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Asymptotic gravitational charges
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We present a method for finding, in principle, all asymptotic gravitational charges. The basic idea
is that one must consider all possible contributions to the action that do not affect the equations
of motion for the theory of interest; such terms include topological terms. As a result we observe
that the first order formalism is best suited to an analysis of asymptotic charges. In particular, this
method can be used to provide a Hamiltonian derivation of recently found dual charges.

Symmetries are at the heart of our present understand-
ing of fundamental physics. In gravitation, co-ordinate
invariance is a symmetry. If one includes fermionic mat-
ter, one needs to introduce, in addition to the metric, the
frame fields (or vierbeins) and then local Lorentz trans-
formations are also symmetries. Some symmetries can
be associated with charges as a consequence of Noether’s
theorem. A simple example of this was explored by
Arnowitt, Deser and Misner [1]. A time translation
diffeomorphism was shown to be associated to the total
mass as measured at spatial infinity in an asymptotically
flat spacetime. Omne might therefore expect that simi-
lar reasoning would produce charges associated with any
of the generators of Poincaré transformations. What is
perhaps surprising, is that at null infinity, as was discov-
ered by Bondi, van der Burg, Metzner and Sachs [2, 3],
there are an infinite number of these asymptotic symme-
tries, BMS symmetries, that lead to an infinite number
of physically meaningful charges, BMS charges. Recent
work has highlighted the importance of these charges in
the computation of scattering amplitudes in processes
that involve massless particles [4], the physics of grav-
itational waves and their detection [5] and in the black
hole information paradox [G]. The purpose of this let-
ter is to systematically explore what these charges are
for gravitation. We argue that asymptotic charges, in
addition to the BMS charges, arise from different terms
in the action that do not contribute to the equations of
motion. For example, if we are interested in vacuum Ein-
stein theory, by simply considering the Einstein-Hilbert
action we miss out on dual and other charges. Therefore,
we must consider all possible actions that give rise to the
same equations of motion. In applying this idea, in ad-
dition to finding the well-known BMS charges [, 18], we
give a Hamiltonian derivation of the recently found dual
charges [9,110], and by corollary a Hamiltonian derivation
of Newman-Penrose charges |11], and show how other
charges can be found from other topological contribu-
tions to the action. We use the covariant phase space

method and apply it to the BMS symmetries appropriate
to asymptotically flat spacetimes, but we emphasise that
this can be done generally for any 2-surface embedded
in a three-dimensional space (see [12-14] for related con-
siderations in the first-order formalism motivated mainly
by the first law of black hole mechanics and [15] for the
study of topological actions in relation to charges).

THE THEORY

We will use the first order formalism of general relativ-
ity coupled to a Dirac field to illustrate the construction
of the gravitational charges. The first order formalism
results in simpler expressions than the usual Einstein-
Hilbert formalism. Furthermore, because we are includ-
ing the Dirac field, we find that torsion plays a significant
role [16]. There are three components to the total action.
The first is the Palatini term
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where R (w) is the curvature 2-form made from the con-
nection 1-form w?® by R*® = dw® + w* Aw.’. Lorentz
indices (a,b,...) are lowered and raised using the flat
tangent space metric 74, and its inverse 7%, Similarly,
spacetime indices (u,v,...) are lowered and raised us-
ing the spacetime metric g,, and its inverse g"”. e®
are a pseudo-orthonormal basis of 1-forms such that the
spacetime line element ds? = Juvdrtdx” = Nape®e’, thus
e” = e, dz" where e}, are the components of the vierbeins
and d is the exterior derivative operator. The metric con-
nection w® = w!®! and the torsion 2-form 7% are defined
by de® + w® ne® = T, In the first order formalism, one
regards e® and w® as independent variables. If Ip were
the only contribution to the action, then the equations
of motion would lead to the vacuum Einstein equation
R., = 0 and vanishing of the torsion 7% = 0. A sec-
ond contribution to the action comes from anticommut-
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ing Dirac fermions . The Dirac action is
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where the volume form ¢ = 2—145abcd6a/\6b/\ecl\€d. ‘We
define the Dirac conjugate to be 1 = if4? and our
gamma matrix conventions are {y%, 7%} = 2n% with
the signature being (— 4+ +4). V, 4 is the covariant
derivative given explicitly V¢ = 0,9 + iwabcﬂybcw with
w® = w.%ec. The last contribution to the action is topo-
logical in nature and as a consequence makes no contri-
bution to the equations of motion. It is in some sense a
gravitational analog of the Pontryagin index.

Iny = A
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The integrand is known as the Nieh-Yan tensor and is
exact, being given by —d(e® ATy,). The factor of i arises
because in a space of Euclidean signature, one would ex-
pect this term to be real. However, in continuing to a
Lorentzian signatured spacetime, a factor of 4 arises just
as it does for the Pontryagin term in Yang-Mills theory.
Equations of motion come from varying e%, wqp and ¥ in
the total action It = Ip + Ip + Iny. Varying ¢ gives
the Dirac equation (y*V, —m)y = 0. Varying w® de-
termines the torsion T% = —27 1)y%.1) €® A €. Thus only
the totally antisymmetric part of the torsion is non-zero
and is proportional to the axial current of the fermion.
Varying e gives the Einstein equation

Rap — 3R = =470 Vo) — Vehya)).  (4)

It should be noted that the Einstein equation is not
symmetric under the interchange of @ and b when torsion
is present. One could write the the symmetric part as the
conventional Einstein equation coupled to the conven-
tional symmetric energy-momentum tensor of the Dirac
field. The antisymmetric part is then a trivial conse-
quence of the torsion equation of motion and the Bianchi
identity.

PRESYMPLECTIC POTENTIAL AND
NOETHER CHARGE

The system Ip admits two kinds of local invariance.
The first is diffeomorphism invariance which is a property
of all gravitational theories. The second is local Lorentz
invariance. The latter is necessitated because we have in-
cluded fermions in our description of basic physics. The
first step is the application of Noether’s theorem to find a
set of conserved currents or their dual 3-forms. Once one
has found the currents, if the background field equations
are satisfied, the currents are conserved. Then one can
find an antisymmetric two-indexed tensor or its dual 2-
form which can be integrated over a closed 2-surface to

give the Noether charge on that surface. Typically, that
surface will be a sphere at infinity and the symmetry gen-
erator does not die off at infinity. This construction gives
rise to a charge for each of the asymptotic symmetries.
The value of the coefficient of the topological term A has
no effect on the dynamics of the theory. Consequently,
one can consider the symmetries coming from Iy to be
independent of those derived from Ip + Ip. The charges
coming from Iyy we will refer to as magnetic and those
from Ip + Ip as electric. Any (smooth) vector field &*
can be used to generate an infinitesimal diffeomorphism
and the actions on e?, wgyp and 1 are given by
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Infinitesimal Lorentz transformations are given by an an-
tisymmetric two-indexed field A, and its action is

Sae® = A%e’,  Sawap = —dAap + [A, w]ab,
51\1/) = %Aab"yabﬂ).
We derive these charges and their properties using covari-
ant phase space methods. The presymplectic potential

3-form 0 is the boundary term found when the action is
varied. The electric contribution to 6 is

dewap = Lewap,
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The magnetic contribution to 6 is

_ L a b a
Oy = 16ﬂ_(5wabAe ne’ —26e* nTy). (5)

The Noether currents are then given by
Jen = 0(0¢a0) — 1eL (6)

where L is the Lagrangian 4-form from which the corre-
sponding presymplectic potential is derived and ¢ rep-
resents the fields, i.e. 8 is evaluated with the variation
relevant to the coordinate transformations generated by
vector field £ and Lorentz transformations parametrised
by A in question.

Electric Noether charges

When the equations of motion are satisfied, J becomes
the derivative of a 2-form
1
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Magnetic Noether charges

The magnetic charges are in many ways similar:
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VARIATION OF THE CHARGES

Each of the Noether charges is defined for a specific
gauge transformation and background. A problem is
that the charge defined this way has no absolute physical
meaning as one could always add an arbitrary constant
to the charge. What does have physical meaning is to
consider the change in charge conjugate to some specific
transformation as one varies the background. Let ¢ be
the collection of fields e, w?® and 1. Then we need to
find the difference in a specific charge between ¢ and its
variation ¢+ d¢. The variation of a charge is constructed
from the symplectic form €2 which is defined to be

0= / (60(6.5'9) — 5'6(6.56)) (9)
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where ¥ is a spacelike surface with boundary 9. If ¢’
is chosen to be a gauge transformation, d¢ obeys the lin-
earised equations of motion and ¢ obeys the equations of
motion, then ) reduces to an integral over 0¥ and is the
variation of the physical charge §Q. For any combination
of diffeomorphisms and Lorentz transformations,

§o - / (0Q — 10(6,60)) (10)
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We have written the variation as §Q to indicate that the
variation may not be exact. The variation is supposed to
measure what happens as one carries out the variation in
a fixed region of spacetime. The result should then be the
change in the physical charge and reflects the nature of
the region in question. However, when carrying out the
variation, some of the charge may have escaped through
0¥ and it is this that leads to §Q not being exact. To
find the exact piece, remove from §Q the piece that is not
exact. Unfortunately, this prescription has some ambigu-
ity as has been discussed in detail and partially resolved
by Wald and Zoupas [17]; see also [18]. It is usually pos-
sible to understand the physics of this process by finding
a flux formula for the charge through 0.

ASYMPTOTIC EVALUATION

One area that has been extensively explored is the eval-
uation of these charges at future null infinity. Null infin-
ity is a large sphere parametrised by the retarded time.
The metric on null infinity is degenerate. The approach
to null infinity is carried out by taking the limit as a ra-
dial coordinate r tends to infinity. This is often done in
the Bondi gauge where the spacetime line element is of
the form

—Fe?Pdu® —2¢*P dudr + 2 h,,(dz’ — C'du)(dz”’ — C” du).

Here u is the retarded time coordinate, r is the radial
luminosity coordinate and z' with (I,J,...) = 1,2 are

the coordinates on the celestial sphere. F, 3 and C' are
functions of u,r and x'. h;;, = v, + Cp,/r + o(r™1)
where 7;, is the metric on the round sphere, and C,,
describes gravitational radiation escaping to null infinity
from the interior of the spacetime. C,, is a function of
w and z' and 4v"/C;;, = 0. It thus has two degrees of
freedom corresponding to the two possible polarization
states of gravitational waves. The Bondi news tensor is
N;; = 0,C;; and is a measure of gravitational radiation,
the energy flux being 32LWN”N”. Finally, F = 1— % +
o(r~1) where M is the Bondi mass aspect.

In choosing Bondi coordinates, four degrees of freedom
of the metric have been eliminated by setting g, = g, =
0 and det(h,,) = det(v,,). The residual diffeomorphisms
that generate asymptotic symmetries are supertransla-
tions and superrotations and their descendants,

' =f & =5(C"0f-Dyg"),
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where f = s+ 5D,Y "’ with s any spherical harmonic and
D is the covariant derivative on the unit 2-sphere with
metric v, ,. While these BMS generators are well-known,
in our first order approach, they are accompanied by
Lorentz transformations that preserve the Lorentz gauge
which requires six choices. We choose our basis 1-forms to
be € = L Fdu+dr,e! = e*’du and €' = rE!(dz’ —C"du).
E’ is the zweibein for the metric h;;,. The asymptotic
Lorentz translations are parametrised by

Aor = =0:€", Av = 5. Ef (FO,f +20,£"),
Ag; = #Ei’@]f, Ay = %JE[IZ-ﬁYEjJ] + o(r?)

where E' is the zweibein for the metric on the unit 2-
sphere with metric v, .

ASYMPTOTIC CHARGES

We are now in a position to evaluate the asymp-
totic charges (I0) for the Palatini and the Nieh-Yan ac-
tions. Assuming the fermion mass is not zero so that the
fermion energy-momentum is exponentially suppressed
at null infinity, hence ignoring fermions, the electric
charges from the Palatini action are
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At leading order, they correspond to BMS charges[19]
(Cf. Results in [20])
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where d) is the volume element on the unit S2. The
first term is integrable and is just the variation of the



moments of the Bondi mass aspect. The second term is
not integrable as it is not of the form f times the vari-
ation of something. We can identify the non-integrable
term with gravitational radiation leaving the system and
causing the mass thereby to change [17]. Such a contri-
bution should not be counted as part of the charge on
the surface as it does not describe the state of the sys-
tem but rather the change of state of the system. We
conclude that the correct expression for the change in
physical charge is just the integrable piece

1
= — aQ) fM. 13
o-1 [ aay (13)
If we ask how does this change as one goes along null
infinity, we see there are two contributions,

1
8

The first term on the rhs is the gravitational flux, the
hard component of the charge and the second is a soft
component.

If we prescribe boundary conditions for lower orders
in a 1/r expansion of the metric components, then we
will also have subleading charges. In such a case the
subleading charges obtained from (Il) correspond to the
subleading BMS charges found in [21].

Repeating this calculation for the Nieh-Yan action, we
find that the 2-form charge from this action is equivalent
to

1
.M = — N, N" + 2D, D,N". (14)
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Full and further details of these charges will be presented
in a forthcoming publication.

The asymptotic charges that are obtained from the
Nieh-Yan action correspond to dual charges [9,[10], which
at leading order are given by an integral of the NUT
aspect. This gives a Hamiltonian derivation of dual
charges: they are the asymptotic charges that arise by
considering the Nieh-Yan action. This is analogous to
getting magnetic charges from the #-term in electromag-
netism. However, in gravity, we see that this is only pos-
sible in a first order formalism and cannot be achieved in
the metric formulation.

OTHER POSSIBLE TERMS

As topological terms, we should also consider the Pon-
tryagin action J Rab AR and the Gauss-Bonnet ac-
tion %sabcd J R AR°4 which, while higher-derivative, do
not modify the Einstein equation. The equations of mo-
tion from these actions are the differential Bianchi iden-
tity and its Hodge dual. The presymplectic forms are

ep = (5w“b /\Rab7 eGB = €abed 6wab /\RCdu (16)

for the Pontryagin and Gauss-Bonnet terms, respectively.
Furthermore, the Noether charges are

Qp = (ngab — Aab)Rab, (17)
QcB = Eabed (ngab — A“b)'RCd. (18)

However, as we already discussed the physical object is
the asymptotic charge, coming from a Hamiltonian flow,
given by equation (0. We can show that for the Pon-
tryagin and Gauss-Bonnet actions respectively

$Op = 6w A K¢ AWa, (19)
$OGcE = abed Sw™® A K¢ aw, (20)

where ICg_,Awab is
Keaw™ = Lew® — dA™ + [A, w]. (21)

From the asymptotic boundary conditions, we find that
there is no leading order nor O(1/r) asymptotic charge
corresponding to the Pontryagin and Gauss-Bonnet ac-
tions. However, there are non-trivial charges at sublead-
ing O(1/r?). What these charges at subleading orders
are depends on how much analyticity we allow at lower
orders in the boundary conditions. Full and further de-
tails of these charges will be presented in a forthcoming
publication.
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