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1. INTRODUCTION

The discrete KdV equation (aka the Volterra lattice equation) is an integrable Hamiltonian
equation in (1+41) dimensions, i.e. one discrete space variable and one continuous time variable,
which extends to a commuting system of Hamiltonian equations, called the discrete KdV inte-
grable hierarchy. This integrable hierarchy has important applications in algebraic geometry
and symplectic geometry (in particular in the theory of Riemann surfaces) (see e.g. [22]). Sig-
nificance of the discrete KdV hierarchy was further pointed out by E. Witten [39] in the study
of the GUE partition function with even couplings — the “matriz gravity”’, and was recently
addressed also in the study of the special cubic Hodge partition function [I5] 19, 20] — the
topological gravity in the sense of [I5], 20]. The explicit relationship between the two gravities,
called the Hodge-GUE correspondence, has been established in [I5, 20]. In this paper, by using
the matrix-resolvent (MR) approach recently introduced and developed in [I} 2] 3, 14} 18] we
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study the tau-structure for the discrete KdV hierarchy, and apply it to studying the above
mentioned enumerative problems.

1.1. The discrete KdV hierarchy. Let P(n) be the following difference operator

P(n) == A+ w, A", (1)
where A denotes the shift operator A : f,, — f,.1. Introduce
Ap o= (P, >0, (2)

Here, for an operator @ of the form Q = >, _, Qy AF, the positive part Q, = Zkzo Qi AF.
The discrete KdV hierarchy is defined as the following system of commuting flows:

oP
— = |Ay; 1, P > 1. 3
88]' [ 25—1> ]7 J = ( )
For example, the s;-flow reads
owy,
D51 = Wy (Wpt1 — Wy—1), (4)

which is the discrete KdV equation. The commutativity implies that equations (3] for all j > 1
can be solved together, yielding solutions of the form w, = w,(s), s := (s1, 2, 53,...).

Let us introduce
L =P = A +wyp1+w, + wpwp_1 A2, (5)
Then A2j71 = (PQJ)Jr = (LJ)Jr .

Lemma 1. The discrete KdV hierarchy [B)) can be equivalently written as

oL

a—sj — [A2j717L], jZl (6)

The proof will be given in Section 2l For the particular case 7 = 1, we have

8('wn-‘,-l + wn)

= Wnp+o Wy — Wp Wp—1, 7
681 +2 +1 1 ( )
O(w,, w,,—
% = (wn+1 -+ Wy — Wp—-1 — wn—2) Wy, Wp—1- (8)
S1

It can be shown that equations ()—(8) are equivalent to equation (Hl); the details for this
equivalence are in Section

Observe that equations (@) are the compatibility conditions of the following scalar Lax pairs:

L,Qz)n = A ¢n > Le. ¢n+2 + (wn—l—l + wy, — )\) ¢n + Wy Wp—1 wn—Z =0 > (9)
oy,
ds; Agj a9 (10)

We want to write the spectral problem (@) into a matrix form. The scalar Lax operator L,
defined in (), could be viewed as a reduction of

L = A+ a;(n) A+ as(n) +az(n) A" + as(n) A2,
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which is the Lax operator of a bigraded Toda hierarchy. However, observe that L contains A"

only (with even = —2,0,2). So, instead of considering a 4 x 4 matrix-valued Lax operator, a
2 x 2 matrix-valued operator will be sufficient. Indeed, introduce
. A? 0 ' Wpy1 + Wy — A Wy Wy g
T R L I

Then the spectral problem (@) reads

c (Ji’:) — 0. (12)

1.2. The MR approach to tau-functions. In this subsection, we apply the MR approach
to study further some basics in the theory of the discrete KdV hierarchy (in particular about
tau-function), and will arrive at a formula for computing logarithm of the tau-function. Denote
by Z[w] the ring of polynomials with integer coefficients in the variables w := (w,,1;)|iez.

Definition 1. An element R, € Mat(2, Z[w]((A™!))) is called a matrix resolvent (MR) of L,
if

R, U, — U, R, = 0. (13)
Definition 2. The basic (matrix) resolvent R, is defined as the MR of £ satisfying
10 .
R, = (0 0) +0O(A ), (14)
trR, =1, detR, = 0. (15)

The basic resolvent R, exists and is unique. See in Section [3] for the proof. Write

1+ a, (N Bu(A
oy = (507 ) "o

Then Definition 2 for R, (\) is equivalent to the following set of equations

Bn = —Wn W1 Vnt2 (17)
Oniot+a,+1 = (A —wpi1 — Wy) Yo (18)
(A= Wpp1 — wp) (@ — Qpa2) = Wy W1 Y — Wn2 Wht1 Ynid (19)
O+ s+ Byyn =0 (20)

together with equation (I4]). These equations give recursive relations and initial values for the
coefficients of ay,, 5y, v (see ([60)—-(62) below), which will be called the MR recursive relations.

Lemma 2. For an arbitrary solution w,(s) to the discrete KdV hierarchy, let R,(\) denote the

basic resolvent of L evaluated at w,, = w,(s). There exists a function T3¥V (s) satisfying
Z 02 105; T'%K%V(S))\“ujl _tr (Rn(A)ii’n(/;)) —1 | (1)
i1 8i0US; (A —p)
% + Z )\il-i-l 8% log zl%j:// - [R"“()‘)}Ql ' (22)
i>1 ¢ n
Ay -

dKdV ~dKdV
Tn—l—l T
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Moreover, the function T3V (s) is uniquely determined by w,(s) up to a factor of the form
ean+ﬁo+2k21 BrSk ,
where a, By, b1, Ba, - -+ are arbitrary constants that are independent of n,s.

We call 7384V (s) the tau-function of the solution w, = w,(s) to the discrete KdV hierarchy.

The matrix-resolvent method then allows to compute logarithmic derivatives of 79K4V(s),

which is achieved via the following proposition.

Proposition 1. For any k > 3, the generating series of the ky,-order logarithmic derivatives
of 79V () has the following expression:

i 1 Flogrd®NV(s) 1 tr (Rn(Aoy) Ru(Ay)) (24)
L NN s, 05, A | LY CVSED V) B

where it 1s understood that oy, = 01.

The proof of this proposition is in Section

1.3. The factorization formula. In [I4] we gave the definition of tau-function for the Toda
lattice using the MR approach. Observe that the discrete KdV hierarchy (8] is a reduction of
the Toda lattice hierarchy. Therefore, for the arbitrary solution w,(s) to the discrete KdV, we
can also associate another tau-function 7,(s) of the solution w,(s) obtained via the reduction
(see Section for the precise definition). In particular, this tau-function satisfies that

Tnt1(8) Tn-1(8)
72 (s)

It turns out that the 7,(s) factorizes into a product of two as given by the following theorem.

wp(s) =

Theorem 1. There exist constants «, By, B1, Pa, - -+ such that
rals) = A S B KAV (5) AV g). (25)

The proof of this theorem is in Section @l

Remark. Identity (23]) echoes an identity between Hankel determinants. Indeed, let du(A) be a
measure with even moments on R. Denote p; = [[NMdu(N), j > 0. (foaa = 0.) We know that

et (jtivj-2) ;5 = det(paiva;2)2) det (arsaya) 0} (26)
If we deform the measure du()\) to be du(\;t) = e 221512 dy()), then the LHS-(27)~"
becomes a Toda tau-function (cf. the formula (3.9) of [I0] and the references therein; cf.
also [10, 34 [T4]; the (27)~™ is a normalization factor for convenience that does not affect
the fact that the LHS is already a Toda tau-function). If all the even Toda times are zero,
then the t-deformed measure remains even and the factorization (26]) holds identically in
t = (0, 51,0, 89,--+). Moreover, note that the RHS of (26]) with deformation consists of two
determinants which can be identified with the Hankel determinants associated with certain
s-deformed measures on R, , where s = (s1,59,---). Then to see (23] from (20]), at least for
special cases, one needs to further show that each of the two determinants is a tau-function for
the discrete KdV hierarchy. The more precise statement for a special case together with the
detailed proofs can be seen from the recent arXiv preprint by Massimo Gisonni, Giulio Ruzza
and Tamara Grava [20] regarding Laguerre Unitary Ensemble (LUE) with the consideration of
the parameters « = —1/2 and « = 1/2, respectively in the notations of [26] (cf. also [8, [9]).
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The next corollary follows from Proposition [Il and Theorem [Tl

Corollary 1. Fiz k > 2. Let w, = w,(8) be an arbitrary solution to the discrete KdV hierarchy,
and 1, the tau-function reduced from the Toda lattice hierarchy of w,(s). The following formula
holds true:

00 OF log (s
&oESS L Coeeone] e
J1seendie=1 )\J11+1 Y )\ikJrl k oc€SE z 1()‘ - )\O'i‘l‘l) <)‘1 - )‘2)2

In practice, the two tau-functions 7,, and 73%V of some solution for the discrete KAV hierarchy

may both have geometric/enumerative meanings; this is the case for the Hodge-GUE (see
below).

Remark. As we shall see from Section that the above mentioned reduction does not mean

that vreda qlTeda (see Section EE2) are independent of the even Toda times tg, ¢y, ---. The
reduction means the v1°%(0,¢;,0,¢3,--+) = 0; but the usage of the MR of Toda in the way
of [I4] would compute also the correlators containing the correspondence to tg,ts, ---. The

introductions of the MR of the discrete KdV hierarchy and of the operator 1 + A are essential
that surprisingly solve the problem in a simple form.

1.4. Application. We will first apply Corollary [I] to some counting problem. Then by using
the Hodge-GUE correspondence [20] [15] we compute some combinations of Hodge integrals.

1. Enumeration of ribbon graphs with even valencies. Enumeration of ribbon graphs is closely
related to the random matrix theory [4, 27, B0, 11, B4, [7]: e.g. to the Gaussian Unitary

Ensembles (GUE) correlators; the partition function with coupling constants in a random

matrix theory is often a tau-function of some integrable system. Given k > 1 and jq,...,jx > 1,
denote
(r Mt M) = kD Y PR (25, 0 2, (28)
0<g<ll k41
1
291, ..., 20k) = _. 29
ag( J1, ) Jk) Z#Symr ( )
Here, |j| = j1 + -+ + Jk, and Y  denotes summation over connected ribbon graphs I' with

labelled half edges and unlabelled vertices of genus g with k vertices of valencies 27y, ...,27
and # Sym I is the order of the symmetry group of I' generated by permuting the Verticesﬁ
The notation <tr M¥v ... tr M 2jk>c is borrowed from the literature of random matrices, where
it is often called a connected Gaussian Unitary Ensemble (GUE) correlator. For every k > 1,

denote < . . >
> tr M2 -« - tr M*®
Er(n; A, .00 ) = E NI <. (30)
AENRY]

J1se-sJk=1

Definition 3. Define a 2 x 2 matrix-valued series R,(\) € Mat (2, Z[n][[A\"]]) by
_ (10 - (2] - 1)!! (2j + D An; — (n—=1)Bn; (n—n?) Bnyaj
R,(\) = <0 0) + Z v . | (31)

(n=1)Bp,j — (2] + 1)An,;

IThe number ag(271,...,2Jk) has the alternative expression ay(2j1,...,2jk) = > o I};S;}gg), where )"
denotes summation over connected ribbon graphs G with unlabelled half-edges and unlabelled vertices of genus g

with k vertices of valencies 271, ..., 2jk.
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with

An,j = (TL— ]-) 2F1(_j72 —TL,2,2), (32)
Bnj = (n—=1)255(1 - 5,2 —=n;2;2) + (n — 2) 2 F1 (1 - j,3 — n; 2;2). (33)

Theorem 2. The following formulae hold true:

(25 — ! . .
7’1,)\ - 'I’LZ A27+1 ( ( j 7’1,,2,2) _.]2F1<1_j71_n7372))7 (34)
j>1
(1+A) [tr (Ro(M)Ra(N2))] 2
Es(n; A\, Ag) = — 5
2(n5 A1, Az) Oy — )2 =SSR (35)
1 L+ A) |tr (Ru(Aoy) - - Ru( Ao
o€S), szl()‘w - )‘Ue-i-l)

where R, (\) is defined in Definition[3, and it is understood that o1 = 0.
In the above formulae

2 Fi(a,b;¢; 2)

i ' 1+abz+a(a+1)b(b+1)z_2
c)j c 1! c(e+1) 2!
i=

is the Gauss hypergeometric function. Recall that it truncates to a polynomial if a or b are
non-positive integers. In particular,

nolh(—j,1—n;2;2) 221() <z+1)

The proof of Theorem 2 is in Section [l

I1. Combinations of certain special cubic Hodge integrals. The particular solution to the discrete
KdV hierarchy considered here will be actually the same as in I. Denote by M, ; the Deligne-
Mumford moduli space of stable algebraic curves of genus g with £ distinct marked points, by
L; the iy, tautological line bundle on M, and E, ; the Hodge bundle. Denote

’QZ)Z‘ = cl(ﬁi), ’izl,...,k?,

)‘j = Cj<Eg,k:)7 jIO,,g
The Hodge integrals are some rational numbers defined by
[ wil...¢zkA{1...A§g — <A{1"'A§g7i1"'7ik >g’k’ (TP T T e

Mg

These numbers are zero unless the degree—dimension matching is satisfied

3g—3+k—zu+2m (37)

=1
We are particularly interested in the following special cubzc Hodge integrals:

<Qg Tiy *** Tiy >g’k, with Qg = Ay(—1)A,(—1) Ag(l) ,

2

where Ay(2) :== Z?:o A; 27 denotes the Chern polynomial of the Hodge bundle E, ;. Significance
of these Hodge integrals is manifested by the Gopakumar—Marino—Vafa conjecture [25 [33]
regarding the Chern—Simons/string duality; see e.g. [37] and the references therein.
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Notations. Y denotes the set of partitions. For a partition A, denote by ¢(A) the length of A
and by |A| the weight of A. Denote m(X) := [[;2, m;(\) with m;()) being the multiplicity of
in \.

Definition 4. For given ¢,k > 0 and an arbitrary set of integers 1, ...,4; > 0, define
—1)*
) R g—1 (
Hg,zl,...,zk =2 Z TTl()\)' <Qg TA+1 Tf>g7g(>\)+k ’ (38)
AEY
where [i] =iy + - -+ i, 77 : “ Tigy AN Tagq 1= a1 Tayg 410

It should be noted that according to [B), “Y_,.y” in (B8] is a finite sum.
The following lemma will be proved in Section [5.2]

Lemma 3. The number Hy;, ., wvanishes unless |i| < 3g —3 + k.

Corollary 2. The numbers Hg;, ;. satisfy
i) For k=0,

p 0, g = 0,1
0 = 1 29\ Eog_2g, B
J 4g9(2g—1)(29—2) Z§1:0(291 - 1)(2;) 2;2g2_g12g12_g1 , g Z 2.

it) Fork=1,Vj > 1,

2j 29—1 i1 1 25
3 Hz -
(j)Ze 2 AT

g>0 0<i<3g—3+k
T2+ (2j—pra 1
= ¢ [TA;%J * T(é —2) Byt (39)

where A, ; and B, ; are defined in (32)—(B3]).
ii1) For k> 2,

ko (2jr
ok }: HT=1 (jr) }: 29—2 }: H irtl gy
)\j1+1 o )\ijrl j g 01,00l

Jirende>1 7L k g>0 isenifg >0 p=1
|i|<39—3+k
.. 27 27
N _l [Rl ( € ) Rl ( € )} B 5k,2 s Z 1 o (}j];)(;;)
k oSy, HZ:I( o¢ T Uerl) ()\1 - )\2)2 , j1,j2>1 J1 +]2 )\{1+1>\é2+1

(40)
where R, (\) is defined as in (31)).

The proof, using the Hodge-GUE correspondence and Theorem ], will be given in Section
We note that the sum ) 4,..i,>0 appearing in the LHS of (89), (40) has the following alternative

|i|<3g—3+k
expression, which can be deduced from Appendix [A}

ZHJW —Z / o H(— ‘”’”)H jm
ot 74 1_1/}m mzll_jmwm

D] 5eees i, >0 r=1 9.9 m=k-+1
li|<3g—3+k
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Organization of the paper. In Section 2 we derive several useful formulae. In Section [3],
we study MR, and use it to describe the discrete KdV flows and the tau-structure. Section @l
is devoted to the proof of Theorem [Il Proofs of Theorem [l and Corollary (2] are in Section

Acknowledgements. We would like to thank the anonymous referee for valuable suggestions
and constructive comments that improve a lot the presentation of the paper. One of the authors
D.Y. is grateful to Youjin Zhang and Don Zagier for their advising, and to Giulio Ruzza for
helpful discussions. Part of the work of D.Y. was done when he was a post-doc at MPIM, Bonn,;
he thanks MPIM for excellent working conditions and financial supports.

2. BASIC FORMULATION

In this section we will do some preparations for the later sections by reviewing the basics of
the theory of the discrete KAV hierarchy.

2.1. Some useful identities. Recall that P(n) := A +w, A™!, L = P?. Denote

P(n)"™ = Y Ag(n)AF, 0> -1, (41)
kEZ
L(ny =Y mx(n)A*,  j>0, (42)
kEZ

where the coefficients A, (n) and m;,(n), k € Z belong to Z[w]. It is easy to see that if k is
odd, or if |k| > 2j, then m;; = 0. It is also easy to see that

m]',k = A2j*1,k' (43)

Lemma 4. The following identities hold true

mj _o(n) = wy, wy_1mjs(n —2), (44)
mjo(n) = mj_1-2(n) + mj_1-2(n +2) + (Wnt1 + wy) mj—1,0(n), (45)
mj, (1) —mj, —2(n — 2) = (W1 + wp—2) (Mj—1,-2(n) = mj_1,_2(n — 2))

+ Wy Wy_3mj_10(n —4) — w, wy_1mj_10(n) = 0. (46)

Proof Comparing the constant terms of the identity
L =0 'L = L0} (47)
we obtain that

mjo(n) = mj_1,_2(n) + (Wpi1 +wn) Mj_1,0(n) + Wnyo Wny1mj_12(n)

= mj,L,Q(n -+ 2) —+ <wn+1 -+ wn) mj,w(n) + W, Wy_1 mj,m(n — 2) .
This proves (4] (45]). Similarly, comparing the coefficients of A=2 of ([#T) we obtain

mj7,2(n) = mj,17,4(n) + (wn,l -+ wn72> mj,l,,g(n) + W, Wy_1 mj,l,o(n)

= mj-1,-4(n +2) + (Wpi1 + wp) mj_1 2(n) + Wy wn_1mj_10(n —2),

which implies identity (4@]). The lemma is proved. O
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Lemma 5. The following identities hold true
A&,l(n) = Wp Am(n — 1) s (
Apo(n) = wnp1 Apm11(n) +wn Ap1a(n — 1), (
wy, Agr(n —1) = wpi1 Agi(n) + wnga Apro(n — 1) —w, Apap(n—1) = 0, (
App(n+1) — Apo(n) = wpyo Ara(n) —wy, Aga(n—1). (

Proof Identities [@S)—(E0) are contained in the Lemma 2.2.1 of [14] (see the proof therein).
Identity (51) follows from comparing coefficients of A on the both sides of the following identity:

P€+1P _ PP£+1 )

The lemma is proved. O

Taking ¢ = 2j — 1 in identity (EI)) and using (@3] we obtain
mj,o(n + 1) — m]',o(n) = Wpt2 mjg(n) — Wy mjg(n — 1) . (52)

We call this identity the key identity. It should be noted that the above identities (A3])—(Hql),
#3)—(BT) hold in Z[w| absolutely (namely, the validity does not require that wy, is a solution of

the discrete KdV hierarchy), because they are nothing but properties of the operators P and
L.

2.2. Proof of Lemmal(ll Note that this lemma means the following: if w,, = w,(s) satisfies (@),
then it satisfies ([@l); vice versa. Firstly, let w, = w,(s) be an arbitrary solution to (@), i.e.,

opr

— = |Ay; 1, P
85’]' [2117 }
for all j > 1. Since L = P? we have
oL oP 0P
— = P—+4+—P = P|Ay; 1, P Agi1, P|P = [Ay; 1, L].
D5, 8sj+8sj [2] 1, }+[2J 1, } [Agj_1, L]

Secondly, let w,, = w,(s) be an arbitrary solution to (@), namely, it satisfies that

a(U}n—f—l + wn)

Ds. = Wp42 Wnt1 mj,2(n) — Wp Wn—1 mj,2<” —2), (53)
j
O(w,w,,—
% = Wy, Wy_1 (mj,o(n) — mjo(n — 2)) . (54)
Sj
Identity (53) implies that
ow,,
(A + 1) Os. = Wn42 W1 1052 (n> = Wnt1 Wn M2 (n - 1)
j

+ Wy Wy, mja(n— 1) — wy, wy_q mya(n —2)
= w1 (myo(n + 1) — myo(n)) +w, (myo(n) —mye(n — 1)),
where we have used identity (52). Identity (G4]) implies that

owy, ow,,
Wy, 88%1 + Wp41 8— = Wpa1 Wy (m]’,o(n + 1) — m]',o(n)) + Wpt1 Wn (mj70(n) — mj70<n _ 1)) )
J

Sj
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Combining the above two identities and assuming that w, #Z w,,, yields

ow,,
Ds. = Wp (m]’,o(n) — mm(n — 1)) = CoefAA [A2j717 P] . (55)

J
(One can see from (B3]) that solutions satisfying w, = w,.; are independent of s. Therefore
these trivial solutions also satisfy (B]).) The proposition is proved. O

2.3. Lax pairs in matrix form. In this subsection we write the scalar Lax pairs ([@)—(I0) into
matrix form. The following lemma plays an important role.

Lemma 6. The wave function 1, satisfies that

Oy, A oo 4
%n = N, + Z AT (mi—L—Z Y — Wy Wy1 M1 @%—2) , g=1. (56)

88j i1
Proof We have for any j > 1
(), = W'L), = W), Lo+ (W) L)+ (), 1)

_ (Lj—1)+L _ ((Lj_1)+L_)_ + ((Lj—l)_L)

i—1 -2
= (L] )+L + M2 — Wy Wu_1mj_19g A7,

+

+

In the above derivations it is understood that L = L(n) and m;j = m;;(n). Therefore,

J
Agj1 = (Lj)+ =L + Z(mi—l,—Q — Wy Wy M—1,0 A72) L vVj=>0.
i=1
The lemma is proved. O

Lemma 7. The vector-valued wave function ¥,, = (wn,z/}n,Q)T satisfies that
ov,
0s;

where V;j(n) are the following 2 x 2 matrices

i SN =i, _ I \i—im,
Vi(n) = <)‘ + i NV mi, () Wi Wn—1 Y514 N7 mi10(n) ) (58)

T NTmi_o(n—2)  myoln—2) — Y0 N my_y _s(n)

= Vi) ¥,, =1, (57)

Proof Equation (57)) follows straightforwardly from (B6]) and (@I). O

We therefore arrive at

Proposition 2. The discrete KdV hierarchy are the compatibility conditions of (I2)) and (51):
ou,
68]‘

= Viin+2)U, — U, V;(n), j=1,2,3,---.

3. TAU-STRUCTURE FOR THE DISCRETE KDV HIERARCHY

In this section, we use the MR method to study the tau-structure of the discrete KdV
hierarchy; in particular, we will prove Proposition[Il The notations about the matrix-resolvents
are the same as in the Introduction.
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3.1. The MR recursive relations. Write

. aw . Cn,j
On = Z)\jJrl’ n = L \+1T (59)

Jj=0 J=0

Then we find that a, ;, ¢, ; satisfy

Cjr1 = (Wp—1 +Wn—2) Cpj + Gpj + an_oj, (60)
Qnj+1 — Qpy1jr1 + (wn+1 +wn)(an+2 - an,j) + Wpt1 Wn Cptdj — Wy Wp—1Cpj = 0, (61)
j—1
apj = Z(wn Wn—1 Cni Cpj—1—i — Qnyi G j—1—i) (62)
i=0
as well as
apo = O, Cno = 1. (63)

Lemma 8. The basic resolvent of L exists and is unique.

Proof Observe that multiplying (I8]) and (I9) gives (20)). This proves existence of R,,. Unique-
ness follows directly from the MR recursive relations (60)-(62), as we can solve a,, ;, ¢, ; uniquely
in an algebraic way for all 7 > 1. The lemma is proved. O

For the reader’s convenience we give in below the first few terms of the basic resolvent of L:

1 + wn;\;wn + - _wn—Alwn _ wn—l(wn;wn-l»l)wn _'_ .
Rn()‘) =
1 Wn—2+Wp—1 Wn—1Wn
Y —+ —z + - — 2 + -

3.2. MR and the discrete KdV flows. In this subsection we use the basic MR to express
the discrete KdV flows. (We would like to mention that the materials that we give in this
subsection are rather standard.) Let R,, be the basic matrix resolvent of L.

Lemma 9. The following formulae hold true:

Cnj = mj,0<n - 2) ) (64)

Proof By identifying their recursive relations as well as the initial values of the recursions.
O

It follows from the above Lemma [ that the matrices V;(n) defined in (G8]) have the following
expressions:

v = )+ (). (66)

0 Cn,j

where “+ 7 means taking the polynomial part in A (including the constant term).

3.3. Loop operator. Introduce a linear operator V() by

1 0
j>1 J
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It readily follows from equation ([G6]) that

V000 = [0 g0 w0,

where

Qulp) = _£+ (8 %?u)) '

Lemma 10. The following formula holds true:

1
Vi) Bad) = = [Ro (1), Ra(N)] + [Qn(p), Ru(N)] - (68)
3.4. From MR to tau-function. The MR allows us to define tau-function of an arbitrary
solution of the discrete KdV hierarchy. Recall that a family of elements €,.,(n) € Z[w]|, p,q > 1
are called a tau-structure of the discrete KdV hierarchy if
Qpg(n) = Qgp(n), Vp,q =1 (69)
and for an arbitrary solution w,, = w,(s) of the discrete KdV hierarchy
9pq(n) 9y, (n)
’ = : v >1. 70
88,,. asq Y p? Q7 r — ( )

Definition 5. Define €2;.;(n), i, j > 1 via the generating series

Z Qs () A1 = tr (R,(\) R () — 1. (1)

= (A —p)?

Lemma 11. The Q;;(n), 1,7 > 1 ([[[) are well-defined, and live in Z[w]. Moreover, they form
a tau-structure of the discrete KdV hierarchy.

Proof The proof is almost identical with the one for the Toda lattice hierarchy [14] (or the
one for the Drinfeld-Sokolov hierarchies [3]); details are omitted here. a

Proof of Lemma[2l By Lemma [[1] it suffices to prove the compatibility between (2II)-(23).

Firstly, on one hand,

D AT [+ 2) - Q)

0 (RucaO) R ) — 11 (Ra(N) Ru(10)
(A= p)?
(20 )~ 2 i)

On the other hand,
(14 200 42(10) ) g2 (A) — (14 200 42(N)) Yy (1)

V(w) [Rn+2()\)]21 = N + Yna2(A) Ynga(pt) -
Hence by using (I8) we find that
> oAt [Qz‘;j(” +2) - Qz‘;j(n)} = V() [Rur2(N)],, - (72)

4,521
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This proves the compatibility between (1) and (22)).
Secondly, on one hand,
> AT Qi+ 2) + Quy(n— 1) = Qi (n+ 1) = ()|
ij>1
= Z A*ifllufjfl [Qw(n -+ 2) — Qw(n)} — Z )\*ifllufjfl |:QZ7](’I’I, + 1) . Qi;j<n _ 1)] )
i,j>1 i, 21
On the other hand,
V)V logw, = V() [3sa) 3t V)] = Vi) - Virn().  (73)
Using (72)) we find
> AT Qi+ 2) 4 Qig(n = 1) = Quy(n +1) = Qig(n)| = V)V logw,. (74)
ij>1
This proves compatibility between (2I)) and (23]). Thirdly, the following identity
V(M) logw, = Yns2(A) = g1 (A)
shows the compatibility between (22]) and (23)). The proposition is proved. O

3.5. Generating series of multi-point correlations functions. For an arbitrary solution
w, = wy(s) to the discrete KAV hierarchy, let 73¥4V = 7dKdV(g) denote the tau-function of this
solution. The logarithmic derivatives
OFlog TddV(g)
asjl...asjk ' o

can be called the k-point correlation functiond] of the solution w, = wy(s).

Proof of Proposition Il ~ The proof can be achieved by the mathematical induction, as in
[1]; we hence omit the details. O

9% log TSKdV (s)
0sj, ...8Sjk

with £ > 2 all live in

Z|w], as their generating series are expressed by MR via algebraic manipulations; this simple
fact agrees with footnote 2 (and can be of course deduced from other techniques).

We see from Proposition [l that the logarithmic derivatives

4. PROOF OF THEOREM [I]

The goal of this section is to prove Theorem [l

4.1. Review of the MR approach to the Toda lattice hierarchy. Denote

P = A+ Ug‘oda + u};{‘odaAfl7 Ag — (r])ZJrl)Jr7 / > 0.
The Toda lattice hierarchy is defined as the following system of commuting flows
%)
P _ [AZ,P], 0>0. (75)
oty

2We can say in a more accurate sense that the logarithmic derivatives are identified with the correlation
functions, where the latter are defined as abstract differential polynomials; see for example [I8] for the details.
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,UToda -\ ,wToda
Let us briefly review part of the results of [14]. Introduce U, = ( " "0 )
The basic resolvent R, associated to PM := A + U, is defined as the unique solution in
Mat (2, Z[v™%, wTed2] [[\71]]) to the problem:
Ropioily —U, R, = 0, (76)
10 1
R, = (0 O)+(’)()\ ), (77)
trR, = 1, detR, = 0. (78)
Write

1+A,(\)  B.(\)
Ra(A) = ( G\ —A.()

Then A, B,,, G, satisfy that

) , A, B, G, € Z[vT weda] A1) (79)

Bn - —wEOda gn+1 (80)
An+1 + An +1 = gn+1 <)\ - 'U;f()da) (81)
(A — v (A, — Apy) = w*G, —wle g, ., (82)

The following lemma was proven in [I4].

Lemma 12 ([14]). For an arbitrary solution v°%? = yIeda(t) wleda = Teda(t) ¢o the Toda

lattice hierarchy there exists a function 7°%(t) such that
)

Z 1 | 2 log 7Toda (¢ _ tr Ry (t, )Ry (t, p) — 1 (84)

SRo AT 0L 0ty (A= p)?

1 10 71,09(t)

N ; N2 Ot log TToda(t) (Rt (6, M)y (85)

rodn ()0 () "
TEOda(t>2 n:

The function 7X°%(t) is uniquely determined by the solution v°%(t), wr*da(t) up to

'TnTOda(t) s ea0+a1n+zj20 bjtj Tgoda (t)

for some constants ag, a1, by, by, ba, ... ..

In [T4] the 7.r°da(t) is called the tau-function of the solution v°%(t), wl°d?(t) to the Toda

lattice hierarchy. The logarithmic derivatives of 7.:°92(t)

Ok log 7 Teda(t)

7

ot ... 06,

i

ilu---yik ZO,kZl
can be called k-point correlations functions (cf. footnote 2) of the Toda lattice hierarchy. Define

1 O* log 7oda (¢)
Cr(M, ., A t) o= i : . .
i1,§20 )\11+2 e )\klc—I—Z 8ti1 o 8tik
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4.2. Reduction to the discrete KAV hierarchy. Now consider solutions to the Toda lattice
hierarchy in the ring Cl[tg,t1,...]] ® V, where V is any ring of functions of n, closed under A
and A~'. These solutions can be specified by (i.e. are in 1-1 correspondence to) the initial
value:

f(n) = v, ®(t=0), g(n)=w,""(t=0).

Let us explain how a subset of solutions to the Toda lattice hierarchy be reduced to solutions
of the discrete KAV hierarchy. On one hand, let vIode = ¢Teda(g) qpTeda — 4pTeda(t) he an

arbitrary solution in C[[tg, t1,...]] ® V of the Toda lattice hierarchy satisfying the following
type of initial conditions

It follows that
Toda —
U, tomty—ty— =0 — 0, (Vﬂ,tl,tg,tg),"'). (87)
m’

Otgj_1 to=to=tg=---=0
namely, there are no v °%-dependence in these flows (of course when restricting to to = ty =
ty = ---=0). Moreover, these flows coincide with the discrete KdV hierarchy (B)). Therefore if
we define

This further implies that the commuting flows (j > 1) are decoupled,

wi(8) = w, " (t)

(88)

then w,, = w,(s) is a solution to the discrete KdV hierarchy. On the other hand, let w,, = w,(s)
be an arbitrary solution to the discrete KdV hierarchy in the ring Cl[sq, s2,...] ® V. Let g(n)
denote its initial value, i.e. g(n) := w,(s = 0). Define v 4 (t)  wd(t) as the unique solution
in C[[tg,t1,...]] ® V to the Toda lattice hierarchy with (f(n) = 0,¢g(n)) as the initial value.
Then w°d(t)

Hence the correspondence between solutions of the discrete KdV hierarchy and a suitable
subset of solutions of the Toda lattice hierarchy has been established.

For a solution (v °%(t), w°%(t)) to the Toda lattice hierarchy satisfying v °%(0) = 0 (Vn),

n n

let 71°d2(t) denote the tau-function of this solution. Define w,(s) as in (88), and

toj—1=5;,t2;—2=0,i>1"

ta;i—1=8i,la;_2=0,i>1 — Wn (S)

Tn(S) = TEOda(to = O,tl = Sl,tQ = O,tg = SS9, " ) .
Then we know that the function w, = w,(s) satisfies the discrete KdV hierarchy (3], and that

Tnt1(8) Ta1(s)
7 (s)

As indicated above, all solutions of the discrete KdV hierarchy can be obtained from this way.

wy(s) = (89)

Definition 6. We call 7,,(s) the tau-function reduced from the Toda lattice hierarchy of the
solution w,, = w,(s) to the discrete KAV hierarchy.

Introduce the notations:

An(N) An()\)‘vg‘odazo,wg‘odazwn )
Bn(A) = Ba(A)],Toda—g ,Today,,
Gn(A)

Clearly, A,,, B,, G, belong to Z[w][[A7!]]. Note that definitions of A,()\), B,()\), G.()\) are

in the absolute sense, namely, they do not depend on whether w,, is a solution or not.

)

= gn ()‘) | Ug‘OdaEO, wg‘(’dazwn :
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Lemma 13. The A, ()\) satisfies
Wnit (Apg2(A) + Apet(N) + 1) — w, (An(A) + At (A) +1) = N (A (V) — 4,(N)) . (90)

Proof Following from (BI) and (82) with v °d = 0. O

4.3. Proof of Theorem [Il Firstly, on one hand, it follows from the Lemma 1.2.3 of [14] that

0 Tt (S .
mjo(n;s) = glog 7_+Ei))7 Jj=>1. (91)
7 n

On the other hand, from (22) and (64) we find
9, )
mjo(n;s) = b5, log KAV (g)

Comparing the above two expressions we find

i>1. (92)

o Tnt1(8) 1o T (s) — S(n
log 727 5 —log i 5 = S(n) (93)

where S(n) is some function depending only on n. Equation (@3] implies that

log Tn(s) — (A+1) log 7™V (s) = S(n) + f(s), (94)

where S (n) is some function depending only on n, and f(s) is some function depending only
on s.

Secondly, it follows from (23] and (89) that

Tn11(8) Tu-1(s) _ Tais " (8) Tt (s) . (95)
7i(s) Tast (8) THEAY(s)
Substituting (@) in (@5) we find that S(n) can only be an affine function of n, namely,
log 7(s) — (A +1) log78Y(s) = an + o' + f(s), (96)

where «, o are some constants independent of n, s.

Thirdly, on one hand, using (2I]) we find

Z 0?logrdkdV(g) 1
0s,05s; Nitd i+t

ij>1
)+ anh) + 200N (1) = w0 0ot (3N 12() + 30 (1)012(0)
(A= p)? '
Therefore,
Z 0% log TIKdV () 1
= 05,05, A2t 2541
p ) 000) 4 20000 1) = 1001 (1200 + 20502 0)

(N2 — 2)?
=: Wo(A, u;n,s).
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So

9% log TV (g) 9% log TV (s) 1
”Z>1< 0s;0s; * 0s,0s; ) A2iH1 2541 = WA, sn,s) + Wa(A, pg;n +1,8).

On the other hand, for P(n) = A + w,A™!, recall the notation
Pn)™ = > Agm)AF, 0=-1,0,1,2,--
keZ

Using Lemma [I2] we have

Gty = A F Anl) + 240N An(p) — w0 (G W)Galk) + Coa()GaY).

(A= p)?
where
Ay -1(n) Apq10(n—1)
AN =D S Gl = )
>0 >0
Taking
toio =0, toi1 =s5; (i >1)
we have
AQ‘_LO(TL — ].) m»,o(n — ].) Cn-l—lf 2
Gald) = S = e = e = e 07)
j=0 j=0 j=0

It follows from (1)), (@), and respectively (I8]), that

A = A D7 (Mia08) = 1) = W (A4 1) 300 — 7 (98)
0N = (4 1) (A= i = 1) 3mea(N)) — 5
Lemma 14. The following identities hold true:
(02 = A, 1(N) +;21n_2()\) +1 | (100)
Gy = A +A)\n_1(>\) iy
an(A2) = A 1(\) — % (Apr(N) + Apa(N) +1). (102)

Proof Identities (I00), (I0T]) are easy consequences of (OF]), (@T).
Note that identity (52)) implies that

1
(V) = 5 (w1901 (0) = Wz 701 (V) + (N = 20,1) 1 (0%) = 1)
L AN AL A 2(X) + Ay () +1
= 5w N o ¥

+ ()\2 - an,l)

A1t A+ A, 5(N) + 1
A2 a 1) '

(101)
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Applying Lemma [13] in this identity yields

an(A2) = 212 (R A N) = Aua(N) + (R = 2u00) (Auea () + Aua(X) +1) = 2)
_ ;2 (2240100 = s (Aua() + Ana(3) + 1))
The lemma is proved. O

Observe that Co(\, p;n, s) satisfies the parity symmetries
CQ(Av N) = 02(_>‘7 _:u) ) 02()‘7 _”) = 02(_)‘7 :u) :
So

02 log 7, (t) 1 Oy ) = Co(=A )

4 — = 103
= 31522;1&2];1 )\2z+1’u2j+1 2 ( )

Lemma 15. The following identity hold true:
1y, )+ an(p?) + 200(N*)an (1) — wn wn—1 (InA)nr2(?) + (1) vns2(A%))
1
(A2 — 12)2
an+1()\2) + an-H(M ) + 2an+1( )an-f—l( ) Wp41 W (7n+1(>‘2)7n+3(:u2) + ’7n+1(:u2)’7n+3(>‘2))

+ A\

(A — p?)?
An(N) + An(p) + 24, (M) An (1) = wa (Gt (N Ga(p) + G (1) Ga (V)
2(A — p)?
AN A(p) + 24N A (1) = wa (Gt (FN)Ga(p) + Gt (1) G (=) (104)
2(\ + p)? '
Proof Applying (I00)-(I02) and the parity symmetry
Ap(=)) = A,(\)

we find that it suffices to prove the following equality

- 1
w)\z 1 (A,H()\) + A, (N + 1) + 5}
Wp—1

() = U (A () + Auali) 1) + 5

4
u
‘WZTTMWNM+&HMH1Mmﬂmwfmm+w

= M 20 [ A () -

(At (1) + Ana(p2) + 1) (Ansa (V) + A () + 1)
—f%gﬁ[mam+Awmm+U@%Hw>h%ﬂmw1)

 (An() + Ana (1) +1) (Angz V) + Anian () + 1)

20 [An()\) — AN+ A (V) 1) +

)\2
W,

[An(/i) — 2 (An(p) + An_a () +1) + _}
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(A +p)?

[A4X) + Au(p) + 24,() A (1)

Wn,

- ((Ansa () + Au(N) + 1) (A1) + Aga(0) + 1)

+ (Ana() + An2) + 1) (Au(V) + Ana (V) +1) )|

e —2“)2 [A03) + A1) + 24, () Ao (1)

W,

3 (A )+ A0) + 1) (Anl) + A () + 1)

+ (Apn (1) + An(i) + 1) (An(N) + Ay 1 (V) + 1))} .
Noting that

Ap-lhs =
)\2
ST [v A1 (V) = waiy (Anoy(A) + Apa(\) +1) + ﬂ
2

12 A1 (1) = s (Ana (1) + Ana() + 1) + 2]

= it [(Anr () + Ao () 1) (12 (An () = Auoa (1)) + w1 (Ana () + Au () +1) )
(At (1) + Ana () + 1) (R (A0 = A (V) + w1 (A1 (0) + A (V) +1) )|
= o [ () + A1 () + 1) (12 (A () = An(1) + wn(An(pe) + A1) +1))

() + Ancr () + 1) (A2 (A1 (0) = An(0) + 1w (A (A) + A1 () + 1) )|
+ 2 [)\QAn()\) — wy, (An()\) + AN+ 1) + %2] [uQAn(,u) — w, (An(,u) + Ap(p) + 1) + %2]
and that

A -ths = 2222 (An(A) + An(i) + 24, (V) A, (,L))
o, (M +u2)((An+1(/\) + AuN) + 1) (An(p) + Ana(p) +1)
(A () + An(p) + 1) (An(N) + A s (N) +1) )
we find
A+ (lhs — rhs)
= NP (24, 1 (M) Apa (i) — 24
- /~L2<An () +A 1)(wn71(‘4n72
— N (A (V) + A 1) (wy—1 (Ap—a(p
— NP2 A0 1 (N At (1) — 24,(0) Au(1) +
+ NP (An1 (1) + An(p) + 1) (An(N) = Ap (A
+ NP (Ano1 (V) + A () + Ay

DN An (1) + An1(A) + An1 (i) — An(N) — An()
n(1) + (
n(A) +

A 1)(A
Au(A) + 1)(An() —

where Lemma [13]is used. The lemma is proved.
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End of proof of Theorem[dl It follows from Lemma [T that
O?logt,(s) = 7
&Si@sj N &siasj
Combining with (O6) we find that
f(s) = Bo+ > sk,

k>1

(A +1) log 7984V (s) .

where [y, 1, fa, - -+ are constants (independent of n). The theorem is proved. O

5. PROOFS OF THEOREM [2] AND COROLLARY

In this section, using Proposition [ Corollary [ and Theorem [ we are going to prove
Theorem 2] and Corollary 2

5.1. Ribbon graphs with even valencies. In this subsection, we first prove Theorem 2 then
we give a further study to the modified GUE partition function with even couplings.

Proof of Theorem[2l  Define F,(s) and Z,(s) by

1 B
Fa(s) == n—(logn——) — —logn + 249 29 5
g>2

+Z% o (e M e M) s s,

k>0 7 j1,gk>1
Zn(s) == ), (105)

Here B,, denotes the m'™ Bernoulli number. Then Z,(s) is a particular tau-function (of the
discrete KdV hierarchy) reduced from the Toda lattice hierarchy [14]. The initial value of

wy(s) = % is given by w, (s = 0) = n. The theorem then follows from Lemma [I4]
Corollary [ as well as the Theorem 1.1.1 of [I4]. O

Define a formal series Z(z,s;¢€) by

:L‘2 3 29— 2 BQQ
S
F TN N ag(21, ., 20) s, sy a0 (106)
g=>0 k>1 J1sdpg>1
71229 —2+k

Here, z is the t’Hooft coupling constant [28, 29]. Recall that we could view Z(z,s;€) as a tau-
function reduced from the Toda lattice of the discrete KAV hierarchy under the identification
n = x/e as well as the flow rescalings d,, — € J;;. More precisely, define

Z(x+es5€) Z(x —€,85€)

w(z,s;€) = Z(5.5 )2 ,
then w(z,s;€) is a particular solution to the discrete KdV hierarchy:
oL
= [y, 1]

6—
aSj
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with L:=A? + w(z+¢€) +w(z) + w(z)w(z —e) A7, Ayj_y := L7, A := . Validity of these
statements can be found in the Appendix of [T4]. The initial data of this solution is given by

w(z,0;€) = x = ne. (107)

Let Z9€4V (1 s:¢€) be the tau-function of the solution w(x,s;€). The following corollary follows
from Theorem [l

Corollary 3. There exist constants «, By, B1, B2, - -+ such that
Z(x,s;€) = etz fisi gV iy g o) 74KV (4 4 e 50 6) (108)

Note that the constants «, By, 51, B2, - - - right above now can depend on €. In what follows,
we fix the ambiguities simply by requiring Z9€V (2, s;€) to be the unique function satisfying

Z(x,sie) = ZWWV (2 8¢) 29NV (1 ¢ s5¢). (109)
Remark. The following formal series of s
Zdev<x+§,s; e) =: Z(:c,s; €) (110)

was introduced in [20] by Si-Qi Liu, Youjin Zhang and the authors of the present paper, called
the modified GUE partition function with even couplings, which plays an important role in
a proof of the Hodge-GUE correspondence [20]. Moreover, Liu, Zhang and the authors de-
rived the Dubrovin—Zhang loop equation for log 7 from the corresponding Virasoro constraints,
which also provides an algorithm for computing the modified GUE correlators of an arbitrary
genus [20]. Very recently, Jian Zhou [42] derived the topological recursion of Chekhov—Eynard—-
Orantin type for the modified GUE correlators from the Virasoro constraints constructed in [20];
moreover, as a consequence of the topological recursion, an interesting formula between inter-
section numbers and k-point functions of modified GUE correlators was obtained by Zhou [42]
(see the Theorem 3 in [42] for the details); it remains an open question to match the formula
of Zhou with another interesting formula obtained by Gaétan Borot and Elba Garcia-Failde [5]
(see the Corollary 12.3 of [5]) as a consequence of the Hodge-GUE correspondence (or with
a slightly different but equivalent consequence like (I2]]) in below), which may lead to a new
proof of the Hodge-GUE correspondence. Last but not least, as a corollary of Theorem 2] let
us give a third algorithm of computing the modified GUE correlators based on the following
full genera formulae:

ey (05 0pa) (i) _ T [Rz i1 (%) Ray1(%)] B 1 1)
J1,J220 A{1+1A%2+1 ()\1 - )\2)2 ()\1 - )\2)2 ’

{od AO’
(@i -+ d5) (w5 €) R“Jr 1 51> "R%#(Tk)}
Ek Z )\Jj1+1 ]k)\]kJrl - k Z : \ : (k > 3)7 (112)
Jise-sJke20 1 o€Sy Hle( o¢ Ue+1)

where (¢;, - - ¢;,)(x; €) denote the modified GUE correlators with even couplings, defined by

O log 7
<¢j1"'¢jk>(x76) T m

and R,,(A) is defined in Definition Bl We notice that the reason that one can talk about “genus”

for log Z is because log Z is even in € and so are (¢, - - - ¢;,)(z;€). A concrete algorithm using
the formulae of the form ([II)-(II2]) for calculating the corresponding correlators including
certain large genus asymptotics is given in [16].

(x,s =0;¢), (113)
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ZdeV< ZdeV(

Remark. Very recently it was shown in [26] that x,s;€) and T + €,8;€) are iden-
tified with the LUE partition functions with o = —1/2 and a = 1/2, respectively. One can
obtain their k-point series by putting  — z F § in ([II)-(II12). An interesting genus expan-

sion for Z9K4V(z s: ¢) was discovered in [9]. The interplay between Z9V and Z suggests a
Hurwitz/Hodge correspondence that deserves a further study.

Using the definitions of Z(z,s;€) and Z(z,s:€) and using the expansion

e + e~ % T Zﬁz ’

k>0

with Ey, k > 0 being the Euler numbers, we have the following formula:

logZ(az,s;e)
1 3z 5 202 J Eog_og By
1 — —)— — —1 _1 g—29 g
(4 ogxr ]/ 2 48 ogr + Z4g<29_1)<29 xQQ QZO g ( ,) 929-2g'
g
2—2g—k+ 5]\ Ear _ o
I D D B o e S
h>0 9,720 k>1 j1,..,5>1

g+r=h

In other words, the modified GUE correlators with even couplings (II3]) have the expressions:
9 9 oh_ kil 2—2g9—k+|j] Eor . .
(Dj, - Dy ) (x5€) = k!Zth 22 2h—keHj] Z ( o Sar ag(2j1, .., 2jk)

h>0 9,720
gt+r=h

(114)
where £ > 1 and ji,...,ji > 1. It should be noted that the (¢;, ---¢;,)(x;€) with & > 1,
Jis- -+, Jk > 11is a polynomial of x.

5.2. Combinations of certain special cubic Hodge integrals. Based on the Hodge-GUE
correspondence and using Theorem 2, we compute in this subsection combinations of certain
special cubic Hodge integrals. More precisely, we will prove Corollary

The cubic Hodge free energy associated with Ay(—1) Ay(—1) A, () is defined by

1 ; i
— ZEZQ—ZZE > til---tik/m Ag(=1) Ag(=1) Ay (3) iy

g>0 k>0 1,050 g

Here, t = (to,t1,...). (Warning: Avoid from confusing with the variables ¢,, £ > 0 of the Toda
lattice hierarchy used in Section[dl) The Hodge—-GUE correspondence connects H(t; €) with the
GUE partition function with even couplings, which is given by the following theorem.

Theorem A. ([20, 15]) The following identity holds true:

_ 1 JiJ2 _ _ _ _ 1
logZ(x,s;e)+€2(—— Z i — Sjy Sjp T sj_xzsj__+x
2j1,j221‘71+‘72 >1 1+ j>1 4

= H(t(w—%,s);ﬂe) +H(t(_x+§,s);\/§e), (115)
where 5; := (2]3) s; and

ti(z,s) = Zjiﬂgj — 1+ 0i1 + xdip, i>0. (116)

Jj=1
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Recall from (II0) that the modified GUE partition function with even couplings 7 is defined
as the unique series of z — 1 and s satisfying

Z(z,s;€) = Z(x—%,s;e) Z(er%,s;e). (117)
Combining (II7) with (II5]) we obtain the following corollary.
Corollary 4. The following formula holds true:

log Z(w,s:¢) = Vi) + = S LB e 2 (>s-1)
0g (LU S 6) ( ( ) 6) 4e 2j1’j221 ]1+]2 Sj1 Sja 2¢2 = Sj
1 J o 1
C2¢2 j>1 1+j8j - 8e2’ (118)

Denote € := Ay(—1) Ay(—1) Ay(3) as in the introduction, and write

=y ol ol e H*(M,,).
>0
It might be helpful to notice that for g = 1, deg 2; < 1; for g > 2, deg €, < 3g — 3. Motivated

by Theorem A, let us consider the following combination of Hodge integrals. For any given
k>0, 1,...,17 >0, define a formal series H;, _; (x €) € e 2Q[[x — 1,€%]] by

H’i17---,ik(x; €) = 9291 Z 2g—2 Z Z ' <Q[d] z—1)10 Tog1 Tiy - - 'Tik>g- (119)

d=0 \eY

Note that in the notation (...),, we omit the index m from (...),,,. For such an abbreviation,
m should be recovered from counting the number of 7’s in “...”. Therefore, for each fixed
g,d and for each monomial in the Taylor expansion e H7™ = % "L(z — 1)", the above
summation over partitions ), i is a finite sum, i.e., the degree- dimension matching |A| =
3g — 3+ k+r —d—|i has to be hold. Lemma [3 also easily follows from this constrain with
r = 0 taken. The numbers H defined by (B8) and the formal series H;, _; (z;€) are

95015005l
clearly related by

Hy i (x=1€ = Z 2972 i (120)
g=0

Proposition 3. For any k > 0 and j1, ..., > 1, the following formula holds true:

k
Gj,..ji (T3 €) H(2ﬂ> A Z HJWHHH, i x 6)

=1 ip>0 0=1

5 NOYRWOY Skt (2] j
" L;N% (3)<])—L<j)( Jr —:c). (121)
262 j1 + 72 \ j1 /) \ ja 22\ j1 /) \1+n5

Proof Note that the H(t; \/56) has the expression

mo-+m1 mo+m1+ma 00

CRCEDRAEED vl S (N VI N 1

mo,mi,ma,- qzimz s=mo+1 s=mo+mi+1 i=0

Formula (I2]]) is then proved by substituting (I16) and by using Corollary [ O
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Proof of Corollary 2l Note that the k& = 0 case is already given in [20]. By taking z = 1
in (I21) and using Theorem 2 we find ([@0). Formula (39) is then implied in a standard way by
using the following linear equation (proven in [20])

o7 22 1\~ 107
2 (_ _ _>Z - - 122
Z Sk@sk + 4e2 16 2 0sy (122)
E>1
and the fact that
82 logTdeV
i = o >, 123

Here Z = Z (z,s;€) denotes the modified GUE partition function with even couplings. Note
that the fact (I23) can be obtained by taking the coefficients of A™* on the both sides of (21I).
The corollary is proved. O

APPENDIX A. ON CONSEQUENCE OF THE HODGE-GUE CORRESPONDENCE

In this appendix, we derive a consequence of the Hodge-GUE correspondence that has a
similar flavour to formula (I21]). Note that

H(t(z,s); \/56)
-yt a1 )

9>0 k>0 m=1 Nip, >0
k 2 L s
N ge-1,20-2 / () (x—l— m) _PmSpn
m==+1r > T Plyeesy 1 M=

Then by comparing the coefficients of s,, ... s,, of the both sides of ([I8) we get

(Op, - op)g(T) = Zﬁ/q 9.k H (x_l 1@—%%);[1%

k>l m=l+1
pip2 (2p1) (2p2 1 2p P1

4 5y ( )( )+—55( “a). (2

O b+ pa\ i ) \ 2 29 py )\ 1+ (124

Here (op, ...op)(z5€) =1 3 20 €9 %(0p, .. 0p,)g(x), and (op, ...0p,)(2;€) are the modified

GUE correlators with even couplings defined in (I13]). Taking x = 1 we find

l 2pm)

(Opy - O Yglomt = Zﬁ/ B Qi H ( l_wm)g%. (125)

k>l =l+1

A further consideration to (I28]) was given in [5].
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Combining (I24)) with (II14]) we find for any fixed [ > 1, py,...,p; > 1 the following identities:

agl (2]91, Cey 2]91)

g lali 2—2q1 — L+ ]\ E>
I 2—2g—I+|j] T
o 91;0 0 9or

g1+r=g

1 b w2 Lo ()
N <k—0!£€mQW“II Qx_ly_l—wm)lll—pmmn

k>l m=I[l+1 m=1

P1D2 2p 2po 1 2p P1
+557( )( )+_ 5( Y s0. (126
SO+ \ ;)\ 2 29 py J\ 1+ py g (126)

Note that for any g > 0, the RHS is a priori a power series of x — 1, but the LHS shows that it
is actually a monomial of  and so is also a polynomial of x — 1. This subset of the identities
deserve a further investigation. Moreover, the LHS vanishes when g¢ is sufficiently large, an so
is the RHS; this provides another subset of the identities for the cubic Hodge integrals.
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