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MATRIX RESOLVENT AND THE DISCRETE KDV HIERARCHY

BORIS DUBROVIN† AND DI YANG

Abstract. Based on the matrix-resolvent approach, for an arbitrary solution to the discrete
KdV hierarchy, we define the tau-function of the solution, and compare it with another tau-
function of the solution defined via reduction of the Toda lattice hierarchy. Explicit formulae for
generating series of logarithmic derivatives of the tau-functions are obtained, and applications
to enumeration of ribbon graphs with even valencies and to certain special cubic Hodge integrals
are considered.
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1. Introduction

The discrete KdV equation (aka the Volterra lattice equation) is an integrable Hamiltonian
equation in (1+1) dimensions, i.e. one discrete space variable and one continuous time variable,
which extends to a commuting system of Hamiltonian equations, called the discrete KdV inte-
grable hierarchy. This integrable hierarchy has important applications in algebraic geometry
and symplectic geometry (in particular in the theory of Riemann surfaces) (see e.g. [22]). Sig-
nificance of the discrete KdV hierarchy was further pointed out by E. Witten [39] in the study
of the GUE partition function with even couplings — the “matrix gravity”, and was recently
addressed also in the study of the special cubic Hodge partition function [15, 19, 20] — the
topological gravity in the sense of [15, 20]. The explicit relationship between the two gravities,
called the Hodge–GUE correspondence, has been established in [15, 20]. In this paper, by using
the matrix-resolvent (MR) approach recently introduced and developed in [1, 2, 3, 14, 18] we

†Deceased on March 19, 2019.
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study the tau-structure for the discrete KdV hierarchy, and apply it to studying the above
mentioned enumerative problems.

1.1. The discrete KdV hierarchy. Let P (n) be the following difference operator

P (n) := Λ + wnΛ
−1 , (1)

where Λ denotes the shift operator Λ : fn 7→ fn+1. Introduce

Aℓ :=
(
P ℓ+1

)
+
, ℓ ≥ 0 . (2)

Here, for an operator Q of the form Q =
∑

k∈ZQk Λ
k, the positive part Q+ :=

∑
k≥0Qk Λ

k.
The discrete KdV hierarchy is defined as the following system of commuting flows:

∂P

∂sj
=
[
A2j−1 , P

]
, j ≥ 1 . (3)

For example, the s1-flow reads

∂wn

∂s1
= wn (wn+1 − wn−1) , (4)

which is the discrete KdV equation. The commutativity implies that equations (3) for all j ≥ 1
can be solved together, yielding solutions of the form wn = wn(s), s := (s1, s2, s3, . . . ).

Let us introduce

L := P 2 = Λ2 + wn+1 + wn + wnwn−1 Λ
−2 . (5)

Then A2j−1 =
(
P 2j
)
+
=
(
Lj
)
+
.

Lemma 1. The discrete KdV hierarchy (3) can be equivalently written as

∂L

∂sj
=
[
A2j−1 , L

]
, j ≥ 1 . (6)

The proof will be given in Section 2. For the particular case j = 1, we have

∂(wn+1 + wn)

∂s1
= wn+2wn+1 − wn wn−1 , (7)

∂(wn wn−1)

∂s1
= (wn+1 + wn − wn−1 − wn−2)wnwn−1. (8)

It can be shown that equations (7)–(8) are equivalent to equation (4); the details for this
equivalence are in Section 2.2.

Observe that equations (6) are the compatibility conditions of the following scalar Lax pairs:

Lψn = λψn , i.e. ψn+2 + (wn+1 + wn − λ)ψn + wnwn−1 ψn−2 = 0 , (9)

∂ψn

∂sj
= A2j−1 ψ . (10)

We want to write the spectral problem (9) into a matrix form. The scalar Lax operator L,
defined in (5), could be viewed as a reduction of

L̃ = Λ2 + a1(n) Λ + a2(n) + a3(n) Λ
−1 + a4(n) Λ

−2 ,
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which is the Lax operator of a bigraded Toda hierarchy. However, observe that L contains Λeven

only (with even = −2, 0, 2). So, instead of considering a 4 × 4 matrix-valued Lax operator, a
2× 2 matrix-valued operator will be sufficient. Indeed, introduce

L :=

(
Λ2 0
0 Λ2

)
+ Un , Un :=

(
wn+1 + wn − λ wn wn−1

−1 0

)
. (11)

Then the spectral problem (9) reads

L
(
ψn

ψn−2

)
= 0 . (12)

1.2. The MR approach to tau-functions. In this subsection, we apply the MR approach
to study further some basics in the theory of the discrete KdV hierarchy (in particular about
tau-function), and will arrive at a formula for computing logarithm of the tau-function. Denote
by Z[w] the ring of polynomials with integer coefficients in the variables w := (wn+i)|i∈Z.
Definition 1. An element Rn ∈ Mat

(
2,Z[w]((λ−1))

)
is called a matrix resolvent (MR) of L,

if
Rn+2 Un − UnRn = 0 . (13)

Definition 2. The basic (matrix) resolvent Rn is defined as the MR of L satisfying

Rn =

(
1 0
0 0

)
+O

(
λ−1
)
, (14)

trRn = 1 , detRn = 0 . (15)

The basic resolvent Rn exists and is unique. See in Section 3 for the proof. Write

Rn(λ) =

(
1 + αn(λ) βn(λ)
γn(λ) −αn(λ)

)
. (16)

Then Definition 2 for Rn(λ) is equivalent to the following set of equations

βn = −wn wn−1 γn+2 (17)

αn+2 + αn + 1 = (λ− wn+1 − wn) γn+2 (18)

(λ− wn+1 − wn)(αn − αn+2) = wnwn−1 γn − wn+2wn+1 γn+4 (19)

αn + α2
n + βn γn = 0 (20)

together with equation (14). These equations give recursive relations and initial values for the
coefficients of αn, βn, γn (see (60)–(62) below), which will be called the MR recursive relations.

Lemma 2. For an arbitrary solution wn(s) to the discrete KdV hierarchy, let Rn(λ) denote the
basic resolvent of L evaluated at wn = wn(s). There exists a function τdKdV

n (s) satisfying

∑

i,j≥1

∂2 log τdKdV
n (s)

∂si∂sj
λ−i−1µ−j−1 =

tr
(
Rn(λ)Rn(µ)

)
− 1

(λ− µ)2
, (21)

1

λ
+
∑

i≥1

1

λi+1

∂

∂si
log

τdKdV
n+2

τdKdV
n

=
[
Rn+2(λ)

]
21
, (22)

τdKdV
n+2 τdKdV

n−1

τdKdV
n+1 τdKdV

n

= wn . (23)
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Moreover, the function τdKdV
n (s) is uniquely determined by wn(s) up to a factor of the form

eαn+β0+
∑

k≥1 βksk ,

where α, β0, β1, β2, · · · are arbitrary constants that are independent of n, s.

We call τdKdV
n (s) the tau-function of the solution wn = wn(s) to the discrete KdV hierarchy.

The matrix-resolvent method then allows to compute logarithmic derivatives of τdKdV
n (s),

which is achieved via the following proposition.

Proposition 1. For any k ≥ 3, the generating series of the kth-order logarithmic derivatives
of τdKdV

n (s) has the following expression:
∞∑

j1,...,jk=1

1

λj1+1
1 · · ·λjk+1

k

∂k log τdKdV
n (s)

∂sj1 . . . ∂sjk
= −1

k

∑

σ∈Sk

tr
(
Rn(λσ1) · · ·Rn(λσk

)
)

∏k
i=1(λσi

− λσi+1)
, (24)

where it is understood that σk+1 = σ1.

The proof of this proposition is in Section 3.5.

1.3. The factorization formula. In [14] we gave the definition of tau-function for the Toda
lattice using the MR approach. Observe that the discrete KdV hierarchy (3) is a reduction of
the Toda lattice hierarchy. Therefore, for the arbitrary solution wn(s) to the discrete KdV, we
can also associate another tau-function τn(s) of the solution wn(s) obtained via the reduction
(see Section 4.2 for the precise definition). In particular, this tau-function satisfies that

wn(s) =
τn+1(s) τn−1(s)

τ 2n(s)
.

It turns out that the τn(s) factorizes into a product of two as given by the following theorem.

Theorem 1. There exist constants α, β0, β1, β2, · · · such that

τn(s) = eαn+β0+
∑

k≥1 βksk τdKdV
n (s) τdKdV

n+1 (s) . (25)

The proof of this theorem is in Section 4.

Remark. Identity (25) echoes an identity between Hankel determinants. Indeed, let dµ(λ) be a
measure with even moments on R. Denote µj =

∫
λjdµ(λ), j ≥ 0. (µodd = 0.) We know that

det
(
µi+j−2

)n
i,j=1

= det
(
µ2i+2j−2

)[n/2]
i,j=1

det
(
µ2i+2j−4

)[(n+1)/2]

i,j=1
. (26)

If we deform the measure dµ(λ) to be dµ(λ; t) = e−
∑

j≥1 tj−1λj

dµ(λ), then the LHS·(2π)−n

becomes a Toda tau-function (cf. the formula (3.9) of [10] and the references therein; cf.
also [10, 34, 14]; the (2π)−n is a normalization factor for convenience that does not affect
the fact that the LHS is already a Toda tau-function). If all the even Toda times are zero,
then the t-deformed measure remains even and the factorization (26) holds identically in
t = (0, s1, 0, s2, · · · ). Moreover, note that the RHS of (26) with deformation consists of two
determinants which can be identified with the Hankel determinants associated with certain
s-deformed measures on R+, where s = (s1, s2, · · · ). Then to see (25) from (26), at least for
special cases, one needs to further show that each of the two determinants is a tau-function for
the discrete KdV hierarchy. The more precise statement for a special case together with the
detailed proofs can be seen from the recent arXiv preprint by Massimo Gisonni, Giulio Ruzza
and Tamara Grava [26] regarding Laguerre Unitary Ensemble (LUE) with the consideration of
the parameters α = −1/2 and α = 1/2, respectively in the notations of [26] (cf. also [8, 9]).
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The next corollary follows from Proposition 1 and Theorem 1.

Corollary 1. Fix k ≥ 2. Let wn = wn(s) be an arbitrary solution to the discrete KdV hierarchy,
and τn the tau-function reduced from the Toda lattice hierarchy of wn(s). The following formula
holds true:

∞∑

j1,...,jk=1

∂k log τn(s)
∂sj1 ...∂sjk

λj1+1
1 · · ·λjk+1

k

= − 1

k

∑

σ∈Sk

(1 + Λ) tr
[
Rn(λσ1) · · ·Rn(λσk

)
]

∏k
i=1(λσi

− λσi+1)
− 2 δk,2

(λ1 − λ2)2
. (27)

In practice, the two tau-functions τn and τ
dKdV
n of some solution for the discrete KdV hierarchy

may both have geometric/enumerative meanings; this is the case for the Hodge–GUE (see
below).

Remark. As we shall see from Section 4.2 that the above mentioned reduction does not mean
that vTodan , wToda

n (see Section 4.2) are independent of the even Toda times t0, t2, · · · . The
reduction means the vTodan (0, t1, 0, t3, · · · ) ≡ 0; but the usage of the MR of Toda in the way
of [14] would compute also the correlators containing the correspondence to t0, t2, · · · . The
introductions of the MR of the discrete KdV hierarchy and of the operator 1 + Λ are essential
that surprisingly solve the problem in a simple form.

1.4. Application. We will first apply Corollary 1 to some counting problem. Then by using
the Hodge–GUE correspondence [20, 15] we compute some combinations of Hodge integrals.

I. Enumeration of ribbon graphs with even valencies. Enumeration of ribbon graphs is closely
related to the random matrix theory [4, 27, 30, 11, 34, 7]: e.g. to the Gaussian Unitary
Ensembles (GUE) correlators; the partition function with coupling constants in a random
matrix theory is often a tau-function of some integrable system. Given k ≥ 1 and j1, . . . , jk ≥ 1,
denote

〈
trM2j1 · · · trM2jk

〉
c
:= k!

∑

0≤g≤ |j|
2
− k

2
+ 1

2

n2−2g−k+|j| ag(2j1, . . . , 2jk) , (28)

ag(2j1, . . . , 2jk) :=
∑

Γ

1

#SymΓ
. (29)

Here, |j| = j1 + · · · + jk, and
∑

Γ denotes summation over connected ribbon graphs Γ with
labelled half edges and unlabelled vertices of genus g with k vertices of valencies 2j1, . . . , 2jk,
and #SymΓ is the order of the symmetry group of Γ generated by permuting the vertices.1

The notation
〈
trM2j1 · · · trM2jk

〉
c
is borrowed from the literature of random matrices, where

it is often called a connected Gaussian Unitary Ensemble (GUE) correlator. For every k ≥ 1,
denote

Ek(n;λ1, . . . , λk) :=

∞∑

j1,...,jk=1

〈
trM2j1 · · · trM2jk

〉
c

λj1+1
1 · · ·λjk+1

k

. (30)

Definition 3. Define a 2× 2 matrix-valued series Rn(λ) ∈ Mat
(
2,Z[n][[λ−1]]

)
by

Rn(λ) :=

(
1 0
0 0

)
+

∞∑

j=0

(2j − 1)!!

λj+1

(
(2j + 1)An,j − (n− 1)Bn,j (n− n2)Bn+2,j

Bn,j (n− 1)Bn,j − (2j + 1)An,j

)
(31)

1The number ag(2j1, . . . , 2jk) has the alternative expression ag(2j1, . . . , 2jk) =
∑

G

∏
k

ℓ=1
(2jℓ)

#SymG
, where

∑
G

denotes summation over connected ribbon graphs G with unlabelled half-edges and unlabelled vertices of genus g
with k vertices of valencies 2j1, . . . , 2jk.
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with

An,j := (n− 1) 2F1(−j, 2 − n; 2; 2) , (32)

Bn,j := (n− 1) 2F1(1− j, 2− n; 2; 2) + (n− 2) 2F1(1− j, 3− n; 2; 2) . (33)

Theorem 2. The following formulae hold true:

E1(n;λ) = n
∑

j≥1

(2j − 1)!!

λ2j+1

(
2F1(−j,−n; 2; 2) − j 2F1(1− j, 1− n; 3; 2)

)
, (34)

E2(n;λ1, λ2) =
(1 + Λ)

[
tr
(
Rn(λ1)Rn(λ2)

)]

(λ1 − λ2)2
− 2

(λ1 − λ2)2
, (35)

Ek(n;λ1, . . . , λk) = −1

k

∑

σ∈Sk

(1 + Λ)
[
tr
(
Rn(λσ1) · · ·Rn(λσk

)
)]

∏k
ℓ=1(λσℓ

− λσℓ+1)
(k ≥ 3) , (36)

where Rn(λ) is defined in Definition 3, and it is understood that σk+1 = σ1.

In the above formulae

2F1(a, b; c; z) =
∞∑

j=0

(a)j(b)j
(c)j

zj

j!
= 1 +

a b

c

z

1!
+
a(a + 1) b(b+ 1)

c(c+ 1)

z2

2!
+ · · ·

is the Gauss hypergeometric function. Recall that it truncates to a polynomial if a or b are
non-positive integers. In particular,

n 2F1(−j, 1 − n; 2; 2) =

j∑

i=0

2i
(
j

i

)(
n

i+ 1

)
.

The proof of Theorem 2 is in Section 5.

II. Combinations of certain special cubic Hodge integrals. The particular solution to the discrete
KdV hierarchy considered here will be actually the same as in I. Denote by Mg,k the Deligne–
Mumford moduli space of stable algebraic curves of genus g with k distinct marked points, by
Li the ith tautological line bundle on Mg,k, and Eg,k the Hodge bundle. Denote

ψi := c1(Li) , i = 1, . . . , k ,

λj := cj(Eg,k) , j = 0, . . . , g .

The Hodge integrals are some rational numbers defined by
∫

Mg,k

ψi1
1 · · ·ψik

k λ
j1
1 · · ·λjgg =:

〈
λj11 · · ·λjgg τi1 · · · τik

〉
g,k
, i1, . . . , ik, j1, . . . , jg ≥ 0 .

These numbers are zero unless the degree-dimension matching is satisfied

3g − 3 + k =

k∑

ℓ=1

iℓ +

g∑

ℓ=1

ℓ jℓ . (37)

We are particularly interested in the following special cubic Hodge integrals:
〈
Ωg τi1 · · · τik

〉
g,k
, with Ωg := Λg(−1) Λg(−1) Λg

(
1
2

)
,

where Λg(z) :=
∑g

j=0 λj z
j denotes the Chern polynomial of the Hodge bundle Eg,k. Significance

of these Hodge integrals is manifested by the Gopakumar–Mariño–Vafa conjecture [25, 33]
regarding the Chern–Simons/string duality; see e.g. [37] and the references therein.
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Notations. Y denotes the set of partitions. For a partition λ, denote by ℓ(λ) the length of λ
and by |λ| the weight of λ. Denote m(λ) :=

∏∞
i=1mi(λ) with mi(λ) being the multiplicity of i

in λ.

Definition 4. For given g, k ≥ 0 and an arbitrary set of integers i1, . . . , ik ≥ 0, define

Hg,i1,...,ik = 2g−1
∑

λ∈Y

(−1)ℓ(λ)

m(λ)!

〈
Ωg τλ+1 τI

〉
g, ℓ(λ)+k

, (38)

where |i| := i1 + · · ·+ ik, τI := τi1 · · · τik , and τλ+1 := τλ1+1 · · · τλℓ(λ)+1.

It should be noted that according to (37), “
∑

λ∈Y” in (38) is a finite sum.

The following lemma will be proved in Section 5.2.

Lemma 3. The number Hg,i1,...,ik vanishes unless |i| ≤ 3g − 3 + k.

Corollary 2. The numbers Hg,i1,...,ik satisfy

i) For k = 0,

Hg,∅ =

{
0 , g = 0, 1 ,

1
4g(2g−1)(2g−2)

∑g
g1=0(2g1 − 1)

(
2g
2g1

)E2g−2g1B2g1

22g−2g1
, g ≥ 2 .

ii) For k = 1, ∀ j ≥ 1,
(
2j

j

) ∑

g≥0

ǫ2g−1
∑

0≤i≤3g−3+k

ji+1Hg,i +
1

2ǫ

1

1 + j

(
2j

j

)

= ǫj
[
(2j + 1)!!

2j
A 1

2
+ 1

ǫ
, j +

(2j − 1)!!

2j

(1
2
− 1

ǫ

)
B 1

2
+ 1

ǫ
, j

]
, (39)

where An,j and Bn,j are defined in (32)–(33).

iii) For k ≥ 2,

ǫk
∑

j1,...,jk≥1

∏k
r=1

(
2jr
jr

)

λj1+1
1 · · ·λjk+1

k

∑

g≥0

ǫ2g−2
∑

i1,...,ik≥0

|i|≤3g−3+k

k∏

r=1

jir+1
ℓ Hg,i1,...,ik

= −1

k

∑

σ∈Sk

tr
[
R 1

2
+ 1

ǫ

(λσ1

ǫ

)
· · ·R 1

2
+ 1

ǫ

(λσk

ǫ

)]

∏k
ℓ=1(λσℓ

− λσℓ+1)
− δk,2

(λ1 − λ2)2
− δk,2

∑

j1,j2≥1

j1 j2
j1 + j2

(
2j1
j1

)(
2j2
j2

)

λj1+1
1 λj2+1

2

,

(40)

where Rn(λ) is defined as in (31).

The proof, using the Hodge–GUE correspondence and Theorem 2, will be given in Section 5.2.
We note that the sum

∑
i1,...,ik≥0

|i|≤3g−3+k

appearing in the LHS of (39), (40) has the following alternative

expression, which can be deduced from Appendix A:

∑

i1,...,ik≥0

|i|≤3g−3+k

k∏

r=1

jir+1
r Hg,i1,...,ik =

∑

q≥k

1

(q − k)!

∫

Mg,q

Ωg,q

q∏

m=k+1

(
− ψ2

m

1− ψm

) k∏

m=1

jm
1− jmψm

.
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Organization of the paper. In Section 2, we derive several useful formulae. In Section 3,
we study MR, and use it to describe the discrete KdV flows and the tau-structure. Section 4
is devoted to the proof of Theorem 1. Proofs of Theorem 2 and Corollary 2 are in Section 5.

Acknowledgements. We would like to thank the anonymous referee for valuable suggestions
and constructive comments that improve a lot the presentation of the paper. One of the authors
D.Y. is grateful to Youjin Zhang and Don Zagier for their advising, and to Giulio Ruzza for
helpful discussions. Part of the work of D.Y. was done when he was a post-doc at MPIM, Bonn;
he thanks MPIM for excellent working conditions and financial supports.

2. Basic formulation

In this section we will do some preparations for the later sections by reviewing the basics of
the theory of the discrete KdV hierarchy.

2.1. Some useful identities. Recall that P (n) := Λ + wnΛ
−1, L = P 2. Denote

P (n)ℓ+1 =:
∑

k∈Z

Aℓ,k(n) Λ
k , ℓ ≥ −1 , (41)

L(n)j =:
∑

k∈Z

mj,k(n) Λ
k , j ≥ 0 , (42)

where the coefficients Aℓ,k(n) and mj,k(n), k ∈ Z belong to Z[w]. It is easy to see that if k is
odd, or if |k| > 2j, then mj,k ≡ 0. It is also easy to see that

mj,k = A2j−1,k . (43)

Lemma 4. The following identities hold true

mj,−2(n) = wnwn−1mj,2(n− 2) , (44)

mj,0(n) = mj−1,−2(n) +mj−1,−2(n+ 2) + (wn+1 + wn)mj−1,0(n) , (45)

mj,−2(n)−mj,−2(n− 2)− (wn−1 + wn−2)
(
mj−1,−2(n)−mj−1,−2(n− 2)

)

+ wn−2wn−3mj−1,0(n− 4)− wn wn−1mj−1,0(n) = 0 . (46)

Proof Comparing the constant terms of the identity

Lj = Lj−1L = LLj−1 (47)

we obtain that

mj,0(n) = mj−1,−2(n) + (wn+1 + wn)mj−1,0(n) + wn+2wn+1mj−1,2(n)

= mj−1,−2(n+ 2) + (wn+1 + wn)mj−1,0(n) + wn wn−1mj−1,2(n− 2) .

This proves (44)–(45). Similarly, comparing the coefficients of Λ−2 of (47) we obtain

mj,−2(n) = mj−1,−4(n) + (wn−1 + wn−2)mj−1,−2(n) + wn wn−1mj−1,0(n)

= mj−1,−4(n+ 2) + (wn+1 + wn)mj−1,−2(n) + wnwn−1mj−1,0(n− 2) ,

which implies identity (46). The lemma is proved.
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Lemma 5. The following identities hold true

Aℓ,−1(n) = wnAℓ,1(n− 1) , (48)

Aℓ,0(n) = wn+1Aℓ−1,1(n) + wnAℓ−1,1(n− 1) , (49)

wnAℓ,1(n− 1)− wn+1Aℓ,1(n) + wn+1Aℓ−1,0(n− 1)− wnAℓ−1,0(n− 1) = 0 , (50)

Aℓ,0(n+ 1)− Aℓ,0(n) = wn+2Aℓ,2(n)− wnAℓ,2(n− 1) . (51)

Proof Identities (48)–(50) are contained in the Lemma 2.2.1 of [14] (see the proof therein).
Identity (51) follows from comparing coefficients of Λ on the both sides of the following identity:

P ℓ+1P = PP ℓ+1 .

The lemma is proved.

Taking ℓ = 2j − 1 in identity (51) and using (43) we obtain

mj,0(n + 1)−mj,0(n) = wn+2mj,2(n)− wnmj,2(n− 1) . (52)

We call this identity the key identity. It should be noted that the above identities (43)–(46),
(48)–(51) hold in Z[w] absolutely (namely, the validity does not require that wn is a solution of
the discrete KdV hierarchy), because they are nothing but properties of the operators P and
L.

2.2. Proof of Lemma 1. Note that this lemma means the following: if wn = wn(s) satisfies (3),
then it satisfies (6); vice versa. Firstly, let wn = wn(s) be an arbitrary solution to (3), i.e.,

∂P

∂sj
=
[
A2j−1 , P

]

for all j ≥ 1. Since L = P 2 we have

∂L

∂sj
= P

∂P

∂sj
+
∂P

∂sj
P = P

[
A2j−1 , P

]
+
[
A2j−1 , P

]
P = [A2j−1, L] .

Secondly, let wn = wn(s) be an arbitrary solution to (6), namely, it satisfies that

∂(wn+1 + wn)

∂sj
= wn+2wn+1mj,2(n) − wn wn−1mj,2(n− 2) , (53)

∂(wnwn−1)

∂sj
= wn wn−1

(
mj,0(n) − mj,0(n− 2)

)
. (54)

Identity (53) implies that

(Λ + 1)
∂wn

∂sj
= wn+2wn+1mj,2(n)− wn+1wnmj,2(n− 1)

+ wn+1wnmj,2(n− 1) − wnwn−1mj,2(n− 2)

= wn+1

(
mj,0(n+ 1)−mj,0(n)

)
+ wn

(
mj,0(n)−mj,0(n− 1)

)
,

where we have used identity (52). Identity (54) implies that

wn
∂wn+1

∂sj
+ wn+1

∂wn

∂sj
= wn+1wn

(
mj,0(n + 1)−mj,0(n)

)
+ wn+1wn

(
mj,0(n)−mj,0(n− 1)

)
.
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Combining the above two identities and assuming that wn 6≡ wn+1 yields

∂wn

∂sj
= wn

(
mj,0(n)−mj,0(n− 1)

)
= CoefΛ−1

[
A2j−1, P

]
. (55)

(One can see from (53) that solutions satisfying wn ≡ wn+1 are independent of s. Therefore
these trivial solutions also satisfy (3).) The proposition is proved.

2.3. Lax pairs in matrix form. In this subsection we write the scalar Lax pairs (9)–(10) into
matrix form. The following lemma plays an important role.

Lemma 6. The wave function ψn satisfies that

∂ψn

∂sj
= λj ψn +

j∑

i=1

λj−i
(
mi−1,−2 ψn − wn wn−1mi−1,0 ψn−2

)
, j ≥ 1 . (56)

Proof We have for any j ≥ 1
(
Lj
)
+

=
(
Lj−1L

)
+

=
(
Lj−1

)
+
L+ +

((
Lj−1

)
−
L
)

+
+
((
Lj−1

)
+
L−

)

+

=
(
Lj−1

)
+
L −

((
Lj−1

)
+
L−

)
−
+
((
Lj−1

)
−
L
)
+

=
(
Lj−1

)
+
L + mj−1,−2 − wnwn−1mj−1,0 Λ

−2 .

In the above derivations it is understood that L = L(n) and mj,k = mj,k(n). Therefore,

A2j−1 =
(
Lj
)
+

= Lj +

j∑

i=1

(
mi−1,−2 − wnwn−1mi−1,0 Λ

−2
)
Lj−i , ∀ j ≥ 0.

The lemma is proved.

Lemma 7. The vector-valued wave function Ψn =
(
ψn, ψn−2

)T
satisfies that

∂Ψn

∂sj
= Vj(n) Ψn , j ≥ 1 , (57)

where Vj(n) are the following 2× 2 matrices

Vj(n) :=

(
λj +

∑j
i=1 λ

j−imi−1,−2(n) −wn wn−1

∑j
i=1 λ

j−imi−1,0(n)∑j
i=1 λ

j−imi−1,0(n− 2) mj,0(n− 2)−
∑j

i=1 λ
j−imi−1,−2(n)

)
. (58)

Proof Equation (57) follows straightforwardly from (56) and (9).

We therefore arrive at

Proposition 2. The discrete KdV hierarchy are the compatibility conditions of (12) and (57):

∂Un

∂sj
= Vj(n + 2)Un − Un Vj(n) , j = 1, 2, 3, · · · .

3. Tau-structure for the discrete KdV hierarchy

In this section, we use the MR method to study the tau-structure of the discrete KdV
hierarchy; in particular, we will prove Proposition 1. The notations about the matrix-resolvents
are the same as in the Introduction.
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3.1. The MR recursive relations. Write

αn =
∑

j≥0

an,j
λj+1

, γn =
∑

j≥0

cn,j
λj+1

. (59)

Then we find that an,j, cn,j satisfy

cn,j+1 = (wn−1 + wn−2) cn,j + an,j + an−2,j , (60)

an,j+1 − an+1,j+1 + (wn+1 + wn)(an+2 − an,j) + wn+1wn cn+4,j − wnwn−1 cn,j = 0 , (61)

an,j =

j−1∑

i=0

(
wnwn−1 cn,i cn,j−1−i − an,i an,j−1−i

)
(62)

as well as

an,0 = 0 , cn,0 = 1 . (63)

Lemma 8. The basic resolvent of L exists and is unique.

Proof Observe that multiplying (18) and (19) gives (20). This proves existence of Rn. Unique-
ness follows directly from the MR recursive relations (60)–(62), as we can solve an,j, cn,j uniquely
in an algebraic way for all j ≥ 1. The lemma is proved.

For the reader’s convenience we give in below the first few terms of the basic resolvent of L:

Rn(λ) =




1 + wn−1wn

λ2 + · · · −wn−1wn

λ
− wn−1(wn+wn+1)wn

λ2 + · · ·

1
λ
+ wn−2+wn−1

λ2 + · · · −wn−1wn

λ2 + · · ·


 .

3.2. MR and the discrete KdV flows. In this subsection we use the basic MR to express
the discrete KdV flows. (We would like to mention that the materials that we give in this
subsection are rather standard.) Let Rn be the basic matrix resolvent of L.
Lemma 9. The following formulae hold true:

cn,j = mj,0(n− 2) , (64)

an,j = mj,−2(n) . (65)

Proof By identifying their recursive relations as well as the initial values of the recursions.

It follows from the above Lemma 9 that the matrices Vj(n) defined in (58) have the following
expressions:

Vj(n) =
(
λjRn

)
+
+

(
0 0
0 cn,j

)
, (66)

where “ + ” means taking the polynomial part in λ (including the constant term).

3.3. Loop operator. Introduce a linear operator ∇(λ) by

∇(λ) :=
∑

j≥1

1

λj+1

∂

∂sj
. (67)
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It readily follows from equation (66) that

∇(µ) Ψn(λ) =

[
Rn(µ)

µ− λ
+Qn(µ)

]
Ψn(λ) ,

where

Qn(µ) := − I
µ
+

(
0 0
0 γn(µ)

)
.

Lemma 10. The following formula holds true:

∇(µ)Rn(λ) =
1

µ− λ

[
Rn(µ), Rn(λ)

]
+
[
Qn(µ), Rn(λ)

]
. (68)

3.4. From MR to tau-function. The MR allows us to define tau-function of an arbitrary
solution of the discrete KdV hierarchy. Recall that a family of elements Ωp;q(n) ∈ Z[w], p, q ≥ 1
are called a tau-structure of the discrete KdV hierarchy if

Ωp;q(n) = Ωq;p(n) , ∀ p, q ≥ 1 (69)

and for an arbitrary solution wn = wn(s) of the discrete KdV hierarchy

∂Ωp;q(n)

∂sr
=

∂Ωp;r(n)

∂sq
, ∀ p, q, r ≥ 1 . (70)

Definition 5. Define Ωi;j(n), i, j ≥ 1 via the generating series

∑

i,j≥1

Ωi;j(n) λ
−i−1µ−j−1 =

tr
(
Rn(λ)Rn(µ)

)
− 1

(λ− µ)2
. (71)

Lemma 11. The Ωi;j(n), i, j ≥ 1 (71) are well-defined, and live in Z[w]. Moreover, they form
a tau-structure of the discrete KdV hierarchy.

Proof The proof is almost identical with the one for the Toda lattice hierarchy [14] (or the
one for the Drinfeld–Sokolov hierarchies [3]); details are omitted here.

Proof of Lemma 2. By Lemma 11, it suffices to prove the compatibility between (21)–(23).

Firstly, on one hand,
∑

i,j≥1

λ−i−1µ−j−1
[
Ωi;j(n + 2)− Ωi;j(n)

]

=
tr
(
Rn+2(λ)Rn+2(µ)

)
− tr

(
Rn(λ)Rn(µ)

)

(λ− µ)2

=
(1 + 2αn(λ)) γn+2(µ)− (1 + 2αn(µ)) γn+2(λ)

λ− µ
− γn+2(λ)γn+2(µ) .

On the other hand,

∇(µ)
[
Rn+2(λ)

]
21

=

(
1 + 2αn+2(µ)

)
γn+2(λ)−

(
1 + 2αn+2(λ)

)
γn+2(µ)

λ− µ
+ γn+2(λ)γn+2(µ) .

Hence by using (18) we find that
∑

i,j≥1

λ−i−1µ−j−1
[
Ωi;j(n+ 2)− Ωi;j(n)

]
= ∇(µ)

[
Rn+2(λ)

]
21
. (72)
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This proves the compatibility between (21) and (22).

Secondly, on one hand,
∑

i,j≥1

λ−i−1µ−j−1
[
Ωi;j(n+ 2) + Ωi;j(n− 1)− Ωi;j(n+ 1)− Ωi;j(n)

]

=
∑

i,j≥1

λ−i−1µ−j−1
[
Ωi;j(n+ 2)− Ωi;j(n)

]
−
∑

i,j≥1

λ−i−1µ−j−1
[
Ωi;j(n+ 1)− Ωi;j(n− 1)

]
.

On the other hand,

∇(µ)∇(λ) logwn = ∇(µ)
[
γn+2(λ)− γn+1(λ)

]
= ∇(µ)γn+2(λ)−∇(µ)γn+1(λ) . (73)

Using (72) we find
∑

i,j≥1

λ−i−1µ−j−1
[
Ωi;j(n+ 2) + Ωi;j(n− 1)− Ωi;j(n+ 1)− Ωi;j(n)

]
= ∇(µ)∇(λ) logwn . (74)

This proves compatibility between (21) and (23). Thirdly, the following identity

∇(λ) logwn = γn+2(λ)− γn+1(λ)

shows the compatibility between (22) and (23). The proposition is proved.

3.5. Generating series of multi-point correlations functions. For an arbitrary solution
wn = wn(s) to the discrete KdV hierarchy, let τdKdV

n = τdKdV
n (s) denote the tau-function of this

solution. The logarithmic derivatives

∂k log τdKdV
n (s)

∂sj1 . . . ∂sjk
, j1, . . . , jk ≥ 1, k ≥ 1

can be called the k-point correlation functions2 of the solution wn = wn(s).

Proof of Proposition 1. The proof can be achieved by the mathematical induction, as in
[1]; we hence omit the details.

We see from Proposition 1 that the logarithmic derivatives ∂k log τdKdV
n (s)

∂sj1 ...∂sjk
with k ≥ 2 all live in

Z[w], as their generating series are expressed by MR via algebraic manipulations; this simple
fact agrees with footnote 2 (and can be of course deduced from other techniques).

4. Proof of Theorem 1

The goal of this section is to prove Theorem 1.

4.1. Review of the MR approach to the Toda lattice hierarchy. Denote

P := Λ + vTodan + wToda
n Λ−1 , Aℓ :=

(
Pℓ+1

)
+
, ℓ ≥ 0.

The Toda lattice hierarchy is defined as the following system of commuting flows

∂P
∂tℓ

=
[
Aℓ , P

]
, ℓ ≥ 0 . (75)

2We can say in a more accurate sense that the logarithmic derivatives are identified with the correlation
functions, where the latter are defined as abstract differential polynomials; see for example [18] for the details.
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Let us briefly review part of the results of [14]. Introduce Un =

(
vTodan − λ wToda

n

−1 0

)
.

The basic resolvent Rn associated to PM := Λ + Un is defined as the unique solution in
Mat

(
2,Z

[
vToda,wToda

]
[[λ−1]]

)
to the problem:

Rn+1 Un − Un Rn = 0 , (76)

Rn =

(
1 0
0 0

)
+O

(
λ−1
)
, (77)

trRn = 1 , detRn = 0 . (78)

Write

Rn(λ) =

(
1 +An(λ) Bn(λ)
Gn(λ) −An(λ)

)
, An,Bn,Gn ∈ Z[vToda,wToda][[λ−1]] . (79)

Then An,Bn,Gn satisfy that

Bn = −wToda
n Gn+1 (80)

An+1 +An + 1 = Gn+1 (λ− vTodan ) (81)

(λ− vTodan )(An −An+1) = wToda
n Gn − wToda

n+1 Gn+2 (82)

An +A2
n = Bn Gn . (83)

The following lemma was proven in [14].

Lemma 12 ([14]). For an arbitrary solution vTodan = vTodan (t), wToda
n = wToda

n (t) to the Toda
lattice hierarchy there exists a function τTodan (t) such that

∑

i, j≥0

1

λi+2µj+2

∂2 log τTodan (t)

∂ti ∂tj
=

trRn(t, λ)Rn(t, µ)− 1

(λ− µ)2
(84)

1

λ
+
∑

i≥0

1

λi+2

∂

∂ti
log

τTodan+1 (t)

τTodan (t)
= [Rn+1(t, λ)]21 (85)

τTodan+1 (t)τTodan−1 (t)

τTodan (t)2
= wn. (86)

The function τTodan (t) is uniquely determined by the solution vTodan (t), wToda
n (t) up to

τTodan (t) 7→ ea0+a1n+
∑

j≥0 bjtjτTodan (t)

for some constants a0, a1, b0, b1, b2, . . . ..

In [14] the τTodan (t) is called the tau-function of the solution vTodan (t), wToda
n (t) to the Toda

lattice hierarchy. The logarithmic derivatives of τTodan (t)

∂k log τTodan (t)

∂ti1 . . . ∂tik
, i1, . . . , ik ≥ 0 , k ≥ 1

can be called k-point correlations functions (cf. footnote 2) of the Toda lattice hierarchy. Define

Ck(λ1, . . . , λk;n; t) :=
∑

i1,...,ik≥0

1

λi1+2
1 · · ·λik+2

k

∂k log τTodan (t)

∂ti1 . . . ∂tik
.
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4.2. Reduction to the discrete KdV hierarchy. Now consider solutions to the Toda lattice
hierarchy in the ring C[[t0, t1, . . . ]] ⊗ V, where V is any ring of functions of n, closed under Λ
and Λ−1. These solutions can be specified by (i.e. are in 1-1 correspondence to) the initial
value:

f(n) = vTodan (t = 0) , g(n) = wToda
n (t = 0) .

Let us explain how a subset of solutions to the Toda lattice hierarchy be reduced to solutions
of the discrete KdV hierarchy. On one hand, let vTodan = vTodan (t), wToda

n = wToda
n (t) be an

arbitrary solution in C[[t0, t1, . . . ]] ⊗ V of the Toda lattice hierarchy satisfying the following
type of initial conditions

f(n) ≡ 0 .

It follows that

vTodan

∣∣
t0=t2=t4=···=0

≡ 0 , (∀n, t1, t3, t5, · · · ). (87)

This further implies that the commuting flows ∂wToda
n (t)
∂t2j−1

∣∣
t0=t2=t4=···=0

(j ≥ 1) are decoupled,

namely, there are no vTodan -dependence in these flows (of course when restricting to t0 = t2 =
t4 = · · · = 0). Moreover, these flows coincide with the discrete KdV hierarchy (3). Therefore if
we define

wn(s) := wToda
n (t)

∣∣
t2i−1=si, t2i−2=0, i≥1

, (88)

then wn = wn(s) is a solution to the discrete KdV hierarchy. On the other hand, let wn = wn(s)
be an arbitrary solution to the discrete KdV hierarchy in the ring C[s1, s2, . . . ] ⊗ V. Let g(n)
denote its initial value, i.e. g(n) := wn(s = 0). Define vTodan (t) , wToda

n (t) as the unique solution
in C[[t0, t1, . . . ]] ⊗ V to the Toda lattice hierarchy with (f(n) ≡ 0, g(n)) as the initial value.
Then wToda

n (t)|t2i−1=si, t2i−2=0, i≥1 = wn(s).

Hence the correspondence between solutions of the discrete KdV hierarchy and a suitable
subset of solutions of the Toda lattice hierarchy has been established.

For a solution
(
vTodan (t), wToda

n (t)
)
to the Toda lattice hierarchy satisfying vTodan (0) ≡ 0 (∀n),

let τTodan (t) denote the tau-function of this solution. Define wn(s) as in (88), and

τn(s) := τTodan (t0 = 0, t1 = s1, t2 = 0, t3 = s2, · · · ) .
Then we know that the function wn = wn(s) satisfies the discrete KdV hierarchy (3), and that

wn(s) =
τn+1(s) τn−1(s)

τ 2n(s)
. (89)

As indicated above, all solutions of the discrete KdV hierarchy can be obtained from this way.

Definition 6. We call τn(s) the tau-function reduced from the Toda lattice hierarchy of the
solution wn = wn(s) to the discrete KdV hierarchy.

Introduce the notations:

An(λ) := An(λ)|vTodan ≡0, wToda
n ≡wn

,

Bn(λ) := Bn(λ)|vTodan ≡0, wToda
n ≡wn

,

Gn(λ) := Gn(λ)|vTodan ≡0, wToda
n ≡wn

.

Clearly, An, Bn, Gn belong to Z[w][[λ−1]]. Note that definitions of An(λ), Bn(λ), Gn(λ) are
in the absolute sense, namely, they do not depend on whether wn is a solution or not.
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Lemma 13. The An(λ) satisfies

wn+1

(
An+2(λ) + An+1(λ) + 1

)
− wn

(
An(λ) + An−1(λ) + 1

)
= λ2

(
An+1(λ)− An(λ)

)
. (90)

Proof Following from (81) and (82) with vTodan ≡ 0.

4.3. Proof of Theorem 1. Firstly, on one hand, it follows from the Lemma 1.2.3 of [14] that

mj,0(n; s) =
∂

∂sj
log

τn+1(s)

τn(s)
, j ≥ 1 . (91)

On the other hand, from (22) and (64) we find

mj,0(n; s) =
∂

∂sj
log

τdKdV
n+2 (s)

τdKdV
n (s)

, j ≥ 1 . (92)

Comparing the above two expressions we find

log
τn+1(s)

τn(s)
− log

τdKdV
n+2 (s)

τdKdV
n (s)

= S(n) , (93)

where S(n) is some function depending only on n. Equation (93) implies that

log τn(s) − (Λ + 1) log τdKdV
n (s) = S̃(n) + f(s) , (94)

where S̃(n) is some function depending only on n, and f(s) is some function depending only
on s.

Secondly, it follows from (23) and (89) that

τn+1(s) τn−1(s)

τ 2n(s)
=

τdKdV
n+2 (s) τdKdV

n−1 (s)

τdKdV
n+1 (s) τdKdV

n (s)
. (95)

Substituting (94) in (95) we find that S̃(n) can only be an affine function of n, namely,

log τn(s) − (Λ + 1) log τdKdV
n (s) = αn + α′ + f(s) , (96)

where α, α′ are some constants independent of n, s.

Thirdly, on one hand, using (21) we find

∑

i,j≥1

∂2 log τdKdV
n (s)

∂si∂sj

1

λi+1µj+1

=
αn(λ) + αn(µ) + 2αn(λ)αn(µ)− wnwn−1

(
γn(λ)γn+2(µ) + γn(µ)γn+2(λ)

)

(λ− µ)2
.

Therefore,

∑

i,j≥1

∂2 log τdKdV
n (s)

∂si∂sj

1

λ2i+1µ2j+1

= λµ
αn(λ

2) + αn(µ
2) + 2αn(λ

2)αn(µ
2)− wn wn−1

(
γn(λ

2)γn+2(µ
2) + γn(µ

2)γn+2(λ
2)
)

(λ2 − µ2)2

=: W2(λ, µ;n, s) .
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So

∑

i,j≥1

(
∂2 log τdKdV

n (s)

∂si∂sj
+
∂2 log τdKdV

n+1 (s)

∂si∂sj

)
1

λ2i+1µ2j+1
= W2(λ, µ;n, s) +W2(λ, µ;n+ 1, s) .

On the other hand, for P (n) = Λ + wnΛ
−1, recall the notation

P (n)ℓ+1 =
∑

k∈Z

Aℓ,k(n) Λ
k , ℓ = −1, 0, 1, 2, · · · .

Using Lemma 12 we have

C2(λ, µ;n; t) =
An(λ) + An(µ) + 2An(λ)An(µ)− wn

(
Gn+1(λ)Gn(µ) +Gn+1(µ)Gn(λ)

)

(λ− µ)2
,

where

An(λ) =
∑

ℓ≥0

Aℓ−1,−1(n)

λℓ+1
, Gn(λ) =

∑

ℓ≥0

Aℓ−1,0(n− 1)

λℓ+1
.

Taking

t2i−2 = 0, t2i−1 = si (i ≥ 1)

we have

Gn(λ) =
∑

j≥0

A2j−1,0(n− 1)

λ2j+1
=
∑

j≥0

mj,0(n− 1)

λ2j+1
=
∑

j≥0

cn+1,j

λ2j+1
= λ γn+1(λ

2) . (97)

It follows from (81), (97), and respectively (18), that

An(λ) = (Λ + 1)−1
(
λ2γn+2(λ

2)− 1
)

= λ2 (Λ + 1)−1 γn+2(λ
2)− 1

2
, (98)

αn(λ) = (Λ2 + 1)−1
(
(λ− wn+1 − wn) γn+2(λ)

)
− 1

2
. (99)

Lemma 14. The following identities hold true:

γn(λ
2) =

An−1(λ) + An−2(λ) + 1

λ2
, (100)

Gn(λ) =
An(λ) + An−1(λ) + 1

λ
, (101)

αn(λ
2) = An−1(λ)−

wn−1

λ2
(
An−1(λ) + An−2(λ) + 1

)
. (102)

Proof Identities (100), (101) are easy consequences of (98), (97).

Note that identity (52) implies that

αn(λ
2) =

1

2

(
wn−1 γn+1(λ

2)− wn−2 γn−1(λ
2) + (λ2 − 2wn−1) γn(λ

2)− 1
)

=
1

2

(
wn−1

An(λ) + An−1(λ) + 1

λ2
− wn−2

An−2(λ) + An−3(λ) + 1

λ2

+ (λ2 − 2wn−1)
An−1(λ) + An−2(λ) + 1

λ2
− 1
)
.
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Applying Lemma 13 in this identity yields

αn(λ
2) =

1

2λ2

(
λ2(An−1(λ)− An−2(λ)) + (λ2 − 2wn−1) (An−1(λ) + An−2(λ) + 1)− λ2

)

=
1

λ2

(
λ2An−1(λ)− wn−1 (An−1(λ) + An−2(λ) + 1)

)
.

The lemma is proved.

Observe that C2(λ, µ;n, s) satisfies the parity symmetries

C2(λ, µ) = C2(−λ,−µ) , C2(λ,−µ) = C2(−λ, µ) .
So

∑

i,j≥1

∂2 log τn(t)

∂t2i−1∂t2j−1

1

λ2i+1µ2j+1
=

C2(λ, µ)− C2(−λ, µ)
2

. (103)

Lemma 15. The following identity hold true:

λµ
αn(λ

2) + αn(µ
2) + 2αn(λ

2)αn(µ
2)− wn wn−1

(
γn(λ

2)γn+2(µ
2) + γn(µ

2)γn+2(λ
2)
)

(λ2 − µ2)2

+ λµ
αn+1(λ

2) + αn+1(µ
2) + 2αn+1(λ

2)αn+1(µ
2)− wn+1wn

(
γn+1(λ

2)γn+3(µ
2) + γn+1(µ

2)γn+3(λ
2)
)

(λ2 − µ2)2

=
An(λ) + An(µ) + 2An(λ)An(µ)− wn

(
Gn+1(λ)Gn(µ) +Gn+1(µ)Gn(λ)

)

2(λ− µ)2

− An(−λ) + An(µ) + 2An(−λ)An(µ)− wn

(
Gn+1(−λ)Gn(µ) +Gn+1(µ)Gn(−λ)

)

2(λ+ µ)2
. (104)

Proof Applying (100)–(102) and the parity symmetry

An(−λ) = An(λ)

we find that it suffices to prove the following equality

− λµ + 2 λµ
[
An−1(λ)−

wn−1

λ2
(
An−1(λ) + An−2(λ) + 1

)
+

1

2

]

[
An−1(µ)−

wn−1

µ2

(
An−1(µ) + An−2(µ) + 1

)
+

1

2

]

− wn wn−1

λµ

[
(An−1

(
λ) + An−2(λ) + 1

)(
An+1(µ) + An(µ) + 1

)

+
(
An−1(µ) + An−2(µ) + 1

)(
An+1(λ) + An(λ) + 1

)]

− wn+1wn

λµ

[(
An(λ) + An−1(λ) + 1

)(
An+2(µ) + An+1(µ) + 1

)

+
(
An(µ) + An−1(µ) + 1

)(
An+2(λ) + An+1(λ) + 1

)]

+ 2 λµ
[
An(λ)−

wn

λ2
(
An(λ) + An−1(λ) + 1

)
+

1

2

]

[
An(µ)−

wn

µ2

(
An(µ) + An−1(µ) + 1

)
+

1

2

]
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=
(λ+ µ)2

2

[
An(λ) + An(µ) + 2An(λ)An(µ)

− wn

λµ

((
An+1(λ) + An(λ) + 1

)(
An(µ) + An−1(µ) + 1

)

+
(
An+1(µ) + An(µ) + 1

)(
An(λ) + An−1(λ) + 1

))]

− (λ− µ)2

2

[
An(λ) + An(µ) + 2An(λ)An(µ)

+
wn

λµ

((
An+1(λ) + An(λ) + 1

)(
An(µ) + An−1(µ) + 1

)

+
(
An+1(µ) + An(µ) + 1

)(
An(λ) + An−1(λ) + 1

))]
.

Noting that

λµ · lhs =

− λ2µ2 + 2
[
λ2An−1(λ)− wn−1

(
An−1(λ) + An−2(λ) + 1

)
+
λ2

2

]

[
µ2An−1(µ)− wn−1

(
An−1(µ) + An−2(µ) + 1

)
+
µ2

2

]

− wn−1

[
(An−1

(
λ) + An−2(λ) + 1

)(
µ2
(
An(µ)−An−1(µ)

)
+ wn−1

(
An−1(µ) + An−2(µ) + 1

))

+
(
An−1(µ) + An−2(µ) + 1

)(
λ2
(
An(λ)− An−1(λ)

)
+ wn−1

(
An−1(λ) + An−2(λ) + 1

))]

− wn

[(
An(λ) + An−1(λ) + 1

)(
µ2
(
An+1(µ)−An(µ)

)
+ wn

(
An(µ) + An−1(µ) + 1

))

+
(
An(µ) + An−1(µ) + 1

)(
λ2
(
An+1(λ)−An(λ)

)
+ wn

(
An(λ) + An−1(λ) + 1

))]

+ 2
[
λ2An(λ)− wn

(
An(λ) + An−1(λ) + 1

)
+
λ2

2

][
µ2An(µ)− wn

(
An(µ) + An−1(µ) + 1

)
+
µ2

2

]

and that

λµ · rhs = 2 λ2µ2
(
An(λ) + An(µ) + 2An(λ)An(µ)

)

+ wn (λ
2 + µ2)

((
An+1(λ) + An(λ) + 1

)(
An(µ) + An−1(µ) + 1

)

+
(
An+1(µ) + An(µ) + 1

)(
An(λ) + An−1(λ) + 1

))
,

we find

λµ · (lhs− rhs)

= λ2µ2(2An−1(λ)An−1(µ)− 2An(λ)An(µ) + An−1(λ) + An−1(µ)− An(λ)−An(µ)
)

− µ2(An−1(µ) + An(µ) + 1)
(
wn−1(An−2(λ) + An−1(λ) + 1)− wn(An(λ) + An+1(λ) + 1)

)

− λ2
(
An−1(λ) + An(λ) + 1)

(
wn−1(An−2(µ) + An−1(µ) + 1)− wn(An(µ) + An+1(µ) + 1)

)

= λ2µ2(2An−1(λ)An−1(µ)− 2An(λ)An(µ) + An−1(λ) + An−1(µ)− An(λ)−An(µ)
)

+ λ2µ2(An−1(µ) + An(µ) + 1)(An(λ)−An−1(λ))

+ λ2µ2(An−1(λ) + An(λ) + 1)(An(µ)− An−1(µ)) = 0 ,

where Lemma 13 is used. The lemma is proved.
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End of proof of Theorem 1. It follows from Lemma 15 that

∂2 log τn(s)

∂si∂sj
=

∂2

∂si∂sj
(Λ + 1) log τdKdV

n (s) .

Combining with (96) we find that

f(s) = β0 +
∑

k≥1

βksk ,

where β0, β1, β2, · · · are constants (independent of n). The theorem is proved.

5. Proofs of Theorem 2 and Corollary 2

In this section, using Proposition 1, Corollary 1 and Theorem 1, we are going to prove
Theorem 2 and Corollary 2.

5.1. Ribbon graphs with even valencies. In this subsection, we first prove Theorem 2, then
we give a further study to the modified GUE partition function with even couplings.

Proof of Theorem 2. Define Fn(s) and Zn(s) by

Fn(s) :=
n2

2

(
log n− 3

2

)
− 1

12
log n +

∑

g≥2

B2g

4g(g − 1)n2g−2

+
∑

k≥0

1

k!

∑

j1,...,jk≥1

〈
trM2j1 · · · trM2jk

〉
c
sj1 · · · sjk ,

Zn(s) := eFn(s) . (105)

Here Bm denotes the mth Bernoulli number. Then Zn(s) is a particular tau-function (of the
discrete KdV hierarchy) reduced from the Toda lattice hierarchy [14]. The initial value of

wn(s) :=
Zn+1(s)Zn−1(s)

Zn(s)2
is given by wn(s = 0) = n. The theorem then follows from Lemma 14,

Corollary 1, as well as the Theorem 1.1.1 of [14].

Define a formal series Z(x, s; ǫ) by

logZ(x, s; ǫ) :=
x2

2ǫ2

(
log x− 3

2

)
− 1

12
log x +

∑

g≥2

ǫ2g−2 B2g

4g(g − 1)x2g−2

+
∑

g≥0

ǫ2g−2
∑

k≥1

∑

j1,...,jk≥1

|j|≥2g−2+k

ag(2j1, . . . , 2jk) sj1 · · · sjk x2−2g−k+|j| . (106)

Here, x is the t’Hooft coupling constant [28, 29]. Recall that we could view Z(x, s; ǫ) as a tau-
function reduced from the Toda lattice of the discrete KdV hierarchy under the identification
n = x/ǫ as well as the flow rescalings ∂sj 7→ ǫ ∂sj . More precisely, define

w(x, s; ǫ) :=
Z(x+ ǫ, s; ǫ)Z(x− ǫ, s; ǫ)

Z(x, s; ǫ)2
,

then w(x, s; ǫ) is a particular solution to the discrete KdV hierarchy:

ǫ
∂L

∂sj
=
[
A2j−1 , L

]
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with L := Λ2 + w(x+ ǫ) +w(x) + w(x)w(x− ǫ) Λ−2, A2j−1 := Lj , Λ := eǫ∂x . Validity of these
statements can be found in the Appendix of [14]. The initial data of this solution is given by

w(x, 0; ǫ) ≡ x = n ǫ . (107)

Let ZdKdV(x, s; ǫ) be the tau-function of the solution w(x, s; ǫ). The following corollary follows
from Theorem 1.

Corollary 3. There exist constants α, β0, β1, β2, · · · such that

Z(x, s; ǫ) = eαx+β0+
∑

k≥1 βjsj ZdKdV(x, s; ǫ)ZdKdV(x+ ǫ, s; ǫ) . (108)

Note that the constants α, β0, β1, β2, · · · right above now can depend on ǫ. In what follows,
we fix the ambiguities simply by requiring ZdKdV(x, s; ǫ) to be the unique function satisfying

Z(x, s; ǫ) = ZdKdV(x, s; ǫ)ZdKdV(x+ ǫ, s; ǫ) . (109)

Remark. The following formal series of s

ZdKdV
(
x+

ǫ

2
, s; ǫ

)
=: Z̃(x, s; ǫ) (110)

was introduced in [20] by Si-Qi Liu, Youjin Zhang and the authors of the present paper, called
the modified GUE partition function with even couplings, which plays an important role in
a proof of the Hodge–GUE correspondence [20]. Moreover, Liu, Zhang and the authors de-

rived the Dubrovin–Zhang loop equation for log Z̃ from the corresponding Virasoro constraints,
which also provides an algorithm for computing the modified GUE correlators of an arbitrary
genus [20]. Very recently, Jian Zhou [42] derived the topological recursion of Chekhov–Eynard–
Orantin type for the modified GUE correlators from the Virasoro constraints constructed in [20];
moreover, as a consequence of the topological recursion, an interesting formula between inter-
section numbers and k-point functions of modified GUE correlators was obtained by Zhou [42]
(see the Theorem 3 in [42] for the details); it remains an open question to match the formula
of Zhou with another interesting formula obtained by Gaëtan Borot and Elba Garcia-Failde [5]
(see the Corollary 12.3 of [5]) as a consequence of the Hodge–GUE correspondence (or with
a slightly different but equivalent consequence like (121) in below), which may lead to a new
proof of the Hodge–GUE correspondence. Last but not least, as a corollary of Theorem 2, let
us give a third algorithm of computing the modified GUE correlators based on the following
full genera formulae:

ǫ2
∑

j1,j2≥0

〈φj1φj2〉(x; ǫ)
λj1+1
1 λj2+1

2

=
tr
[
Rx

ǫ
+ 1

2
(λ1

ǫ
)Rx

ǫ
+ 1

2
(λ2

ǫ
)
]

(λ1 − λ2)2
− 1

(λ1 − λ2)2
, (111)

ǫk
∑

j1,...,jk≥0

〈φj1 · · ·φjk〉(x; ǫ)
λj1+1
1 · · ·λjk+1

k

= −1

k

∑

σ∈Sk

tr
[
Rx

ǫ
+ 1

2
(
λσ1

ǫ
) · · ·Rx

ǫ
+ 1

2
(
λσk

ǫ
)
]

∏k
ℓ=1(λσℓ

− λσℓ+1)
(k ≥ 3) , (112)

where 〈φj1 · · ·φjk〉(x; ǫ) denote the modified GUE correlators with even couplings, defined by

〈φj1 · · ·φjk〉(x; ǫ) :=
∂k log Z̃

∂sj1 . . . ∂sjk
(x, s = 0; ǫ) , (113)

and Rn(λ) is defined in Definition 3. We notice that the reason that one can talk about “genus”

for log Z̃ is because log Z̃ is even in ǫ and so are 〈φj1 · · ·φjk〉(x; ǫ). A concrete algorithm using
the formulae of the form (111)–(112) for calculating the corresponding correlators including
certain large genus asymptotics is given in [16].
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Remark. Very recently it was shown in [26] that ZdKdV(x, s; ǫ) and ZdKdV(x + ǫ, s; ǫ) are iden-
tified with the LUE partition functions with α = −1/2 and α = 1/2, respectively. One can
obtain their k-point series by putting x → x ∓ ǫ

2
in (111)–(112). An interesting genus expan-

sion for ZdKdV(x, s; ǫ) was discovered in [9]. The interplay between ZdKdV and Z̃ suggests a
Hurwitz/Hodge correspondence that deserves a further study.

Using the definitions of Z(x, s; ǫ) and Z̃(x, s; ǫ) and using the expansion

2

ez + e−z
=:

∑

k≥0

Ek

k!
zk ,

with Ek, k ≥ 0 being the Euler numbers, we have the following formula:

log Z̃(x, s; ǫ)

=
(1
4
log x− 3

8

)x2
ǫ2

− 5

48
log x +

∑

g≥2

ǫ2g−2

4g(2g − 1)(2g − 2)x2g−2

g∑

g′=0

(2g′ − 1)

(
2g

2g′

)
E2g−2g′B2g′

22g−2g′

+
∑

h≥0

ǫ2h−2
∑

g,r≥0
g+r=h

∑

k≥1

∑

j1,...,jk≥1

(
2− 2g − k + |j|

2r

)
E2r

22r
ag(2j1, . . . , 2jk) sj1 · · · sjk x2−2h−k+|j| .

In other words, the modified GUE correlators with even couplings (113) have the expressions:

〈φj1 · · ·φjk〉(x; ǫ) = k!
∑

h≥0

ǫ2h−2x2−2h−k+|j|
∑

g,r≥0
g+r=h

(
2− 2g − k + |j|

2r

)
E2r

22r
ag(2j1, . . . , 2jk) ,

(114)
where k ≥ 1 and j1, . . . , jk ≥ 1. It should be noted that the 〈φj1 · · ·φjk〉(x; ǫ) with k ≥ 1,
j1, . . . , jk ≥ 1 is a polynomial of x.

5.2. Combinations of certain special cubic Hodge integrals. Based on the Hodge–GUE
correspondence and using Theorem 2, we compute in this subsection combinations of certain
special cubic Hodge integrals. More precisely, we will prove Corollary 2.

The cubic Hodge free energy associated with Λg(−1) Λg(−1) Λg

(
1
2

)
is defined by

H(t; ǫ) =
∑

g≥0

ǫ2g−2
∑

k≥0

1

k!

∑

i1,...,ik≥0

ti1 · · · tik
∫

Mg,k

Λg(−1) Λg(−1) Λg

(
1
2

)
ψi1
1 · · ·ψik

k .

Here, t = (t0, t1, . . . ). (Warning: Avoid from confusing with the variables tℓ, ℓ ≥ 0 of the Toda
lattice hierarchy used in Section 4.) The Hodge–GUE correspondence connects H(t; ǫ) with the
GUE partition function with even couplings, which is given by the following theorem.

Theorem A. ([20, 15]) The following identity holds true:

logZ(x, s; ǫ) + ǫ−2

(
−1

2

∑

j1,j2≥1

j1 j2
j1 + j2

s̄j1 s̄j2 +
∑

j≥1

j

1 + j
s̄j − x

∑

j≥1

s̄j −
1

4
+ x

)

= H
(
t
(
x− ǫ

2
, s
)
;
√
2ǫ
)
+ H

(
t
(
x+

ǫ

2
, s
)
;
√
2ǫ
)
, (115)

where s̄j :=
(
2j
j

)
sj and

ti(x, s) :=
∑

j≥1

ji+1s̄j − 1 + δi,1 + x δi,0 , i ≥ 0 . (116)
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Recall from (110) that the modified GUE partition function with even couplings Z̃ is defined
as the unique series of x− 1 and s satisfying

Z(x, s; ǫ) = Z̃
(
x− ǫ

2
, s; ǫ

)
Z̃
(
x+

ǫ

2
, s; ǫ

)
. (117)

Combining (117) with (115) we obtain the following corollary.

Corollary 4. The following formula holds true:

log Z̃
(
x, s; ǫ

)
= H

(
t
(
x, s
)
;
√
2ǫ
)
+

1

4ǫ2

∑

j1,j2≥1

j1 j2
j1 + j2

s̄j1 s̄j2 +
x

2ǫ2

(∑

j≥1

s̄j − 1
)

− 1

2ǫ2

∑

j≥1

j

1 + j
s̄j +

1

8ǫ2
. (118)

Denote Ωg := Λg(−1) Λg(−1) Λg

(
1
2

)
as in the introduction, and write

Ωg =:
∑

d≥0

Ω[d]
g , Ω[d]

g ∈ H2d(Mg,k) .

It might be helpful to notice that for g = 1, deg Ω1 ≤ 1; for g ≥ 2, deg Ωg ≤ 3g−3. Motivated
by Theorem A, let us consider the following combination of Hodge integrals. For any given
k ≥ 0, i1, . . . , ik ≥ 0, define a formal series Hi1,...,ik(x; ǫ) ∈ ǫ−2Q[[x − 1, ǫ2]] by

Hi1,...,ik(x; ǫ) := 2g−1
∞∑

g=0

ǫ2g−2

3g∑

d=0

∑

λ∈Y

(−1)ℓ(λ)

m(λ)!

〈
Ω[d]

g e(x−1)τ0 τλ+1 τi1 · · · τik
〉
g
. (119)

Note that in the notation 〈 . . . 〉g , we omit the index m from 〈 . . . 〉g,m. For such an abbreviation,
m should be recovered from counting the number of τ ’s in “ . . . ”. Therefore, for each fixed
g, d and for each monomial in the Taylor expansion e(x−1)τ0 =

∑∞
r=0

1
r!
(x − 1)r, the above

summation over partitions
∑

λ∈Y is a finite sum, i.e., the degree-dimension matching |λ| =
3g − 3 + k + r − d − |i| has to be hold. Lemma 3 also easily follows from this constrain with
r = 0 taken. The numbers Hg,i1,...,ik defined by (38) and the formal series Hi1,...,ik(x; ǫ) are
clearly related by

Hi1,...,ik(x = 1; ǫ) =
∞∑

g=0

ǫ2g−2Hg,i1,...,ik . (120)

Proposition 3. For any k ≥ 0 and j1, . . . , jk ≥ 1, the following formula holds true:

φj1,...,jk(x; ǫ) =

k∏

ℓ=1

(
2jℓ
jℓ

) ∑

i1,...,ik≥0

k∏

ℓ=1

jiℓ+1
ℓ Hi1,...,ik

(
x; ǫ
)

+
δk,2
2ǫ2

j1 j2
j1 + j2

(
2j1
j1

)(
2j2
j2

)
− δk,1

2ǫ2

(
2j1
j1

)(
j1

1 + j1
− x

)
. (121)

Proof Note that the H
(
t;
√
2ǫ
)
has the expression

H
(
t;
√
2ǫ
)

=
∑

g

2g−1ǫ2g−2
∑

m0,m1,m2,···

∫

Mg,
∑

i mi

Ωg

m0∏

s=1

ψ0
s

m0+m1∏

s=m0+1

ψ1
s

m0+m1+m2∏

s=m0+m1+1

ψ2
s · · ·

∞∏

i=0

tmi

i

mi!
.

Formula (121) is then proved by substituting (116) and by using Corollary 4.
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Proof of Corollary 2. Note that the k = 0 case is already given in [20]. By taking x = 1
in (121) and using Theorem 2 we find (40). Formula (39) is then implied in a standard way by
using the following linear equation (proven in [20])

∑

k≥1

ksk
∂Z̃

∂sk
+
( x2
4ǫ2

− 1

16

)
Z̃ =

1

2

∂Z̃

∂s1
(122)

and the fact that

an,j =
∂2 log τdKdV

n

∂s1∂sj
, j ≥ 1 . (123)

Here Z̃ = Z̃(x, s; ǫ) denotes the modified GUE partition function with even couplings. Note
that the fact (123) can be obtained by taking the coefficients of λ−1 on the both sides of (21).
The corollary is proved.

Appendix A. On consequence of the Hodge–GUE correspondence

In this appendix, we derive a consequence of the Hodge–GUE correspondence that has a
similar flavour to formula (121). Note that

H
(
t(x, s);

√
2ǫ
)

=
∑

g≥0

2g−1ǫ2g−2
∑

k≥0

1

k!

∫

Mg,k

Ωg,k

k∏

m=1

(∑

im≥0

tim(x, s)ψ
im
m

)

=
∑

g≥0

2g−1ǫ2g−2
∑

k≥0

1

k!

∫

Mg,k

Ωg,k

(
k

l

) k∏

m=l+1

(
(x− 1)− ψ2

m

1− ψm

) ∑

p1,...,pl

l∏

m=1

pms̄pm
1− pmψm

.

Then by comparing the coefficients of sp1 . . . spl of the both sides of (118) we get

〈σp1 . . . σpl〉g(x) =
∑

k≥l

1

(k − l)!

∫

Mg,k

Ωg,k

k∏

m=l+1

(
(x− 1)− ψ2

m

1− ψm

) l∏

m=1

pm
(
2pm
pm

)

1− pmψm

+ δg,0δl,2
p1 p2
p1 + p2

(
2p1
p1

)(
2p2
p2

)
+

1

2
δg,0δl,1

(
2p1
p2

)(
p1

1 + p1
− x

)
. (124)

Here 〈σp1 . . . σpl〉(x; ǫ) =:
∑

g≥0 ǫ
2g−2〈σp1 . . . σpl〉g(x), and 〈σp1 . . . σpl〉(x; ǫ) are the modified

GUE correlators with even couplings defined in (113). Taking x = 1 we find

〈σp1 . . . σpl〉g|x=1 =
∑

k≥l

1

(k − l)!

∫

Mg,k

Ωg,k

k∏

m=l+1

(
− ψ2

m

1 − ψm

) l∏

m=1

pm
(
2pm
pm

)

1− pmψm
. (125)

A further consideration to (125) was given in [5].
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Combining (124) with (114) we find for any fixed l ≥ 1, p1, . . . , pl ≥ 1 the following identities:

l! x2−2g−l+|j|
∑

g1,r≥0
g1+r=g

(
2− 2g1 − l + |j|

2r

)
E2r

22r
ag1(2p1, . . . , 2pl)

=
∑

k≥l

1

(k − l)!

∫

Mg,k

Ωg,k

k∏

m=l+1

(
(x− 1)− ψ2

m

1− ψm

) l∏

m=1

pm
(
2pm
pm

)

1− pmψm

+ δg,0δl,2
p1 p2
p1 + p2

(
2p1
p1

)(
2p2
p2

)
+

1

2
δg,0δl,1

(
2p1
p2

)(
p1

1 + p1
− x

)
, g ≥ 0 . (126)

Note that for any g ≥ 0, the RHS is a priori a power series of x− 1, but the LHS shows that it
is actually a monomial of x and so is also a polynomial of x− 1. This subset of the identities
deserve a further investigation. Moreover, the LHS vanishes when g is sufficiently large, an so
is the RHS; this provides another subset of the identities for the cubic Hodge integrals.
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