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corticomuscular interactions during 
different movement periods in a 
multi-joint compound movement
Rouven Kenville1,2*, Tom Maudrich1,2, Carmen Vidaurre5,6, Dennis Maudrich2, 
Arno Villringer2,7,8, Vadim V. nikulin2,3,4,9 & patrick Ragert1,2,9

While much is known about motor control during simple movements, corticomuscular communication 
profiles during compound movement control remain largely unexplored. Here, we aimed at examining 
frequency band related interactions between brain and muscles during different movement periods 
of a bipedal squat (BpS) task utilizing regression corticomuscular coherence (rCMC), as well as partial 
directed coherence (PDC) analyses. Participants performed 40 squats, divided into three successive 
movement periods (Eccentric (ECC), Isometric (ISO) and Concentric (CON)) in a standardized manner. 
EEG was recorded from 32 channels specifically-tailored to cover bilateral sensorimotor areas while 
bilateral EMG was recorded from four main muscles of BpS. We found both significant CMC and PDC 
(in beta and gamma bands) during BpS execution, where CMC was significantly elevated during ECC 
and CON when compared to ISO. Further, the dominant direction of information flow (DIF) was most 
prominent in EEG-EMG direction for CON and EMG-EEG direction for ECC. Collectively, we provide novel 
evidence that motor control during BpS is potentially achieved through central motor commands driven 
by a combination of directed inputs spanning across multiple frequency bands. These results serve 
as an important step toward a better understanding of brain-muscle relationships during multi joint 
compound movements.

Many muscles are involved in the execution and control of a bipedal squat (BpS)1–3, with Solomonow, et al.4 esti-
mating over 200 muscles to be recruited. In contrast to simple movements, BpS, as well as compound everyday 
life activities, i.e. walking stairs, picking up loads or carrying loads across distance, require extensive intra- and 
interlimb coordination5, which is why BpS is an ideal, naturalistic model for compound movement control. In 
contrast to simple movements, voluntary control of each muscle during BpS seems unlikely, especially when 
considering varying requirements on acting muscles due to changes in muscle function throughout different 
movement periods. Movement periods, i.e. dynamic (eccentric (ECC) and concentric (CON)) and static (isomet-
ric (ISO)) contraction periods require all muscles involved to dynamically change their function throughout the 
movement. This is evident for example from elevated proprioception, reflected by increased muscle spindle activi-
ties during eccentric contractions compared to both isometric and concentric contractions6,7. Thus, BpS demands 
continuous, extensive central-nervous information integration while placing high physical stress on the body1–3, 
signifying that motor commands have to be flexibly deployed and adapted throughout this movement in order 
to enable successful execution. Frequency band related neural synchrony between brain regions and muscles, 
detectable through corticomuscular coherence (CMC) measurements8,9, potentially provides an efficient solution 
to the challenge of enabling dynamic information processing on a whole body level during compound move-
ment control. Indeed, supporting evidence has been provided by studies that observed frequency and amplitude 
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modulations of CMC in beta and gamma bands during different movement periods of simple movements, such 
as knee flexions10 and ankle flexions11 as well as during different stages of more compound gait cycles12, indicating 
frequency band related cortical oscillations to play a crucial role concerning flexible motor control.

During motor actions, neural oscillations are mainly observed at beta (~12–30 Hz) and gamma frequencies 
(~>30 Hz). The human corticomotor drive comprises an oscillatory beta component, which enables synchro-
nization in the beta range between targeted muscles and brain areas9,13,14. As such, CMC between sensorimotor 
areas and muscles has been frequently observed in the beta range10,15–17 and is noticeably present during isometric 
movements9,18,19. Gamma oscillations commonly occur during movement onsets, whereby changes in oscillatory 
gamma activity are interlinked with varying movement properties20,21. Functionally, beta-range CMC has been 
associated with fine motor control16,22, motor preparation23 and sensorimotor integration24, while gamma-range 
CMC is assumed to reflect mechanisms underlying integration of task related cortical components during sen-
sorimotor tasks23,25, proprioceptive feedback21,26, as well as visuomotor paradigms27,28. Still, these results do not 
imply directionality between cortex and muscle activity, as CMC is undirected. Therefore, additional partial 
directed coherence (PDC) analyses are essential in order to examine directionality of communication between 
cortex and muscles by quantifying direction of information flow (DIF)29,30. PDC has been used for MEG31, 
EEG32,33 and EMG34 recordings. Previous evidence on directionality between EEG and EMG recordings suggests 
patterns of directionality as well as band-specific dominant directions of information flow during motor tasks32,35. 
For example, it could be shown that beta CMC has strongest coupling for EEG-EMG direction during various 
upper extremity motor tasks32. EEG-EMG connectivity was also significantly elevated compared to EMG-EEG 
connectivity in gait35.

All evidence can be summarized as follows. First, previous research regarding neuromuscular interactions 
between brain areas and musculature has focused on simple movements with no studies examining whole body 
movements such as BpS. Second, when examining interactions between cortex and muscles, it is important to 
consider differential muscle functions, which change depending on movement periods, or rather the contraction 
type required during different movement periods. Third, coherence between EEG and EMG recordings has been 
extensively used to quantify neuromuscular communication, with beta and gamma frequencies being the most 
prominently observed frequency bands at which EEG and EMG recordings are coherent during motor tasks. 
Lastly, although CMC analyses enable an assessment of dynamic neuromuscular communication, additional 
measures of connectivity such as PDC are necessary to analyze directions of communication.

Based on this, we hypothesized to observe both beta and gamma CMC during BpS, with CMC modulations in 
dependency of movement periods and muscles, as previously observed10,12,19. Further, as beta CMC magnitudes 
have been observed to be elevated during ISO19, we hypothesized beta CMC magnitudes to be greatest during ISO 
periods, as well as gamma CMC magnitudes to be greatest during ECC, reflecting increased proprioception, 
which has been linked to increased muscle spindle activity during ECC6,7 as well as gamma CMC during move-
ments21,26. According to prior evidence, we further hypothesized beta CMC to primarily reflect corticomotor 
drive and therefore −DIFEEG EMG to be most prominent for beta CMC, while gamma CMC likely mirrors integra-
tion of afferent sensorimotor information and DIF to therefore be −DIFEMG EEG.

Results
Initially, we inspected normalized power spectral densities (PSD) of rectified EMG to assess spectral contents 
(Fig. 1). PSD’s revealed a broad spectrum with two peaks around ~10 and ~20 Hz for VL and VM, although 
peaks ~20 Hz were most pronounced for CON. For TA and ES, a similar spectrum yielded one peak at ~20 Hz 
and ~10 Hz, respectively. Another broad spectral elevation was evident in VM and VL between ~30 and ~40 Hz.

We observed CMC magnitudes between 0.013–0.228 across all participants, muscles and periods (please see 
Table 1 for an overview regarding CMC magnitudes).

Figure 2 shows corticomuscular interactions between brain regions and TAr. Regarding CMC spectra of TAr, 
it is apparent that while individual spectral peaks vary, they accumulate within beta and gamma frequency bands 
(Fig. 2A). This is valid throughout all muscles, as spectral peaks rarely were identical between participants (for a 
complete overview regarding individual, as well as grand-averaged CMC spectra of all muscles and periods, 
please see Fig. S1 in supplementary section). Corresponding grand-averaged source-localization results show 
highest activations in contralateral M1 leg area, whereby the extent of activation varies between movement peri-
ods (Fig. 2B,C). Grand-averaged PDC spectra mirror corresponding CMC spectra as grand-averaged spectral 
peaks of CMC translate to those of PDC spectra. While PDC values are similar for both DIF during ISO, they are 
more pronounced in −DIFEMG EEG during ECC and −DIFEEG EMG during CON.

Corticomuscular coherence during BpS (CMC). Coherence was estimated in beta (12–30 Hz), gamma 
(30–44 Hz) and high gamma (44–60 Hz) frequency bands, across all muscles (8) and periods (3), resulting in 24 
variables of interest for each frequency band.

A two-way rmANOVA (factors: MUSCLE and PERIOD) was performed with log-transformed CMCarea for 
each frequency band of interest. Please see Fig. 3 for an overview regarding differences in CMCarea between move-
ment periods.

For beta CMC, we did not find a significant interaction between MUSCLE*PERIOD. However, we found a 
significant main effect for PERIOD (F(2,20) = 9.070, p = 0.002, ηp

2 = 0.476) with post-hoc Bonferroni tests reveal-
ing CMCarea to be higher for ECC vs. ISO (MD = 0.261, SE = 0.074, 

.pbonf  = 0.017), as well as lower for ISO vs. 
CON (MD = −0.238, SE = 0.071, 

.pbonf  = 0.022). No significant difference was found between CON vs. ECC.
For gamma CMC, we were not able to find a significant interaction between MUSCLE*PERIOD. However, we 

found a significant main effect for MUSCLE (F(7,70) = 2.571, p = 0.020, ηp
2 = 0.205); post-hoc Bonferroni tests 
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failed to reach significance. We additionally found a significant main effect for PERIOD (F(2,20) = 8.403, 
p = 0.002, ηp

2 = 0.457) with post-hoc Bonferroni tests revealing coherence to be higher for ECC vs. ISO 
(MD = 0.312, SE = 0.080, 

.pbonf  = 0.009).

Figure 1. Normalized PSD of rectified EMG per muscle and period. PSD’s of rectified EMG are depicted for all 
muscles during each movement period. Power spectra were averaged across muscles, epochs, and participants 
and normalized to total power. Each column illustrates different movement periods: ECC (blue), ISO (red) and 
CON (gray). Each row highlights different muscles, with respective labels next to each row. Muscle names are as 
follows: M. vastus lateralis (VLr & VLl), M. vastus medialis (VMr & VMl), M. tibialis anterior (TAr & TAl), M. 
erector spinae (ESr, ESl).

ECCENTRIC 
(ECC) VLr VLl VMr VMl TAr TAl ESr ESl

Mean 0.052 0.057 0.050 0.056 0.050 0.055 0.084 0.099

Std. Deviation 0.016 0.022 0.014 0.022 0.019 0.015 0.044 0.052

Minimum 0.017 0.022 0.013 0.020 0.014 0.016 0.039 0.043

Maximum 0.088 0.099 0.069 0.098 0.085 0.073 0.161 0.212

ISOMETRIC (ISO)

Mean 0.057 0.063 0.062 0.067 0.061 0.065 0.075 0.073

Std. Deviation 0.027 0.046 0.042 0.054 0.024 0.028 0.042 0.035

Minimum 0.019 0.026 0.024 0.026 0.025 0.026 0.032 0.028

Maximum 0.131 0.206 0.192 0.228 0.104 0.110 0.181 0.144

CONCENTRIC (CON)

Mean 0.048 0.052 0.053 0.048 0.056 0.055 0.081 0.079

Std. Deviation 0.012 0.018 0.015 0.017 0.018 0.021 0.041 0.041

Minimum 0.017 0.016 0.016 0.014 0.016 0.022 0.042 0.036

Maximum 0.061 0.091 0.073 0.075 0.090 0.105 0.177 0.180

Table 1. Descriptive results of CMC range (n = 11). Please note that the table is organized into three sections 
representing all three movement periods. Supplementary section.
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No significant effects regarding MUSCLE (F(7,70) = 1.045, p = 0.408, ηp
2 = 0.095) or PERIOD (F(2,20) = 2.348, 

p = 0.121, ηp
2 = 0.190) were observed for high gamma CMC.

Source-Localization of EEG activity (eLORETA). Grand-averaged source-localization performed with 
eLORETA revealed greatest activations in contralateral (with respect to the analyzed muscle) and bilateral sensori-
motor areas, with peak activities in contralateral precentral gyri and superior frontal gyri, corresponding to M1 and 
supplementary motor area (SMA) (please see Fig. 2B,C for exemplary grand-averaged source-localization results of 
TAr). Most pronounced somatotopy was visible across muscles for ISO and CON with sources being more spread 
out for ECC. Although sources for most muscles were located centrally in precentral gyri, in some participants, 
strongest activations were found in superior frontal gyri, corresponding to SMA and premotor cortex (PMC).

Figure 2. Exemplary spectral maps of CMC, PDC and source localization for TAr. Results are organized 
in columns representing all three movement periods during BpS. Grand-averaged (A) CMC spectra with 
individual CMC spectra indicated through transparent lines. Grand-averaged source-localization results 
across all movement periods displayed in (B) dorsal view and (C) mid-sagittal view and (D) PDC spectra 
during BpS execution for all movement periods. Here, PDC in EEG-EMG direction is indicated through 
solid areas, whereas EMG-EEG direction is indicated through transparent areas of the same color. We used 
the MATLAB toolbox METH by Guido Nolte (https://www.uke.de/english/departments-institutes/institutes/
neurophysiology-and-pathophysiology/research/research-groups/index.html) to illustrate source localization 
results in sections (B) and (C).
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Partial directed coherence during BpS (PDC). Partial directed coherence was estimated in beta (12–
30 Hz), gamma (30–44 Hz) and high gamma (44–60 Hz) frequency bands, across all muscles (8), periods (3) and 
for two DIF (1) −DIFEEG EMG and (2) −DIFEMG EEG (2), making up 48 variables of interest for each frequency band.

In order to analyze directionality of obtained PDC, a three-way rmANOVA (factors: MUSCLE, PERIOD and 
DIRECTION) was performed between log-transformed PDCarea for each frequency band of interest. Please see 
Fig. 4 for an overview regarding differences in DIF of PDCarea between movement periods.

For beta PDC, we found a significant interaction between PERIOD*DIRECTION (F(2,20) = 5.340, p = 0.014, 
ηp

2 = 0.348). Simple effect tests showed this interaction to be present in ECC (p = 0.014, αcorr = 0.017) period. We 
additionally found a significant main effect for MUSCLE (F(7,70) = 2.704, p = 0.015, ηp

2 = 0.213), although 
post-hoc Bonferroni tests failed to reach significance.

Regarding gamma PDC, we found a significant interaction between PERIOD*DIRECTION (F(2,20) = 11.765, 
p = 4.192 × 10−4, ηp

2 = 0.541). Simple effect tests showed this interaction to be present for ECC (p = 0.016, 
αcorr  = 0.017) and CON (p = 0.002, αcorr  = 0.017) periods. We additionally found a significant interaction for 
MUSCLE*PERIOD*DIRECTION (F(14,140) = 2.079, p = 0.016, ηp

2 = 0.172). Simple effect tests showed the 
interaction to be present in VLl-ECC (p = 0.014, αcorr  = 0.017), as well as TAr-CON (p = 0.004, αcorr  = 0.017), 
TAl-CON (p = 0.008, αcorr = 0.017) and ESl-CON (p = 0.013, αcorr = 0.017).

For high gamma PDC, we were able to find a significant interaction between PERIOD*DIRECTION 
(F(2,20) = 25.843, p = 2.857 × 10−6, ηp

2 = 0.721). Simple effect tests showed this interaction to be present in ECC 
(p = 3.724 × 10−13, αcorr = 0.017) and CON (1.722 × 10−7, αcorr = 0.017) periods.

Discussion
The aim of this study was to examine frequency band related interactions between cortex and muscles during 
different movement periods of BpS. Our results provide novel evidence that motor control during BpS, serving as 
a model for compound movements, is in part achieved through frequency band related neural oscillations. As 
hypothesized, we observed CMC in beta and gamma ranges across multiple muscles involved during BpS. CMC 
was altered throughout different movement periods during BpS, as CMCarea was greatest during dynamic move-

Figure 3. Averaged CMCarea. Averaged log-transformed CMCarea are illustrated per movement period and 
frequency band across all muscles. Asterisks indicate significant differences between CMCarea of different 
movement periods. Respective p values are reported next to each asterisk. Here, blue diamonds indicate 
CMCarea for ECC, whereas red squares indicate CMCarea for ISO and black circles represent CMCarea for CON.

Figure 4. Averaged PDCarea between all movement periods. Averaged log-transformed PDCarea are illustrated 
per movement period and frequency band. Significant interactions are reported within each graph. Here, blue 
diamonds indicate PDCarea for ECC, whereas red squares indicate PDCarea for ISO and black circles represent 
PDCarea for CON. Please note, that the x-axis represents all values for one of two possible DIF, 1) −DIFEEG EMG 
and 2) −DIFEMG EEG.
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ment periods (ECC and CON), yet independent of muscles. Contrary to our hypothesis, beta CMC magnitudes 
were not highest during CON but during ECC. On the other hand, gamma CMC magnitudes were highest during 
ECC as expected. PDC analyses revealed DIF between EEG and EMG to be modulated across movement periods. 
As hypothesized, DIF differed between dynamic movement periods ECC ( −DIFEMG EEG) and CON ( −DIFEEG EMG). 
Lastly, modeled sources, corresponding to optimized CMC patterns, were best modeled in contralateral, as well 
as bilateral motor cortical areas M1, SMA and PMC.

CMC has mostly been described at beta band22,25,36,37 and gamma band frequencies9,10,37–39 for upper and lower 
limb isolated movements. We confirm and extend these findings, as we observed beta and gamma CMC across all 
muscles assessed during BpS performance, although we found no significant difference in CMCarea between mus-
cles. Conversely, numerous studies show frequency and amplitude differences in CMC between muscles40–42. This 
is possibly due to the fact, that these studies tested muscle functions and therefore estimated CMC during isolated 
movements, whereas all muscles involved and examined during BpS likely share a common executive blueprint 
and act collectively to achieve the BpS. There is evidence to support this assumption, for example, Yoshida, et al.43 
examined CMC during cyclical ankle movements and were able to observe beta range CMC in both m. tibialis 
anterior and m. gastrocnemius, serving as agonist and antagonist. Additionally, CMC between agonist-antagonist 
muscle pairs was also present in the beta range for elbow flexions in healthy adults44. Therefore, it is conceivable 
that frequency band stable CMC between different muscles and brain regions represents an efficient mechanism 
that enables multi-muscle control during compound movements.

CMC magnitudes during this study varied across all participants (please see Table 1 for an overview of CMC 
magnitudes). Many factors potentially influence this, for example, it could be shown that the tendency of neural 
populations to synchronously discharge reveals inter-individual differences45. Recent evidence suggests a pos-
itive correlation between CMC magnitudes and the amount of beta oscillations in both input signals thereby 
supporting this assumption46. As CMC is not strictly of efferent origin47, it has been proposed that differences 
in the density of somatosensory receptors potentially play a part in inter-individual CMC magnitude variance46, 
although this remains to be thoroughly examined. Lastly, CMC variance might reflect differences in the way EEG 
recordings capture individual cortical sources. Quality and therefore the success of EEG recordings are known 
to depend on orientations of corticospinal neurons relative to EEG electrodes, depth of those neurons relative to 
individual scalps, as well as skull and scalp properties such as thickness48,49. Uncovering the driving factors behind 
these differences in individual CMC magnitudes seems crucial to gain an understanding of neurophysiological 
mechanisms underlying CMC.

From a mechanistical point of view, gamma band oscillations are thought to reflect network integration, i.e. 
the capacity of anatomically linked areas to become interconnected and exchange information on a cortical 
level,10,37,50,51, whereas beta band oscillations are mainly associated with corticomotor drive9,23,52. In more detail, 
distinctions regarding efferent and afferent information flow gain relevance when functionally distinguishing 
gamma from beta band CMC. This is not to say that both oscillatory components are exclusively locked to either 
afferent or efferent information flow. Rather, although there is no consensus regarding their neural origins, previ-
ous research seemingly implies an executive, initiative role for beta oscillations during motor actions, whereas a 
more sensory integrative role is ascribed to gamma oscillations. Still, some results propose a more complex origin 
of gamma activity beyond proprioceptive feedback53. In sum, both beta and gamma frequencies appear to be 
functionally divergent during motor task performance. Our findings extend this narrative, as CMC and PDC 
analyses reveal differential patterns regarding movement period related communication (CMC) and information 
flow (PDC) between beta and gamma frequency bands. Highest CMCarea were observed during dynamic move-
ment periods (ECC and CON) when compared to ISO with significant differences between movement periods in 
beta and gamma ranges. Additionally, we found significant interactions between movement periods and DIF for 
all tested frequency bands. In line with our hypotheses, PDCarea during CON was highest in −DIFEEG EMG, PDCarea 
during ISO remained relatively stable across directions and PDCarea during ECC was highest in −DIFEMG EEG. This 
effect intensified from beta to gamma ranges, as indicated by an increase in effect sizes of movement period - DIF 
interactions across frequency band related PDCarea.

Physiologically, increased −DIFEMG EEG during ECC appears reasonable, as it is established that eccentric con-
tractions prompt differential effects on muscle proprioception, e.g. increased afferent input through muscle spin-
dles, compared to isometric and concentric contractions54. Eccentric contractions cause greater afferent 
transmission through elevated muscle spindle activity6, leading to increasing integrative demands on central 
nervous processing. Additionally, previous studies mostly observed gamma band CMC during movements in 
need of continuous peripheral updates, either because of great strength requirements25,39 or the overall novelty of 
the movement10,37, hinting at a connection between novel motor control scenarios, increased afferent information 
flow and gamma range CMC. Interestingly, Volgushev et al.55 argued that individual cortical neurons demonstrate 
more periods of enhanced excitability at gamma frequencies when compared to the beta range, which might lead 
to a higher potential of coherent networks to integrate task-relevant information since temporal intervals between 
successive time windows of increased excitability in postsynaptic neurons are decreased compared to those dur-
ing beta oscillations37. This may serve as an explanation as to why the observed PDC results are more pronounced 
in gamma bands when compared to the beta range, although more evidence is needed to strengthen this assump-
tion. Still, the exact mechanism of gamma band CMC remains to be fully understood, while current research 
work is focusing on uncovering its neurophysiological origin56,57.

Conversely, PDCarea during CON was highest in −DIFEEG EMG. It is known that, compared to eccentric move-
ments, generated force is smaller while EMG activity is higher for concentric movements58, which has been attrib-
uted to differences in motoneuron excitability at supraspinal and spinal levels59,60. Additionally, functional 
magnetic resonance imaging (fMRI) analyses could show that the extent of activated motor control networks was 
significantly lower during concentric movements when compared to eccentric movements61,62, whereas 
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functional connectivity was actually increased during concentric compared to eccentric movements63. Therefore, 
it seems likely that concentric movements are more efficiently processed when compared to eccentric movements. 
This is possibly due to the fact that most concentric movements are executed against gravity, whereas during most 
eccentric movements, gravity actually potentiates the load on acting muscles. Additionally, the majority of every-
day life movements are concentric, resulting in elevated potential for motor learning to occur and people experi-
encing better control during concentric movements63. Such adaptations potentially explain −DIFEEG EMG in beta 
bands during CON, as less integrative information, reflected by gamma CMC and PDC, is required in order to 
execute CON contractions compared to ECC. It is worth noting that the execution speed of BpS as performed 
during this study (15 seconds per repetition) is slower compared to its common execution speed, especially dur-
ing dynamic squat assessments, where squats are performed rapidly and movement periods are more over-
lapped64. In comparison to BpS, everyday life movements are usually performed more fluently, limiting a direct 
transfer of our results to such movements. Nevertheless, we think it is necessary to standardize BpS in order to 
draw precise mechanistic conclusions. Future studies will be able to reduce the difference in performance of 
standardized and naturalistic movements by increasing speed and fluidity of compound movements and evidence 
from both standardized and naturalistic movements will aid in acquiring further knowledge regarding compound 
movement control.

In general, modeled sources of obtained CMC patterns were most prominent in motor control related areas 
such as PMC, SMA, and M1 for ECC, ISO, and CON, while sporadically covering parietal regions during ECC. 
Although previous studies have reported somatotopy for CMC results8,51,65,66, we did not observe lateralized 
source patterns for unilateral muscles exclusively. For some participants and muscles, we observed bilateral 
activation patterns, predominantly in M1, as well as SMA. This is in line with previous results reporting bilat-
eral activation patterns of unilateral muscles during bilateral tasks and most likely reflects control of bimanual 
coordination67. In some instances, modeled sources were broadest during eccentric periods for BpS, seemingly 
reflecting a larger network of involved cortical areas during ECC. This finding is intriguing regarding previous 
TMS studies58, as well as the above-mentioned fMRI studies61,62 indicating more extensive cortical networks 
for eccentric contractions when compared to concentric contractions. Still, more evidence is needed for these 
assumptions to gain validity. Finally, due to the custom electrode setup employed within the present study, source 
localization could potentially be confounded. To enable correct inverse-modeling, independent of the individual 
EEG configuration, we simulated EEG sources in visual cortex areas paired with an EMG source. We included 
background noise during the generation of both EEG and EMG signals. We simulated EEG signals 31 channels 
and subsequently fitted to the external layer of the standard Montreal Neurological Institute (MNI) head. The 
head model we used, was premised on a three-compartment realistic volume conductor and has been previously 
utilized to calculate EEG forward solutions68. We band-pass filtered independent white noise in the 18–22 Hz 
frequency range to generate EEG oscillations. Coherent EMG activities were modeled as time-shifted versions of 
matching cortical oscillations. 500 uncorrelated dipoles with random orientation and distribution on the cortex 
were used to generate background EEG noise. These noise sources had 1/f type spectra. Background EMG noise 
was generated by using random Gaussian noise mixed with the signal source. The simulated data was 150-s long 
and sampled at 1000 Hz. The SNR of the CMC sources was 0.5 for EEG and EMG. We applied rCMC to the sim-
ulated data and obtained the corresponding pattern. In a last step, we located the topography using eLORETA. 
As modeled sources were also located in the visual cortex, we are certain that despite the individual electrode 
montage, source-modeling was performed correctly during this study (Please see Fig. S2 in the supplementary 
section for a depiction of the simulated pattern and its source reconstruction).

We provide novel evidence, that motor control during BpS is achieved through distinct communication pro-
files between cortex and muscles in beta and gamma frequency ranges. Considering our findings as well as previ-
ous research, it seems that for BpS, CMC and PDC between cortex and muscles are modulated between different 
movement periods. While we were unable to find differences in CMC between muscles, we were able to show 
CMC to be elevated during dynamic movement periods (ECC and CON) compared to static ISO. In extension to 
these observations, PDC also changed most prominently between dynamic movement periods, while remaining 
mostly stable during ISO. One of the primary aims of motor control research lies in uncovering central-nervous 
strategies that collectively enable uniquely fine-tuned, task-specific muscle actions. Our study serves as an impor-
tant step toward a better understanding of this relationship between cortex and muscles during multi joint com-
pound movements.

Materials and Methods
Participants. 11 healthy, male participants (age: 27.9 ± 5.1 years (mean ± SD)) were enrolled in the present 
study. The study was approved by the local ethics committee of the Medical Faculty at the University of Leipzig 
(ref.-nr. 466/17-ek) and all participants gave their written informed consent to participate in the experiments in 
accordance with the Declaration of Helsinki. Participants were excluded from the present study in case the follow-
ing exclusion criteria were present: history of neurological or psychiatric disease, intake of centrally acting drugs, 
caffeine or alcohol intake within 24 hours before the experiment, acute, chronic and/or inadequately regenerated 
pathologies of the knee joint, the ankle joints and/or the spine (to minimize the risk of injury). Also, participants 
with regular practice of sports (>3 h./week) were excluded from participation in this study. This was motivated 
by the fact that previous studies have shown sports expertise to influence CMC occurrence which would affect 
respective analyses42.

Procedure. Each participant completed 40 trials of the squat task. Trials were performed as blocks of 10 
repetitions, with each block being separated by breaks of 3:30 min to avoid cumulative effects of peripheral 
fatigue. Each squatting repetition was divided into three movement periods (ECC – muscles are elongated during 
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contractions; ISO – muscles maintain length during contractions and CON – muscles shorten during contrac-
tion), making up three conditions in total. Each period had a duration of 5 seconds. After completion of one 
repetition (ECC - ISO - CON), an inter-repetition break period (30 seconds) followed on. All period initiations 
were visually cued on a standard PC monitor running Presentation 16.5 software (NeuroBehavioral Systems, 
Albany, NY, USA). All participants were naïve for the task (BpS). For an illustrated overview of our study design, 
please see Fig. 5.

Behavioral task (BpS). At the beginning of each experimental session, instructions were given, focusing on 
the correct execution of BpS. Participants were instructed to plant their feet and exert force without raising their 
heels during the performance of BpS. Additionally, each participant was instructed to keep a slight lumbar lor-
dosis during BpS. During the entire BpS, all participants had to let their arms hang down and were instructed to 
keep their heads aligned with their spine. Initial instructions were followed by a brief (3 min) warm-up program 
comprising supervised executions of dynamic squats without additional weight and focusing on the aforemen-
tioned key aspects of correct movement execution, i.e. A, planting of the feet and B, slight lumbar lordosis. For 
each repetition, participants were instructed to squat down until a knee angle of 95° degrees was reached (squat-
ting depth was established by way of a protractor), meaning that participants started out with the legs completely 
extended at onset of eccentric movement periods, squatted down until an angle of 95° was reached, maintained 
this position during the isometric period and extended their legs again during the concentric movement period 
(cf. Fig. 5).

EMG recordings. For EMG recordings, a wireless Desktop Transmission System (NORAXON Inc., 
Scottsdale, AZ, USA) was employed. EMG signals from four bilateral muscles mainly active during squat exe-
cution were measured in this study. Bipolar surface electrodes (Ag/AgCl; diameter: 1 cm) were mounted bilat-
erally on four muscles: M. vastus lateralis (VLr & VLl), M. vastus medialis (VMr & VMl), M. tibialis anterior 
(TAr & TAl), M. erector spinae (ESr, ESl) in accordance to SENIAM electrode position recommendations69. 
Inter-electrode distance was standardized through fixed electrode diameters at 2 cm. The skin of each participant 
was prepared by removing hair (by means of shaving) around the electrode area, as well as exfoliating the skin. 
Double-sided tape was used to fixate all transmitters, which were placed in vicinity of the electrodes. Additionally, 
electrodes were placed in a parallel orientation relative to the muscle fibers. For purposes of synchronizing move-
ment onsets, the display of each movement period onset was synchronously triggered on a PC screen. In sum-
mary, data were recorded from 8 channels with a sampling frequency of 3000 Hz, an input impedance >100 MΩ, 
Common Mode Rejection Ratio (CMRR) > 100 dB, a gain of 500 and a low-pass filter of 500 Hz (Please see Fig. S3 
in the supplementary section for an overview of raw EMG data for all recorded muscles, respectively).

Figure 5. Study design and EEG configuration. (A) Depicts a subdivision of the squat movement. As visualized, 
each squat repetition is divided into three movement periods (ECC, ISO, and CON), with each period having 
a duration of 5 seconds. After every concentric period, a repetition break period of 30 seconds follows. (B) 
Displays an overview of the study-session timeline. Squats are performed during “activity blocks” of ten 
repetitions being performed in the manner described above. Each “activity block” is followed by an inter-block 
break (3:30 min). Additionally, the total session time is illustrated (41 min). Please note that the displayed 
participant gave written informed consent to use the pictures illustrating the study design. (C) Features the 
individually configured EEG cap used in this study. Areas colored in red implicate utilized EEG channels. Black 
and blue areas indicate ground and reference electrode positions, respectively.
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EEG recordings. EEG data were recorded using a wireless 32-channel EEG system (LiveAmp, Brain 
Products GmbH, Gilching, Germany) with an active electrode setup (actiCAP, Brain Products GmBH). For 
the purpose of densely covering bilateral sensorimotor areas, 32 electrodes were individually placed on a 
128-channel-electrode-cap (cf. Fig. 5C). Ground and reference electrodes were placed on Fpz and left mastoid, 
respectively. The impedance of all electrodes was kept below 15 kΩ throughout the experiment. Data was trans-
mitted wirelessly to a working station via a Bluetooth transmitter included in the LiveAmp module. Conductive 
gel (SuperVisc High-Viscosity electrolyte gel) was used to establish contact between the skin and the electrodes 
and to lower impedance. In summary, EEG data were recorded from 32 channels with a sampling frequency of 
500 Hz, an input impedance >100 MΩ and a Common Mode Rejection Ratio (CMRR) > 80 dB. During record-
ing, a band-pass filter between 1–100 Hz was used. Synchronous recordings of both EEG and EMG were ensured 
through a trigger device (NORAXON Inc., Scottsdale, AZ, USA) that sent out triggers to both recording systems 
simultaneously.

EMG and EEG processing. Processing of EMG and EEG signals was carried out using custom software and 
the BBCI toolbox70. EMG data were first decimated (data were low-pass filtered at 200 Hz prior to downsampling) 
to 500 Hz to match EEG sampling frequencies and subsequently high-pass filtered at 10 Hz, motivated by the fact 
that the power density function of surface EMG signals has insignificant contributions at frequencies <10 Hz71. 
Data was first divided relating to the respective conditions (ECC, ISO, CON), resulting in 40 5-sec trials per con-
dition. As TA is contracting concentrically during ECC and eccentrically during CON, TA ECC and TA CON 
were flipped for all analyses. EMG data were subsequently full wave rectified. Power spectral densities (PSD) were 
estimated using Welch’s method.

EEG data were first filtered by a narrow band stop (notch) filter with a center frequency of 50 Hz and 2 Hz 
bandwidth to exclude artifacts due to 50 Hz mains. Additionally, EEG data were bandpass filtered at a passband 
of 0.5–100 Hz. Subsequently, all EEG signals were cleaned to remove eye-blink and scalp EMG artifacts by means 
of independent component analysis (ICA), using FastICA algorithms72,73 implemented in the BBCI toolbox70. On 
average, 2.5 ± 1.2 components were excluded. All filtered signals and their respective components were (A) vis-
ually inspected and (B) automatically labeled for artifact rejection through Multiple Artifact Rejection Algorithm 
(MARA), which is an algorithm trained using selected expert ratings74,75. Consequently, it can detect eye-, 
muscle-, and loose electrode artifacts. All components containing artifacts were excluded from the EEG signals.

Regression-CMC analysis (r-CMC). In the present study, we used regression CMC (r-CMC), a multivariate 
method introduced by Bayraktaroglu, et al.8, which has been used in a number of previous studies8,76,77. This 
method finds spatial filters for EEG maximizing the synchronization between EEG and EMG activity at a specific 
frequency range simultaneously using information from all available EEG channels. In a first step, dimension 
reduction of EEG data was achieved via Principal Component Analysis (PCA), where PCA components are 
selected, so that they accounted for 99% of the variance in EEG data in a frequency range of interest. This is an 
important step to avoid collinearity between multi-channel EEG data (serving as predictors). Secondly, a multiple 
regression was carried out, which utilizes the obtained PCA components as predictors for the EMG signal to find 
linear combinations of all EEG input variables maximally explaining channel-wise EMG activity. Coherence was 
then estimated between projected EEG components and EMG signals. For further details refer to Bayraktaroglu 
et al. 2011. All data were split per period and into 500-ms segments (400 in total) which were windowed with a 
Hanning window and had no overlap (resulting in a frequency resolution of 2 Hz). To evaluate the significance of 
r-CMC results, permutation testing was carried out, where EMG segments were shuffled with respect to the cor-
responding EEG data, resulting in the distribution of r-CMC values from 500 permutations. Lastly, results were 
deemed significant, when unshuffled coherence values were higher than the 95th percentile of shuffled data. To 
uncover differences in CMC, coherence estimates were summed across three frequency bands of interest: (1) Beta 
(13–30 Hz), (2) Gamma (30–44 Hz) and (3) High Gamma (44–60 Hz). We chose to analyze CMC as areas of 
coherence, i.e. summed CMC estimates (CMCarea) over specific frequency bands rather than peak coherence, as 
CMCarea appears to be the most physiologically relevant measure concerning this matter37,42,78. For this purpose, 
significant CMC estimates were summed within each frequency band to yield band-specific CMCarea

78,79. CMCarea 
were then pooled for muscles and movement periods. Normal distribution of all variables was assessed through 
Lilliefors-testing (α = 0.05). Two-way repeated measures ANOVA (rmANOVA) were conducted to determine 
frequency band related differences in CMCarea between muscles and movement periods, with post-hoc Bonferroni 
tests and simple effect tests being carried out when appropriate. To avoid skewness and normalize variance, all 
data were log-transformed prior to statistical analyses78,79. For all statistical comparisons, a p-value of p < 0.05 was 
considered significant. All p-values adjusted for multiple comparisons are reported with the results.

Source-Localization (eLORETA). To localize neuronal current sources underlying the obtained scalp 
topographies, a distributed inverse-modeling approach was chosen. Here, we employed the exact low-resolution 
electromagnetic tomography (eLORETA) algorithm with the regularization parameter being 0.05, as introduced 
by Pascual-Marqui80, to identify neuronal sources corresponding to the optimized patterns obtained with r-CMC, 
i.e. EEG patterns maximally explaining each EMG channel, respectively. These sources were then mapped using 
the New York head model81,82 with approximately 2000 voxels. Voxel values of each source inside the inverse 
model were thresholded at 95% of maximum overall voxel activity to capture most pronounced activity. We used 
EEGLAB to create scalp plots83 and the MATLAB toolbox METH by Guido Nolte (https://www.uke.de/english/
departments-institutes/institutes/neurophysiology-and-pathophysiology/research/research-groups/index.html) 
to illustrate source localization results.

https://doi.org/10.1038/s41598-020-61909-z
https://www.uke.de/english/departments-institutes/institutes/neurophysiology-and-pathophysiology/research/research-groups/index.html
https://www.uke.de/english/departments-institutes/institutes/neurophysiology-and-pathophysiology/research/research-groups/index.html


1 0Scientific RepoRtS |         (2020) 10:5021  | https://doi.org/10.1038/s41598-020-61909-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

Partial directed coherence analysis. As statistical dependencies between EEG and EMG activity, out-
lined through coherence, are undirected, we utilized causal multivariate autoregressive models (MVAR) to obtain 
partial directed coherence (PDC) as a measure of connectivity from MVAR coefficients30. PDC provides an 
account of Granger causality in the frequency domain making it feasible to approximate directed connectivity84. 
We employed the Extended Multivariate Autoregressive Modelling Toolbox (eMVAR) MATLAB (MathWorks) 
toolbox29 to estimate vector autoregressive (VAR) models of sets of signals, comprising of projected EEG compo-
nents and EMG signals for all muscles and movement periods obtained during the first two steps of r-CMC 
analyses (for reference, please see paragraph: Regression-CMC analysis (r-CMC) above). All model data were 
decimated to 125 Hz prior to model fitting to avoid redundancy85. Optimal model orders were valued by means of 
Akaike information criterion (AIC) (maximum model order: 20). PDC was subsequently derived from fitted 
MVAR model components in both possible DIF (i.e., (1) −DIFEEG EMG vs. (2) −DIFEMG EEG). We used a surrogate 
data approach to assess significance of PDC data. Causal Fourier Transform algorithm (CFT) was used to esti-
mate surrogate data, as it is has been successfully tested on EEG-based PDC data86. 200 permutations were used 
to build surrogate data distributions, with significance being established when PDC vectors eclipsed the 95th 
percentile of all surrogate data. Significant PDC estimates were summed within each frequency band to yield 
band-specific PDCarea. PDCarea were then pooled for muscles and movement periods. To obtain results regarding 
dominant DIF between EEG and EMG data, we compared significant, frequency band summed PDC estimates 
(PDCarea) in both directions (i.e., (1) −DIFEEG EMG vs. (2) −DIFEMG EEG) with higher magnitudes reflecting domi-
nant DIF. All results were subsequently pooled per frequency band, muscle, movement period and DIF across all 
participants. Three-way repeated measures ANOVA (rmANOVA) were conducted to determine frequency band 
related differences in PDCarea between muscles, movement periods and DIF, with post-hoc Bonferroni tests and 
simple effect tests being carried out when appropriate. To avoid skewness and normalize variance, all data were 
log-transformed prior to statistical analyses. For all statistical comparisons, a p-value of p < 0.05 was considered 
significant. All p-values adjusted for multiple comparisons are reported with the results.

Data availability
The data that support the findings of this study are available on request from the corresponding author, R.K. The 
data are not publicly available due to data protection policies practiced at our institute (Max Planck Institute for 
cognitive and brain sciences in Leipzig), e.g. their containing information that could compromise the privacy of 
research participants.
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