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Abstract
It has been proven by Serre, Larsen–Pink and Chin, that over a smooth curve over
a finite field, the monodromy groups of compatible semi-simple pure lisse sheaves
have “the same” π0 and neutral component. We generalize their results to compatible
systems of semi-simple lisse sheaves and overconvergent F-isocrystals over arbi-
trary smooth varieties. For this purpose, we extend the theorem of Serre and Chin on
Frobenius tori to overconvergent F-isocrystals. To put our results into perspective,
we briefly survey recent developments of the theory of lisse sheaves and overconver-
gent F-isocrystals. We use the Tannakian formalism to make explicit the similarities
between the two types of coefficient objects.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Relations with previous works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 The structure of the article . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Notation and conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Tannakian categories and group schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Weil lisse sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Overconvergent F-isocrystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Coefficient objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1 First definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Monodromy groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Comparison with the étale fundamental group . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Rank 1 coefficient objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.6 Deligne’s conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.7 Compatible systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Independence of monodromy groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

B Marco D’Addezio
daddezio@mpim-bonn.mpg.de

1 Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s00029-020-00569-3&domain=pdf


45 Page 2 of 41 M. D’Addezio

4.1 The group of connected components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Frobenius tori . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 The neutral component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4 Restriction to curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Appendix: Neutral Tannakian categories with Frobenius . . . . . . . . . . . . . . . . . . . . . . . . 37
A.1 Definition and Weil group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
A.2 The fundamental exact sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1 Introduction

1.1 Background

L. Lafforgue in 2002 proved the Langlands reciprocity conjecture for GLr over func-
tion fields of positive characteristic, [35]. This result gives a correspondence between
irreducible lisse Q�-sheaves over a smooth connected curve over a finite field and
cuspidal automorphic representations. The theorem has a p-adic counterpart recently
proved by Abe in [2]. In Abe’s work lisse sheaves are replaced by overconvergent
F-isocrystals, previously introduced by Berthelot. The two results prove Deligne’s
conjecture [13, Conjecture 1.2.10] for curves. The lack of a Langlands correspon-
dence for higher dimensional varieties (even at the level of the formulation) forced
one to generalize Deligne’s conjecture reducing geometrically to the case of curves.
One of the difficulties is that one cannot rely on a Lefschetz theorem for the étale
fundamental group in positive characteristic (see for example [21, Lemma 5.4]). This
means that in general, given a smooth variety X0 over a finite field Fq , it does not exist
a smooth curve C0 ⊆ X0 over Fq with the property that every irreducible lisse sheaf
over X0 remains irreducible when restricted to C0. On the other hand, for a given lisse
sheaf one can find a suitable smooth curve where the lisse sheaf remains irreducible,
[26]. The same property holds for overconvergent F-isocrystals, [4].

1.2 Main results

We refer to lisse sheaves and overconvergent F-isocrystals uniformly as coefficient
objects (Definition 3.1.1). Let X0 be a smooth connected variety over Fq . Suppose that
E0 is a coefficient object over X0 such that all the eigenvalues of the Frobenii at closed
points are algebraic numbers. Thanks to the known cases of Deligne’s conjecture
(Theorem 3.7.2), E0 sits in an E-compatible system {Eλ,0}λ∈� , where E is a number
field.With this wemean that there exists a set� of finite places of E , containing all the
finite placeswhich do not divide p, and {Eλ,0}λ∈� is a family of pairwise E-compatible
Eλ-coefficient objects (Definition 3.1.15), one for each λ ∈ �.

We use the new results presented above to study the problem of λ-independence
of the monodromy groups. Let F be an algebraic closure of Fq and x an F-point of
X0. For every λ ∈ �, let G(Eλ,0, x) be the (arithmetic) monodromy group of Eλ,0
(Definition 3.2.4) and ρλ,0 the tautological representation of G(Eλ,0, x). We prove the
following generalization of [9, Theorem 1.4].
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Theorem 1.2.1 (Theorem 4.3.2) Suppose that for every λ ∈ � the coefficient object
Eλ,0 is semi-simple. After possibly replacing E with a finite extension, there exists a
connected split reductive group G0 over E such that for every λ ∈ � the extension of
scalars G0 ⊗E Eλ is isomorphic to the neutral component of G(Eλ,0, x). Moreover,
there exists a faithful E-linear representation ρ0 of G0 and isomorphisms ϕλ,0 :
G0 ⊗E Eλ

∼−→ G(Eλ,0, x)◦ for every λ ∈ � such that ρ0 ⊗E Eλ is isomorphic to
ρλ,0 ◦ ϕλ,0.

Note that in Theorem 1.2.1 we remove from [ibid., Theorem 1.4] the purity and p-
plain assumptions (cf. Sect. 3.1.14) and we extend it to overconvergent F-isocrystals.
Chin proves his result exploiting a reconstruction theorem for connected split reductive
groups (Theorem 4.3.4). To apply his theorem, he extends the work of Serre in [43]
on Frobenius tori of étale lisse sheaves, [9, Lemma 6.4]. We further generalize Chin’s
result on Frobenius tori.

Theorem 1.2.2 (Theorem 4.2.11) Let E0 be an algebraic coefficient object over X0.
There exists a Zariski-dense subset � ⊆ X(F) such that for every F-point x ∈ � and
every objectF0 ∈ 〈E0〉, the Frobenius torus T (F0, x) is a maximal torus of G(F0, x).
Moreover, ifG0 is a coefficient object which is compatible with E0, the subset� satisfies
the same property for every object in 〈G0〉.

To prove the theorem, we extend first Serre–Chin result on the finiteness of conju-
gacy classes of Frobenius tori (Corollary 4.2.8). To do this we exploit the known cases
of Deligne’s conjecture. Using Serre’s technique, this allows to prove Theorem 1.2.2
for algebraic étale lisse sheaves. In order to extend Theorem 1.2.2 to overconvergent
F-isocrystals and to Weil lisse sheaves that are not étale, we use a dimension data
argument due to Larsen and Pink (Proposition 4.2.9). Thanks to Theorem 1.2.2, we
are able to prove Theorem 1.2.1 following Chin’s method. Theorem 1.2.2 is also used
in [5] as a starting point to prove a certain rigidity result for convergent F-isocrystals
which admit an overconvergent extension. An additional outcome of Theorem 1.2.2 is
provided by the following semi-simplicity statement for the Frobenii at closed points.

Corollary 1.2.3 (Corollary 4.2.12) Let E0 be a semi-simple Q�-coefficient object. The
set of closed points x ′

0 of X0 where the Frobenius Fx ′
0
is regular semi-simple1 is

Zariski-dense in X0.

In the article, we also generalize the result of Serre and Larsen–Pink on the λ-
independence of the π0 of the monodromy groups.

Theorem 1.2.4 (Proposition 3.3.3 and Theorem 4.1.1) For every Eλ-coefficient object
E0, the finite group schemes π0(G(E0, x)) and π0(G(E, x)) are constant group
schemes. If F0 is a coefficient object compatible with E0, then there exist canoni-
cal isomorphisms π0(G(E0, x)) ∼−→ π0(G(F0, x)) and π0(G(E, x))

∼−→ π0(G(F , x))
as abstract finite groups.

To prove such a theorem for overconvergent F-isocyrstals we have to relate their
monodromy groups with the étale fundamental group of X0. This is done in Sect. 3.3

1 Cf. [7, §12.2].
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and it relies on some previous work done by Crew in [12]. The rest of the proof follows
[37, Proposition 2.2]. Finally, we obtain an independence result for the “Lefschetz
theorem” for coefficient objects.

Theorem 1.2.5 Let f0 : (Y0, y) → (X0, x) be a morphism of smooth geomet-
rically connected pointed varieties. Let E0 and F0 be compatible geometrically
semi-simple coefficient objects over X0. Let ϕ0 : G( f ∗

0 E0, y) → G(E0, x) and
ψ0 : G( f ∗

0 F0, y) → G(F0, x) be the morphisms induced by f ∗
0 and let ϕ and ψ

be their restriction to the geometric monodromy groups.

(i) If ϕ is an isomorphism, the same is true for ψ .
(ii) If ϕ0 is an isomorphism, the same is true for ψ0.

1.3 Relations with previous works

In [40, Theorem 8.23], Pál gives a proof of a special case of Theorem 1.2.1 for curves.
It relies on a strong Chebotarev’s density theorem for overconvergent F-isocrystals
[ibid., Theorem 4.13], which is now proven in [25]. Using the result on Frobenius tori,
we do not use Hartl–Pál’s theorem. It is also worth mentioning that Drinfeld proved
the independence of the entire arithmetic monodromy groups (not only the neutral
component) over Q�, [19]. He uses a stronger representation-theoretic reconstruction
theorem (see Remark 4.3.10). With Frobenius tori, we prove in addition the existence
of a number field E such that the algebraic group G(Eλ,0, x) is split reductive over Eλ

for every λ ∈ �.

1.4 The structure of the article

We define in Sect. 3.1 the categories of coefficient objects and geometric coefficient
objects, and we prove some basic results. We also recall some definitions related to
the characteristic polynomials of the Frobenii at closed points, and we show that the
property of aWeil lisse sheaf of being étale can be checked looking at one closed point
(Proposition 3.1.16).

In Sect. 3.2, we define the arithmetic and the geometric monodromy groups of
coefficient objects, using the Tannakian formalism. We also introduce the Tannakian
fundamental groups classifying coefficient objects and geometric coefficient objects.
Wepresent a fundamental exact sequence relating these groups (Proposition3.2.7). The
result is essentially entirely proven in the “Appendix” for general neutral Tannakian
categories with Frobenius. Then in Sect. 3.3 we show that the groups of connected
components of these fundamental groups are isomorphic to the arithmetic and the geo-
metric étale fundamental group (Proposition 3.3.3). We also prove a complementary
result, namely Proposition 3.3.4.

In Sect. 3.4 we recall the main result on rank 1 coefficient objects (Theorem 3.4.1).
We introduce in Sect. 3.4.3 the notion of twist classes and we prove some structural
properties for them. In Sect. 3.5 we recollect some theorems from Weil II that are
now known for coefficient objects of both types. For example, we recall the main
theoremonweights (Theorem3.5.1). Thenwepresent in Sect. 3.6 the state ofDeligne’s
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conjectures. In Sect. 3.7 we give the definition of compatible systems of lisse sheaves
and overconvergent F-isocrystals and we present a strong form of the companions
conjecture, due to the work of Chin (Theorem 3.7.2).

In Sect. 4, we investigate the properties of λ-independence of the monodromy
groups varying in a compatible system of coefficient objects. We start by proving
in Sect. 4.1 the λ-independence of the groups of connected components (Theorem
1.2.4). In Sect. 4.2 we extend the theory of Frobenius tori to algebraic coefficient
objects and we prove Theorem 1.2.2 and Corollary 1.2.3. In Sect. 4.3 we prove instead
Theorem 1.2.1. Finally, in Sect. 4.4 we prove Theorem 1.2.5.

2 Notation and conventions

2.0.1. We fix a prime number p and a positive power q. Let Fq be a field with q
elements and F an algebraic closure of Fq . For every positive integer s we denote by
Fqs the subfield of F with qs elements. We say that a separated scheme of finite type
over a field k is a variety over k. When we do not specify k it means that we take
Fq as a base field. Note that for us a variety is not necessarily irreducible. A curve
for us is a one dimensional variety. We will mostly denote by X0 a smooth variety
over Fq . When X0 is connected we will sometimes consider X0 as a variety over kX0 ,
the algebraic closure of Fq in 
(X0,OX0). We denote by X the extension of scalars
X0 ⊗Fq F over F. In general, we denote with a subscript 0 objects and morphisms
defined over Fq , and the suppression of the subscript will mean the base change to F.

We write |X0| for the set of closed points of X0. If x0 is a closed point of X0,
the degree of x0 is defined to be deg(x0) := [κ(x0) : Fq ]. A variety is said (F-
)pointed if it is endowedwith the choice of anF-point. Amorphism of pointed varieties
(Y0, y) → (X0, x) is a morphism of varieties Y0 → X0 which sends y to x . An F-
point x of X0 determines a unique closed point of the variety that we denote by x0.
Moreover, the F-point x determines an identification kX0 = Fqs , for some s ∈ Z>0.

2.0.2. The letter � will denote a prime number. In general we allow � to be equal to
p. We fix an algebraic closure of Q and for every � an algebraic closure of Q�. For
a number field E , we write |E |� for the set of finite places of E dividing �. We also
write |E |�=p for the union

⋃
� �=p |E |� and |E | for ⋃

� |E |�. If λ ∈ |E |, we denote by
Eλ the λ-adic completion of E in Q�. For a characteristic 0 field K, we say that an
element a ∈ K is an algebraic number if it is algebraic over Q. If a is an algebraic
number we say that it is p-plain2 if it is an �-adic unit for every � �= p.

2.1 Tannakian categories and group schemes

We will extensively make use the theory of Tannakian categories as presented in [16].

2.1.1. Let K be a field. For every Tannakian category C over K, we say that an object
in C is a trivial object if it is isomorphic to 1⊕n for some n ∈ N. We say that an
object V ∈ C is irreducible if the only subobjects of V are 0 and V itself. We say

2 This is an abbreviation for the expression plain of characteristic p in [9].
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that V ∈ C is absolutely irreducible if for ever finite extension L/K, the extension of
scalars V ⊗K L is irreducible. A Tannakian subcategory of C, for us, is a strictly full
abelian subcategory, closed under ⊗, duals, subobjects (and thus quotients). If V is
an object of C, we denote by 〈V 〉 the smallest Tannakian subcategory of C containing
V . We write VecK for the Tannakian category of finite dimensional K-vector spaces.

2.1.2. If ω is a fibre functor of C, over an extension L, we say that the affine group
scheme Aut⊗(ω) over L is the Tannakian group of C with respect to ω. We say that
the Tannakian group of 〈V 〉 with respect to ω is the monodromy group of V (with
respect to ω). If the monodromy group of V is finite, we say that V is a finite object.

2.1.3. For every group scheme G, we denote by π0(G) the group of connected com-
ponents of G and by G◦ the neutral component of G. If G is an algebraic group, the
reductive rank of G is the dimension of any maximal torus of G. When K is a charac-
teristic 0 field, we will say that a morphism ϕ : G → H of affine group schemes over
K is surjective if it is faithfully flat and we will say that ϕ is injective if it is a closed
immersion.

2.2 Weil lisse sheaves

We mainly use the notations and conventions for lisse sheaves as in [13].

2.2.1. If X is a scheme and x is a geometric point of X , we denote by π ét
1 (X , x) the

étale fundamental group of X . For a finite extension k/Fq with algebraic closure k, we
say that the inverse of the q[k:Fq ]-power Frobenius of k is the geometric Frobenius of
k (with respect to k). We denote by F the geometric Frobenius of Fq with respect to
F. For every n ∈ Z>0 we denote by W (F/Fqn ) the Weil group of Fqn (it is generated
by Fn). We also denote by W (X0, x) the Weil group of X0. For every closed point
x ′
0 of X0 in the same connected component of x we denote by Fx ′

0
⊆ W (X0, x) the

conjugacy class of the geometric Frobenius at x ′
0, as in [13, §1.1.8].

2.2.2. For every � �= p we have a category LS(X , Q�) of lisse Q�-sheaves over X ,
that is the 2-colimit of the categories LS(X , Eλ) of lisse Eλ-sheaves, where Eλ varies
among the finite extensions of Q� in Q� (see [13, §1.1.1] for more details). If X0
is not geometrically connected over Fq these categories are not Tannakian (the unit
object has too many endomorphisms). If x is a geometric point of X0, we denote by
X (x) the connected component of X containing x . The categories LS(X (x), Eλ) and
LS(X (x), Q�) are neutral Tannakian categories.

For a lisse Q�-sheaf V over X , an nth Frobenius structure on V is an isomorphism
(Fn)∗V ∼−→ V with F the geometric Frobenius of X . The category of Weil lisse Eλ-
sheaves over X0, denoted by Weil(X0, Eλ), is defined to be the category of lisse
Eλ-sheaves equipped with a (1-st) Frobenius structure. We will often refer to Weil
lisse sheaves simply as lisse sheaves. If X0 is connected, the category Weil(X0, Eλ)

is a neutral Tannakian category.
For every geometric point x of X0 and every Eλ we have a functor

x,Eλ : Weil(X0, Eλ) → LS(X , Eλ) → LS(X (x), Eλ)
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obtained by firstly forgetting the Frobenius structure and then taking the inverse image
with respect to the open immersion X (x) ↪→ X . If V0 is a Weil lisse sheaf, we remove
the subscript 0 to indicate the lisse sheaf x,Eλ(V0).

2.2.3. The choice of a geometric point x of X0, induces an equivalence between the
category of Weil lisse Q�-sheaves over X0 and the finite-dimensional continuous Q�-
representations of the Weil group W (X0, x), [13, 1.1.12]. We say that a Weil lisse
sheaf is an étale lisse sheaf if the associated representation of the Weil group factors
through the étale fundamental group.

2.2.4. Notation as in Sect. 2.2.3. If V0 is a Weil lisse Eλ-sheaf, for every closed point
x ′
0 ∈ |X0| we write Px ′

0
(V0, t) for det(1 − t Fx ′

0
|Vx ) ∈ Eλ[t] (cf. [13, 1.1.8]). We say

that the polynomial Px ′
0
(V0, t) is the (Frobenius) characteristic polynomial ofV0 at x ′

0.

For every natural number n, a lisse Q�-sheaf is said to be pure of weight n, if for every
closed point x ′

0 of X0, the eigenvalues of the elements in Fx ′
0
are algebraic numbers

and all the conjugates have complex absolute value (#κ(x ′
0))

n/2. If ι : Q�
∼−→ C and

w is a real number, we say that a lisse sheaf is ι-pure of ι-weight w if for every closed
point x ′

0 of X0 the eigenvalues of Fx ′
0
, after applying ι, have complex absolute value

(#κ(x0))w/2. Moreover, we say that a lisse Q�-sheaf is mixed (resp. ι-mixed) if it
admits a filtration of lisse Q�-sheaf with pure (resp. ι-pure) successive quotients.

2.3 Overconvergent F-isocrystals

2.3.1. Let k be a perfect field. We denote by W (k) the ring of p-typical Witt vectors
over k and by K (k) its fraction field. For every s ∈ Z>0, we denote by Zqs the ring
of Witt vectors over Fqs and by Qqs its fraction field. We suppose chosen compatible
inclusions Qqs ↪→ Qp.

Let X0 be a smooth variety over k, we denote by Isoc†(X0/K (k)) the category
of Berthelot’s overconvergent isocrystals of X0 over K (k). See [6] for a precise def-
inition and [11] or [33] for a shorter presentation. The category Isoc†(X0/K (k)) is
a K (k)-linear rigid abelian ⊗-category with unit object O†

X0
, denoted by K (k)X0 .

The endomorphism ring of K (k)X0 is isomorphic to K (k)s , where s is the number of
connected components of X0 ⊗k k.

2.3.2. We will recall now the notation for the extension of scalars and the Frobenius
structure of overconvergent isocrystals. We mainly refer to [2, §1.4]. For every finite
extension K (k) ↪→ K we denote by Isoc†(X0/K (k))K the category of K-linear
overconvergent isocrystals of X0 over K (k), namely the category of pairs (M, γ ),
whereM ∈ Isoc†(X0/K (k)) and γ : K → End(M) is aK-structure (cf. [2, §1.4.1]).
We will often omit γ in the notation. If K ⊆ L are finite extensions of K (k) there
exists a functor of extension of scalars

(−) ⊗K L : Isoc†(X0/K (k))K → Isoc†(X0/K (k))L.
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The category Isoc†(X0/K (k))K is a K-linear rigid abelian ⊗-category. When X0 is
geometrically connected over k, the endomorphism ring of the unit object KX0 :=
K (k)X0 ⊗ K is isomorphic to K.

2.3.3.Let usfixour notationon the inverse image functor for overconvergent isocrystals
with K-structure. Let X0/Fqs and Y0/Fqt be smooth varieties with t ≥ s and let us
write f0 : Y0/Fqt → X0/Fqs for a morphism of schemes f0 : Y0 → X0 which makes
the following diagram commutative

Y0 X0

Spec(Fqt ) Spec(Fqs ).

f0

We have an inverse image functor f̃ ∗
0 : Isoc†(X0/Qqs ) → Isoc†(Y0/Qqt ) defined in

[6, 2.3.2.(iv)]. IfM is an object in Isoc†(X0/Qqs ), the overconvergent isocrystal f̃ ∗
0 M

has a canonicalQqt -structure as an object in Isoc†(Y0/Qqt ). For every finite extension
Qqt ⊆ K, the previous functor extends to a ⊗-functor f ∗

0 : Isoc†(X0/Qqs )K →
Isoc†(Y0/Qqt )K in a natural way. Let us briefly describe it. If (M, γ ) is an object in
Isoc†(X0/Qqs )K, then f̃ ∗

0 M is endowed with theQqt ⊗Qqs Qqt -structure obtained by

making the first copy ofQqt acting on f̃ ∗
0 M via the canonicalQqt -structurementioned

above and the second copy acting via the restriction of f̃ ∗
0 γ to Qqt . The inverse image

f ∗
0 (M, γ ) is then defined to be ( f̃ ∗

0 M ⊗(Qqt ⊗Qqs
Qqt )

Qqt , f̃ ∗
0 γ ⊗ idQqt

).

2.3.4.Wewrite F : X0 → X0 for the q-power Frobenius.3 LetK be a finite field exten-
sion of Qq . For everyM ∈ Isoc†(X0/Qq)K and n ∈ Z>0, an nth Frobenius structure
ofM is an isomorphism between (Fn)∗M andM. We denote by F-Isoc†(X0/Qq)K
the category of overconvergent F-isocrystals with K-structure, namely the category
of pairs (M,�) whereM ∈ Isoc†(X0/Qq)K and � is a (1-st) Frobenius structure of
M. For every positive integer n, the isomorphism

�n := � ◦ F∗� ◦ · · · ◦ (Fn−1)∗�

will be the nth Frobenius structure of (M,�). The category F-Isoc†(X0/Qq)K is
a K-linear rigid abelian ⊗-category. In this case, even if X0 is connected but not
geometrically connected over Fq , the ring of endomorphisms of the unit object is
isomorphic to K.

When X0 is a smooth variety over Fqs , for every finite extensionQqs ⊆ K, the cate-
gory of K-linear isocrystals over Qqs with s-th Frobenius structure is equivalent to the
category F-Isoc†(X0/Qq)K (see [2, Corollary 1.4.11]). We will use this equivalence
without further comments.

2.3.5. The functors of extension of scalars and of inverse image for overconver-
gent isocrystals with K-structure extend in the obvious way to overconvergent

3 Note that the letter F will denote two different types of Frobenius endomorphisms, depending if we are
working with lisse sheaves or isocrystals.
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F-isocrystals. If (X0, x) is a smooth pointed variety over Fq geometrically connected
over Fqs and K is a finite extension of Qqs , the morphism f0 : X0/Fqs → X0/Fq

which is the identity on X0 induces a functor

x,K : F-Isoc†(X0/Qq)K → Isoc†(X0/Qqs )K

that sends (M, ) to f ∗
0 M. We denote the objects in F-Isoc†(X0/Qq)K with a sub-

script 0 andwewill remove itwhenwe consider the image byx,K in Isoc†(X0/Qqs )K.

2.3.6. For every finite extension K (k) ⊆ K, the category Isoc†(Spec(k)/K (k))K is
equivalent to VecK as a rigid abelian ⊗-category. Moreover, if k ⊆ k′ is an extension
of finite fields, and K (k′) ⊆ K, the Tannakian category F-Isoc†(Spec(k′)/K (k))K is
equivalent to the category of (finite-dimensional) K-vector spaces endowed with an
automorphism, which is induced by the Frobenius structure.

2.3.7. Let (X0, x) be a smooth pointed variety over Fq , geometrically connected over
Fqs . Let Eλ be a finite extension of Qqs in Qp. The category Isoc

†(X0/Qqs )Eλ admits
a fibre functor over some finite extension of Eλ. Let i0 : x0/Fqn ↪→ X0/Fqs be the
immersion of the closed point x0 in X0 where n is the degree of x0 (notation as in
Sect. 2.3.3). Let E (x0)

λ be the compositum of Eλ and Qqn in Qp. Then the functor

ωx,Eλ : Isoc†(X0/Qqs )Eλ

⊗Eλ
E

(x0)

λ−−−−−→ Isoc†(X0/Qqs )E
(x0)

λ

i∗0−→ Isoc†(x0/Qqn )E
(x0)

λ

� Vec
E

(x0)

λ

is a fibre functor, as proven in [12, Lemma 1.8]. This shows that for every finite
extension Eλ of Qqs , the category Isoc†(X0/Qqs )Eλ is Tannakian. Moreover, the

composition ωx,Eλ ◦ x,Eλ is a fibre functor for F-Isoc†(X0/Qq)Eλ over E (x0)
λ , that

we will denote by the same symbol. Therefore, for every finite extension Qqs ⊆ Eλ,
the category F-Isoc†(X0/Qq)Eλ is Tannakian.4

2.3.8. Let i0 : x ′
0 ↪→ X0 be the immersion of a closed point of degree n. LetK be a finite

extension of Qq and L a finite extension of K which contains Qqn . For every M0 ∈
F-Isoc†(X0/Qq)K, we denote by Fx ′

0
the n-th Frobenius structure of i∗0 (M0) ⊗K L.

This is the (linearized geometric) Frobenius ofM0 at x ′
0. By Sect. 2.3.6, it corresponds

to a linear automorphism of an L-vector space. The characteristic polynomial

Px ′
0
(M0, t) := det(1 − t Fx ′

0
|i∗0 (M0) ⊗K L) ∈ K[t]

is the (Frobenius) characteristic polynomial of M0 at x ′
0. See [2, §4.2.1 and §A.3.1]

for more details.

4 The category F-Isoc†(X0/Qq )Eλ
is actually Tannakian even when Eλ is simply a finite extension of

Qq . For simplicity, in what follows, we will mainly work with finite extensions of Qqs in order to make

Isoc†(X0/Qqs )Eλ
a Tannakian category.
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In analogy with lisse sheaves, we say that overconvergent F-isocrystals are pure or
ι-pure if they satisfy the similar conditions on the eigenvalues of the Frobenii at closed
points and we say that they are mixed or ι-mixed if they have analogous filtrations.

3 Coefficient objects

3.1 First definitions

Following [34], we adopt a notation which allows us to work with lisse sheaves and
overconvergent F-isocrystals at the same time. Let X0 be a smooth variety over Fq .

Definition 3.1.1 (Coefficient objects) For every prime � �= p and every finite field
extension K/Q�, we say that a Weil lisse K-sheaf is a K-coefficient object. When K is
instead a finite field extension ofQq , we say that an object inF-Isoc†(X0/Qq)K is aK-
coefficient object. IfK is a field of one of the two types, we denote byCoef(X0, K) the
category ofK-coefficient objects. We say thatK is the field of scalars ofCoef(X0, K).
For every prime �, the category of Q�-coefficient objects is the 2-colimit of the cate-
gories Coef(X0, Eλ) with Eλ ⊆ Q�. It is denoted by Coef(X0, Q�).

We will also work with categories of geometric coefficient objects. These are built
from the categories of coefficient objects by forgetting the Frobenius structure. To get
Tannakian categories, in this case, we will put an additional assumption on the field
of scalars. Let (X0, x) be a smooth connected pointed variety over Fq , geometrically
connected over Fqs for some s ∈ Z>0.

Definition 3.1.2 (Admissible fields) We say that a finite extension of Qqs is a p-adic
admissible field (for X0). To uniformize the notation, when � is a prime different from
p, we say that any finite field extension of Q� is an �-adic admissible field. We will
refer to this second kind of fields as étale admissible fields. If Eλ is an admissible
field, we also say that the place λ is admissible.

Definition 3.1.3 (Geometric coefficient objects) For every p-adic admissible field K,
wedefined inSect. 2.3.5 a functor ofTannakian categoriesx,K : F-Isoc†(X0/Qq)K →
Isoc†(X0/Qqs )K which forgets the Frobenius structure. We denote by Coef(X (x), K)

the smallest Tannakian subcategory of Isoc†(X0/Qqs )K containing the essential image
of x,K. We say that the category Coef(X (x), K) is the category of geometric K-
coefficient objects (with respect to x).

WhenK is an étale admissible field,we have again a functorx,K : Weil(X0, K) →
LS(X (x), K) which forgets the Frobenius structure (see Sect. 2.2.2). The category of
geometric K-coefficient objects (with respect to x) is the smallest Tannakian subcat-
egory of LS(X (x), K) containing the essential image of x,K and it is denoted by
Coef(X (x), K).

For every prime �, the category of geometric Q�-coefficient objects is the 2-colimit
of the categories of geometric Eλ-coefficient objects where Eλ varies among the
admissible fields for X0 in Q�. It is denoted by Coef(X (x), Q�) and we denote by
x,Q�

the functor induced by the functors x,K. If E0 is a Q�-coefficient object, we
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drop the subscript 0 to indicate x,Q�
(E0), thus we write E for x,Q�

(E0). When X0

is geometrically connected over Fq we drop the superscript (x) in the notation for the
categories of geometric coefficient objects, as they do not depend on x .

Definition 3.1.4 (Geometric properties) Let E0 a Q�-coefficient object over a smooth
connected variety X0 over Fq . We say that E0 is geometrically semi-simple, geomet-
rically trivial or geometrically finite if for one (or equivalently any) choice of an
F-point x , the associated geometric coefficient object E is semi-simple, trivial or finite
in Coef(X (x), Q�). When X0 is not connected we say that a coefficient object has one
of the previous properties if the restriction to each connected component of X0 does.

Definition 3.1.5 (Cohomology of coefficient objects) Let (X0, x) be a smooth con-
nected pointed variety over Fq , geometrically connected over Fqs for some s ∈ Z>0
and let E0 be an Eλ-coefficient over X0. If E0 is a lisse sheaf, we denote by Hi (X (x), E)

(resp. Hi
c (X

(x), E)) the λ-adic étale cohomology (resp. the λ-adic étale cohomology
with compact support) of X (x) with coefficients in E and by H0(X0, E0) the fixed
points of (Fs)∗ acting on H0(X (x), E). When Eλ is p-adic, we denote by Hi (X (x), E)

(resp. Hi
c (X

(x), E)) the rigid cohomology (resp. the rigid cohomology with compact
support) of X0 with coefficients in E .We denote by H0(X0, E0) the Eλ-linear subspace
of H0(X (x), E) of fixed points under the action of (Fs)∗.

Remark 3.1.6 For both types of coefficient objects, if Eλ,X (x) is the unit object of
Coef(X (x), Eλ), the Eλ-vector space Hom(Eλ,X (x) , E) is canonically isomorphic to
H0(X (x), E). We also have a canonical isomorphism between Hom(Eλ,X0 , E0) and
H0(X0, E0), where Eλ,X0 is the unit object in Coef(X0, Eλ).

Proposition 3.1.7 The functor (Fs)∗ is a ⊗-autoequivalence of Coef(X (x), Eλ). In
particular, the category Coef(X (x), E (x0)

λ ) endowed with the endofunctor (Fs)∗ is a
neutral Tannakian category with Frobenius, as defined in Definition A.1.1.

Proof For lisse sheaves the result is well-known. In the p-adic case see [2, Remark in
§1.1.3] or [38, Corollary 6.2] for a proof which does not use arithmetic D-modules.

��
Corollary 3.1.8 Any irreducible object in Coef(X (x), Eλ) admits an n-th Frobenius
structure for some n ∈ Z>0.

Proof By definition, an irreducible object F in Coef(X (x), Eλ) is a subquotient of
some geometric coefficient object E that admits a Frobenius structure. By Proposition
3.1.7, the functor (Fs)∗ is an autoequivalence, thus it permutes the isomorphismclasses
of the irreducible subquotients of E . This implies that there exists n > 0 such that
(Fns)∗F � F , as we wanted. ��
Remark 3.1.9 When X0 is geometrically connected overFq , the categoryCoef(X , Qq)

is the same category as the one considered by Crew to define the fundamental group
at the end of §2.5 in [12]. The author is not aware whether this category is equivalent
to the one considered by Abe to define, for example, the fundamental group in [2,
§2.4.17]. By Corollary 3.1.8, the category Coef(X , Qq) is a Tannakian subcategory
of the one defined by Abe.
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Definition 3.1.10 We say that a K-coefficient object is constant if it is geometrically
trivial. We denote by Coefcst(X0, Eλ) the (strictly) full subcategory of Coef(X0, Eλ)

of constant Eλ-coefficient objects. We define similarly Coefcst(X0, Q�) ⊆ Coef(X0,

Q�).

Definition 3.1.11 For every prime �, the category Coef(Spec(Fq), Q�) is canonically
equivalent to the category of Q�-vector spaces endowed with an automorphism. For

a ∈ Q
×
� we write Q

(a)

� for the rank 1 coefficient object over Spec(Fq) associated to
the vector space Q� endowed with the multiplication by a. Let pX0 : X0 → Spec(Fq)

be the structural morphism. For every Q�-coefficient object E0 and every a ∈ Q
×
� , we

say that E0 ⊗ p∗
X0

(
Q

(a)

�

)
is the twist of E0 by a and we denote it by E (a)

0 . A twist is

said to be algebraic if a is algebraic.

Remark 3.1.12 The operation of twisting coefficient objects by an element a ∈ Q
×
�

gives an exact autoequivalence of the category Coef(X0, Q�). In particular, for every
coefficient object, the property of being absolutely irreducible is preserved by any
twist.

Definition 3.1.13 If E0 is a Q�-coefficient object, for every closed point x0 of X0 we
denote by Px0(E0, t) the (Frobenius) characteristic polynomial of E0 at x0.
Definition 3.1.14 Let � be a prime number, K a field endowed with an inclusion τ :
K ↪→ Q�. We say that a Q�-coefficient object E0 is K-rational with respect to τ if
the characteristic polynomials at closed points have coefficients in the image of τ . A
K-rational coefficient object is the datum of τ : K ↪→ Q� and a Q�-coefficient object
that is K-rational with respect to τ . We will also say that an Eλ-coefficient object is
E-rational if it is E-rational with respect to the natural embedding E ↪→ Eλ ⊆ Q�.
We say that a coefficient object is algebraic if it is Q-rational for one (or equivalently
any) map τ : Q ↪→ Q�. A coefficient object is said p-plain if it is algebraic and all
the eigenvalues at closed points are p-plain (see 2.0.2 for the notation).

We can compare two K-rational coefficient objects with different fields of scalars
looking at their Frobenius characteristic polynomials.

Definition 3.1.15 Let E0 and F0 be two coefficient objects that are K-rational with
respect to τ and τ ′ respectively. We say that E0 and F0 are K-compatible if their
characteristic polynomials at closed points are the same as polynomials in K[t], after
the identifications given by τ and τ ′.

Our general aim in our article will be to convert the numerical data provided by the
Frobenius characteristic polynomials at closed points to structural properties of the
coefficient objects. As an example, we prove the following general statement for Weil
lisse sheaves.

Proposition 3.1.16 Let X0 be a connected variety over Fq and let V0 be a Weil lisse
Eλ-sheaf over X0. If all the eigenvalues of the Frobenius at some closed point x0 of
X0 are �-adic units, then V0 is an étale lisse sheaf. In particular, an extension of étale
lisse sheaves inWeil(X0, Eλ) is étale.
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Proof The condition on the eigenvalues is preserved after an extension of the base field,
thus we may assume that x0 is a rational point. Let ρ0 be the Eλ-linear representation
of W (X0, x) associated to V0 with x an F-point over x0. Write �0 ⊆ GL(Vx ) for the
image of ρ0 and � for the image of π ét

1 (X , x) via ρ0. The group �0 is generated by
� and ρ0(γ ), where γ is some element in Fx0 . Write 
 for the closure in GL(Vx ) of
the group generated by ρ0(γ ). The subgroup � ⊆ GL(Vx ) is profinite because it is a
quotient of the profinite group π ét

1 (X , x). We want to prove that 
 is profinite as well.
Fix a basis {v1, . . . , vr } of Vx such that ρ0(γ ) admits a Jordan normal form. Since

the eigenvalues of ρ0(γ ) are �-adic units, ρ0(γ ) lies in the closed profinite subgroup
GLr (OEλ) ⊆ GLr (Eλ), whereOEλ is the ring of integers of Eλ. This implies that
 is a
closed subgroup of the profinite group GLr (OEλ), and therefore it is a profinite group,
as wewanted. To conclude the proof note that
 normalizes�, so that�·
 ⊆ GL(Vx )

is a profinite subgroup. By construction, �0 is contained in � · 
. As a result, the
�-adic representation ρ0 factors through the profinite completion of W (X0, x), which
is π ét

1 (X0, x). This concludes the proof. ��

3.2 Monodromy groups

We introduce now the main characters of the article: the fundamental groups and the
monodromy groups of coefficient objects. We will present in Proposition 3.2.7 some
fundamental exact sequences for these groups. The sequences in Proposition 3.2.7
represent the analogue of the well-known exact sequence which relates the geometric
and the arithmetic étale fundamental group of a variety.

3.2.1. Let (X0, x) be a smooth connected pointed variety. For every étale admissible
field Eλ we consider the fibre functor

ωx,Eλ : Weil(X0, Eλ) → VecEλ

attached to x . This functor sends a lisse sheaf V0 to its stalk Vx . When Eλ is a p-adic
admissible field, we defined in Sect. 2.3.7 a fibre functor for Isoc†(X0/Qqs )Eλ over

E (x0)
λ , denoted by ωx,Eλ . As usual, in order to uniformise the notation, when Eλ is

an étale admissible field we write E (x0)
λ for Eλ. Therefore, for every admissible field

Eλ, we have a fibre functor ωx,Eλ of Coef(X
(x), Eλ) over E

(x0)
λ . We will denote with

the same symbol the fibre functor induced on Coef(X0, Eλ). As the fibre functors
commute with the extension of scalars, for every � we also have a fibre functor over
Q� for Q�-coefficient objects. We denote it by ωx,Q�

.

Definition 3.2.2 (Fundamental groups) Let (X0, x) be a smooth connected pointed
variety and Eλ an admissible field. We denote by πλ

1 (X0, x) the Tannakian group over

E (x0)
λ ofCoef(X0, Eλ)with respect toωx,Eλ .We alsowriteπλ

1 (X , x) for theTannakian
group of Coef(X (x), Eλ) with respect to the restriction of ωx,Eλ . The functor

x,Eλ : Coef(X0, Eλ) → Coef(X (x), Eλ)
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induces a closed immersion πλ
1 (X , x) ↪→ πλ

1 (X0, x). We denote by πλ
1 (X0, x)cst

the quotient of πλ
1 (X0, x) corresponding to the inclusion of Coefcst(X0, Eλ) in

Coef(X0, Eλ).

Remark 3.2.3 Suppose that E (x0)
λ = Eλ, then there exists an isomorphism of functors

η : ωx,Eλ ⇒ ωx,Eλ ◦ (Fs)∗. For lisse sheaves, this is induced by the choice of an
étale path between x and the F-point sent to x via Fs : X → X . In the case of
overconvergent F-isocrystals, it is constructed in [2, §2.4.18]. Thanks to the existence
of η and Proposition 3.1.7, one can define aWeil group for coefficient objects over the
field Eλ (cf. Sect. A.1.4).

Every Eλ-coefficient object E0 generates three Eλ-linear Tannakian categories, the
arithmetic one 〈E0〉 ⊆ Coef(X0, Eλ), the geometric one 〈E〉 ⊆ Coef(X (x), Eλ) and
the Tannakian category of constant objects 〈E0〉cst ⊆ 〈E0〉. We will consider these
categories endowed with the fibre functors obtained by restricting ωx,Eλ .

Definition 3.2.4 (Monodromy groups) Let (X0, x) be a smooth connected pointed
variety. We denote by G(E0, x) the (arithmetic) monodromy group of E0, namely the
Tannakian group of 〈E0〉. The geometric monodromy group of E0 will be instead the
Tannakian group of 〈E〉 and it will denoted by G(E, x). We will also consider the
quotient G(E0, x) � G(E0, x)cst, which corresponds to the inclusion 〈E0〉cst ⊆ 〈E0〉.
These three groups are quotients of the fundamental groups defined in Sect. 3.2.1.

Remark 3.2.5 WhenV0 is a lisse sheaf and ρ0 : W (X0, x) → GL(Vx ) is the associated
�-adic representation, then G(V0, x) is the Zariski-closure of the image of ρ0 and
G(V, x) is the Zariski-closure of ρ0(π

ét
1 (X , x)). When M0 is an overconvergent F-

isocrystal and x0 is a rational point, G(M, x) is the same group as the one defined by
Crew in [12] and denoted by DGal(M, x). This group is also isomorphic to the group
DGal(M, x) which appears in [4].

Remark 3.2.6 Since X0 is connected, the étale fundamental groups associated to two
different F-points of X0 are (non-canonically) isomorphic. Hence, in the case of lisse
sheaves, the isomorphism class of the monodromy groups does not depend on the
choice of x . For overconvergent F-isocrystals, by [16, Theorem 3.2], the monodromy
groups associated to two different F-points become isomorphic after passing to a finite
extension of the field of scalars. We do not know any better result in this case. Note
that thanks to [14], we also know that if λ is a p-adic place, the isomorphism class of
πλ
1 (X0, x) ⊗

E
(x0)

λ

Qp is independent of the choice of x .

Let us present now the fundamental exact sequence for coefficient objects over X0.
For overconvergent F-isocrystals the sequence is a generalization of the one proven
in [40, Proposition 4.7].

Proposition 3.2.7 Let (X0, x) be a smooth pointed variety over Fq , geometrically
connected over Fqs , and let λ be an admissible place of a number field E.

(i) The natural morphisms previously presented give an exact sequence

1 → πλ
1 (X , x) → πλ

1 (X0, x) → πλ
1 (X0, x)

cst → 1.
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(ii) For every Eλ-coefficient object E0 and every F ∈ 〈E〉, there exists G0 ∈ 〈E0〉 such
that F ⊆ G.

(iii) For every Eλ-coefficient object E0, the exact sequence of (i) sits into the following
commutative diagram with exact rows and surjective vertical arrows

1 πλ
1 (X , x) πλ

1 (X0, x) πλ
1 (X0, x)cst 1

1 G(E, x) G(E0, x) G(E0, x)cst 1.

(iv) The affine group scheme π1(C0, ω0)
cst is isomorphic to the pro-algebraic com-

pletion of Z over K and G(E0, x)cst is a commutative algebraic group.
(v) Theaffinegroup schemeπλ

1 (X0, x)cst is canonically isomorphic toπλ
1 (Spec(Fqs ), x).

In particular, the profinite group π0(π
λ
1 (X0, x)cst) is canonically isomorphic to

Gal(F/Fqs ).

Proof By Proposition 3.1.7, the category Coef(X (x), E (x0)
λ ) endowed with the endo-

functor (Fs)∗ is a neutral Tannakian categorywith Frobenius, in the sense ofDefinition
A.1.1. Thus by Theorem A.2.2 we get all the parts from (i) to (iv).

Passing to (v), write qX0 : X0 → Spec(Fqs ) for the morphism induced by the
F-point x . The inverse image functor

q∗
X0

: Coef(Spec(Fqs ), E
(x0)
λ ) → Coefcst(X0, E

(x0)
λ )

admits as a quasi-inverse the functor qX0∗ which sends a constant coefficient object
E0 to the vector space H0(X (x), E) endowed with the action of (Fs)∗. This implies
that q∗

X0
induces an isomorphism

πλ
1 (X0, x)

cst ∼−→ πλ
1 (Spec(Fqs ), x).

Since Coef(Spec(Fqs ), E
(x0)
λ ) is canonically equivalent to Rep

E
(x0)

λ

(W (F/Fqs )), the

profinite group π0(π
λ
1 (X0, x)cst) is canonically isomorphic to Gal(F/Fqs ). ��

3.3 Comparison with the étale fundamental group

3.3.1. We continue our analysis of the fundamental groups of coefficient objects. Here
we focus our attention on the group of connected components. The statements of
this section are fairly easy for lisse sheaves and more difficult for overconvergent F-
isocrystals. In the latter case, Crew have already studied the problem when X0 is a
smooth curve, [12]. Later in [23], Étesse proved that overconvergent isocrystals (with
and without Frobenius structure) over smooth varieties of arbitrary dimension satisfy
étale descent.5 This allows a generalization of Crew’s work.

5 In the article he states the result for overconvergent F-isocrystals, but the same proof works without
Frobenius structure.
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Drinfeld and Kedlaya presented in [20, Appendix B] how to perform such a gen-
eralization for the arithmetic fundamental group of overconvergent F-isocrystals. We
will be mainly interested in the extension of their result to the geometric fundamental
group.

3.3.2. Let (X0, x) be a smooth connected pointed variety overFq and Eλ an admissible
field for X0. Following [20, Remark B.2.5], we define

Repsmooth
Eλ

(π ét
1 (X0, x)) := 2- lim−→

H

RepEλ
(π ét

1 (X0, x)/H)

where H varies among the normal open subgroups of π ét
1 (X0, x). This category is

naturally endowed with a fully faithful embedding

Repsmooth
Eλ

(π ét
1 (X0, x)) ↪→ Coef(X0, Eλ).

The essential image is closed under subquotients. Therefore, this functor induces a
surjective morphism πλ

1 (X0, x) � π ét
1 (X0, x), where π ét

1 (X0, x) denotes here the

pro-constant profinite group scheme over E (x0)
λ associated to the étale fundamental

group of X0. The subcategory

Repsmooth
Eλ

(Gal(F/kX0)) ⊆ Repsmooth
Eλ

(π ét
1 (X0, x))

of representations which factor through Gal(F/kX0) is sent by the previous functor to
the category of constant coefficient objects. This implies that the composition of the
morphisms

πλ
1 (X0, x) � π ét

1 (X0, x) � Gal(F/kX0)

factors through πλ
1 (X0, x)cst. By Proposition 3.2.7.(v), the induced morphism

πλ
1 (X0, x)cst � Gal(F/kX0) is surjective with connected Kernel. Finally, the homo-

topy exact sequence for the étale fundamental group and the fundamental exact
sequence of Proposition 3.2.7. (i) fit in a commutative diagram

1 πλ
1 (X , x) πλ

1 (X0, x) πλ
1 (X0, x)cst 1

1 π ét
1 (X , x) π ét

1 (X0, x) Gal(F/kX0) 1.

(3.3.2.1)

The central and the right vertical arrows are the morphisms previously constructed.
The left one is the unique morphism making the diagram commutative.
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Proposition 3.3.3 Let (X0, x) be a smooth connected pointed variety over Fq . For
every admissible place λ we have a commutative diagram

1 π0(π
λ
1 (X , x)) π0(π

λ
1 (X0, x)) π0(π

λ
1 (X0, x)cst) 1

1 π ét
1 (X , x) π ét

1 (X0, x) Gal(F/kX0) 1,
∼ ϕ ∼ ϕ0 ∼ ϕcst

0

(3.3.3.1)
where the vertical arrows are isomorphisms and the rows are exact. The diagram is
functorial in (X0, x) when it varies among the smooth connected pointed varieties
over Fq .

Proof The diagram is constructed applying the functor π0 to (3.3.2.1), hence it is func-
torial. To prove that it has all the desired properties we may extend the field of scalars
toQ�. We start by showing that the upper row is exact. As the functor π0 is right exact,
it is enough to prove the injectivity of the morphism π0(π

λ
1 (X , x)) → π0(π

λ
1 (X0, x)).

The π0 of the Tannakian group of a Tannakian category is the Tannakian group of the
subcategory of finite objects. Thus we have to prove that for every irreducible finite
geometric Q�-coefficient object E , there exists a finite object F0 ∈ Coef(X0, Q�),
such that E is a subquotient of F .

By Lemma A.2.1, there exists F ′
0 ∈ Coef(X0, Q�) such that E is a subobject of

F ′. As E is irreducible, we can even assume F ′
0 to be irreducible. In particular, there

exist g1, . . . , gn ∈ G(F ′
0, x)(Q�) such that ωx,Q�

(F ′
0) = ∑n

i=1 gi (ωx,Q�
(E)). The

algebraic group G(F ′, x) is normal in G(F ′
0, x) by Proposition 3.2.7, thus the vector

spaces gi (ωx,Q�
(E)) are G(F ′, x)-stable for every i . In addition, their monodromy

groups as representations of G(F ′, x) are all finite, as they are conjugated to the
monodromy group of E . Therefore F ′, being a sum of finite objects, is a finite object.

LetW (F ′
0, x) be the Weil group of 〈F ′〉, as in Sect. A.1.4. Since G(F ′, x) is finite,

there exists n ∈ Z>0 such that (Fn)∗ acts trivially on it. If ρ′ is the representation
of G(F ′, x) associated to F ′, then (Fn)∗ρ′ = ρ′. Thus ρ := ⊕n−1

i=0 (Fi )∗ρ′ can be
endowed with a Frobenius structure

� : F∗
(
n−1⊕

i=0

(Fi )∗ρ′
)

∼−→
n−1⊕

i=0

(Fi )∗ρ′

such that, for every 1 ≤ i ≤ n−1, the restriction of� to F∗ (
(Fi )∗ρ′) is the canonical

isomorphism F∗ (
(Fi )∗ρ′) ∼−→ (Fi+1)∗ρ′. The pair (ρ,�) induces a representation

of W (F ′
0, x) with finite image and thus a finite coefficient object F0. The original

geometric coefficient object E is a subobject ofF , thereforeF0 satisfies the properties
that we wanted.

Finally, we prove that the vertical arrows of (3.3.3.1) are isomorphisms. The mor-
phism ϕcst

0 is an isomorphism by Proposition 3.2.7.(v). By diagram chasing, it remains
to prove that ϕ0 is an isomorphism. For lisse sheaves, this is quite immediate. If a lisse
sheaf has finite arithmetic monodromy group, its associate �-adic representation fac-
tors through a finite quotient of the Weil group of X0. In the p-adic case one can
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prove that ϕ0 is an isomorphism using [32, Theorem 2.3.7], as it is explained in [20,
Proposition B.7.6.(i)]. ��
Proposition 3.3.4 Let E0 be a Q�-coefficient object over (X0, x).

(i) For every finite étale morphism f0 : (Y0, y) → (X0, x) of pointed varieties,
the natural morphisms G( f ∗

0 E0, y) → G(E0, x) and G( f ∗E, y) → G(E, x) are
open immersions.

(ii) There exists a choice of f0 : (Y0, y) → (X0, x) such that G( f ∗
0 E0, y)

∼−→
G(E0, x)◦ and G( f ∗E, y)

∼−→ G(E, x)◦.
Proof We note that by Proposition 3.3.3 the group of connected components of the
arithmetic monodromy group (resp. geometric monodromy group) are quotients of the
arithmetic étale fundamental group (resp. geometric étale fundamental group), thus
(i) implies (ii).

When E0 is a lisse sheaf, (i) is well-known. If E0 is an overconvergent F-isocrystal,
the result on the arithmetic monodromy groups is a consequence of [20, Propo-
sition B.7.6.(ii)]. It remains to prove (i) for the geometric monodromy groups of
overconvergent F-isocrystals. It is enough to treat the case when Y0 → X0 is a Galois
coverwithGalois group H andY0 is geometrically connected overFq . AsY0 is geomet-
rically connected over Fq , the group H acts on 〈 f ∗E〉 via Qp-linear autoequivalences.
Let 〈 f ∗E〉H be the category of H -equivariant objects in 〈 f ∗E〉. We choose isomor-
phisms of fibre functors between ωy,Qp

and ωh(y),Qp
for every h ∈ H . This choice

induces an action of H on G( f ∗E, y).
By [23], overconvergent isocrystals with and without F-structure satisfy étale

descent. Therefore, there exist fully faithful embeddings 〈E〉 ↪→ 〈 f ∗E〉H and
〈 f ∗E〉H ↪→ Isoc†(X0/Qq)Qp

. The former embedding induces a morphism at the

level of the Tannakian groups ϕ : G( f ∗E, y)� H → G(E, x). By definition, the sub-
category 〈E〉 ⊆ Isoc†(X0/Qq)Qp

is closed under the operation of taking subquotients.

Thus, the same is true for 〈E〉 ⊆ 〈 f ∗E〉H . This proves that ϕ is surjective, which in
turn implies that G( f ∗E, y) is an open subgroup of G(E, x). ��

3.4 Rank 1 coefficient objects

This section is an interlude on rank 1 coefficient objects. One of the starting points of
Weil II is a finiteness result for rank 1 lisse sheaves, consequence of class field theory.
Thanks to a reduction to unramified p-adic representations of the étale fundamental
group, the same statement is now known for overconvergent F-isocrystals of rank 1.

Theorem 3.4.1 ([13, Proposition 1.3.4], [1, Lemma 6.1]) Let X0 be a smooth variety
overFq . Every Eλ-coefficient object of rank 1 is a twist of a finite Eλ-coefficient object.

Corollary 3.4.2 For everyQ�-coefficient objectE0 over X0, there exist a positive integer

n and elements a1, . . . , an ∈ Q
×
� such that

E ss
0 �

n⊕

i=1

F (ai )
i,0 ,
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where for each i the coefficient objectFi,0 is irreducible with finite order determinant.
The elements a1, . . . , an are uniquely determined up to permutation andmultiplication
by a root of unity. If E0 is E-rational, the elements a1, . . . , an can be chosen so that
arii ∈ E for every i , where ri is the rank of Fi,0.

Corollary 3.4.2 is important as it allows to reduce many statements on coefficient
objects to the case of absolutely irreducible coefficient objects with finite order deter-
minant. It is convenient to introduce the following definitions.

Definition 3.4.3 (Twist classes) For a prime �, we denote by�� the torsion-free abelian
group Q

×
� /μ∞(Q�). We say that an element in �� is an (�-adic) twist class. We

say the class of 1 in �� is the trivial twist class. Let E0 be a Q�-coefficient object
and let a1, . . . , an ∈ Q

×
� be elements as in Corollary 3.4.2. We say that the classes

[a1], . . . , [an] in �� are the twist classes of E0 and we denote by �(E0) the subset
{[a1], . . . , [an]} ⊆ ��. We write X(E0) for the group generated by �(E0) in �� and
by X(E0)Q the Q-linear subspace X(E0) ⊗Z Q ⊆ �� ⊗Z Q. If the only twist class of
E0 is the trivial one, we say that E0 is untwisted.

An important application of Theorem 3.4.1 is the global monodromy theorem. In
this case, the extension to overconvergent F-isocrystals is due to Crew.

Theorem 3.4.4 (Grothendieck, Crew) For every coefficient object E0, the radical6 of
G(E, x) is unipotent.

Proof In the case of lisse sheaves, this is a theorem of Grothendieck, and it is proven
in [13, Théorème 1.3.8]. In the p-adic case, Crew has proven the result when X0
is a smooth curve [12, Theorem 4.9]. One obtains the result in higher dimensions
replacing [ibid., Proposition 4.6] with Proposition 3.3.4 and [ibid., Corollary 1.5]
with Theorem 3.4.1.

��
Corollary 3.4.5 Let E0 be a geometrically semi-simple coefficient object. The neutral
component G(E, x)◦ is a semi-simple algebraic groupwhich coincideswith the derived
subgroup of G(E0, x)◦.
Proof Thanks to Theorem 3.4.4, G(E, x)◦ is a semi-simple algebraic group, therefore

G(E, x)◦ = [G(E, x)◦,G(E, x)◦] ⊆ [
G(E0, x)◦,G(E0, x)◦

]
.

On the other hand, by Proposition 3.2.7.(iv), the quotient G(E0, x)◦/G(E, x)◦ is com-
mutative, which implies that

[
G(E0, x)◦,G(E0, x)◦

] ⊆ G(E, x)◦.

This concludes the proof. ��
6 For us, the radical of an algebraic group is defined to be its maximal normal solvable connected subgroup.
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One can even enhance Theorem 3.4.4 thanks to the following lemma.

Lemma 3.4.6 For every coefficient object E0 and every connected finite étale cover
f0 : (Y0, y) → (X0, x), we have �(E0) = �( f ∗

0 E0).
Proof After taking semi-simplification and twists, wemay assume that E0 is absolutely
irreducible with finite order determinant. In this case, the result is proven in [19,
Proposition 3.6.1] for lisse sheaves. The proof is the same for overconvergent F-
isocrystals, as they satisfy étale descent by [23]. ��
Theorem 3.4.7 Let E0 be a Q�-coefficient object. The following properties are equiv-
alent.

(i) The neutral component of G(E0, x)/G(E, x) is unipotent.
(ii) The radical of G(E0, x) is unipotent.
(iii) The coefficient object E0 is untwisted.
In particular, untwisted coefficient objects form a Tannakian subcategory ofCoef(X0,

Q�).

Proof The implication (i) ⇒ (ii) follows from Theorem 3.4.4 and the other direction
follows from the fact that G(E0, x)/G(E, x) is a commutative quotient of G(E0, x).
Let us show now that (ii) and (iii) are equivalent as well. If E0 is a coefficient object
satisfying (ii), all the rank 1 coefficient objects in 〈E0〉 have finite order under tensor.
In particular, if F0 is an irreducible subquotient of E0, its determinant has finite order
under tensor. This implies that E0 is untwisted. Conversely, let us assume that E0
is untwisted. Thanks to Proposition 3.3.4, there exists a connected finite étale cover
f0 : (Y0, y) → (X0, x) such that G( f ∗

0 E0, y) = G(E0, x)◦. By Lemma 3.4.6, the
inverse image f ∗

0 E0 remains untwisted. This shows that we may assume that G(E0, x)
is connected. Note that it is also harmless to assume that E0 is semi-simple by passing
to the semi-simplifications. We are reduced to showing that the centre Z of G(E0, x)
is finite. To prove this we may further assume that E0 is irreducible. Indeed, if E0 =
F0 ⊕ G0 and Z1 and Z2 are the centres of G(F0, x) and G(G0, x) respectively, then
Z ⊆ Z1 × Z2. Therefore, if Z1 and Z2 are finite the same holds for Z .

If we assume that E0 is irreducible, the representation of Z on ωx,Q�
(E0) decom-

poses into a direct sum χ⊕r where r is the rank of E0 and χ is a character of Z . By
construction, this representation is faithful, therefore χ generates the group of char-
acters of Z . On the other hand, we know that χ is finite because E0 is untwisted. This
shows that Z is a finite group scheme, as we wanted. ��
Corollary 3.4.8 Let E0 be a Q�-coefficient object.

(i) For every F0 ∈ 〈E0〉, we have �(F0) ⊆ X(E0).
(ii) The map X∗(G(E0, x)) → X(E0) which associates to a rank 1 coefficient object

its twist class has finite kernel and cokernel.

Proof It is enough to prove (i) forF0 = E⊗m
0 ⊗(E∨

0 )⊗n withm, n ∈ N. In addition, we

may assume that E0 admits a unique twist class, hence it can be written as F (a)
0 with

F0 untwisted. By Theorem 3.4.7, the coefficient object F⊗m
0 ⊗ (F∨

0 )⊗n is untwisted.
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Therefore, [am−n] ∈ X(E0) is the unique twist class of E⊗m
0 ⊗(E∨

0 )⊗n . This proves part
(i). For part (ii) we first note that the kernel is finite because untwisted rank 1 coefficient
objects have finite order under tensor. To prove that the cokernel is finite as well it is
enough to prove that for every twist class [a] of E0, there exists a rank 1 coefficient
objectL0 ∈ 〈E0〉with twist class [an] for some n ≥ 1. Since, by definition, there exists
an irreducible object F0 ∈ 〈E0〉 with twist class [a], we can pick L0 := det(F0). ��

3.5 Weights

In Weil II Deligne introduced the theory of weights for lisse sheaves. The same theory
is now available for overconvergent F-isocrystals, thanks to the work of Kedlaya in
[31]. Here the main theorem.

Theorem 3.5.1 (Deligne, Kedlaya) Let X0 be a smooth geometrically connected vari-
ety over Fq and E0 a ι-mixed coefficient object over X0 of ι-weights ≤ w. If α is an
eigenvalue of F acting on Hn

c (X , E), then |ι(α)| ≤ q(w+n)/2.

Proof For lisse sheaves this is [13, Corollaire 3.3.5]. For overconvergent F-isocrystals
it is proven by Kedlaya in [31, Theorem 6.6.2]. ��
Corollary 3.5.2 Let X0 be a smooth variety. The following statements are true.

(i) For every ι-mixed coefficient object there exists an increasing filtration

0 = W−1(E0) � W0(E0) � · · · � Wn(E0) = E0

where for every 0 ≤ i ≤ n, the quotient Wi (E0)/Wi−1(E0) is ι-pure of weight wi

and w0 < w1 < · · · < wn.
(ii) Every ι-pure coefficient object is geometrically semi-simple. Conversely, every

ι-mixed geometrically semi-simple coefficient object is a direct sum of ι-pure
coefficient objects.

Proof This follows from Theorem 3.5.1 as proved in [13, Théorème 3.4.1]. ��
For every Q�-coefficient object E0 on X0, we can put together all the characteristic

polynomials at closed points and form a formal series

LX0(E0, t) :=
∏

x0∈|X0|
Px0(E0, tdeg(x0))−1 ∈ Q�[[t]].

This is called the L-function of E0.
Theorem 3.5.3 (Trace formula) If X0 is geometrically connected over Fq , for every
coefficient object E0 we have

LX0(E0, t) =
2d∏

i=1

det(1 − Ft, Hi
c (X , E))(−1)i+1

.
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Proof For lisse sheaves, this is the classical Grothendieck’s formula, in the p-adic case
see [24, Théorème 6.3]. ��
Thanks to the theory of weights, this formula can be used to compare the global
sections of compatible coefficient objects. The theory of weights is needed to control
the possible cancellations between the factors of the numerator and the denominator.

Proposition 3.5.4 ([35, Cor. VI.3], [2, Prop. 4.3.3]) Let X0 be a smooth geometri-
cally connected variety over Fq of dimension d. For every ι-pure coefficient object
E0 of ι-weight w, the dimension of H0(X , E) is equal to the number of poles of
ι(L(X0, E∨

0 (d))), counted with multiplicity, with absolute value qw/2. If we also
assume E0 to be semi-simple, the dimension of H0(X0, E0) is equal to the order of the
pole of L(X0, E∨

0 (d)) at 1.

Corollary 3.5.5 Let X0 be a smooth geometrically connected pointed variety over Fq .
Let E0 and F0 be E-compatible coefficient objects and suppose that Q�-coefficient
object E0 is ι-mixed. The following statements are true.

(i) IfE0 andF0 aregeometrically semi-simple, thendim(H0(X , E)) = dim(H0(X ,F)).
(ii) If E is absolutely irreducible the same is true for F .
(iii) If E0 and F0 are semi-simple, then dim(H0(X0, E0)) = dim(H0(X0,F0)).
(iv) If E0 is absolutely irreducible the same is true for F0.

Proof LetQ�′ be the algebraic closure of the field of scalars ofF0 and let ι′ : Q�′
∼−→ C

be an isomorphismwhich agreeswith ιwhen restricted to E . TheQ�′ -coefficient object
F0 is ι′-mixed and its ι′-weights are equal to the ι-weights of E0. In addition, ifW∗(E0)
and W∗(F0) are the weight filtrations of Corollary 3.5.2.(i), for each i the quotients
Wi (E0)/Wi−1(E0) and Wi (F0)/Wi−1(F0) are E-compatible. In order to prove part
(i), it is enough to show that statement for these subquotients. But for them, (i) follows
from Proposition 3.5.4. In addition, applying part (i) to End(E0) and End(F0), we also
get part (ii). For part (iii) and (iv) one argues similarly. ��

Thanks to the theory of weights one can even prove the following result.

Proposition 3.5.6 [2, A.3] Two ι-mixed Q�-coefficient objects with the same charac-
teristic polynomials at closed points have isomorphic semi-simplifications.

Remark 3.5.7 Wewill see later that every coefficient object is actually ι-mixed (Corol-
lary 3.6.6). Therefore, Corollary 3.5.5 and Proposition 3.5.6 can be applied to every
coefficient object. Note that for lisse sheaves Proposition 3.5.6 is classically obtained,
without the theory of weights, as a consequence of Chebotarev’s density theorem, [41,
Theorem 7].

3.6 Deligne’s conjecture

We are ready now to present the state of art of [13, Conjecture 1.2.10].7 See also
[4] and [34] for other overviews. The extension of the statement to overconvergent

7 We decided to omit here the part of the conjecture on the p-adic valuations of the Frobenius eigenvalues
at closed points. Moreover, we will work with smooth varieties, even if the conjecture was originally stated
for normal varieties.
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F-isocrystals was firstly proposed by Crew in [12, Conjecture 4.13]. This corresponds
to the choice of the category of overconvergent F-isocrystals as a possible candidate
for Deligne’s “petits camarades cristallins”.

Conjecture 3.6.1 Let X0 be a smooth variety over Fq , let � be a prime number and
let E0 be an irreducible Q�-coefficient object whose determinant has finite order. The
following statements hold.

(i) E0 is pure of weight 0.
(ii) There exists a number field E ⊆ Q� such that E0 is E-rational.
(iii) E0 is p-plain.
(iv’) If E is a number field as in (ii), then for every prime �′ (even �′ = � or �′ = p)

and for every inclusion τ : E ↪→ Q�′ , there exists an absolutely irreducible
Q�′ -coefficient object, E-rational with respect to τ , which is E-compatible with
E0.

Conjecture 3.6.1.(iv’) is commonly known as the companions conjecture, since com-
patible coefficient objects are often called companions. Deligne originally proposed a
stronger variant of (iv’) which we shall discuss later in Sect. 3.7. When X0 is a smooth
curve, Conjecture 3.6.1 is proven using the Langlands program. More precisely, it fol-
lows from the Langlands reciprocity conjecture for GLr over function fields and the
Ramanujan–Petersson conjecture, both proven by L. Lafforgue, and from the p-adic
analogue of the Langlands reciprocity conjecture for overconvergent F-isocrystals,
obtained by Abe.

Theorem 3.6.2 ([35, Théorème VII.6], [2, §4.4]) If X0 is a smooth curve, Conjecture
3.6.1 is true.

The extension of the results to higher dimensional varieties is performed via a
reduction to curves. One of the key ingredients is a “Lefschetz theorem” for coefficient
objects.

Theorem 3.6.3 (Katz, Abe–Esnault) Let X0 be a smooth geometrically connected
variety over Fq . For every lisse sheaf E0 over X0 and every reduced finite closed
subscheme S0 ⊆ X0, there exists a smooth geometrically connected curve C0 and a
morphism f0 : C0 → X0 with a section S0 → C0, such that the inverse image functor
〈E0〉 → 〈 f ∗

0 E0〉 is an equivalence of categories. The same is true when E0 is a ι-pure
overconvergent F-isocrystal.

Proof For lisse sheaves see [26, Lemma 6 and Theorem 8] as well as [27]. In the
p-adic case see the (proof of) [4, Theorem 3.10]. ��

Thanks to Theorem 3.6.3 and the work of Deligne in [15], the first three parts of
the conjecture follow from the case of curves.

Theorem 3.6.4 (L. Lafforgue, Abe, Deligne, Abe–Esnault, Kedlaya) Parts (i), (ii) and
(iii) of Conjecture 3.6.1 are true for every smooth variety over Fq .

Proof For lisse sheaves, parts (i) and (iii) follow directly from Theorem 3.6.2, thanks
to Theorem 3.6.3. Switching to overconvergent F-isocrystals, Conjecture 3.6.1.(i) is
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proven in [4, Theorem 2.7] and independently in [34, Theorem 3.1.9.(i)]. Part (iii) then
follows from Theorem 3.6.2 thanks to part (i) and Theorem 3.6.3. Part (ii) is proven
in [15, Theorem 3.1] for lisse sheaves and in [4, Lemma 4.1] and [34, Theorem 3.4.2]
for overconvergent F-isocrystals. ��

The generalization of part (iv’) to higher dimensional varieties is yet incomplete.
For the moment we know how to construct from a coefficient object of both types
compatible lisse sheaves. In dimension greater than 1,wedonot knowhow to construct,
in general, compatible overconvergent F-isocrystals.

Theorem 3.6.5 (L. Lafforgue, Abe, Drinfeld, Abe–Esnault, Kedlaya) Let X0 be a
smooth variety over Fq and E a number field. Let E0 be an absolutely irreducible
E-rational coefficient object with finite order determinant over X0. For every prime
� different from p and every embedding τ : E ↪→ Q�, there exists a Q�-coefficient
object which is E-rational with respect to τ and E-compatible with E0.

Proof Drinfeld proved the result when E0 is a lisse sheaf, [18]. The proof uses L.
Lafforgue’s result and a certain gluing theorem for lisse sheaves [ibid., Theorem 2.5].
The gluing theorem is inspired by the seminal work of Wiesend in [45]. When E0 is
an overconvergent F-isocrystal the result was proven in [4] and later in [34]. They
both use Drinfeld’s gluing theorem for lisse sheaves. In [4], the authors prove and use
Theorem 3.6.3 for overconvergent F-isocrystals. Instead in [34], it is proven a weaker
form of Theorem 3.6.3, namely [ibid., Lemma 3.2.1], which is enough to conclude. ��

The known parts of Deligne’s conjecture have many important consequences. For
example, by Corollary 3.4.2, we have the following result.

Corollary 3.6.6 Every coefficient object over X0 is ι-mixed.

We have already seen in Sect. 3.5 how, using the theory of weights, one can recover
some useful information from the L-function of a coefficient object. We wanted to
mention here an interesting application, even if we will not use it in the article.

Corollary 3.6.7 A Q�-coefficient object over X0 is geometrically semi-simple if and
only if it is a direct sum of ι-pure Q�-coefficient objects. In particular, for every
morphism f0 : Y0 → X0 of smooth varieties, if E0 is a geometrically semi-simple
coefficient object over X0, then f ∗

0 E0 is a geometrically semi-simple coefficient object
over Y0.

Proof Combining Corollary 3.5.2.(ii) and Corollary 3.6.6 we get the first part of the
statement. For the second part note that the property of a coefficient object of being a
direct sum of ι-pure coefficient objects is manifestly preserved by the inverse image
functor f ∗

0 . ��
Remark 3.6.8 Note that in [39], Mochizuki proves an analogue characterization for
semi-simple local systems over smooth quasi-projective varieties over C. Even in that
case, one gets as an outcome that the inverse image of a semi-simple local system is
semi-simple, [ibid., Theorem 7.1].
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3.7 Compatible systems

We have seen in Theorem 3.6.5, that from a coefficient object which satisfies certain
properties, we can construct many compatible coefficient objects with different fields
of scalars. Deligne, in [13, Conjecture 1.2.10], predicted that these fields should be the
completions at different finite places of a given number field. It is possible to upgrade
Theorem 3.6.5 to this stronger form thanks to the work of Chin in [8]. To state the
result, we use Serre’s notion of compatible systems, which we extend to arbitrary
coefficient objects as in [40]. Since it is not known at the moment whether the p-adic
companions always exist, we do not ask that compatible systems have to include p-
adic coefficient objects for every p-adic place. On the other hand, we do ask that they
include lisse sheaves for every finite place which do not divide p.

Definition 3.7.1 (Compatible systems) Let E be a number field. An E-compatible
system over X0, denoted by E0, is the datum of:

– a set � of finite places of E which contains |E |�=p,
– a family {Eλ,0}λ∈� of pairwise E-compatible Eλ-coefficient objects, one for each

λ ∈ �.

For every λ ∈ �, we say that Eλ,0 is the λ-component of the compatible system.
If E ⊆ E ′ is a finite extension and E0 is an E-compatible system, the compatible
system obtained from E0 by extending the scalars to E ′ is the E ′-compatible system
{E ′

λ′,0}λ′∈�′ , where �′ is the set of all the places of E ′ over the places in � and
E ′

λ′,0 := Eλ,0⊗Eλ E
′
λ′ whereλ denotes the place of� underλ′.We say that a compatible

system is trivial, geometrically trivial, pure, irreducible, absolutely irreducible or
semi-simple if each λ-component has the respective property.

Theorem 3.7.2 (After Chin) Let X0 be a smooth variety over Fq and let E0 be an
algebraic Q�-coefficient object over X0. There exists a number field E, a finite place
ν ∈ |E | and an E-compatible system E0 such that E0 is a ν-component of E0. When
X0 is a curve, we can further find such an E-compatible system E0 with � = |E |.
Proof It is enough to prove the statement when E0 is irreducible. Thanks to Corollary
3.4.2, E0 is isomorphic to F (a)

0 with a an algebraic number and F0 irreducible with
finite order determinant. By Theorem 3.6.4, the coefficient object F0 is E-rational for
some number field E . After extending E , we may assume that a ∈ E . If � �= p, thanks
to Theorem 3.6.5 and [8, Main Theorem, page 3], after possibly enlarging E again,
the lisse sheaf F0 sits in an E-compatible system. By twisting all the components by
a, the same holds true for E0. If � = p, thanks to Theorem 3.6.5, the coefficient object
E0 admits an E-compatible lisse sheaf V0. The result then follows from the previous
case.

When X0 is a curve, we obtain the stronger result thanks to the existence of p-
adic companions provided by Theorem 3.6.2. After possibly replacing E with a finite
extension, wemay add to the compatible system previously constructed λ-components
for every place λ which divides p. Here we do not need a new finiteness result for
overconvergent F-isocrystals, namely a p-adic analogue of Chin’s theorem, because
the set of places we are adding is finite. ��



45 Page 26 of 41 M. D’Addezio

Remark 3.7.3 Even if a coefficient object E0 is E-rational for some number field E , it
could be still necessary to enlarge E to obtain the E-compatible system E0. For exam-
ple, let Q8 be the quaternion group and let X0 be a smooth connected variety which
admits a Galois cover with Galois group Q8. Let H be the natural four-dimensional
Q-linear representation of Q8 on the algebra of Hamilton’s quaternions.

The representation H ⊗Q Q� is irreducible over Q� if and only if � = 2. If we
take � �= 2, then H ⊗Q Q� decomposes as a direct sum of two copies of an absolutely
irreducible two dimensionalQ�-representation V� with traces inQ. The representation
V� corresponds to an absolutely irreducible Q-rational Q�-coefficient object which
does not admit any Q-compatible Q2-coefficient object. Indeed, suppose that there
exists a semi-simple Q2-coefficient object V2, that is Q-compatible with V�. Then
V⊕2
2 would be Q-compatible with H ⊗Q Q2. By Proposition 3.5.6, the coefficient

object V⊕2
2 would be isomorphic to H ⊗Q Q2. However, this is impossible because

H ⊗Q Q2 is irreducible.

4 Independence of monodromy groups

Notation 4.0.1 Throughout Sect. 4, let (X0, x) be a smooth geometrically connected
pointed variety over Fq .

4.1 The group of connected components

In [43] and [37] Serre and Larsen–Pink proved some results of �-independence for
the groups of connected components of the monodromy groups of lisse sheaves. In
this section, we shall extend their results to algebraic coefficient objects. We will
adapt Larsen–Pink’s proof. The main issue for p-adic coefficient objects is to relate
the monodromy groups with the étale fundamental group of X0. We have already
treated this problem in Sect. 3.3. By Proposition 3.3.3, for every coefficient object
E0 we have functorial surjective morphisms ψE0 : π ét

1 (X0, x) → π0(G(E0, x)) and
ψE : π ét

1 (X , x) → π0(G(E, x)) of profinite groups.

Theorem 4.1.1 Let E0 and F0 be two compatible Eλ-coefficient objects over X0.

(i) There exists an isomorphism ϕ0 : π0(G(E0, x)) ∼−→ π0(G(F0, x)) as abstract
finite groups such that ψF0 = ϕ0 ◦ ψE0 .

(ii) The isomorphism ϕ0 restricts to an isomorphism ϕ : π0(G(E, x))
∼−→

π0(G(F , x)).

Following [37, Proposition 2.2], we need two lemmas to prove Theorem 4.1.1.

Construction 4.1.2 Let E0 be a Eλ-coefficient object of rank r . We fix a basis of
ωx,Eλ(E0) and we write ρE0 : G(E0, x) → GLr ,Eλ for the representation associated
to E0. For every finite-dimensional Q-linear representation θ : GLr ,Q → GL(V ) we
denote by E0(θ) the coefficient object associated to (θ ⊗Q Eλ) ◦ ρE0 . Even if E0(θ)

depends on the choice of a basis, its isomorphism class is uniquely determined.
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Lemma 4.1.3 Let E0 and F0 be compatible semi-simple objects. For every represen-
tation θ of GLr ,Q, we have

dim(H0(X , E(θ))) = dim(H0(X ,F(θ))) and dim(H0(X0, E0(θ)))

= dim(H0(X0,F0(θ))).

Proof The coefficient objects E0(θ) andF0(θ) are again compatible and semi-simple.
Moreover, by Theorem 3.6.4, for every representation θ the coefficient object E0(θ) is
ι-mixed. Therefore, for every θ , we may apply Corollary 3.5.5 to E0(θ) and F0(θ). ��
Remark 4.1.4 Using the terminology of [36], Lemma 4.1.3 proves that G(E, x) and
G(F , x) (resp. G(E0, x) and G(F0, x)) have the same dimension data.

Lemma 4.1.5 [37, Lemma 2.3] Let K be a field and G a reductive algebraic subgroup
of GLr ,K. If for every finite-dimensional representation V of GLr ,K the dimension of
V G◦

is equal to the dimension of V G, then the group G is connected.

4.1.6. Proof of Theorem 4.1.1 We explain the proof for the arithmetic monodromy
groups. For the geometric ones the proof is the same mutatis mutandis.

We notice that taking semi-simplification we do not change the group of connected
components of the arithmetic monodromy group. Thus we reduce to the case when
F0 and G0 are semi-simple. We firstly prove a weaker statement.

(i’) G(E0, x) is connected if and only if G(F0, x) is connected.

For every finite étale connected cover f0 : Y0 → X0, we denote by aY0 and bY0
the functions from the set of isomorphism classes of representations of GLr ,Q to the
natural numbers, defined by

aY0(θ) := dim(H0(Y0, ( f
∗
0 E0)(θ))) and bY0(θ) := dim(H0(Y0, ( f

∗
0 F0)(θ))).

By Lemma 4.1.3, for every finite étale connected cover Y0 → X0, we have aY0 = bY0 .
Suppose that G(E0, x) connected. By Proposition 3.3.4, for every étale connected
cover f0 : (Y0, y) → (X0, x), the groups G( f ∗

0 E0, y) and G(E0, x) are isomorphic
via the natural morphisms, thus the functions aY0(θ) and aX0(θ) are equal. Thanks to
Proposition 3.3.3, we also know that there exists an étale Galois cover f0 : (Y0, y) →
(X0, x) such that G( f ∗

0 F0, y) is isomorphic to G(F0, x)◦. The functions bY0(θ) and
bX0(θ) are equal because of the comparison with aY0(θ) and aX0(θ). Therefore, by
Lemma 4.1.5, the group G(F0, x) is connected. This concludes the proof of (i’).

To prove (i) we show that Ker(ψE0) and Ker(ψF0) are the same subgroups of
π ét
1 (X0, x). By symmetry it is enough to show that Ker(ψE0) ⊆ Ker(ψF0). This is

equivalent to proving that if f0 : (Y0, y) → (X0, x) is the Galois cover associated to
Ker(ψE0), then the natural map Ker(ψE0) → π ét

1 (X0, x)/Ker(ψF0) is the trivial map.
In other words, it is enough to show that G( f ∗

0 F0, y) is connected. As G( f ∗
0 E0, y) is

connected by construction, this is a consequence of (i’).
��
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4.2 Frobenius tori

We extend here the theory of Frobenius tori, previously studied by Serre and Chin in
[43] and [9, §5.1], to algebraic coefficient objects over varieties of arbitrary dimension
(Theorem 4.2.11). The result for overconvergent F-isocrystals is completely new and
it is obtained exploiting the existence of étale companions. Once we pass to étale lisse
sheaves, we can use Chebotarev’s density theorem, which is one of the key ingredients
of the proof.

Construction 4.2.1 (Frobenius tori) Let E0 be an Eλ-coefficient object over X0. For
every closed point i0 : x ′

0 ↪→ X0 we have a functor 〈E0〉 → 〈i∗0E0〉 of inverse image.
If x ′ is an F-point over x ′

0, this functor induces a closed immersion G(i∗0E0, x ′) ↪→
G(E0, x ′). Let Fx ′

0
be the E

(x ′
0)

λ -point of G(i∗0E0, x ′) corresponding to the Frobenius
automorphism and let F ss

x ′
0
be its semi-simple part. The Zariski closure of the group

generated by F ss
x ′
0
is the maximal subgroup of multiplicative type of G(i∗0E0, x ′). We

call it the Frobenius group attached to x ′
0 and it is denoted by M(E0, x ′). Its connected

component is the Frobenius torus attached to x ′
0, denoted by T (E0, x ′). If E0 is E-

rational, the torus T (E0, x ′) descends to a torus T̃ (E0, x ′) over E , such that T (E0, x ′) �
T̃ (E0, x ′) ⊗E E

(x ′
0)

λ .

To prove our main theorem on Frobenius tori we first need another outcome of
Deligne’s conjecture. This is a finiteness result for the set of all the possible valuations
of the Frobenius eigenvalues at closed points.

Notation 4.2.2 Let us fix a prime �. For every prime �′ (even �′ = � or �′ = p), we
denote by I�′(Q�) the set of field isomorphisms Q�

∼−→ Q�′ , by I∞(Q�) the set of field
isomorphisms Q�

∼−→ C and

I (Q�) :=
(

⋃

�′
I�′(E0)

)

∪ I∞(E0).

For every �′ �= p we endow Q�′ with the �′-adic valuation v : (Q
×
�′ ,×) → (R,+),

normalized such that v(�′) = 1. OnQp we consider the p-adic valuation v, normalized
so that v(q) = 1. Finally, we endow C with the morphism v : (C×,×) → (R,+)

defined by a �→ logq(|a|).
Definition 4.2.3 Let E0 be a Q�-coefficient object. For every closed point x0 ∈ |X0|,
let Ax0(E0) be the set of Frobenius eigenvalues at x0. For ∗ = �′,∞ we define

V∗(E0) :=
{
v(ι(a))/ deg(x0) | x0 ∈ |X0|, a ∈ Ax0(E0), ι ∈ I∗(Q�)

}
⊆ R.

We also write

V�=p(E0) :=
⎛

⎝
⋃

�′ �=p

V�′(E0)
⎞

⎠ ∪ V∞(E0) and V (E0) := Vp(E0) ∪ V�=p(E0).
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Proposition 4.2.4 If E0 be an algebraic Q�-coefficient object, the set V (E0) is finite.

Proof Let R be the ring of integers of a number field. Since R is a Dedekind domain,
every element in R belongs to finitely many prime ideals. Moreover, the set of infinite
places of R is finite. Therefore, if a ∈ Q� is algebraic, the set {v(ι(a))}ι∈I (Q�)

is finite.
Thanks to this, it is harmless to twist our coefficient object by algebraic numbers. By
Corollary 3.4.2, we can then assume that E0 is irreduciblewith finite order determinant.
By Theorem 3.6.4, the coefficient E0 is pure of weight 0, E-rational and p-plain. This
implies that V�=p = {0} and, by [34, Lemma-Definition 4.3.2], that the set Vp(E0) is
finite. This concludes the proof. ��
Notation 4.2.5 Let (X0, x) be a smooth connected pointed variety over Fq and E0 an
algebraic Q�-coefficient object of rank r . Write GLr for the algebraic group GLr ,Q�

.
For every x ′ ∈ X0(F), we choose an isomorphism between ωx ′,Q�

and ωx,Q�
, which

exists by [16, Theorem 3.2], and a basis of ωx,Q�
(E0). This determines in turn an

embedding G(E0, x ′) ↪→ GLr for every x ′. Let Gr
m ⊆ GLr be the standard maximal

torus and χ1, . . . , χr the standard basis of X∗(Gr
m). The Frobenius torus T (E0, x) ⊆

G(E0, x) ⊆ GLr is conjugated to some subtorus Tx ′ ⊆ Gr
m . The torus Tx ′ is uniquely

determined up to the action of the permutation group Sr on Gr
m . We write CT (E0)

for the set of GLr -conjugacy classes of the Frobenius tori at various F-points of X0.
In what follows, for every x ′ ∈ X0(F), we suppose chosen a representative subtorus
Tx ′ ⊆ Gr

m . Besides, we denote by αx ′,1, . . . , αx ′,r the Frobenius eigenvalues at x ′. We
assume that they are ordered in such a way that the diagonal matrix (αx ′,1, . . . , αx ′,r )
is in Tx ′(Q�).

Construction 4.2.6 Let �∨
R
(E0) be the set of R-linear subspaces of X∗(Gr

m)R which
admit a set of generators in V (E0)r ⊆ X∗(Gr

m)R. For every Y ⊆ X∗(Gr
m)R, the

natural pairing (·, ·) : X∗(Gr
m) × X∗(Gr

m) → Z induces a Q-linear morphism fY :
X∗(Gr

m)Q → Hom(Y , R). Write KY ⊆ X∗(Gr
m)Q for the kernel of fY and �(E0) for

the set of Q-linear subspaces of X∗(Gr
m)Q of the form KY for some Y ∈ �∨

R
(E0). We

have a natural action of Sr on �(E0) which permutes the coordinates.
For every F-point x ′, we define Yx ′ ⊆ Rr = X∗(Gr

m)R as the R-linear subspace
generated by the elements yι

x ′ := (
yι
x ′,1, . . . , y

ι
x ′,r

)
, where ι is an element in I (Q�) and

yι
x ′,i := v(ι(αx ′,i )). By definition, Yx ′ is a subspace in �∨

R
(E0) and the class of KYx in

�(E0)/Sr does not depend on the order of the Frobenius eigenvalues αx ′,1, . . . , αx ′,r .

Proposition 4.2.7 For every coefficient object E0 there exists an injective map of sets
δ : CT (E0) → �(E0)/Sr which sends the conjugacy class of a Frobenius torus Tx ′ to
the class of KYx ′ ⊆ X∗(Gr

m)Q (cf. Construction 4.2.6).

Proof Let Kx ′ ⊆ X∗(Gr
m)Q be the Q-linear subspace generated by all the χ ⊗ 1 ∈

X∗(Gr
m)Q such that the restriction χ |Tx ′ of finite order. First, let us prove that Kx ′ =

KYx ′ .
Note that it is enough to prove the equality after intersecting both Q-vector spaces

with the lattice X∗(Gr
m) ⊆ X∗(Gr

m)Q. Let us first prove that Kx ′ ⊆ KYx ′ , namely that

fYx ′ (Kx ′) = 0. For every character χ = χ
⊗a1
1 ⊗· · ·⊗χ

⊗ar
r ∈ X∗(Gr

m)∩Kx ′ , we have
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that βx ′ := α
a1
x ′,1 · . . . · α

ar
x ′,r is a root of unity because (αx ′,1, . . . , αx ′,r ) ∈ Tx ′(Q�).

Therefore, for every ι ∈ I (Q�),

fYx ′ (χ)(yι
x ′) = a1y

ι
x ′,1 + · · · + ar y

ι
x ′,r = v(ι(βx ′)) = 0.

This implies that fYx ′ (χ) = 0. On the other hand, for every character χ = χ
⊗a1
1 ⊗

. . .⊗χ
⊗ar
r ∈ X∗(Gr

m)∩ KYx ′ we want to show that the restriction of χ to Tx ′ is finite.
Since the subgroup generated by the point (αx ′,1, . . . , αx ′,r ) ∈ Tx ′(Q�) is Zariski
dense in Tx ′ , it is enough to show that βx ′ := α

a1
x ′,1 . . . α

ar
x ′,r is a root of unity. For every

ι ∈ I (Q�), we have that v(ι(βx ′)) = a1yι
x ′,1 + · · · + ar yι

x ′,r = fYx ′ (χ)(yι
x ′) = 0. By

Kronecker’s theorem, it follows that βx ′ is a root of unity.
Let us show now how the previous claim can be used to prove the final statement.

Since Kx ′ = KYx ′ , it follows that X
∗(Tx ′)Q = X∗(Gr

m)Q/KYx ′ . Therefore, if x
′′ is

another F-point of X0, we have that Tx ′ and Tx ′′ are conjugated if and only if KYx ′ and
KYx ′′ are the same up to permutation of the coordinates. This proves that δ is a well
defined injective map. ��
Corollary 4.2.8 Let E0 be an algebraic Q�-coefficient object. The set CT (E0) is finite.
Proof By Proposition 4.2.4, the set V (E0) is finite. Therefore, by construction, the
sets �∨

R
(E0) and �(E0) are finite as well. Thanks to Proposition 4.2.7, this shows that

CT (E0) is finite. ��
From here, thanks to Chebotarev’s density theorem, we could directly prove The-

orem 4.2.11 for étale lisse sheaves as in the proof of [43, Théorème at page 12].
The result for non-étale lisse sheaves and overconvergent F-isocrystals follows from
further two crucial facts.

Proposition 4.2.9 (After Larsen–Pink) Let E0 and F0 be two compatible coefficient
objects over X0. The reductive ranks of G(E0, x) and G(F0, x) are equal.

Proof We may assume that E0 and F0 are semi-simple, because semi-simplification
keeps the reductive ranks of the monodromy groups unchanged. Moreover, thanks to
Proposition 3.3.4, we may assume that the monodromy groups of E0 and F0 are con-
nected. We choose embeddings of the fields of scalars of E0 andF0 to C in such a way
that the characteristic polynomials at closed points of the two coefficient objects are the
same as polynomials in C[t]. We write G(E0, x)C and G(F0, x)C for the base change
of the monodromy groups of E0 and F0 to C and ρE0,C and ρF0,C for their tautologi-
calC-linear representations. Thanks to Lemma 4.1.3, the pairs (G(E0, x)C, ρE0,C) and
(G(F0, x)C, ρF0,C) satisfy the hypothesis of [36, Proposition 1]. Therefore,G(E0, x)C
and G(F0, x)C have isomorphic maximal tori. This gives the desired result. ��
Lemma 4.2.10 Let E0 be an E-compatible system. For all but finitely many λ ∈ |E |�=p,
the λ-component of E0 is an étale lisse sheaf.

Proof LetE0 be a component ofE0. ByCorollary 3.4.2weknow thatE ss
0 � ⊕n

i=1 F (ai )
i,0

where for every i , the coefficient object Fi,0 is absolutely irreducible with finite order
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determinant. By Theorem 3.6.4, the coefficient objects Fi,0 are p-plain. In addition,
since E0 is algebraic, we know that each ai is an algebraic number. Arguing as in
Proposition 4.2.4, this implies that for all but finitelymany primes � �= p, the algebraic
numbers ai are �-adic units. Therefore, for all but finitely many � �= p, the Frobenius
eigenvalues of E0 are �-adic units. By compatibility we deduce that for all but finitely
λ ∈ |E |�=p, the Frobenius eigenvalues of the λ-component of E0 are λ-adic units. By
Proposition 3.1.16, this implies that all these λ-components are étale lisse sheaves.
This yields the desired result. ��
Theorem 4.2.11 Let X0 be a smooth connected variety over Fq and E0 an algebraic
coefficient object. There exists a Zariski-dense subset � ⊆ X(F) such that for every
F-point x ′ ∈ � and every object F0 ∈ 〈E0〉, the torus T (F0, x ′) is a maximal torus
of G(F0, x ′). Moreover, if G0 is a coefficient object compatible with E0, the subset �
satisfies the same property for the objects in 〈G0〉.
Proof Let x ′ be a geometric point and i0 : x ′

0 ↪→ X0 the embedding of the underlying
closed point. For every object F0 ∈ 〈E0〉, we have a commutative square of functors

〈F0〉 〈E0〉

〈i∗0F0〉 〈i∗0E0〉.
i∗0 i∗0

It induces a square on monodromy groups

G(F0, x ′) G(E0, x ′)

M(F0, x ′) M(E0, x ′).
i0∗ i0∗

If T (E0, x ′) is a maximal torus in G(E0, x ′), then the same is true for T (F0, x ′)
in G(F0, x ′), [7, Proposition 11.14.(1)]. This shows that it is enough to prove the
result when F0 = E0. Moreover, we may assume that E0 is semi-simple, because
semi-simplification does not change the reductive rank of the monodromy group.

We notice that by Proposition 4.2.9, if G0 is a coefficient object compatible with
E0, the torus T (E0, x ′) is maximal in G(E0, x ′) if and only if T (G0, x ′) is maximal
in G(G0, x ′). Therefore, it is enough to prove the result for some coefficient object
compatible with E0. By Theorem 3.7.2, E0 sits in a semi-simple compatible system E0.
By Lemma 4.2.10, there exists a component of E0 which is an étale lisse sheaf. Let us
denote it by V0. After replacing X0 with a connected finite étale cover we may assume
by Proposition 3.3.4 that G(V0, x ′) is connected for any choice of x ′. We choose an
F-point x ′ of X . By Corollary 4.2.8, the set of conjugacy classes of Frobenius tori
T (V0, x ′) in GL(ωx ′,Q�

(V0)), where x ′ varies among the F-points of X0, is finite.
Arguing as in [43, theorem at page 12], by Chebotarev’s density theorem for the étale
fundamental group of X0, there exists a Zariski-dense subset � ⊆ X(F) such that
for every F-point x ∈ �, the torus T (V0, x) is maximal inside G(V0, x) (see also [9,
Theorem 5.7] for more details). This concludes the proof. ��
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Theorem 4.2.11 is a crucial step in the proof of Theorem 4.3.2. Nonetheless, it has
also its own interest. In [5], it is used as a starting point to study the reductive rank of
the monodromy groups of convergent F-isocrystals which admit an overconvergent
extension. Here another consequence.

Corollary 4.2.12 Let E0 be a semi-simpleQ�-coefficient object. The set of closed points
x ′
0 of X0 where the Frobenius Fx ′

0
is regular semi-simple is Zariski-dense in X0.

Proof As usual, let us start out with some preliminary reductions. We first observe
that by [7, Proposition 12.4.(2)], if the statement is true for E0, then the same is true
for every F0 ∈ 〈E0〉. In addition, if we know the result for E0 and F0 at the same time,
we can deduce it for E0 ⊕F0 since G(E0 ⊕F0) ⊆ G(E0)×G(F0) and the property of
being a regular semi-simple element is preserved by taking products. Finally, note that

for a coefficient object of the form Q
(a)

� with a ∈ Q� the result is trivial. Combining
these three facts and Corollary 3.4.2 we deduce that it is harmless to assume that E0 is
an irreducible coefficient object with finite order determinant. By Theorem 3.6.4, the
coefficient object E0 is then algebraic. Thanks to Theorem 4.2.11, the set ofF-points x ′
such that the torus T (E0, x ′) is a maximal torus ofG(E0, x ′) is Zariski-dense in X0.We
claim that if x ′ is one of these F-points, the Frobenius Fx ′

0
is regular semi-simple. Let

Z(F ss
x ′
0
) be the centraliser of F ss

x ′
0
in G(E0, x ′). By construction, Z(F ss

x ′
0
) coincides with

the centraliser of M(E0, x ′) in G(E0, x ′). Since G(E0, x ′) is reductive and M(E0, x ′)
contains a maximal torus, we deduce that Z(F ss

x ′
0
)◦ = T (E0, x ′). If we write Fu

x ′
0
for

the unipotent part of the multiplicative Jordan form of Fx ′
0
, we know that it lies in

Z(F ss
x ′
0
)◦(Q�). This implies that Fu

x ′
0

= 1, thus Fx ′
0
is regular semi-simple. ��

Remark 4.2.13 In the proof of Theorem 4.2.11, we need Deligne’s conjecture in order
to prove the following three properties of the coefficient object E0.
(i) E0 is ι-mixed.
(ii) V (E0) is a finite set.
(iii) E0 admits a compatible étale lisse sheaf.

For many coefficient objects “coming from geometry”, it is possible to prove these
properties directly, without using Theorem 3.6.2.

4.3 The neutral component

We start with a first result on the independence of the neutral components of the
monodromy groups of coefficient objects. As in Theorem 4.1.1, the independence
result we need here is Corollary 3.5.5.

Proposition 4.3.1 Let X0 be a smooth geometrically connected variety over Fq . Let
E0 and F0 be two compatible coefficient objects over X0.

(i) If E0 and F0 are semi-simple, E0 is finite if and only if F0 is finite.
(ii) If E0 and F0 are geometrically semi-simple, E is finite if and only if F is finite.
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Proof Thanks to Proposition 3.3.4, we may assume that the arithmetic and the geo-
metric monodromy groups of E0 and F0 are connected. By Theorem 3.6.4, we know
that E0 and F0 are ι-mixed. Thus, thanks to Corollary 3.5.5, the coefficient object E0
is trivial (resp. geometrically trivial) if and only if the same is true for F0. ��

The next result we want to prove is a generalization of [9, Theorem 1.4].

Theorem 4.3.2 Let (X0, x)bea smooth connected pointed variety overFq , E anumber
field and E0 a semi-simple E-compatible system over X0. For every λ ∈ �, let ρλ,0
be the associated representation on ωx,Eλ(Eλ,0). After possibly replacing E by a
finite extension, there exists a connected split reductive group G0 over E such that,
for every λ ∈ �, the extension of scalars G0 ⊗E Eλ is isomorphic to G(Eλ,0, x)◦.
Moreover, there exists a faithful E-linear representation ρ0 of G0 and isomorphisms
ϕλ,0 : G0 ⊗E Eλ

∼−→ G(Eλ,0, x)◦ for every λ ∈ � such that ρ0 ⊗E Eλ is isomorphic
to ρλ,0 ◦ ϕλ,0.

Following Chin, we use a reconstruction theorem of a reductive group from the
Grothendieck semiring of its category of finite-dimensional representations.

Notation 4.3.3 If C is a Tannakian category, we denote by K+(C) its Grothendieck
semiring, namely the semiring of isomorphism classes of semi-simple objects of C
with sum and product induced by ⊕ and ⊗. If E0 is a coefficient object and C = 〈E0〉,
we denote K+(C) by K+(E0). Finally, whenC = Rep(G)withG an algebraic group,
we will write K+(G).

Theorem 4.3.4 [10, Theorem 1.4] Let G and G ′ be two connected split reductive
groups, defined over a field K of characteristic 0. Let T and T ′ be maximal tori of G
andG ′ respectively. For every pair of isomorphismsϕT ′ : T ′ ∼−→ T and f : K+(G)

∼−→
K+(G ′) making the following diagram commuting

K+(G) K+(G ′)

K+(T ) K+(T ′),

f

ϕ∗
T ′

there exists an isomorphism ϕ : G ′ ∼−→ G of algebraic groups such that the induced
homomorphism ϕ∗ on the Grothendieck semirings is equal to f and the restriction of
ϕ to T ′ is equal to ϕT ′ .

Remark 4.3.5 The maximal tori that we will use to apply Theorem 4.3.4 will be the
Frobenius tori provided by Theorem 4.2.11. Suppose that E0 is a coefficient object and
for some F-point x ′, the group M(E0, x ′) is connected and T̃ (E0, x ′) is a split torus
over E . Then, the group of characters of T̃ (E0, x ′) is canonically isomorphic to the
subgroup of E× generated by the eigenvalues of Fx ′

0
. The isomorphism is given by the

evaluation of a character at the point F ss
x ′
0
. In particular, if E0 sits in an E-compatible

system E0 and T̃ (Eλ,0, x ′) is split over E for one λ ∈ � (or equivalently every λ ∈ �),
the semirings K+(T̃ (Eλ,0, x ′)) are all canonically isomorphic when λ varies in �.
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Moreover, note that for every λ ∈ �, the semiring K+(T̃ (Eλ,0, x ′)) is canonically
isomorphic to K+(T (Eλ,0, x ′)).

The known cases of the companions conjecture provide isomorphisms of the
Grothendieck semiring of compatible objects. A bit surprisingly, we have these iso-
morphisms even if we do not dispose at the moment of a general way to construct
compatible overconvergent F-isocrystals in dimension greater than 1.

Proposition 4.3.6 Let E0 andF0 be two E-compatible coefficient objects such that all
the irreducible objects in 〈E0〉 and 〈F0〉 are absolutely irreducible. There exists an
isomorphism of semirings K+(E0) ∼−→ K+(F0) which sends the isomorphism class of
a semi-simple coefficient object in 〈E0〉 to the isomorphism class of an E-compatible
semi-simple coefficient object in 〈F0〉.
Proof Let us first construct the isomorphismwhenF0 is a lisse sheaf. Thanks to Theo-
rem 3.7.2, there exists a morphism of semirings f : K+(E0) → K+(F0) which sends
semi-simple coefficient objects to E-compatible semi-simple coefficient objects. By
Theorem 3.5.6 this morphism is an injective morphism. Let us show that it is sur-
jective as well. By Corollary 3.5.5 and the hypothesis, f sends irreducible objects
to irreducible objects. Therefore, if [H0] ∈ K+(E0) and

∑n
i=0 mi [Hi

0] is the iso-
typic decomposition of [H0], then ∑n

i=0 mi f ([Hi
0]) is the isotypic decomposition

of f ([H0]). In particular, every summand of a class in the image of f is again in
the image of f . On the other hand, we know that for every n,m ∈ N, the classes[F⊗n

0 ⊗ (F∨
0 )⊗m

]
are clearly in the image of f . Combining these two facts we get

the surjectivity.
If F0 is an overconvergent F-isocrystals instead, thanks to Theorem 3.7.2, there

exists a compatible lisse sheaf G0. The isomorphism K+(E0) ∼−→ K+(F0), is then
obtained via the composition

K+(E0) ∼−→ K+(G0) ∼−→ K+(F0).

��
Remark 4.3.7 The assumption that the irreducible objects in 〈E0〉 and 〈F0〉 are abso-
lutely irreducible is verified, for example, when G(E0, x) and G(F0, x) are split
reductive groups. In particular, it is always possible to obtain this condition after a
finite extension of the fields of scalars of the coefficient objects.

4.3.8. Proof of Theorem 4.3.2 Thanks to Theorem 4.1.1, there exists a Galois cover
of X0 such that all the arithmetic monodromy groups of the compatible system are
connected. By Proposition 3.3.4, the neutral components of the monodromy groups
remain unchanged when we base change the compatible system to such a cover. By
Remark 3.2.6, after possibly passing to a finite extension of E , we may change the
F-point x without changing the isomorphism class of the monodromy groups.Wemay
also assume that E (x0)

λ = Eλ for every λ ∈ �. Thanks to Theorem 4.2.11, we may
choose x so that T (Eλ,0, x) is a maximal torus in G(Eλ,0, x) for every λ ∈ �. Besides,
up to replacing E again with a finite extension, we may assume that T̃ (Eλ,0, x) is
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split over E for every λ ∈ �. We fix a finite place μ ∈ �. By [17, Corollaire 1.3],
there exists a connected split reductive group G0 over E such that G0 ⊗E Eμ �
G(Eμ,0, x). Let T0 be a split maximal torus of G0. We choose ρ0 : G0 ↪→ GLr ,E

and ϕμ,0 : G0 ⊗E Eμ
∼−→ G(Eμ,0, x) such that ϕμ,0(T0 ⊗E Eμ) = T (Eμ,0, x) and

ρ0 ⊗E Eμ � ρμ,0 ◦ ϕμ,0. The isomorphism ϕμ,0 induces an isomorphism

ϕ∗
μ,0 : K+(Eμ,0)

∼−→ K+(G0 ⊗E Eμ)

which sends [Eμ,0] to [ρ0 ⊗E Eμ]. As T̃ (Eλ,0, x) is split over E for every λ ∈ �,
the reductive groups G(Eλ,0, x) are all split. By Proposition 4.3.6, for every λ ∈ �,
there exists a unique isomorphism gλ,μ : K+(Eλ,0) � K+(Eμ,0) preserving the
characteristic polynomials at closed points, hence sending [Eλ,0] to [Eμ,0]. SinceG0 is
split reductive and connected, there exists a canonical isomorphism hμ,λ : K+(G0⊗E

Eμ)
∼−→ K+(G0 ⊗E Eλ). We take

fλ,0 := hμ,λ ◦ ϕ∗
μ,0 ◦ gλ,μ : K+(Eλ,0)

∼−→ K+(G0 ⊗E Eλ).

By construction, it is compatible with the isomorphism K+(T (Eλ,0, x)) � K+(T0⊗E

Eλ) induced byϕ∗
μ,0 and the identifications of Remark 4.3.5. Thanks to Theorem 4.3.4,

the isomorphism fλ,0 induces an isomorphism ϕλ,0 : G0 ⊗E Eλ
∼−→ G(Eλ,0, x) such

that fλ,0 = ϕ∗
λ,0. Since fλ,0([Eλ,0]) = [ρ0 ⊗E Eλ], the representations ρ0 ⊗E Eλ and

ρλ,0 ◦ ϕλ,0 are isomorphic. ��
Remark 4.3.9 As a consequence of Theorem 4.3.2, we obtain the analogue λ-
independence result for the geometric monodromy groups of the compatible system.
Indeed, by Corollary 3.4.5, if E0 is a geometrically semi-simple coefficient object,
G(E, x)◦ is the derived subgroup of G(E0, x)◦.
Remark 4.3.10 If we weaken the statement of Theorem 4.3.2, asking that all the iso-
morphisms between G0 and the monodromy groups are defined over Q�, rather than
Eλ, one can prove it differently. One can use [28, Theorem 1.2], a stronger version
of Theorem 4.3.4, in combination with Proposition 4.3.6. This proof does not use
Frobenius tori.

The author became aware of the theorem of Kazhdan–Larsen–Varshavsky reading
[19]. In his paper, Drinfeld uses this result as a starting point to prove the independence
of the entire monodromy groups over Q� (not only the neutral components).

4.4 Restriction to curves

In this section, we prove a λ-independence result for Theorem 3.6.3. We give a proof
which exploits the full strength of the Tannakian lemma [4, Lemma 1.6]. A similar
argument is used in [ibid., Corollary 3.7]. We also need a lemma which relates the
arithmetic and the geometric situation.

Lemma 4.4.1 Let (Y0, y) → (X0, x) be a morphism of geometrically connected
pointed varieties over Fq and E0 a coefficient object over X0.
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(i) If the natural morphism f∗ : G( f ∗E, y) → G(E, x) is an isomorphism, the same
is true for f0∗ : G( f ∗

0 E0, y) → G(E0, x).
(ii) If E0 is geometrically semi-simple and f0∗ : G( f ∗

0 E0, y)◦ → G(E0, x)◦ is an
isomorphism, even f∗ : G( f ∗E, y)◦ → G(E, x)◦ is an isomorphism.

Proof Wewant to use the functorial diagram of Proposition 3.2.7.(iii) to show that the
morphism f0∗ in (i) is surjective. Since Y0 and X0 are geometrically connected, f0∗ :
πλ
1 (Y0, y)cst → πλ

1 (X0, x)cst is an isomorphism, therefore f0∗ : G( f ∗E0, y)cst →
G(E0, x)cst is surjective. On the other hand, at the level of geometric monodromy
groups, f∗ : G( f ∗E, y) → G(E, x) is surjective by assumption. The surjectivity of
f0∗ : G( f ∗

0 E0, y) → G(E0, x) is then a consequence of the other two. For (ii) we note
that by Corollary 3.4.5, the algebraic groupsG( f ∗E, y)◦ andG(E, x)◦ are the derived
subgroups of G( f ∗

0 E0, y)◦ and G(E0, x)◦ respectively. Thus we get the result. ��
Theorem 4.4.2 Let f0 : (Y0, y) → (X0, x) be a morphism of smooth geomet-
rically connected pointed varieties. Let E0 and F0 be compatible geometrically
semi-simple coefficient objects over X0. Let ϕ0 : G( f ∗

0 E0, y) → G(E0, x) and
ψ0 : G( f ∗

0 F0, y) → G(F0, x) be the morphisms induced by f ∗
0 and let ϕ and ψ

be their restriction to the geometric monodromy groups.

(i) If ϕ is an isomorphism, the same is true for ψ .
(ii) If ϕ0 is an isomorphism, the same is true for ψ0.

Proof ByLemma4.4.1, part (i) implies part (ii). Note thatϕ andψ are always injective,
thus to prove part (i) it is enough to prove that if ϕ is surjective, the same is true for
ψ . Suppose that ϕ is surjective, we want to apply [4, Lemma 1.6] to prove that ψ is
surjective as well. Since, by Theorem 3.4.1, the functor f ∗ : 〈F〉 → 〈 f ∗F〉 satisfies
the hypothesis (�) of the lemma, it remains to show that it is also fully faithful.

A functor of Tannakian categories commuting with fibre functors is always faithful.
Therefore, it is enough to prove that f ∗ preserves the dimensions of the Hom-sets, or
equivalently that for every G ∈ 〈F〉 we have

h0(G) = h0( f ∗G), (4.4.2.1)

where we denote by h0 the dimension of the space of global sections of geometric
coefficient objects.

Weproceed by steps. Firstweprove that for every pair of coefficient objectsG′,G′′ ∈
〈F〉, they both satisfy the equality (4.4.2.1) if and only if the same is true for G′ ⊕G′′.
By the additivity of h0, it is clear that if two geometric coefficient objects satisfy
the equality individually, then the same is true for their direct sum. Conversely, if
h0(G′ ⊕ G′′) = h0( f ∗(G′ ⊕ G′′)), then

h0(G′) − h0( f ∗G′) + h0(G′′) − h0( f ∗G′′) = 0.

Since f ∗ is faithful, then h0(G′) − h0( f ∗G′) ≤ 0 and h0(G′′) − h0( f ∗G′′) ≤ 0,
therefore h0(G′) = h0( f ∗G′) and h0(G′′) = h0( f ∗G′′), as we wanted. In particular,
since 〈F〉 is a semi-simple category, we have proven that it is enough to show (4.4.2.1)
for the objects of the form F⊗m ⊗ (F∨)⊗n with m, n ∈ N.
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We fix m, n ∈ N. By the hypothesis, the ⊗-functor f ∗ : 〈E〉 → 〈 f ∗E〉 is fully
faithful, therefore the equality (4.4.2.1) holds for E⊗m ⊗ (E∨)⊗n . By Corollary 3.6.6,
we know that every coefficient object is ι-mixed. Therefore, by Corollary 3.5.5, we
have that h0(E⊗m ⊗ (E∨)⊗n) = h0(F⊗m ⊗ (F∨)⊗n) and h0( f ∗(E⊗m ⊗ (E∨)⊗n)) =
h0( f ∗(F⊗m ⊗ (F∨)⊗n)). Hence we get h0(F⊗m ⊗ (F∨)⊗n) = h0( f ∗(F⊗m ⊗
(F∨)⊗n)). This concludes the proof. ��

Remark 4.4.3 In the proof presented here, we use the known cases of Deligne’s conjec-
ture only in the end, in order to prove that E0 andF0 are ι-mixed. If one already knows
that the coefficient objects are ι-mixed, then it is not necessary to invoke Theorem
3.6.4. In this case, Theorem 4.4.2 is proven avoiding the results in Sect. 3.6. Alter-
natively, one could get Theorem 4.4.2 from Theorem 4.3.2. This other proof makes
substantial use of the material in Sect. 3.6.
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Appendix: Neutral Tannakian categories with Frobenius

We introduce in this appendix the notion of neutral Tannakian categories with Frobe-
nius, andwe present a fundamental exact sequence for these categories. This formalism
applies to the categories of coefficient objects, as explained in Proposition 3.1.7. We
have preferred to work here in a more general setting in order to include some other
categories, such as the category of convergent isocrystals.

A.1 Definition andWeil group

Definition A.1.1 A neutral Tannakian category with Frobenius is a neutral Tannakian
category over somefieldK, endowedwith aK-linear⊗-autoequivalence F∗ : C̃ → C̃.

Construction A.1.2 Let (C̃, F∗) be a neutral Tannakian category with Frobenius over
some field K. We denote by C0 the category of pairs (E,�), where E ∈ C̃ and � is
an isomorphism between F∗E and E . A morphism between two objects (E,�) and

http://creativecommons.org/licenses/by/4.0/
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(E ′,�′) is a morphism f : E → E ′ such the following diagram commutes

F∗E E

F∗E ′ E ′.

�

F∗ f f

�′

Let  : C0 → C̃ be the functor which sends (E,�) to E . Write C for the smallest
Tannakian subcategory of C̃ containing the essential image of . Choose a fibre
functor ω of C̃ over K. It restricts to a fibre functor of C which we will denote by
the same symbol. We write ω0 for the fibre functor of C0 given by the composition
ω ◦ . We define π1(C, ω) and π1(C0, ω0) as the Tannakian groups of C and C0
with respect to ω and ω0 respectively. The functor  induces a closed immersion
π1(C, ω) ↪→ π1(C0, ω0) and for every E0 = (E,�) ∈ C0 a closed immersion
G(E, ω) ↪→ G(E0, ω0).

Definition A.1.3 We say that an object in C0 is constant if its image in C is trivial,
i.e. isomorphic to 1⊕n for some n ∈ N. The constant objects of C0 form a Tan-
nakian subcategory Ccst ⊆ C0. Let π1(C0, ω0)

cst be the Tannakian group of Ccst
with respect to ω0. The inclusion Ccst ⊆ C0 induces a faithfully flat morphism
π1(C0, ω0) � π1(C0, ω0)

cst. For every object E0 ∈ C0, we denote by G(E0, ω0)
cst

the Tannakian group of the full subcategory 〈E0〉cst ⊆ 〈E0〉 of constant objects. This
induces a faithfully flat morphism G(E0, ω0) � G(E0, ω0)

cst.

Construction A.1.4 (Weil group) If (C̃, F∗) admits an isomorphism of fibre functors
η : ω ⇒ ω ◦ F∗, then the group π1(C, ω) is endowed with an automorphism ϕ which
is constructed in the following way. For everyK-algebra R, the automorphism ϕ sends
α ∈ π1(C, ω)(R) to η−1

R ◦ α ◦ ηR , where ηR is the extension of scalars of η from K

to R. Let W (C0, ω0) be the semi-direct product π1(C, ω) � Z, as group scheme over
K, where 1 ∈ Z acts on π1(C, ω) as ϕ acts on π1(C, ω). We say that W (C0, ω0) is
theWeil group of C0.

Remark A.1.5 Thanks to [14], we know that if K is algebraically closed, an isomor-
phism η as in Sect. A.1.4 always exists. This is not the case, in general, when K is
not algebraically closed. For coefficient objects, an isomorphism η can be constructed
without extending K, as it is explained in Remark 3.2.3.

Lemma A.1.6 Let (C̃, F∗) be a neutral Tannakian category with Frobenius which
admits a fibre functor ω isomorphic to ω ◦ F∗. There exists a natural equivalence
of categories C0

∼−→ RepK(W (C0, ω0)) and a natural morphism ι : W (C0, ω0) →
π1(C0, ω0) such that the following diagram commutes

RepK(π1(C0, ω0))

C0

RepK(W (C0, ω0)),

ι∗
∼

∼
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where the equivalence C0
∼−→ RepK(π1(C0, ω0)) is the one induced by the fibre

functor ω0. In addition, the image of ι is Zariski-dense in π1(C0, ω0).

Proof For every (E,�) ∈ C0, we extend the natural representation of π1(C, ω) on the
vector space ω(E) to a representation of W (C0, ω0). Write e for the identity point in
π1(C, ω)(K). We impose that (e, 1) ∈ W (C0, ω0)(K) acts on ω(E) via ω(�) ◦ ηE ,
where ηE is the isomorphism induced by η betweenω(E) andω(F∗E). This defines an
equivalenceC0

∼−→ RepK(W (C0, ω0)) and amorphism ι : W (C0, ω0) → π1(C0, ω0)

satisfying the required properties. By the Tannaka reconstruction theorem, the affine
group π1(C0, ω) is the pro-algebraic completion of W (C0, ω0), thus the image of ι is
Zariski-dense in π1(C0, ω). ��

A.2 The fundamental exact sequence

Lemma A.2.1 Let (C̃, F∗) be a neutral Tannakian category with Frobenius and let ω
be a fibre functor of C̃. The subgroup π1(C, ω) ⊆ π1(C0, ω0) is a normal subgroup.
In particular, for every F ∈ C there exists G0 ∈ C0 such that F ⊆ (G0).
Proof Thanks to Theorem [22, TheoremA.1], the second part of the statement follows
from the first one. We may verify that the subgroup is normal after extending the field
K to its algebraic closure. Under the additional assumption that K is algebraically
closed, by Remark A.1.5 there exists an isomorphism between ω and ω ◦ F∗, so
that we can construct the Weil group W (C0, ω0) as explained in Sect. A.1.4. By
Lemma A.1.6, the group scheme W (C0, ω0) is endowed with a natural morphism
ι : W (C0, ω0) → π1(C0, ω0) with Zariski-dense image. Let H be the normaliser
of π1(C, ω) in π1(C0, ω0). The group π1(C, ω) is normal in W (C0, ω0), hence the
K-point (e, 1) ∈ W (C0, ω0)(K) normalizes π1(C, ω). As a consequence, ι(e, 1) ∈
π1(C0, ω0)(K) is contained in H(K). The groupW (C0, ω0) is generated by π1(C, ω)

and (e, 1), thus the image of ι is contained in H . This implies that H = π1(C0, ω0),
which shows that π1(C, ω) is normal in π1(C0, ω0), as we wanted. ��
Theorem A.2.2 Let (C̃, F∗) be a neutral Tannakian category over K with Frobenius
and let ω be a fibre functor of C̃. The following statements hold.

(i) The morphisms constructed in Sects. A.1.2 and A.1.3 form an exact sequence

1 → π1(C, ω) → π1(C0, ω0) → π1(C0, ω0)
cst → 1.

(ii) For every E0 = (E,�) ∈ C0 and every F ∈ 〈E〉, there exists G0 ∈ 〈E0〉 such that
F ⊆ (G0).

(iii) For every objectE0 = (E,�) ∈ C0, the exact sequence of (i) sits in a commutative
diagram with exact rows

1 π1(C, ω) π1(C0, ω0) π1(C0, ω0)
cst 1

1 G(E, x) G(E0, x) G(E0, x)cst 1,
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where the vertical arrows are the natural quotients.
(iv) The affine group scheme π1(C0, ω0)

cst is isomorphic to the pro-algebraic com-
pletion of Z over K and G(E0, x)cst is a commutative algebraic group.

Proof We already know that the sequence of part (i) is exact on the left and on the
right. It remains to show the exactness in the middle using Theorem [22, Theorem
A.1]. Condition (a) is satisfied by construction. For condition (b) we notice that a
⊗-functor sends trivial objects to trivial objects. Therefore, for every (E,�) ∈ C0,
the maximal trivial subobject F ⊆ E is sent by F∗ to the maximal trivial subobject of
F∗(E). This means that the restriction of� to F∗(F) defines an isomorphism between
F∗(F) and F that we denote by �|F . The pair (F ,�|F ) is the subobject of (E,�)

with the desired property. Condition (c) is proven in Lemma A.2.1.
For part (ii) we notice that the subgroup G(E, ω) ⊆ G(E0, ω0) is a quotient of

π1(C, ω) ⊆ π1(C0, ω0), thus it is normal. ByTheorem [22, TheoremA.1], this implies
the desired result. The diagram of part (iii) is obtained by taking the natural morphisms
of the Tannakian groups. To prove that the lower sequence is exact we proceed as in
part (i), replacing Lemma A.2.1 with part (ii). Finally, the category Ccst is equivalent
to RepK(Z), thus π1(C0, ω0)

cst is isomorphic to the pro-algebraic completion of Z

over K. In particular, for every E0 ∈ C0, the algebraic group G(E0, ω0)
cst, being a

quotient of π1(C0, ω0)
cst, is commutative. This concludes the proof. ��
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