
1

Vol.:(0123456789)

Scientific Reports |         (2021) 11:5348  | https://doi.org/10.1038/s41598-021-84232-7

www.nature.com/scientificreports

Concurrent visual working memory 
bias in sequential integration 
of approximate number
Zhiqi Kang1,2 & Bernhard Spitzer1,2*

Previous work has shown bidirectional crosstalk between Working Memory (WM) and perception 
such that the contents of WM can alter concurrent percepts and vice versa. Here, we examine 
WM-perception interactions in a new task setting. Participants judged the proportion of colored dots 
in a stream of visual displays while concurrently holding location- and color information in memory. 
Spatiotemporally resolved psychometrics disclosed a modulation of perceptual sensitivity consistent 
with a bias of visual spatial attention towards the memorized location. However, this effect was short-
lived, suggesting that the visuospatial WM information was rapidly deprioritized during processing of 
new perceptual information. Independently, we observed robust bidirectional biases of categorical 
color judgments, in that perceptual decisions and mnemonic reports were attracted to each other. 
These biases occurred without reductions in overall perceptual sensitivity compared to control 
conditions without a concurrent WM load. The results conceptually replicate and extend previous 
findings in visual search and suggest that crosstalk between WM and perception can arise at multiple 
levels, from sensory-perceptual to decisional processing.

What is on our mind can affect how we perceive the physical world. In line with this intuition, laboratory 
experiments have shown that the contents of working memory (WM) can impact on performance in intervening 
perceptual tasks. For instance, when actively maintaining a green item in WM while searching for a target shape, 
response times can be slowed when a green distractor is present in the search  array1,2, indicating attentional 
capture by perceptual input that matches the concurrent WM  content1–4. The attention-guiding effect of WM 
has been linked to a view that WM information can be maintained in different functional  states1,5,6. According to 
this view, WM contents guide attention while they are prioritized for immediate goal-directed use. WM contents 
that are not currently prioritized can be maintained for prospective use on later occasion, but evidence suggests 
that they do not bias attention in concurrent perceptual  tasks1,7.

Beyond attentional guidance, several studies have shown that concurrent WM information can even bias the 
very appearance of intervening stimuli. For instance, the perceived orientation or motion of a stimulus was found 
to be repulsed away from that of a concurrently maintained  stimulus8–10. One recent study instead suggested that 
sensory representations can be attracted towards concurrent  memories11. However, crosstalk between WM and 
perception has also been found to occur the other way round, such that intervening stimuli can bias later recall 
of concurrently maintained  information9–12. The typical pattern in this type of finding is that memory reports 
are attracted to (rather than repulsed away from) intervening  stimuli10,11,13.

In explaining WM-perception biases, previous studies have assumed more or less direct alterations in the 
representation of the perceptual and/or mnemonic  information10,11,13. WM representations may drift or  shift14,15 
towards concurrent percepts and become  noisier10. And vice versa, it has been suggested that concurrent WM 
contents may directly alter the sensory tuning to new  input11. However, from a decision-theoretic perspective, 
biases in behavioral reporting may also arise in post-perceptual evaluation of otherwise unchanged sensory 
and/or mnemonic  representations16. Recent work on trial history effects, for instance, found attraction biases 
in subjective reporting, but repulsive biases in more direct psychophysical measures of stimulus  appearance17. 
Attractive WM-perception biases might also arise if concurrent contents induced a tendency for congruent 
reporting, and/or by partial confusion of remembered and just-experienced information. Such bias could be 
characterized as a shift in response  criteria16 or, in a sequential sampling  framework18, as an offset of decisional 
evidence accumulation towards the response category that is associated with the concurrent information.
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The attention-guiding effects of WM have typically been demonstrated in unrelated tasks that demand rapid 
responding to a single display (e.g., a visual search array). Little is known if and for how long attentional guid-
ance would persist beyond the timescale of these tasks, for instance when the to-be-judged information is spread 
out in time. Bidirectional crosstalk between perceptual and mnemonic reports, on the other hand, can only be 
observed when the perceptual- and the WM task share the same relevant stimulus dimension (e.g., judging 
orientation while remembering another orientation). To what extent attraction- or repulsion biases in the latter 
kind of tasks depend on the functional state of the WM information is not clear yet.

Here, we examined WM-perception interactions in a sequential integration task that required participants to 
judge visuospatial numerosity information in a stream of random dots displays while concurrently remember-
ing the location and color of a WM sample for later report. Color was independently task-relevant also in the 
decision task, which enabled us to examine spatial attentional bias along with bidirectional biases of perceptual 
and mnemonic decisions. We found evidence for a bias of visual spatial attention towards the to-be-memorized 
location which, however, dissipated quickly after the onset of the decision stream. Bidirectional bias of perceptual 
and mnemonic reports instead emerged in form of additive choice biases and categorical misreporting, in line 
with a post-perceptual locus of interference.

Results
Participants (n = 68) were asked to remember the color and location of a WM sample stimulus (Fig. 1a, left) 
while deciding whether an intervening stream of six random dots displays contained relatively more blue or red 
dots (Fig. 1a, middle). After choice, subjects were asked to reproduce the color and spatial location of the WM 
sample from memory (Fig. 1a, right). Thus, the WM task involved maintaining both categorical information 
about a feature that was task-relevant also in the decision task (red/blue) and high-precision information about 
stimulus location which was not to be judged or reported in the intermittent task. Decision- and WM reports 
were entered with different hands and using distinct button operation procedures (select or move and toggle, 
see “Methods”) to avoid motor response confusion between the two tasks.

We asked if the concurrently memorized WM sample would alter visuospatial processing of the decision 
stream. First, we mapped the participants’ overall spatial weighting through logistic regression of perceptual 
reports against the trial-by-trial varying color value in each pixel of the decision displays. The spatial weights 
were compared against those predicted by an individually fitted null model as unbiased baseline (see “Methods”). 
Figure 2a illustrates the grand mean weighting map, collapsed across all experimental conditions (WM and 
controls) and display positions (1–6). Participants were most sensitive towards information in a central vertical 
region of the display (p < 0.05, FDR-corrected across pixels) while giving less weight to the lateral periphery, 
especially at the right-hand side of the display area (p < 0.05, FDR-corrected). This pattern seems to differ from 
classic findings of heightened sensitivity along the horizontal meridian in studies of low-level visual  acuity19–21. 
However, the pattern we observed could be related to the notion of an anisotropy of perceived space, by which 

Figure 1.  Experimental paradigm. (a) Schematic outline of a trial in the WM interference condition. Left, the 
to-be-maintained WM sample was a single dot (red or blue) presented at a random position on an invisible 
circular path around fixation. Middle, During WM maintenance, a stream of 6 random dots displays was 
presented. Each display contained 20 dots, a variable number of which was blue, the others red. Participants 
were asked to evaluate whether the stream contained relatively more blue or red dots (see “Methods” for details). 
Right, both the color and location of the WM sample were to be reproduced from memory at the end of the trial. 
(b) Within-subjects control conditions. In Control 1, the WM task elements were omitted. In Control 2, the 
WM- and decision task elements were rearranged such that the two tasks were not concurrent.
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subjects estimate spatially spread out magnitudes like line  length22 and  numerosity23 to be larger along the verti-
cal axis. We anticipate this incidental observation to be of interest for vision- and numerical cognition scientists 
using similar stimuli. To verify if the weighting pattern was stable throughout the stream sequence, we examined 
the pairwise spatial correlations between the weight distributions in each of the six displays. All of the 15 pair-
wise correlations were positive (mean R = 0.65, min 0.52, max 0.78) and remained all positive when subtracting 
the mean correlations obtained after randomly rotating each map (1000 iterations; which excludes center-bias; 
mean R = 0.32, min 0.17, max 0.44). Our method thus proved efficient in disclosing a robust and stable spatial 
weighting pattern in the stream task.

Comparing the overall weighting pattern in Fig. 2a between trials with and without a concurrent WM load, 
we found no significant differences (no pixels p < 0.05, FDR-corrected for multiple comparisons). However, our 
main question was whether on WM trials, the allocation of processing gain in visual space was attracted towards 
(or repulsed away from) the to-be-memorized WM sample location. To this end, we offline rotated the circular 
displays from all trials such that they were all aligned to the same WM sample position (Fig. 2e). We arbitrarily 
set this common reference position to 45° for illustration purposes. The weighting map computed from the thus 
aligned displays, averaged across displays (1–6), indeed showed a concentration of sensitivity towards the WM 
sample location (Fig. 2c, p < 0.05, FDR-corrected across pixels). In other words, the concurrent WM sample 
directly modulated the gain of perceptual processing in visual space. This effect manifested as a moderate shift 
of sensitivity away from fixation in the direction of the WM sample, rather than a concentration at its actual 
physical position (which was more peripheral and reproduced with high accuracy on later recall, cf. Fig. 2b). 
Unlike the overall spatial weighting pattern (cf. Fig. 2a), the WM-related spatial bias (Fig. 2c) appeared not to 
be stable over time (mean inter-display correlation after rotational alignment, R = -0.03, min − 0.30, max 0.17).

For further analysis, we split the display area into equal-sized pie segments, with a target segment centered 
around the WM sample location at 45° (Fig. 2d). Averaging weight within segments allowed us to examine the 
“tuning” of spatial weighting, in terms of its mean angular distance from the WM sample location. Figure 3b 

Figure 2.  Spatial weighting analysis. (a) Spatial weighting of the decision displays before rotational 
alignment, collapsed across all trials (WM and control conditions) and displays (1–6). Positive values indicate 
overweighting, negative values underweighting, relative to an unbiased observer model fitted to each individual 
(see “Methods”). Transparent mask indicates significant regional over- or underweighting (p < 0.05, two-tailed, 
FDR-corrected across pixels). (b) Spatial distribution of WM sample positions reported on WM recall (cf. 
Fig. 1a, right) after rotational alignment (cf. e), aggregated across all participants. White circle indicates true 
position (rotation-aligned) of the WM sample. (c) Spatial weighting on WM trials after rotational alignment (cf. 
e), same conventions as in b. Purple dot indicates (rotation-aligned) location of the WM sample. (d) Pie masks 
for angular tuning analysis. Spatial weights within each segment were averaged and examined as a function of 
the absolute angular distance from the WM sample (see Fig. 3b below for results). (e) Rotational alignment of 
trials. Displays were rotated offline such that the trial-specific WM sample positions matched the same (virtual) 
reference location (arbitrarily set to 45°, cf. purple markers).
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illustrates the angular tuning separately for each of the six displays in the decision stream. Statistical analysis of 
the mean weight in the WM sample segment compared to the remaining segments showed a significant effect 
in the first stream display [display 1; t(67) = 4.19, p < 0.001]. This angular tuning was even discernable directly 
in the weighting map of display 1, with significantly increased sensitivity (p < 0.05, FDR-corrected across pixels) 
along the trajectory between fixation and WM sample location (leftmost in Fig. 3a). However, no such effect 
was evident in any of the subsequent displays (2–6), neither in pixel-level weighting maps (no pixels p < 0.05, 
FDR-corrected) nor in terms of angular tuning [all t(67) < 1.66, p’s > 0.10]. Bayes factor analysis indicated strong 
evidence for an angular tuning effect in display 1  (BF01 = 0.004), but anecdotal to moderate evidence for its 
absence in displays 2–6  (BF01 ranging from 2.06 to 4.85). For further validation, we pseudo-aligned the trials 
from control conditions (cf. Fig. 1b) to the same WM sample locations as the WM trials (i.e., as if each WM 
sample had been presented on a control trial, too). This control analysis showed no (pseudo-) angular tuning 
for any of the six displays (yellow in Fig. 3b, all p’s > 0.05).

To examine if the spatial weighting bias was related to WM processing, we median-split each participant’s trial 
data according to the precision of location reports on subsequent WM recall. We observed significant angular 
tuning in display 1 on high-precision WM trials [t(67) = 4.61 , p < 0.001,  BF01 = 0.001] but not on low-precision 
WM trials [t(67) = 1.21, p = 0.23,  BF01 = 3.74]. Thus, the presentation of a WM sample alone was not sufficient to 
explain the weighting shift on WM trials. This, together with the relatively small radius of the shift, also renders 
the effect in display 1 less likely to have resulted from reflexive saccades to the WM sample (but see “Discussion” 
for a potential role of microsaccadic eye activity in covert spatial attention).

Together, visuospatial processing was temporarily biased towards the location of the WM sample, but this 
bias was ephemeral and dissipated quickly with new perceptual decision information. Visual processing of the 
remainder of the stream appeared unaffected by the concurrently maintained spatial WM information. The 
pattern suggests that the focus of spatial attention swiftly moved away from the WM sample when the decision 
task stream commenced.

Our analysis has thus far focused on interactions with the spatial information in the WM sample. We next 
asked to what extent the concurrently memorized categorical color information, which was also remembered 
with high accuracy (mean percentage correct 93.1%, SE = 0.006), may have biased judgments of the interven-
ing decision stream. To this end, we examined psychometric weighting of the blue-red composition of the 
stream displays using conventional reverse correlation  analysis24–26. The weighting functions in Fig. 4a indicate 
the proportion of blue > red choices as a function of the relative blue-red dot count in a display. Descriptively, 
the mean weighting functions were near-linear and appeared parallelly shifted towards the color of the WM 
sample (blue or red), indicating an additive choice bias, compared to control conditions without a concurrent 
WM load (Fig. 4a). A repeated measures ANOVA with the factors WM condition (blue, red, control) and dot 
count (11 levels) showed a main effect of WM condition [F(1.96,131.62) = 29.97, p < 0.001] but no interaction 
with dot count [F(12.52,838.54) = 1.158, p = 0.31], consistent with a parallel displacement of the psychometric 
function [main effect of dot count: F(6.55,438.77) = 1041.44, p < 0.001]. We next fitted a logistic choice model 
(see “Methods”) to independently quantify the psychophysical sensitivity (slope) towards the stream displays’ 
color composition, and the strength of an additive choice bias (intercept) associated with maintaining a blue or 
red WM sample, respectively.

Figure 3.  Regional weight concentration—time course. (a) spatial weighting on WM trials after rotational 
alignment as in Fig. 2c but shown separately for each of the six displays in the decision stream. A significant 
regional gain concentration (p < 0.05, two-tailed, FDR-corrected, indicated by transparent mask) was observed 
in display 1 only. (b) Purple: angular tuning of spatial weighting in terms of mean angular distance from the 
WM sample (cf. Fig. 2d). Significant tuning was evident exclusively in display 1. Yellow curves show analogue 
analysis of control trials (pooled over control conditions 1 & 2) pseudo-aligned to the same WM-locations as 
the WM-trials.
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Statistical analysis of the model coefficients corroborated a significant choice bias towards the WM sample 
color [Fig. 4b, intercepts; WM blue: t(67) = 2.64, p < 0.02, WM red: t(67) = 5.11, p < 0.001, paired t-tests against 
pooled control conditions]. We confirmed that this additive effect was associated with active WM maintenance 
and not merely with the presentation of a WM sample: the magnitude of the choice bias (WM blue—WM red; 
cf. Fig. 4b) was significantly enhanced when restricting the analysis to those trials in which the WM color was 
subsequently recalled correctly [0.598 vs. 0.521, t(67) = 4.3877, p < 0.001]. Repeating the analysis with subjects’ 
color recall reports (instead of physical WM sample color) as bias terms descriptively increased the bias (0.561 
vs. 0.521), but this difference failed to reach significance [t(67) = 1.538, p = 0.13; see below for targeted analysis 
of reporting-level bias]. Interestingly, when median splitting trials according to the precision of WM location 
recall, the choice bias did not differ [0.572 vs. 0.501, t(67) = 0.54, p = 0.59] and was robustly present in both split 
sets [both t(67) > 4.5, both p’s < 0.001]. Thus, the color bias was observed regardless of whether or not a spatial 
bias was evident on the same trials (cf. angular tuning analysis above), indicating a degree of independence 
between the two effects.

Figure 4.  Bidirectional biases of WM and perceptual decisions—color information. (a) Psychometric weighting 
functions averaged over the six displays in the decision task, plotted separately for trials where the concurrently 
maintained WM sample was red or blue, and for control conditions without a concurrent WM task (cf. Fig. 1). 
(b) Bias terms (intercepts) derived from logistic regression of choice. (c) Choice sensitivity (slopes) to the red-
blue dot composition in each of the six displays in the decision stream. (d) Memory recall bias. Probability of 
(erroneous) blue/red report in WM recall as a function of the blue-red composition of the intervening decision 
displays. Small inset plot shows the time-course of this relation over the six stream displays in terms of logistic 
regression coefficients. Error bars in all panels show standard error of the mean.
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Turning to sensitivity (Fig. 4c, slopes), we observed an overall recency  effect27,28, with heightened sensitivity 
towards the end of the decision stream [main effect of display position 1–6: F(2.67,179.07) = 43.94, p < 0.001], 
which may reflect memory loss or “leakage” of early presented decision  information28,29. The recency effect 
was slightly stronger on WM trials, with a steeper time course compared to pooled controls [difference in 
slope of increase: t(67) = 2.45, p < 0.02], indicating that the concurrent WM load may have interfered with the 
mnemonic demands of the stream task. Interestingly, we found no reduction in overall sensitivity during WM 
maintenance compared to control conditions without a concurrent WM load. In fact, in one of the control con-
ditions (Control 1), sensitivity was even significantly lower than on WM trials [Fig. 4c; main effect of condition, 
F(1,35) = 55.37, p < 0.001]. This unexpected observation could be attributable to procedural aspects (decision 
trials occurred in faster succession in the Control 1 condition). In our second control condition (Control 2), 
which controlled for these aspects (cf. Fig. 1b), overall sensitivity was statistically indistinguishable from that on 
WM trials [F(1,31) = 0.734, p = 0.40)]. To summarize, concurrent WM maintenance robustly biased choices and 
slightly increased recency effects but did not impair overall perceptual-discriminative acuity.

We analogously examined whether information in the decision stream would bias subsequent recall of the 
WM sample color (Fig. 4d). A logistic regression of WM color reports (blue/red) against the relative blue-red 
dot count in the intermittent stream displays showed a significant positive effect [t(67) = 2.14, p = 0.036, t-test 
of pooled slope coefficients against zero]. Thus, the more blue (or red) dots were contained in a stream display, 
the more likely the WM sample was erroneously recalled as blue (or red). The time course of this effect showed 
no significant variation across the six stream displays [inset in Fig. 4d; F(5,402) < 1], suggesting that the bias was 
not only driven by e.g., early displays that occurred in temporal proximity to the WM sample.

Does this WM bias reflect a direct distortion of color memory by sensory input and/or a crosstalk with post-
perceptual evaluations in the decision task? In further analysis, we regressed the WM color reports against the 
choice residuals from the psychometric decision analysis (cf. Fig. 4b–c; Methods, Eq. 2). Thus, we tested if WM 
reports were even biased by endogenous choice variability in the stream task that is unexplained by any stimulus 
information (neither in WM- nor decision samples). This analysis showed a positive effect [t(67) = 4.68, p < 0.001], 
suggesting crosstalk on the level of decisional evaluation and/or -reporting. Finally, we also directly correlated 
the residuals in WM- and decision reports after applying the full psychometric model (Methods, Eq. 2) to either. 
The full model perfectly separated WM reports in the three highest performing participants. In the remaining 
subjects, we found a significant positive correlation between the residuals in WM- and decision reporting [mean 
R: 0.04, SE = 0.008, t(64) = 4.79, p < 0.001]. We note again that our experimental setup rendered such crosstalk 
unlikely to arise from simple motor response- or button confusion (see “Methods”).

We explored yet another task aspect in our experiment: one group of participants was asked to judge if the 
stream contained more blue (or red) dots on average (“averaging” condition) which mirrors the typical task 
requirement in perceptual choice experiments. Another group was asked to decide if they were willing to receive 
the value of one randomly drawn sample from the just presented stream (“gambling” condition), which mimics 
the scenario of an economic “risky “ choice task. Normatively, observers in both these conditions should behave 
identically in order to maximize long-term returns. However, we hypothesized that the gambling scenario could 
promote a more discretized representation of the individual stream displays and thus load more strongly on WM 
storage  processes30, whereas the averaging task may promote more continuous updating of a running decision 

Figure 5.  Averaging or gambling—color information. (a) WM-induced choice bias relative to pooled control 
conditions (cf. Fig. 4b) plotted separately for “averaging” (left bars, n = 35) and “gambling” variants (right bars, 
n = 33) of the decision task. (b) choice sensitivity (slopes) for each of the six displays in the decision stream (cf. 
Fig. 4c), plotted separately for the averaging and gambling tasks. Yellow curves show pooled control conditions. 
(c) WM recall bias (cf. inset in Fig. 4d) plotted separately for the averaging and gambling conditions. Small inset 
plot shows proportion correct color recall. Error bars in all panels show standard error of the mean.
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 variable18,28,31, potentially posing a lower WM load. We therefore anticipated the gambling task to interfere more 
strongly with the concurrent WM task.

We observed no differences in spatial weighting (cf. Fig. 2a) or angular tuning (cf. Fig. 2c) between the two 
task variants (no pixels p < 0.05, FDR-corrected). We also found no reliable differences in color bias (Fig. 5a), 
neither in terms of its magnitude [t(66) = 1.79, p = 0.08, two-sample t-test] nor direction [t(66) = 0.54, p = 0.59]. 
Overall choice sensitivity (Fig. 5b) was significantly lower in gambling than in averaging [t(66) = 2.64, p = 0.01], 
which replicates earlier  findings32. Furthermore, the analysis showed a robust WM-induced enhancement of 
recency in the gambling group [t(32) = 3.23, p = 0.003, difference in slope of increase across displays between 
WM- and control conditions] but not in the averaging group [t(34) = 0.74, p = 0.47]. However, the between-group 
difference was not significant [t(66) = 1.33, p = 0.19]. Finally, the difference in overall sensitivity between WM- 
and control trials did not differ between groups [t(66) = 1.16, p = 0.25].

Examining the bias in subsequent WM-color recall (cf. Fig. 4d) separately for the averaging- and gambling 
groups, we found no difference between the two [Fig. 5c, t(66) = 0.15, p = 0.88; two-sample t-test of regression 
coefficients pooled over displays]. Overall WM color recall appeared numerically slightly less accurate after 
gambling (0.92) than after averaging (0.94, inset in Fig. 5c) but the difference was not significant [t(66) = 1.20, 
p = 0.23, two-sample t-test]. Lastly, we asked if WM location recall (cf. Fig. 2b) differed between the two vari-
ants of the intermittent decision task. We found that participants in the gambling condition tended to report 
the WM-sample locations less precisely (Fig. 6). Together, we found weak tendencies for the risky choice task to 
interfere slightly more with concurrent WM than the averaging task, but otherwise no difference in multiplica-
tive (spatial) and/or additive (color) biases between the two task variants.

Discussion
To summarize our findings, we report an array of WM-perception interactions, including (i) a short-lived shift of 
perceptual sensitivity towards the just-encoded location of the WM item in visual space, (ii) a bidirectional bias 
to categorically (mis-)judge decision information according to the concurrent WM information and vice versa, 
and (iii) mild WM interference with the mnemonic aspects of the decision task, in terms of enhanced recency 
effects and reduced spatial recall precision. Alongside this multifaceted crosstalk between WM and perception, 
we observed no general reduction in perceptual sensitivity.

Our sequential integration task enabled us to track spatial attentional bias in a time-resolved manner. The 
finding of a modulation of local visuospatial sensitivity conceptually replicates and extends previous findings in 
spatial  WM33 and in visual search  speed1–4. However, we found this effect to be short-lived, indicating that atten-
tional guidance adapted rapidly to momentary task demands. From a state-based WM  perspective1,6, the focus of 
attention appeared to swiftly move away from the WM sample location when the decision stream commenced. 
Participants nevertheless reproduced the WM location accurately on later recall, in line with previous evidence 
that temporary withdrawal of attention does not necessarily disrupt memory  performance34–36. An interesting 
question for future work is how the present patterns in visuospatial weighting may relate to physiological indices 
of covert spatial attention e.g., in alpha-band  EEG37 or microsaccadic eye  activity38.

The time course of spatial bias reported here seemingly contrasts with recent findings of WM-induced atten-
tional biases that persisted throughout several successive search- or choice displays after presentation of a WM 
 sample8,39. However, in these previous studies, each display was to be judged separately before succeeding to the 
next, which may have enabled participants to periodically refocus on the WM information. Our challenging 
sequential integration task likely precluded such attentional reorienting to the WM  content40. Consistently, overall 
psychometric sensitivity in our task was unimpaired by the concurrent WM  load41. We found the spatial weight-
ing bias to be most pronounced when the WM sample location was subsequently recalled with high precision, 
indicating a relation to memory-relevant processes. However, based on the present data, we cannot distinguish 

Figure 6.  Averaging or gambling—spatial WM precision. Spatial distribution of WM positions reported on 
WM recall (rotation-aligned as in Fig. 2b), shown separately for the averaging- (left) and gambling (middle) 
variants of the intermittent decision task. Right panel shows statistical map of the difference between the two, 
thresholded at p < 0.05 (two-tailed, uncorrected). White circles indicate true original position (rotation-aligned) 
of the WM sample. Participants in the averaging condition tended to report more locations near to the target 
and fewer locations afar from it, compared to the gambling condition.
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whether the transient bias was driven by the encoding- or the maintenance requirement of our WM task. Future 
studies utilizing e.g., retrospective  cueing42,43 can help to shed light on this open question.

After prolonged, presumably accessory storage, the concurrent WM information still showed a marked 
influence on choice behavior in terms of a robust bias in categorical color judgments. Unlike the modulation of 
spatial sensitivity, the effect of WM color was additive in nature, i.e., it emerged independent of the very stimulus 
information on  display16. One potential explanation for this effect could be in terms of selective visual process-
ing. The WM sample may have led participants to prioritize those dots in the decision displays that matched the 
to-be-memorized color. Such prioritization could have occurred inadvertently, or participants might have used 
it as a deliberate memory aid (but  see4 for arguments against strategic factors in WM-perception interactions). 
If selective processing had led to overestimation of relative  numerosity44,45, and invariantly so across the entire 
stimulus range (red-blue), an additive bias might emerge. Psychometric modeling does not afford to infer the 
precise time point(s) when such effect may have arisen and whether it occurred, for instance, during the early 
and/or later periods of the decision stream. However, considering the high attentional and mnemonic demands 
of our stream task, and given the absence of spatial WM bias on later displays, it appears unlikely that the WM 
color would have guided visual processing for long, alongside the accumulating, immediately task-relevant 
information in the decision stream.

Another, simpler explanation is that the choice bias may have arisen on the level of decisional categoriza-
tion. The categorical color information in the WM sample may have induced a baseline shift from the outset of 
evidence accumulation in the decision task. A similar  account46 has been proposed to explain previous findings 
that WM-matching stimuli seem to enter visual awareness more easily after interocular  suppression47–49. In our 
sequential integration task, an offset in evidence accumulation can give rise to a choice bias that is independent 
of the physical stimulus input, as was observed in our data. Under this account, the WM color information would 
have been carried along in the gradual decision formation throughout our task, without necessarily altering the 
sensory processing of the individual stream displays proper. In signal-detection  terms16, the effect would be 
equivalent to a trial-by-trial shift in decision criterion to categorize a stream as blue (or red). In cognitive terms, 
the respective response category would be preactivated and chosen more liberally. From either perspective, the 
bias we observed would emerge at the level of decisional evaluation and -categorization.

An explanation in terms of category-level interference can also account for the observation that the bias in 
color reports was bidirectional. Memory reports were biased towards the information in the intervening decision 
stream, including from late displays that arrived during presumably unprioritized WM storage. More generally, 
however, memory reports were attracted to the decisional evaluation result (i.e., “blue” or “red”), even regardless 
of whichever information was physically presented. Given the categorical nature of the (false) memory reports, we 
assume that they likewise reflected high-level categorical interference (and/or -confusion), rather than the subtle 
alterations of a sensory memory  trace11,14. Together, the bidirectional bias of WM- and decision reports may 
have arisen at a post-perceptual level of processing, independent from low-level sensory-mnemonic crosstalk.

Our findings integrate well with a view that WM contents can be flexibly maintained in different formats 
according to momentary task  requirements50–53. Here, during a challenging visuospatial integration task, the 
concurrent color information may have been transferred to a more asensory (e.g., abstract-categorical, or ver-
bal) format which avoids low-level perceptual  interference53, but which may interact with task aspects that rely 
on similar levels of abstraction, such as decisional categorization along a shared feature dimension. While the 
present choice biases appear suboptimal in the context of our dual-task paradigm, the findings may connect to 
literatures on the role of trial  history17,54–57, and of past experience more generally, in adaptive decision making. 
Prominent models, often in a Bayesian tradition, have characterized how prior experience shapes current per-
cepts, and vice versa, how prior distributions are continuously updated through new  experience58–60. Observing 
similar dynamics here in a dual task, we may speculate that the mechanisms behind concurrent WM storage 
may overlap with those that inject context information in adaptive decisions (for related discussion,  see61), in 
exchange with longer-term memory and -knowledge5,6,62.

Neuroscientific work has offered a range of accounts how visual WM information might be stored through-
out concurrent tasks. One set of recent neuroimaging studies has suggested an inverted coding scheme, where 
memories stored for current and prospective goals are encoded in opposite neural  patterns63–65. While it yet 
remains to be shown if and how the neural representational quality of stored information impacts on concurrent 
perception, we found no evidence for inversion or suppression in spatial weighting patterns during prolonged 
storage for prospective use. We exclusively observed attractive biases. However, our psychophysical method might 
not have been sensitive enough to detect more subtle, potentially inverse patterns on later displays. Another 
recent functional imaging study suggested that unattended storage may rely on low-resolution representations 
in fronto-parietal areas, whereas attended storage additionally recruits high-precision representations in early 
visual  cortex52. Our results may integrate with this view, although our design did not include a control condi-
tion to quantify loss of WM precision that is attributable to accessory storage in particular. How the interactions 
reported here relate to the neural representational nature of mnemonic- and perceptual information remains a 
question for future work using e.g., fMRI- and/or M/EEG recordings.

To conclude, our report indicates both sensory-perceptual and decisional processing stages as a potential locus 
of crosstalk between perception and concurrent WM. The findings extend previous work on WM-perception 
interactions and support a view that concurrent WM storage may flexibly adapt to momentary task demands. We 
hope that the new approaches and methodologies introduced here will also prove instrumental in the continuing 
search for the neural substrates of WM.
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Methods
Participants. In total n = 80 healthy volunteers (43 female, 37 male; age 26.61 + / − 4.35) participated with 
written informed consent. Participants who failed to perform above chance level in WM color- (n = 7) and/or 
location recall (n = 2) were excluded from analysis. We further excluded n = 3 participants whose choices in the 
decision task were not robustly driven by the blue-red dot count in the stream displays (p < 0.001, logistic regres-
sion of choice). Results are reported for the remaining n = 68 participants (36 female, 32 male).

Stimuli and task. Decision task. On each trial, participants viewed a stream of six circular displays (cf. 
Fig. 1, middle; outer circle diameter 10.6° visual angle). Each display contained 20 circular dots (diameter 0.3°), 
a varying number of which was colored blue, the others red. The difference in the number of blue—red dots 
in each display was randomly drawn from a normal distribution that was truncated to one standard deviation 
(SD = 10). The mean of the distribution was randomly varied across trials to be either − 4 or + 4, however, due 
to an error in the presentation code it was consistently shifted by 1 dot towards red (in half of the subjects) or 
blue (in the remaining subjects). As this shift was small and constant in all trials and conditions of interest, we 
consider it inconsequential for the reported results. Control analyses confirmed that the overall color weighting 
functions in the two subgroups were virtually identical. The spatial positions of dots in each display were ran-
domly assigned (independent of color) and uniformly distributed across the display area, with the restrictions 
that no dots overlapped and that the minimum distance to the outer border of the display area was 0.3°. Each 
display was presented for 0.2 s, followed by a blank period (empty display area) of 0.1 s. The outer circle and a 
central fixation cross remained on screen for the entire trial.

To foster participants’ motivation in the decision task, the red-blue comparison was instructed in an incen-
tivized choice frame. One of the colors (red/blue, counterbalanced across participants) was designated as gain-, 
the other as loss color. Participants were instructed to accept the stream if it contained more gains than losses, 
and to reject it otherwise, via left-hand button press (key “C” or “X”, respectively). After choice, full informative 
feedback was displayed, and accepted gains were credited to the participant’s running bonus balance. Feedback 
was based on the mean of the stimulus set (see above). In half of the participants, the task was framed as a gamble 
where the outcome (in terms of both feedback and bonus) was based on that of a randomly drawn display from 
the just-presented stream.

WM task. WM trials started with presentation of a single dot (diameter 0.3°; cf. Fig. 1 left) for 0.5 s, the color 
(red/blue, randomly varied across trials) and spatial location of which were to-be-remembered for later recall. 
The location of the WM sample varied randomly across trials but was restricted to a circular path of 3.8° radius 
around fixation. In WM interference blocks (Fig. 1a), the WM sample was followed after a 0.2 s  delay46 by the 
decision task. In Control 2 blocks (Fig. 1b, lower), the WM sample was immediately followed by WM recall. On 
WM recall, a white dot appeared at the center of the display area and participants were asked to move it to the 
remembered location using arrow keys, and to toggle its color (red/blue) with key “0” on the numpad, all using 
the right hand. Participants were free to make adjustments and corrections (of both color and location) for as 
long as they wished before submitting their result by pressing the Enter key. Thereupon, feedback of both color- 
and location accuracy (transformed into a percentage correct score) was displayed. Color- and location accuracy 
were combined into a bonus score that was surcharged on participants’ running bonus balance.

Design and procedure. Each participant performed 3 consecutive blocks of 80 trials in the critical WM 
interference condition, where the decision task was presented after WM encoding and before WM recall (Fig. 1a). 
Half of the participants additionally performed 3 blocks in control condition 1, in which the WM task elements 
were omitted (Fig. 1b, upper). The remaining participants performed 3 blocks in control condition 2, in which 
the WM- and decision task elements were reordered so that the two tasks were not concurrent (Fig. 1b, lower). 
The ordering of WM interference- and control blocks was counterbalanced across participants. All between-
subject assignments (control 1/2, gain/loss color, choice framing, task order) were crossed to be orthogonal.

Participants where pre-experimentally instructed to give equal priority to the WM- and decision tasks, and 
that performance in both task components would be combined in the final bonus score. Participants were seated 
at approximately 57 cm viewing distance from a 24′’ TN display (BENQ XL2430, 531.36 mm × 298.89 mm viewing 
area, 144 Hz refresh rate, 1920 × 1080 pixels resolution). A chinrest (SR Research) was used to minimize changes 
in viewing distance and head posture. Participants were instructed to fixate a centrally presented crosshair 
(10 × 10 pixels, 2 pixels linewidth) and to avoid eye movements during all task stages. After each block, summary 
performance feedback was provided, and participants were free to take a short break before continuing with the 
next block. Upon completion of the experiment, the bonus score balance was converted into a small monetary 
amount (2–5 Euro, depending on performance) and surcharged on the standard reimbursement for participation.

Spatiotemporal weighting analyses. For spatial weighting analysis, the stream displays were recon-
structed offline as 401 × 401 pixel circular pseudo-color maps (blue: 1, black: 0, red: − 1) and smoothed with a 
20 × 20 pixel Gaussian kernel. Spatial decision weight was estimated at each pixel (x,y) using a logistic regression 
of choice (Eq. 1):

where P(blue) is the probability of choosing blue > red, L is the logistic function y = 1/(1+ e−x ), and cx,y,k is 
the pseudo-color value at pixel coordinate x,y in stream display k. The coefficients βx,y,k form a spatiotemporal 
map ( M ) of decision weight in terms of psychometric slopes at each pixel x,y and each display position k (1–6), 

P(blue) = L

(

β0 +

6
∑

k=1

βx,y,kcx,y,k

)
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and β0 is the model’s constant term. We estimated M for each participant’s choice data and contrasted it with a 
spatially unbiased observer map M∗ . The unbiased map M∗ was estimated from the choice probabilities predicted 
by an individually fitted psychometric model (see Psychometric model below) which was uninformed by the dis-
plays’ spatial dot layout. Subtracting M −M∗ yields a map of regional over- (positive values) or underweighting 
(negative values). The maps were examined statistically using t-tests against zero with false-discovery-rate (FDR) 
 correction66 for multiple comparisons in pixel space.

To test for concentration of decision weight at the concurrently maintained WM sample location, we rec-
omputed M −M∗ from rotationally aligned stream displays. Specifically, we rotated the decision displays from 
each WM trial offline so that the WM sample location on any given trial was aligned at the same angular position 
(arbitrarily set to 45°). For instance, when the WM sample had been presented at 120°, the subsequent stream 
displays would be re-rotated by − 75°. Trials with unusually inaccurate WM location recall (> 40 pixels Euclidean 
displacement) were excluded from the main analysis. To statistically test for angular tuning, we partitioned the 
display area into 11 equal-sized pie segments and compared the average weight in the segment centered around 
the WM sample position to that in the remaining segments. The reported results pattern was robust to varying 
the number (width) of segments used in partitioning.

Reverse correlation analysis of psychometric weight. Psychometric weighting functions (cf. Fig. 4) 
were derived by computing for each relative excess count of blue (vs red) dots, in each display position (1–6), 
the relative frequency with which the stream was subsequently judged blue (i.e., accepted when the gain color 
was blue or rejected when the gain color red). The slope of the resulting psychometric curve indicates the weight 
with which the blue-red dot count in a display impacted on final choice. In other words, the slope of the curve 
indicates the observer’s psychophysical sensitivity to this information. In contrast, an overall displacement of 
the function, e.g., in terms of a parallel shift away from an ideal observer function (which is point-symmetric 
at p = 0.5) reflects an additive response bias towards one of the two choice categories, regardless of the stream’s 
physical appearance.

Psychometric model. For quantitative analysis of choice bias and -sensitivity, we used a simple logistic 
choice model of the form (Eq. 2):

where P(blue) is the probability of choosing blue > red, L is the logistic function, cwm is a dummy variable coding 
the color of the WM sample (1: blue, 0: red), and ck is the color composition of stream display k in terms of the 
excess count of blue minus red dots (ranging from − 10 to + 10 relative to the mean of the stimulus set, see Stimuli 
and Task). The coefficients βk reflect the psychophysical sensitivity (slope) with which the color composition of a 
stream display is weighed in choice, whereas coefficients βb and βr reflect the strength of an additive choice bias 
associated with maintaining a red or blue WM sample, respectively. In control trials without a concurrent WM 
item, a single intercept ( β0 ) was used instead.

Statistical procedures. We used conventional parametric procedures (t-tests and ANOVAs) as detailed in 
Results. Greenhouse–Geisser corrected degrees of freedom were used where appropriate. Supplementary Bayes-
ian statistics were computed using the Bayes factor toolbox (https ://githu b.com/klabh ub/bayes Facto r).

Ethics statement. The study was approved by the ethics commission of the Max Planck Institute for 
Human Development and was conducted in accordance with the Human Subjects Guidelines of the Declaration 
of Helsinki.

Data availability
The research data supporting the findings is available at: https ://arc-git.mpib-berli n.mpg.de/wmfgt /wmfgt .

Code availability
The experimental and analysis code is available at: https ://arc-git.mpib-berli n.mpg.de/wmfgt /wmfgt .
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