Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Al2Pt for Oxygen Evolution in Water Splitting: a Strategy for Creating Multi-functionality in Electrocatalysis

MPG-Autoren
/persons/resource/persons32715

Tarasov,  Andrey
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22163

Teschner,  Detre
Max-Planck-Institut für Chemische Energiekonversion;
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons144491

Algara-Siller,  Gerardo
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22071

Schlögl,  Robert
Max-Planck-Institut für Chemische Energiekonversion;
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

anie.202005445.pdf
(Verlagsversion), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Antonyshyn, I., Barrios Jiménez, A. M., Sichevych, O., Burkhardt, U., Veremchuk, I., Schmidt, M., et al. (2020). Al2Pt for Oxygen Evolution in Water Splitting: a Strategy for Creating Multi-functionality in Electrocatalysis. Angewandte Chemie International Edition, 59(38), 16770-16776. doi:10.1002/anie.202005445.


Zitierlink: https://hdl.handle.net/21.11116/0000-0006-C228-2
Zusammenfassung
The production of hydrogen via water electrolysis is feasible only if effective and stable catalysts for the oxygen evolution reaction (OER) are available. Intermetallic compounds with the well-defined crystal and electronic structures as well as particular chemical bonding features are suggested here to act as precursors for new composite materials with attractive catalytic properties. Al2Pt combines a characteristic inorganic crystal structure (anti-fluorite type) and a strongly polar chemical bonding with the advantage of elemental platinum in terms of stability against dissolution under OER conditions. We describe here the unforeseen performance of a surface nanocomposite architecture resulting from the self-organized transformation of the bulk intermetallic precursor Al2Pt in OER.