated integral as

! Y odxr \ dy dx dy
= [ (/1— >_:/ ="y
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Moreover, Goncharov and Manin [4] have expressed all multiple zeta values of weight
m as periods of motives related to the moduli space of curves of genus zero with m + 3
marked points, Mg 3. In particular, ((2) can be expressed as a period of the motive

H?*(Mys — A, B — AN B) by pairing of [Q4] € GrjV H2 (Mg — A) for Q4 = ld_—xm A %,

with [Ag] € (Gr{V H*(Mos — B))v. The Deligne-Mumford compactification Mo s of
the moduli space My 5 can be obtained by three blow-ups of P! x P! at the points (0,0),
(1,1) and (o0, 00). Let us name the exceptional divisors at the three points by Ey, E1
and Fo, respectively. Then A = (x = 1)U (y = 0) U (z = o0) U (y = 00) U E, and
B=(zx=0)U(z=y)U(y=1)UEyU Ej.

Similarly, one can express ((3) and ((1,2) as iterated integrals
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Again, ((3) and ((1,2) can be expressed as periods of motives related to Mgg. In the
same paper, Goncharov and Manin prove that the motives associated to multiple zeta
values (MZVs) are mixed Tate motives unramified over Spec(Z).

A few years later, Francis Brown [I] proved that periods of mixed Tate motives

unramified over Spec(Z) can be expressed as a Q-linear combination of MZVs times an
integer power of 2mi.

¢(3)

¢(1,2)

2.2 Multiple Dedekind zeta values (MDZVs) and iterated integrals on
membranes

We recall the construction of MDZVs. Let Ok be the ring of integers in a number field
K of degree n over Q.

Denote by o1, ...,0, all the embedding of K into the complex numbers C. And let
e1,...,e, be elements of O such that

1. e; € Ok for all i
2. (e1,...,e,) forms a basis of K over Q
3. Re(oj(e;) > 0 for all ¢ and j
Let C' be the cone defined as N-linear combinations of ey, ..., eo, that is,

C={a€Okl|y=a1e1+ -+ aney, for aj,...,a, € N}.
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Let

fo(City, ..o ty) = Z exp [— thaj(a)] .
=1

aeC

We express (x.c(2), (r;c(3) and (k.c(1,2) as iterated integrals on a membrane. See [5]

and [6], for more examples and properties of these constructions. We have

// (/ / fO(C’;tl,...,tn)dtl...dtn>dul...dun
0 0 ul Un

/0""/0""(/ /uzexp{ Zta] ]dtl dt )dul..

/ / ( (H exp [tjaj(oz)]) dty... dtn) duy ...du,
aeC

/ / ZHexp ujaj )]dul du,

acC j=1
=Y T —2—12
acC H UJ ) yeC N(Oé)
= <K;C( )
Similarly,

IRV RV

Fo(Cite, .. tn)dty - - dtn>du1 . dun> dvy - - dop

ARV RVATA

> exp [thaj(a)} dt, . ..dtn) du; . du) dvy - -~ dun
7j=1

aeC

s (/m /% freelusel,, dun)dvl..

—Z/ / Hexp fujaj ]dvl o, Zﬁ

aeC aeC

= (K;C( )

(2)

.duy,

.dvy,



We recall the simplest type of multiple Dedekind zeta value
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3 Transition to Algebraic Geometry

We may write the infinite sum in the definition of fy as a product of n geometric series
as follows.

Lemma 3 Let x; = e~ % fori=1,2,...,n. Then e~ tivi(e) — ac;rj(ei) and
n TL . xUJ(EZ)
. J J
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Proof. We simplify the function fy by expressing it in terms of products:
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3.1 The Algebraic Exponent

We are going to define new variables z;;, so that when we express fo(C;tq,...,t,) in

terms of z;;, then we obtain a rational function. Intuitively z;; = z; ?(¢) Ty achieve
that, we need to define algebraically f7(x) = 27 where v € Ox. We follow similar ideas
as in the announcement [7]. Let O = Z{p1, p2, .- ., tn} as a Z-module, where pu; = 1.
Let (ci;) by the n x n-matrix associated to « in the basis (i1, ..., up), that is,

n
Viti =) Cikfii:
k=1

We define a function f7 corresponding to raising to a power v by sending monomials in
the variables 41, ..., ¥, to monomials in the same variables. Let

n
z) = H y]?k
k=1

Lemma 4 [terated application of the above definition of exponentiation has the following
property:
F21% (i) = £7()-



Proof: It follows from the fact that v — (c;;) is a representation of the ring Ok as an
endomorphism of Z". More precisely, let o — (ai;), 5+ (bjr) and v — (cii). If af =~
then zj a;jbji = ;. Thus,

o) = f° Iij IIy%JJk II Ui “”Jk—-IIka——faﬁzh> O

Now that we have defined an algebraic power of a Variable, we return to expressing
fo as a rational function. Let

Lij = fg(ei)(xj)-

¥ (62)

Intuitively, x;; = T

Then

n aj(ei)

n L2
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can be written formally as
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4 Multiple Dedekind Zeta Values, Differential Forms and
Rational Functions

Let us recall the definition of a multiple Dedekind zeta value (see [5]). Let

Oéo(tl,...,tn) :dtl /\"'/\dtn
Oél(tl,... ,tn) = fo(tl,... ,tn)dtl Ao ANdty,.

The definition of a multiple Dedekind zeta value () is as follows.

Cresc (815 -5 8m /A /\aek tks s tnk)s (5)

k=1

where
1. M =514+ sg;
2. A =A; x---x A,, is an n-fold product of M-simplices Aq,...,A,

3. Aj is a simplex consisting of points (¢;1,%j2, - ,tjan) such that t; > tj0 > - >
tj7M > 0;

4. the indecies ¢ have values 0 or 1 and

€1 =1, €1 ='"=¢€ =0
€s+1 = 1, €51 42 =+ = €g,45, = 0
€spttsg1+l = 1, €syqugsy 42 =0 = €s4upsy = 0
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Definition. Let z; = [[/_; ;. We define the differential forms wy and w; by

j=1
. dz;
wo(21,--+,2n) = )\ — (6)
=1 “i
" dZZ'
wl(zl’”"zn):/\l—z- (7)
i=1 !

oe;

Proposition 5 Evaluate x;; at e % . Then

wo(zl,... ,Zn) = \/Z'Oé()(tl,... ,tn)
wl(zl,... ,Zn) = \/E'Oél(tl,... ,tn),

where /D = det(cj(e;)) and D is an integer multiple of the discriminant.

Proof. If we evaluate z;; at e_tj”f(ei), then z; = Hj Tij = Hj e—tioj(e:) — o= 2 ti05(e)
Then

wo(z1y..y2n) = & _ = det(o;(e;)) /\d/tZ = (8)

Zq
= VD ag(ts,... ty).

In that case, we also have

fo(Cite, ..o ty) = H 2

Therefore,

dz; Zi dzi
wi(z1,-.-,2n) = /\1_22:<H1—Z1> .Z_z: ®)

(2 (2

= det(oj(es)) folti,...,t /\dtl =
= \/E'Oél(tla--- ,tn).

Proposition 6 We have the following relation between multiple Dedekind zeta values of
the differential forms wy and wy

/A/\wek lik, nk) (@)MCK;c(Sl,...,Sm).

k=1

Proof. It follows directly from Equations (@), (8) and [@). O



5 Tangential base points

Let y = e and z = e~°, where b and ¢ are complex numbers such that Re(b) > 0 and
Re(c) > 0, and [b| # |c|. Then

. dy . de . de®
lim —= = lim = lim —
t—too dz  t—doode t—+oo debl

=4q,

where
| 400 or[0:1] ifb<ec
b= 0 or[0:1] ifb>c
Also
. dy _de b Co—be P}
lim —= = lim = lim S

t—=0dz t=0de ¢t =0 —ce~ct c

Let 7 : [0,1] — M3, by sending ¢ to (y, z), where y = e~ and 2z = e, For a vector
v = (a,b), consider [v] = [a : b] as an element of P
We have proven the following lemma.

Lemma 7 (a)

lim
t—o00

[d’y} :{ 0:1 ifb<c

dt [1:0] ifb>c

Moreover, the limit is well defined for for any distinct positive real numbers b and c.
(b) ]
. 22 .
fim [dt} = [b:c.

Let t =t;. Let also b = 0j(e;), ¢ = 0j(ex). Then

lim [df”} — [o5(ei) s o5(en)]

t;—0 d$i2,j
We define
[q(i, k)] = [o(ei) = oj(ex)].
And _
lim drij | _ [ [0:1] ifoj(es) < ojer)
tj—00 dxk] [1 : O] if aj(ei) > aj(ek)
- 0:1] i oy(er) < oy(en
) 0:1] ifoi(e;) < ojleg
i,k)] = o I J
PG, )] { [1:0] if oj(e;) > oj(ex)
More generally, let [p(ig,...,i)] = [ag : -+ : a;] be a point on P"(Q) with a; being 0 or
1, where all a;’s are zero except the one whose index ¢, for a, is such that |o;(e.)| is a
maximal value among the elements |oj(eg)l,...,|o;(e.)|.



6 Multiple Dedekind Zeta Values and the Moduli Space
MO,m-n2—|—3

Let z;, = H?:1 x;j. there are n? such variables. If we consider multiple Dedekind zeta
value of depth m then we need m -n? variables (Zikd)Zkrf&n;l,l,l € My m.n2+3- The dimen-
sion of the differential form Q(A) is mn. Let ¢ be 0 or 1 for d = 1,2,...,m. Let also

€1 =1 and ¢, = 0.

Q(4) = N\ we,.
d=1

where
n,m

A= (zind = Ed)z’drle U (Zind = Oo)i’dzl’l

and B = By N ByN-N B, where codimB, = r contains the divisors
o _A\n o n,n,m—1 _1\n
Bi = (211 = 0)ity U (2054 = Zigat1)ija—111 Y (Ziam = 1)t

together with the intersection of boundary components of M07m.n2+3 — M m.n243 con-
taining the same variable or the same constant 0 or 1. Besides codimension 1 components,
B also contains a codimension 2 components.

Let Bz{mz be a quiasi-subvariety in the boundary of the Deligne-Mumford compacti-
fication that has coordinates with

[ziy,11 ¢ 2ip,11] = [p(i1,42)]-

in the blow-up of the intersection (2, j1 = 0) N (2i,,51 = 0). Let B, be a cycle in
the boundary of the Deligne-Mumford compactification above the intersection (2; 1, =
1) N (2k,jm = 1) such that the coordinated of B; , in the blowup are

1= zip11: 1= 2,00 = [o(ei) s j(ei)]-

The codimension 2 components of B are the union of all B}, ; and B} , . That is

77:2
. / "
By = U (Bil,iQ UBihiz) :
11 <12

Now let us write wo(z1,x2) and wq(z1,z2), when we want to specify the dependence
on the variables. In fact, both forms depend also on y; and ys; however, we will take
care of that by choosing a region of integration together with tangential base points.

Theorem 8 (a) Every multiple Dedekind zeta value over a field K times a suitable
multiple of a power of the discriminant of K is a period of a mized Tate motive over K.
More precisely,

<\/E>MCK;C(317 ey Sm) = / }4\ we, (t1ir k)

Ag—t
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is a period of
HnM(MO,nQM—HS — A, B - (A n B))7

MO7H2M+3 is the Delingne-Mumford compactification of the moduli space of curves of
genus zero with n?>M + 3 marked points, and A and B that consist of a union of lower
dimensional moduli spaces of curves of genus zero with marked points.

(b) For any field K of degree n over Q, with the property that K has n units ey, ..., e,
that are linearly independent over Q and |oj(e;) # |oj(ex)|, we have the following stronger
statement. In particular, when K is a totally real number field, we choose a cone C =
N{ei,...,en}. Then for any positive integers si,. .., Sy with sy, > 2, we have that

(\/Z_D>M Cr.c(51,---,5m)

is a period of an unramified mized Tate motive over the ring of algebraic integers Ok in
the field K.

Proof: In this proof we are going to follow closely the paper by Goncharov and Manin
[4]. The period will be a pairing between [Q4] € Griy | H™ (Mg p2p7,3—A) and [Apg] €
(Gry" H"™M (Mg p2pris — B))v associated to a mixed Tate motive H™™ (Mg 2p/43 —
A;B—ANB).

We have that A and By are defined over Z. Moreover, any component and any
intersection of components of A and B are isomorphic to a moduli space My y for some
N. The component By, Bs, ... are defined over the field K. Moreover, any intersection
is isomorphic to My yy,. for some N. Thus all multiple Dedekind zeta values are mixed
Tate motives over the field of definition K.

Ifeq,..., e, are unit in Ok, which are linearly independent over Q, then all [¢(i1, i2, j)],
[q(i1, 12,13, j]) etc., have coordinates 0 or units. Then, the component By, Bs, ... are de-
fined over the ring Ox. Moreover, any intersection is isomorphic to My, Nloy for some
N.

We have that H(Mo ) is a mixed Tate motive over Spec(Z). This implies that
H'(My ) is a mixed Tate motive over Spec(Ok). we obtain that the motivic coho-
mology of the components of B are mixed Tate motives. Using Proposition 1.7 from
Deligne and Goncharov, [3], we conclude that for [ # char(v) the l-adic cohomology of
the reduction of B; modulo v of the motive H*(B;) is unramified for any component B,
of B , since Bj is isomorphic to MQ ~ over Spec(Of ) for some N. We conclude that for
l # char(v) the l-adic cohomology of the reduction modulo any v € Spec(Of ) of the mo-
tive H™™ (M p2p1 43— A; B— ANB) is unramified. Thus, H™™ (Mg 257, 3— A; B—ANB)
is a mixed Tate motive unramified over Spec(Ok).
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