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ON A FAMILY OF POLYNOMIALS RELATED TO ζ(2, 1) = ζ(3)

WADIM ZUDILIN

Abstract. We give a new proof of the identity ζ({2, 1}l) = ζ({3}l) of the mul-
tiple zeta values, where l = 1, 2, . . . , using generating functions of the underlying
generalized polylogarithms. In the course of study we arrive at (hypergeometric)
polynomials satisfying 3-term recurrence relations, whose properties we exam-
ine and compare with analogous ones of polynomials originated from an (ex-)
conjectural identity of Borwein, Bradley and Broadhurst.

1. Introduction

The first thing one normally starts with, while learning about the multiple zeta
values (MZVs)

ζ(s) = ζ(s1, s2, . . . , sl) =
∑

n1>n2>···>nl≥1

1

ns1
1 ns2

2 · · ·nsl
l

,

is Euler’s identity ζ(2, 1) = ζ(3)— see [3] for an account of proofs and generalizations
of the remarkable equality. One such generalization reads

ζ({2, 1}l) = ζ({3}l) for l = 1, 2, . . . , (1)

where the notation {s}m denotes the multi-index with m consecutive repetitions of
the same index s. The only known proof of (1) available in the literature makes
use of the duality relation of MZVs, originally conjectured in [6] and shortly after
established in [12]. The latter relation is based on a simple iterated-integral repre-
sentation of MZVs (see [12] but also [3, 4, 14] for details) but, unfortunately, it is
not capable of establishing similar-looking identities

ζ({3, 1}l) =
2π4l

(4l + 2)!
for l = 1, 2, . . . . (2)

The equalities (2) were proven in [4] using a simple generating series argument.
The principal goal of this note is to give a proof of (1) via generating functions

and to discuss, in this context, a related ex-conjecture of the alternating MZVs. An
interesting outcome of this approach is a family of (hypergeometric) polynomials
that satisfy a 3-term recurrence relation; a shape of the relation and (experimentally
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observed) structure of the zeroes of the polynomials suggest their bi-orthogonality
origin [7, 8, 11].

2. Multiple polylogarithms

For l = 1, 2, . . . , consider the generalized polylogarithms

Li{3}l(z) =
∑

n1>n2>···>nl≥1

zn1

n3
1n

3
2 · · ·n

3
l

,

Li{2,1}l(z) =
∑

n1>m1>n2>m2>···>nl>ml≥1

zn1

n2
1m1n2

2m2 · · ·n2
lml

,

Li{2,1}l(z) =
∑

n1>m1>n2>m2>···>nl>ml≥1

zn1(−1)n1+n2+···+nl

n2
1m1n2

2m2 · · ·n2
lml

;

if l = 0 we set all these functions to be 1. Then at z = 1,

ζ({3}l) = Li{3}l(1) and ζ({2, 1}l) = Li{2,1}l(1),

and we also get the related alternating MZVs

ζ({2, 1}l) = Li{2,1}l(1)

from the specialization of the third polylogarithm.
Since

(
(1− z)

d

dz

)(
z
d

dz

)2

Li{3}l(z) = Li{3}l−1(z),

(
(1− z)

d

dz

)2(
z
d

dz

)
Li{2,1}l(z) = Li{2,1}l−1(z),

(
(1 + z)

d

dz

)2(
z
d

dz

)
Li{2,1}l(z) = Li{2,1}l−1(−z)

for l = 1, 2, . . . , the generating series

C(z; t) =

∞∑

l=0

Li{3}l(z)t
3l,

B(z; t) =

∞∑

l=0

Li{2,1}l(z)t
3l and A(z; t) =

∞∑

l=0

Li{2,1}l(z)t
3l

satisfy linear differential equations. Namely, we have
((

(1− z)
d

dz

)(
z
d

dz

)2

− t3
)
C(z; t) = 0,

((
(1− z)

d

dz

)2(
z
d

dz

)
− t3

)
B(z; t) = 0

and ((
(1− z)

d

dz

)2(
z
d

dz

)(
(1 + z)

d

dz

)2(
z
d

dz

)
− t6

)
A(z; t) = 0,
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respectively. The identities (1) and identities

1

8l
ζ({2, 1}l) = ζ({2, 1}l) for l = 1, 2, . . . ,

conjectured in [4] and confirmed in [13] by means of a nice though sophisticated
machinery of double shuffle relations and the ‘distribution’ relations (see also an
outline in [2]), translate into

C(1; t) = B(1; t) = A(1; 2t).

Note that

C(1; t) =
∞∑

l=0

t3l
∑

n1>n2>···>nl≥1

1

n3
1n

3
2 · · ·n

3
l

=
∞∏

j=1

(
1 +

t3

j3

)
. (3)

At the same time, the differential equation for C(z; t) =
∑∞

n=0
Cn(t)z

n results in

−n3Cn + (n+ 1)3Cn+1 = t3Cn

implying

Cn+1

Cn
=

n3 + t3

(n+ 1)3
=

(n+ t)(n + e2πi/3t)(n + e4πi/3t)

(n + 1)3

and leading to the hypergeometric form

C(z; t) = 3F2

(
t, ωt, ω2t

1, 1

∣∣∣∣ z
)
, (4)

where ω = e2πi/3. We recall that

m+1Fm

(
a0, a1, . . . , am
b1, . . . , bm

∣∣∣∣ z
)

=
∞∑

n=0

(a0)n(a1)n · · · (am)n
n! (b1)n · · · (bm)n

zn,

where (a)n = Γ(a + n)/Γ(a) denotes the Pochhammer symbol (also known as the
‘shifted factorial’ because (a)n = a(a + 1) · · · (a+ n− 1) for n = 1, 2, . . . ). It is not
hard to see that the sequences An(t) and Bn(t) from A(z; t) =

∑∞
n=0

An(t)z
n and

B(z; t) =
∑∞

n=0
Bn(t)z

n do not satisfy 2-term recurrence relations with polynomial
coefficients. Thus, no hypergeometric representations of the type (4) are available
for them.

3. Special polynomials

The differential equation for B(z; t) translates into the 3-term recurrence relation

n3Bn − (n + 1)2(2n+ 1)Bn+1 + (n+ 2)2(n + 1)Bn+2 = t3Bn (5)

for the coefficients Bn = Bn(t); the initial values are B0 = 1 and B1 = 0.

Lemma 1. We have

Bn(t) =
1

n!

n∑

k=0

(ωt)k(ω
2t)k(t)n−k(−t + k)n−k

k! (n− k)!
=

(t)n(−t)n
n!2

3F2

(
−n, ωt, ω2t
−t, 1− n− t

∣∣∣∣ 1
)
.

(6)
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Proof. The recursion (5) for the sequence in (6) follows from application of the
Gosper–Zeilberger algorithm of creative telescoping. The initial values for n = 0
and 1 are straightforward. �

Remark. The hypergeometric form in (6) was originally prompted by [9, Theorem
3.4]: the change of variable z 7→ 1 − z in the differential equation for B(z; t) shows
that the function f(z) = B(1−z; t) satisfies the hypergeometric differential equation
with upper parameters −t, −ωt, −ω2t and lower parameters 0, 0.

It is not transparent from the formula (6) (but immediate from the recursion (5))
that Bn(t) ∈ t3Q[t3] for n = 0, 1, 2, . . . ; the classical transformations of 3F2(1) and
their representations as 6F5(−1) hypergeometric series (see [1]) do not shed a light
on this belonging either.

Lemma 2. We have

B(1; t) =
∞∏

j=1

(
1 +

t3

j3

)
. (7)

Proof. This follows from the derivation

B(1; t) =
∞∑

n=0

Bn(t) =
∞∑

n=0

1

n!

n∑

k=0

(ωt)k(ω
2t)k(t)n−k(−t + k)n−k

k! (n− k)!

=
∞∑

k=0

(ωt)k(ω
2t)k

k!2

∞∑

m=0

(t)m(−t + k)m
m! (k + 1)m

=
∞∑

k=0

(ωt)k(ω
2t)k

k!2
· 2F1

(
t, −t + k
k + 1

∣∣∣∣ 1
)

=
1

Γ(1− t)Γ(1 + t)

∞∑

k=0

(ωt)k(ω
2t)k

k! (1− t)k

=
1

Γ(1− t)Γ(1 + t)
· 2F1

(
ωt, ω2t
1− t

∣∣∣∣ 1
)

=
1

Γ(1− t)Γ(1 + t)
·

Γ(1− t)

Γ(1− (1 + ω)t)Γ(1− (1 + ω2)t)

=
1

Γ(1 + t)Γ(1 + ωt)Γ(1 + ω2t)
=

∞∏

j=1

(
1 +

t3

j3

)
,

where we applied twice Gauss’s summation [1, Section 1.3]

2F1

(
a, b
c

∣∣∣∣ 1
)

=
Γ(c) Γ(c− a− b)

Γ(c− a) Γ(c− b)

valid when ℜ(c− a− b) > 0. �

Finally, we deduce from comparing (3) and (7),

Theorem 1. The identity ζ({3}l) = ζ({2, 1}l) is valid for l = 1, 2, . . . .
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4. A general family of polynomials

It is not hard to extend Lemma 1 to the one-parameter family of polynomials

Bα
n (t) =

1

n!

n∑

k=0

(ωt)k(ω
2t)k(α + t)n−k(α− t+ k)n−k

k! (n− k)!

=
1

n!

n∑

k=0

(α + ωt)k(α + ω2t)k(t)n−k(α− t + k)n−k

k! (n− k)!
. (8)

Lemma 3. For each α ∈ C, the polynomials (8) satisfy the 3-term recurrence

relation

((n+α)3−t3)Bα
n−(n+1)(2n2+3n(α+1)+α2+3α+1)Bα

n+1+(n+2)2(n+1)Bα
n+2 = 0

and the initial conditions Bα
0 = 1, Bα

1 = α2. In particular, Bα
n (t) ∈ C[t3] for

n = 0, 1, 2, . . . .

In addition, we have Bα
n ∈ t3Q[t3] for α = 0,−1, . . . ,−n + 1 (in other words,

Bα
n (0) = 0 for these values of α).

Lemma 4. B1−n−α
n (t) = Bα

n(t).

Proof. This follows from the hypergeometric representation

Bα
n(t) =

(α + t)n(α− t)n
n!2

3F2

(
−n, ωt, ω2t

α− t, 1− α− n− t

∣∣∣∣ 1
)
. �

Here is one more property of the polynomials that follows from Euler’s transfor-
mation [1, Section 1.2].

Lemma 5. We have
∞∑

n=0

Bα
n (t)z

n = (1− z)1−2α
∞∑

n=0

B1−α
n (t)zn.

Proof. Indeed,
∞∑

n=0

Bα
n(t)z

n =
∞∑

k=0

(ωt)k(ω
2t)k

k!2
zk · 2F1

(
α + t, α− t+ k

k + 1

∣∣∣∣ z
)

=

∞∑

k=0

(ωt)k(ω
2t)k

k!2
zk · (1− z)1−2α

2F1

(
1− α+ t, 1− α− t+ k

k + 1

∣∣∣∣ z
)

= (1− z)1−2α

∞∑

n=0

B1−α
n (t)zn. �

Alternative proof of Lemma 2. It follows from Lemma 5 that

B1

n(t) =
n∑

k=0

Bk(t),

hence B(1; t) = limn→∞B1
n(t) and the latter limit is straightforward from (8). �
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Note that, with the help of the standard transformations of 3F2(1) hypergeometric
series, we can also write (8) as

Bα
n (t) =

(α− ωt)n(α− ω2t)n
n!2

3F2

(
−n, α + t, t

α− ωt, α− ω2t

∣∣∣∣ 1
)
,

so that the generating functions of the continuous dual Hahn polynomials lead to
the generating functions

∞∑

n=0

n!

(α− t)n
Bα

n (t)z
n = (1− z)−t

2F1

(
α+ ωt, α + ω2t

α− t

∣∣∣∣ z
)

and
∞∑

n=0

(γ)n n!

(α− ωt)n(α− ω2t)n
Bα

n(t)z
n = (1− z)−γ

3F2

(
γ, α + t, t

α− ωt, α− ω2t

∣∣∣∣
z

z − 1

)
,

where γ is arbitrary.
Finally, numerical verification suggests that for real α the zeroes of Bα

n viewed as
polynomials in x = t3 lie on the real half-line (−∞, 0].

5. Polynomials related to the alternating MZV identity

Writing

A(z; t) =

∞∑

n=0

An(t)z
n

= 1 + 1

4
t3z2 − 1

6
t3z3 +

(
1

192
t3 + 11

96

)
t3z4 −

(
1

240
t3 + 1

12

)
t3z5

+
(

1

34560
t6 + 23

5760
t3 + 137

2160

)
t3z6 +O(z7)

and using the equation
(
(1 + z)

d

dz

)2(
z
d

dz

)
A(z; t) = t3A(−z; t),

we deduce that

(n3 − T )An + (n + 1)2(2n+ 1)An+1 + (n+ 2)2(n + 1)An+2 = 0, (9)

where T = (−1)nt3. Producing two shifted copies of (9),

((n− 1)3 + T )An−1 + n2(2n− 1)An + (n+ 1)2nAn+1 = 0, (10)

((n− 2)3 − T )An−2 + (n− 1)2(2n− 3)An−1 + n2(n− 1)An = 0, (11)

then multiplying recursion (9) by n(n− 1)2(2n− 3), recursion (10) by −(n− 1)2×
(2n + 1)(2n − 3), recursion (11) by (2n + 1)((n − 1)3 + T ) and adding the three
equations so obtained we arrive at

(2n+ 1)((n− 1)3 + T )((n− 2)3 − T )An−2

− n(n− 1)(2n− 1)(2n(n− 1)(n2 − n− 1)− 3T )An

+ (n+ 2)2(n+ 1)n(n− 1)2(2n− 3)An+2 = 0.
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This final recursion restricted to the subsequence A2n, namely

(4n+ 5)((2n)3 − t3)((2n+ 1)3 + t3)A2n

− (4n+ 3)(2n+ 1)(2n+ 2)(2(2n+ 1)(2n+ 2)(4n2 + 6n+ 1)− 3t3)A2n+2

+ (4n+ 1)(2n+ 1)2(2n+ 2)(2n+ 3)(2n+ 4)2A2n+4 = 0, (12)

and, similarly, to A2n+1 gives rise to two families of so-called Frobenius–Stickelberger–
Thiele polynomials [10]. The latter connection, however, sheds no light on the
asymptotics of An(t) ∈ Q[t3]. Unlike the case of B(z; t) treated in Section 3 we
cannot find closed form expressions for those subsequences. Here is the case most
visually related to the recursion (12):

(4n+ 5)
(2n)3 − t3

t− 2n

(2n+ 1)3 + t3

t+ 2n+ 1
A′

n

− (4n+ 3)(2n+ 1)(2n+ 2)((2n+ 1)(2n+ 2) + (8n2 + 12n+ 1)t+ 3t2)A′
n+1

+ (4n+ 1)(2n+ 1)2(2n+ 2)(2n+ 3)(2n+ 4)2A′
n+2 = 0,

where

A′
n =

1

2n (1/2)n n!

n∑

k=0

(ωt/2)k(ω
2t/2)k(t/2)n−k(1/2)n−k

k! (n− k)!
(−1)k.

The latter polynomials are not from Q[t3].

If we consider Ãn(t) =
∑n

k=0
Ak(t) then (it is already known [5, 13] that)

(n3 − (−1)nt3)Ãn−1 + (2n+ 1)nÃn − (n+ 1)2nÃn+1 = 0, n = 1, 2, . . . .

As before, the standard elimination translates it into

(2n+ 3)((n− 1)3 + T )(n3 − T )Ãn−2

− (2n+ 1)n(n− 1)(2(n2 + n+ 1)2 − 6− T )Ãn

+ (2n− 1)(n+ 2)2(n + 1)2n(n− 1)Ãn+2 = 0,

where T = (−1)nt3. One can easily verify that

Ãn(t) = 1 + · · ·+
t3⌊n/2⌋

2⌊n/2⌋⌊n/2⌋!n!

but we also lack an explicit representation for them.
We have checked numerically a fine behaviour (orthogonal-polynomial-like) of the

zeroes of An and Ãn viewed as polynomials in x = t3 (both of degree [n/2] in x).
Namely, all the zeroes lie on the real half-line (−∞, 0]. This is in line with the
property of the polynomials Bα

n (see the last paragraph in Section 4).
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