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Abstract. It is often argued that gravity has to be a quantum theory simply because a
fundamentally semiclassical approach would necessarily be inconsistent. Here I review recent
Newtonian toy models of (stochastic) semiclassical gravity. They provide one option to
implement a force semiclassically without getting into the known problems associated with
mean-field. These models are not complete theories and should not be considered too seriously,
but their consistency shows that semiclassical gravity is hard to dismiss on purely theoretical
grounds.

1. Introduction
Do we have to quantize gravity? Is it merely possible that gravity is not quantum? Are there
theoretical arguments or experimental results cornering us to the quantization route? Is it
already known that gravity must be a quantum theory and that only its specific form is yet to
be understood?

My point, which is not particularly original, is simply that we are not sure. The situation is
not as clear cut as one might think and the arguments in favor of the quantization of gravity
are so far weak. Naturally, I do not aim to demonstrate that gravity is not quantum with
certainty, but merely that this is a possibility one ought to consider. I am obviously not the
first one to defend this line, and the possibility that gravity is ultimately not quantum has
abundantly been discussed in the literature [1–3]. My objective here is simply to review recent
constructions of consistent Newtonian toy models [4–11] that exemplify how standard arguments
against semiclassical gravity can be bypassed.

The present contribution to these proceedings does not contain anything fundamentally new
on the mathematical side, but puts together all the arguments and derivations, in an hopefully
selfcontained way. It follows to a large extent, although in a more detailed manner, the rather
informal discussion in [9].

1.1. Semiclassical and fully quantum gravity
So what is the alternative to a fully quantum theory of gravity? Because the words classical,
semiclassical, and quantum have been used to mean different things in this context, a clarification
is perhaps not superfluous. In a classical theory of gravity, one has a spacetime, classical (well
localized) and its properties are encoded in a metric g(t,x). Matter is classical, one has particles
with well defined trajectories or e.g. a scalar field φ(t,x). The two evolve jointly: the dynamics of
matter is influenced by the metric (essentially through the substitution ∂µ → Dµ), and matter
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Figure 1. In a classical theory of gravity (left), matter and spacetime are classical. In
a semiclassical theory of gravity (center), matter is quantum but there is a single classical
spacetime; all particles feel the same. Finally, in a fully quantum theory of gravity (right),
matter and spacetime are quantum. While the need for having a quantum description of matter
is experimentally demonstrated, it is so far unclear if this is needed for spacetime.

in turn curves space time via Einstein’s equation Gµν ∝ Tµν . In a fully quantum theory of
gravity, say canonical quantum gravity to fix the ideas, both sides become quantum and a wave
function ψt(φ, g) is needed to describe the couple matter + spacetime.

In a semiclassical theory of gravity, spacetime is still classical, with a well defined metric
g(x, t). Matter is quantum, and is described at an intuitive and naive level by some wave-function
ψt(φ). Its dynamics is given by Quantum Field Theory in curved spacetime (QFTCST), which
is naively given by the transformation ∂µ → Dµ in Lorentzian QFT, and is a refined version of
ordinary quantum mechanics in an external classical field. The difficult part is then to find a law
for the backreaction of quantum matter on a classical spacetime: when there are superpositions of
matter, how is spacetime curved? While QFTCST for a fixed metric g(x, t) is uncontroversial and
even experimentally well tested in the non-relativistic limit (e.g. by letting quantum stuff fall),
the backreaction problem is really where wild speculations are allowed. A particular proposal,
sometimes called semiclassical Einstein equations, Møller-Rosenfeld semiclassical gravity [12,13],
or sometimes simply semiclassical gravity, is to have spacetime be curved by the quantum
expectation values, i.e. Gµν ∝ 〈T̂µν〉. Heuristically, at the non-relativistic level, it means having
the modulus squared of the wave-function source the gravitational field: if the wavefunction for
a single particle has two blobs, they attract each other. Note again that this is just one option
to curve a classical spacetime with quantum matter.

Semiclassical gravity is sometimes used in a rather restrictive sense, to mean QFTCST
alone –that is without any backreaction of matter on spacetime–, to mean the specific Møller-
Rosenfeld backreaction proposal, or finally to designate certain classes of approximations to
a more fundamental quantum theory of gravity. Rather, I want to consider a potentially
fundamental theory in which quantum matter curves a classical spacetime (in whatever way)
and in which matter moves in this spacetime following (at least approximately) QFTCST1. Is
this possible? Can it be made consistent? If so, is it already falsified or soon falsifiable?

1.2. In the Newtonian limit
The difference between a fully quantum theory of gravity and semiclassical gravity is perhaps
best illustrated in the Newtonian limit. Consider the Schrödinger equation for a matter state
|ψt〉:

ih̄
d
dt |ψt〉 =

(
Ĥ0 + V̂

)
|ψt〉 (1)

where Ĥ0 is the Hamiltonian in the absence of gravity and V̂ is the potential of gravitational
origin. If gravity is fully quantum, then V̂ is simply a pair potential, in the same way the
1 This latter requirement is used to prevent labelling “semiclassical” a Bohmian quantum theory of gravity. In
such a theory, there would be a well defined trajectory for the metric, but the dynamics for the matter part would
not be given by QFTCST with the Bohmian metric.
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Coulomb force is obtained in the non-relativistic limit of Quantum Electrodynamics (QED). On
the other hand, for a semiclassical theory, all particles see the same classical (here scalar) field
Φ(x). Namely:

Quantum gravity V̂ = −G2

∫
R3

dx
∫
R3

dy M̂(x)M̂(y)
|x− y| (2)

Semiclassical gravity V̂ =
∫
R3

dx Φ(x) M̂(x) (3)

where M̂(x) is the mass density operator, which reads e.g.

M̂(x) =
n∑
`=1

m` a
†
`(x) a`(x), (4)

for n different species of particles of mass m`, with a†`(x) and a`(x) the local creation and
annihilation operators of particles of type `. For a semiclassical theory, equation (3), which is
uncontroversial, only tells how matter moves once the gravitational field is given. One needs to
complement it with a specification for backreaction, which means identifying what object M(x)
sources the field Φ in the Poisson equation:

∇2Φ(x) = 4πGM(x). (5)

In this context, defining a theory of semiclassical gravity requires providing a prescription for
M(x) and typically its dependence on the quantum state (or on extra variables): this is the non-
trivial part. However, whatever choice one makes for the M(x) and thus Φ, it is not possible
to recover the quantum evolution (2) from the semiclassical prescription (3), as it would require
an operator valued field Φ→ Φ̂/2.2

2. The standard approach and its problems
We now discuss the standard approach to semiclassical gravity and its legitimate shortcomings.

2.1. Møller-Rosenfeld semiclassical gravity
To source the gravitational field out of quantum matter, one needs a prescription to extract
some classical quantity out of something quantum. A natural option, historically due to Møller
and Rosenfeld [12, 13], is to use quantum expectation values to turn operators into scalars and
use the result as source in Einstein’s equation, i.e. to posit that:

Rµν −
1
2Rgµν = 8πG 〈ψ|T̂µν |ψ〉. (6)

Let us note already that it is non trivial to make sense of this equation in the general case. One
technical difficulty, among others, is that the r.h.s. is generically divergent, even for the vacuum,
and needs to be renormalized [14, 15]. The technical difficulties of the fully relativistic setting
may have overshadowed the conceptual issues that can be seen already in the Newtonian limit.
In my opinion, these are the most serious difficulties and the ones that most urgently need to
be addressed if one wants to explore the option that gravity is not fully quantum.
2 This factor of 1/2 is often missed in the literature where the semiclassical approach is compared with the purely
quantum one. One does not get the correct quantum prescription simply with the naive procedure of putting hats
in the Poisson equation and using (3). One needs to take into account the field Hamiltonian, which is not zero
in the non-relativistic limit, and which precisely contributes to −1/2 times what the matter-field coupling yields,
giving the overall 1/2 in (2).
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2.2. Newtonian limit
If (6) is taken as fundamental3, then its non-relativistic limit is simply given by the Poisson
equation [18], where field degrees of freedom are slaved to matter:

∇2Φ(x, t) = 4πG 〈ψt|M̂(x)|ψt〉. (7)

Once this classical field is given, which is the non-trivial part, it acts on quantum matter in the
standard way, as an external field:

d
dt |ψ〉 = − i

h̄

(
H0 +

∫
dx Φ(x, t)M̂(x)

)
|ψt〉. (8)

Inverting the Poisson equation (7), to replace the field by its matter source, then yields the
celebrated Schrödinger-Newton equation [16,19]:

d
dt |ψt〉 = − i

h̄
H0|ψt〉+ i

G

h̄

∫
dx dy 〈ψt|M̂(x)|ψt〉 M̂(y)

|x− y| |ψt〉. (9)

For a single (otherwise free) particle of wave function ψ, it takes the perhaps more familiar form:

d
dtψ(t,x) = i

2h̄m∇
2ψ(t,x) + i

Gm2

h̄

∫
dy |ψ(y, t)|2

|x− y| ψ(t,x), (10)

which is cubic in the wavefunction. With such an evolution, a single particle weakly interacts
with itself.

2.3. The problem of non-linear back-reaction
The deterministic non-linear character of the Schrödinger-Newton brings well known difficulties
[20–23] which are hard to bypass. It is worth discussing these conceptual problems because
arguments against semiclassical gravity often leverage them in one way or another.

Discussing the consequences (even only operational) of a non-linear modification of the
Schrödinger equation is not as easy as one may think. Indeed, non-linearities break the empirical
equivalence “for all practical purposes” between decoherence and collapse. Consequently
different interpretations of quantum theory make different predictions and should be discussed
separately.

The first possibility is to consider an interpretation of quantum mechanics in which there is
no fundamental collapse process, such as the Many-World interpretation or de Broglie-Bohm
(dBB) theory. In such approaches, the problem of the Schrödinger-Newton equation is one of
empirical inadequacy. Indeed, the non-linear gravitational term couples even fully orthogonal
branches of the universe wave-function. Decoherence no longer achieves the decoupling role
it has in standard linear quantum mechanics: Schrödinger’s dead and live cat(s), even fully
decohered with the environment, attract each other4. Hence for interpretations of quantum
mechanics without fundamental collapse, the theory is well defined but makes predictions that
seem completely at odds with our experience.
3 The Poisson equation (7) is only a good non-relativistic approximation of (6) if the latter is taken to be
fundamental [16]. Naturally, if (6) is aimed to provide a mean-field approximation of a more fundamental theory
of gravity, then the Poisson equation (7) for a system of a few particles will be a very poor approximation of the
full quantum description [17], but this is not the scenario we discuss here.
4 The initial hope was that the manifest clash with our experience this implies would be avoided because the
non-linear addition would also dynamically collapse macroscopic superpositions precisely in the way one would
want, according to the Born rule. Unfortunately, this is not the case [16].



9th International Workshop DICE2018  : Spacetime - Matter - Quantum Mechanics

IOP Conf. Series: Journal of Physics: Conf. Series 1275 (2019) 012006

IOP Publishing

doi:10.1088/1742-6596/1275/1/012006

5

Figure 2. Left: without collapse, orthogonal branches of the universe wavefunction attract
each other via the non-linear gravitational interaction. Right: Alice and Bob share an entangled
pair with a massive superposition on Alice’s side. In linear quantum mechanics, the statistics
on Alice’s side do not depend on what Bob does on his side. In a non-linear theory, Alice can
know, via measurements on her side, if Bob carried a measurement on his side. Note that this
information is not transmitted by gravity from Bob to Alice. Rather, it is the local non-linearity
of gravity that allows to witness the non-local collapse of the wave function.

The second option is to have an interpretation in which collapse is fundamental and happens
(not necessarily exclusively) in measurement situations. In that case, the difficulty is a bit more
subtle and lies in the breakdown of the statistical interpretation of the quantum state. Consider
a situation in which Alice and Bob share an Einstein-Podolski-Rosen (EPR) pair, with a massive
superposition on Alice’s side (see Fig. 2). If the wave-function collapses upon measurement on
Bob’s side, then Alice’s mass is localized in a given position and nothing happens to it. If Bob
carries no measurement and the wave-function does not collapse, Alice’s mass stays superposed
and evolves with the non-linear self gravitation term. Alice can easily distinguish the two
situations, e.g. by making a measurement in the region where most the mass would lie in the
second situation. Not only would this generically allow faster than light signalling (at least in
one frame), the Born rule would break down when used even on well isolated subsystems. Alice’s
density matrix is insufficient to determine statistics on her side.

In practice, the kind of massive superpositions required to make this example clean may very
well be suppressed by an intrinsic collapse process, but the conclusion remains that it would
in general be impossible to use the statistical interpretation of the state vector and that there
would be residual faster than light signalling effects.

2.4. Conclusion on standard semiclassical gravity
The standard (Møller-Rosenfeld) approach to semiclassical gravity is not completely killed by
the previous arguments. Especially in the second case, for interpretations of quantum mechanics
with an objective collapse process, one may hope that violations of the statistical interpretation
of the quantum state do not amplify from micro to macro, remaining generically small and
under control. Further, faster-than-light effects could be so small that no practical consequences
would ensue, and restricted to a single frame such that no theoretical inconsistency could be
derived. Hence, it is technically possible to still defend this approach provided one is ready to
pay the price of an auxiliary collapse process and of serious practical complications (the Born
rule becoming only approximately valid, without any good control on the approximation).

Nonetheless, I think it is fair to say that if this were the only representative of semiclassical
theories, the case for fundamental semiclassical gravity would be rather slim. However, one
should remember that, while simple, the choice of making expectation values the classical stuff
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that sources the gravitational field is not unique nor even natural. At a heuristic level, the
Møller-Rosenfeld prescription assumes that |ψ|2 is what is “real”, that it is the tangible thing
that bends spacetime. But we are free to explore other options.

3. Discrete models restoring linearity
3.1. Basic idea
A natural thing to do if one wants to get something classical from quantum matter is to go to an
interpretation of quantum mechanics where there is such a thing as classical stuff by construction.
For example, one could use Bohmian particles as classical sources of the gravitational field. In
fact, this has been tried by Struyve [24, 25]. However, while such a theory could behave in
a better way than the previous approach, and importantly not require an additional collapse
process to make sense, it still suffers from the breakdown of the statistical interpretation and
the theoretical possibility to send information faster-than-light. In that case, these unappealing
features emerge from the breakdown of equivariance which usually insures that the distribution
of Bohmian particles is provided by the Born rule.

Hence it seems that rather generically, when one extracts a classical quantity from quantum
matter, through the wave-function directly (with quantum expectation values) or through
additional variables (Bohmian positions), one breaks the simplicity of the formalism, i.e. the
ability to extract predictions from a simple statistical prescription.

However, this difficulty can be avoided and it seems at present that there is essentially only
one simple way to do it. The intuition comes from (orthodox) quantum measurement and
feedback. In a lab, an experimentalist measures a quantum systems, obtains a certain result,
processes it, and applies a control pulse depending on this result. This complete procedure of
measurement and feedback does not break the formalism as the latter was precisely constructed
to describe such situations. Further, the measurement result is a tangible thing, which after
some (classical) processing is used to act on the quantum state. Measurement and feedback
thus allow the consistent coupling of classical and quantum systems. This intuition can be
used to construct (potentially) fundamental semiclassical theories that are without conceptual
problems [26–28]. In the context of gravity, this intuition was first explored in a toy model by
Kafri et al. [4] where it was called “classical channel gravity”.

Of course, this measurement and feedback intuition is only used to construct a model with
good properties. It should not be understood “ontologically” as meaning there are actual
detectors carrying the measurement task.

3.2. Intuition in the discrete
Let us consider a rather general weak measurement with n outcomes, parameterized by n

matrices N̂k which verify as only constraint
∑
k N̂
†
kN̂k = 1. Such a measurement acts on a

quantum state in the following way:

|ψ〉 measurement−−−−−−−−→ |ψk〉 = N̂k|ψ〉√
〈ψ|N̂ †kN̂k|ψ〉

, (11)

with probability pk = 〈ψ|N̂ †kNk|ψ〉 where k labels the measurement outcome. This is the first
step of any measurement + feedback scheme.

Now, “feeding back” the result k just amounts to apply a k-dependent unitary operator Ûk
on the state. That is, for a measurement immediately followed by a feedback (or neglecting any
intrinsic system dynamics happening in the meantime), one has:

|ψ〉 measurement−−−−−−−−→
+ feedback

|ψf.b.
k 〉 = Ûk|ψk〉 = Ûk

N̂k|ψ〉√
〈ψ|N̂ †kN̂k|ψ〉

, (12)
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with the same probability pk. Notice that the full evolution is still a legitimate generalized
measurement with the substitution N̂k → B̂k = ÛkN̂k.

By construction, this measurement and feedback scheme does not break the standard
formalism despite the fact that the measurement step is non-linear. Indeed this non-linearity
vanishes upon averaging over measurement results:

ρf.b. ≡ E
[
|ψf.b.〉〈ψf.b.|

]
=

n∑
k=1

pk
B̂k|ψ〉〈ψ|B̂†k
〈ψ|N̂ †kN̂k|ψ〉

≡
n∑
k=1

B̂k|ψ〉〈ψ|︸ ︷︷ ︸
ρ

B̂†k, (13)

where E[ · ] denotes the statistical average. Any modification of the measurement rule (12), which
specifies how the classical variable k is extracted from the quantum state, would generically
preclude this cancellation of non-linearities. Unless there is a particular reason why linearity
should hold, it typically does not.

3.3. Simplest discrete model for gravity
With this simple understanding of feedback, one can already construct a toy model of
semiclassical gravity with discrete Poisson distributed measurement and feedback events [8].

Let us consider for convenience N distinguishable particles with coordinates {x1, · · · ,xN},
masses {m1, · · · ,mN}, and without spin. The N -particle system is described by the wave-
function ψt(x1, · · · ,xN ) with x` ∈ R3. Our objective is to implement a consistent semiclassical
gravitational force between them. We consider the following weak position measurement of
particle `:

ψt −→
L̂`(xf )ψt
‖L̂`(xf )ψt‖

, (14)

with the operator
L̂`(xf ) = 1

(πr2
c )3/4 e−(x̂`−xf )2/(2r2

c ), (15)

where x̂` is the position operator associated to particle `. The probability for the outcome xf
is P (xf ) = ‖L̂k(xf )ψt‖2. This is as just before in eq. (12) with discrete indices labeling results
promoted to continuous position variables k → xf and N̂k → L̂`(xf ). The parameter rc encodes
the sharpness of the position measurement.

We now assume that each particle can be hit by this spontaneous weak measurement process
independently of the others and with a distribution uniform in time with intensity λ. The
astute reader will have noticed that this random dynamics for the quantum state is nothing
but the Ghirardi-Rimini-Weber (GRW) model [29–31], the simplest dynamical reduction model.
However, its measurement interpretation is fundamental in that it guides us to the proper choice
of variables to use as sources for the gravitational field.

Now assume that a collapse (or weak measurement) with center (or result) xf has hit particle
` at time tf . We now take this space-time event (or “flash”) (tf ,xf ) as source of the gravitational
field5:

∇2Φ(x, t) = 4πGm`λ
−1δ(t− tf )δ(x− xf ). (16)

More generally, one could replace these Dirac distributions by a generic causal spacetime
smearing function f such that:∫

R4
dt dx f(t,x) = 1 f ≥ 0 ∀t < 0, f(t,x) = 0. (17)

5 This possibility was mentioned, although not explored further, by Derakhshani [32].
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Since the measurement step has resolution rc, it would e.g. also make sense to have f spatially
smear the point source with a Gaussian of width rc. The objective here is just to provide the
simplest model and thus we will just consider punctual sources. The gravitational potential
created by this event is:

V̂ =
∫

dxΦ(x)M̂(x), (18)

where the mass density operator is simply M̂(x) =
∑N
`=1m` δ(x − x̂`) in this first quantized

representation. Inverting the Poisson equation (16) yields:

V̂ (t) = −δ(t− tf )Gλ−1
N∑
`′=1

m`m`′

|xf − x̂`′ |
. (19)

This time-singular potential may be worrying at first sight, but once put in the Schrödinger
equation it simply implements a unitary transformation:

Û`(xf ) = exp
(
i
G

λh̄

N∑
`′=1

m`m`′

|xf − x̂`′ |

)
, (20)

which happens immediately after the collapse. As before, it just changes the collapse operators
L̂`(xf ) → Ĉ`(xf ) = Û`(xf )L̂`(xf ). This fully specifies the model. In a nutshell, the position
of each particle is weakly measured and the measurement result is used to create a unitary
gravitational kick. In the language of the GRW model, we just made one possible choice of local
beables [33] (or primitive ontology [34–36]), the flashes, the source of the gravitational field [8].

The master equation for this model is very simple and reads:

d
dtρt = − i

h̄
[Ĥ0, ρt] + λ

N∑
`=1

{∫
R3
Ĉ`(xf )ρtĈ†` (xf ) dxf − ρt

}
, (21)

where Ĥ0 is just the standard Schrödinger Hamiltonian containing all interactions but gravity.
Importantly, it is linear, and thus the statistical intepretation of the density matrix survives.
This model has a slightly more complicated phenomenology than continuous alternatives, and
the fact that gravity acts through punctual kicks creates a new length scale. Indeed, assuming
all the masses are the same mk = m:

Û`(xf ) = exp
(
i
N∑
`′=1

rG
|xf − x̂`′ |

)
, (22)

with rG = Gm2/(h̄λ). For λ = 10−16s−1 (historical value of λ for the GRW model that is not
yet experimentally falsified) we get rG ' 1.8 × 10−14m for protons and rG ' 5.3 × 10−21m for
electrons. In both cases, rG � rc, the smearing length of the measurement. If we consider
interparticle distances r much larger than rG we can expand the unitary operator to first order
in rG/r and we obtain:

d
dtρt ' −

i

h̄
[Ĥ0+, ρt]−

i

h̄
V̂eff · ρt + λ

N∑
`=1

{∫
R3
L̂`(xf )ρtL̂†`(xf ) dxf − ρt

}
, (23)

with

V̂eff · ρ =
N∑
`=1

N∑
`′=1

∫
R3

dxf

[
− Gm`m`′

|xf − x̂`′ |
, L̂`(xf )ρL̂†`(xf )

]
, (24)
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which looks a lot like the purely quantum pair potential up to some smearing around ρ. The
way the expected pair potential is approximately recovered will be clearer for continuous models,
but it can already be seen here for a simple situation. Consider N particles separated from each
other by an average distance r � rc. Writing ρ(1) = trN−1 [ρ] the reduced density matrix of the
first particle, one has [8]:

trN−1
[
V̂eff · ρ

]
' trN−1

([
−

N∑
`=2

Gm1m`

|x̂1 − x̂`|
, ρ

])
. (25)

Further assuming that the N −1 particles traced over are localized over a distance much smaller
than their distance to particle 1 yields:

trN−1
[
V̂eff · ρ

]
'
[
−

N∑
`=2

Gm1m`

|x̂1 − x`|
, ρ(1)

]
, (26)

which is precisely the potential one would have put by hand in a scenario where a quantum
particle interacts with N − 1 fixed classical particles.

In this model, gravity behaves in a rather peculiar way, through discrete kicks. Yet, it is not
obviously falsified by experiments probing gravity in the Newtonian limit [8].

4. Continuous models restoring linearity
The previous model is easy to define, and the reason why it preserves linearity at the master
equation level is particularly understandable and straightforward to verify. However, its
phenomenology is not completely trivial, and the fact that gravity acts through punctual kicks
makes everything more complicted. This motivates the discussion of continuous models, which
were actually introduced first.

4.1. Continuous measurement and feedback
When infinitely weak measurements are repeated infinitely frequently, one can obtain a
continuous measurement described by a diffusive stochastic differential equation [37, 38]. The
real-time result (or signal) from the continuous measurement of a self-adjoint operator O reads:

SO(t) = 〈O〉t + ηt, (27)

where 〈O〉t = 〈ψt|O|ψt〉 and η is white noise:

E [ηtηs] = 1
γ
δ(t− s) E[ηt] = 0, (28)

where γ encodes the measurement strength. The signal given by equation (27) is the equivalent
of the result k and its probability distribution P (k) = 〈ψ|N †kNk|ψ〉 in the discrete.

The corresponding non-linear backaction on the quantum state reads:

d
dt |ψ〉t =

[
γ

2 (O − 〈O〉t) ηt −
γ

4 (O − 〈O〉t)2
]
|ψt〉. (29)

This is a stochastic differential equation with multiplicative white noise, and it should be
understood in the Itô convention. In this context, one needs to be particularly careful with
stochastic calculus conventions as corrections to the standard differentiation rules coming from
Itô’s formula are necessary to get the physically correct results. This has sometimes led to
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confusions in the literature. Hence, to mark the Itô convention, and at the risk of seeming
overly pedantic, I now switch to the Itô notation and rewrite equations (27) and (29):

dRt = 〈O〉t dt+ dWt “ = ” SO(t) dt (30)

d|ψ〉t =
[
γ

2 (O − 〈O〉t) dWt −
γ

4 (O − 〈O〉t)2 dt
]
|ψt〉, (31)

with the heuristic Itô rule dWtdWt = γ−1 dt. For all practical purposes, one obtains the Itô
formula for differentiation simply by expanding all differentials to second order in dW and using
this heuristic rule. For example, one can derive the stochastic master equation for the (pure)
density matrix ρt = |ψt〉〈ψt| writing:

dρt = d|ψt〉 〈ψt|+ |ψt〉d〈ψt|+ d|ψt〉d〈ψt|︸ ︷︷ ︸
Itô correction

(32)

= −γ8 [O, [O, ρt]] dt+ γ

2 (Oρt + ρtO − 2〈O〉tρt) dWt, (33)

the latter containing exactly the same information as (31). Because ρt is what shows up when
computing expectation values, one often works with it directly instead of the state |ψt〉 even if
ρt is of rank 1. An important property of stochastic differential equations in the Itô convention
is that in integrals of the form

∫
ftdWt, ft and dWt are uncorrelated. As a result, taking the

average of a stochastic differential equation simply removes the noise term. Writing ρ̄ = E [ρ]
we thus get the master equation

d
dt ρ̄ = −γ8 [O, [O, ρ̄]] . (34)

As expected, this master equation is linear: continuous measurements, just like discrete ones,
bring no non-linearities at the master equation level.

Let us now go back to the stochastic master equation without averaging and introduce a
feedback term depending on the real-time signal. Namely, let us heuristically consider the
addition of a potential proportional to the signal

V̂ f.b.(t) “ = ” SO(t) K̂ (35)

in the Schrödinger equation, where K̂ is self-adjoint. Because this potential contains white noise,
one needs to be careful to implement it. Importantly, this potential does not act at the exact
same instant as the measurement from which the result is extracted, but infinitesimally after.
This is analogous to the discrete situation where the feedback unitary Ûk is applied just after
the measurement operator N̂k. Hence we have to translate the informal procedure (35) into the
rigorous prescription

ρt + dρf.b.
t = exp(−iK̂dRt/h̄)(ρt + dρt) exp(iK̂ dRt/h̄), (36)

where dρt is the infinitesimal evolution of ρt given by pure continuous measurement (31).
Expanding all terms up to second order in dW and using the heuristic Itô rule yields

dρf.b.
t = dρt −

i

h̄
[K̂, ρt] dWt −

i

2
[
K̂, {O, ρt}

]
dt− 1

2 γh̄2

[
K̂
[
K̂, ρt

]]
dt. (37)

Note that one gets the same stochastic master equation with the more physical procedure of
regulating the signal with a low pass filter first, and subsequently sending the frequency cutoff
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of the filter to infinity (or equivalently the associated smearing timescale to zero) [38]. One may
again average over the measurement randomness to get the linear master equation:

d
dt ρ̄ = − i

2h̄
[
K̂, {O, ρ̄}

]
− γ

8 [O, [O, ρ̄]]− 1
2γh̄

[
K̂
[
K̂, ρ̄

]]
. (38)

At the master equation level, this feedback has thus added a new decoherence term ∝ [K̂, [K̂, ρ]]
and a so far hard to interpret term ∝ −i

[
K̂, {O, ρ̄}

]
which effectively acts like a potential

up to an additional non-trivial dissipation. We will need a generalization of this procedure to
the continuous simultaneous measurement of n self-adjoint operators Oj . In that case, a fairly
general consistent continuous measurement model can be written:

dRjt = 〈Oj〉t + dW j
t (39)

dρt = −1
8Γjk

[
Oj ,

[
Ok, ρt

]]
dt+ 1

2Γjk
(
Ojρt + ρtOj − 2〈Oj〉tρt

)
dW k

t , (40)

with the Itô rule dW j
t dW k

t = (Γ−1)kj dt where Γ is a real symmetric positive definite matrix and
we have used implied summation on repeated indices. Intuitively, in a measurement situation,
this Γ matrix encodes the correlation of the detectors and its eigenvalues encode the measurement
strength. In this more general setup, a general real time feedback prescription reads:

dV̂ f.b. = K̂j dRjt , (41)

which yields a stochastic master equation for ρt that can be derived in the same way as in
equations (36) and (37). Upon averaging over the measurement randomness, one finally gets a
master equation generalizing (38):

d
dt ρ̄ = − i

2h̄
[
K̂j ,

{
Oj , ρ̄

}]
− Γjk

8
[
Oj ,

[
Ok, ρ̄

]]
− (Γ−1)jk

2h̄2

[
K̂j

[
K̂k, ρ̄

]]
. (42)

The first term in this master equation, which contains a mix of unitary and dissipative effects,
may again seem mysterious. It is simpler to interpret when K̂j ⊗Oj = Oj ⊗ K̂j , in which case
there is no dissipation and we are left with a pure potential term:

− i

2h̄
[
K̂j ,

{
Oj , ρ̄

}]
= − i

4h̄
[{
Oj , K̂j

}
, ρ̄
]
. (43)

In that case, which is the one we will be considering for gravity, measurement + feedback allows
to implement a purely quantum potential at the price of additional decoherence coming from
the measurement itself and from the feedback noise. These two sources of decoherence, by
design, make sure that the interaction is in fact purely classical despite what the presence of the
quantum potential (43) in the master equation (42) may suggest.

4.2. General continuous mass density measurement and feedback
We are now equipped to implement gravity by a continuous measurement of the mass density
and feedback of the corresponding gravitational potential. To this end, we start from a
continuous measurement model of (regularized) local mass density in every point of space. The
corresponding signal reads:

dR(x, t) = 〈M̂rc(x)〉t + dWt(x) “ = ” SMrc (x)(t) dt (44)
with dWt(x)dWt(y) = Γ−1(x,y) dt. (45)
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The corresponding backaction on the state is

dρt =− 1
8

∫
dxdy Γ(x,y)

[
M̂rc(x)

[
M̂rc(y), ρt

]]
dt

+ 1
2

∫
dxdy Γ(x,y)

(
M̂rc(x)ρt + ρtM̂rc(x)− 2 〈M̂rc(x)〉tρt

)
dWt(y),

(46)

with M̂rc(x) a regularized mass density operator:

M̂rc(x) =
[
grc ∗ M̂

]
(x) = grc ∗

n∑
`=1

m` a
†
`(x) a`(x), (47)

where “∗” denotes the convolution product and grc is a Gaussian smearing of width rc

grc(x) = e−x2/(2r2
c )/(

√
2πr2

c )3. (48)

This continuous measurement model of the regularized mass density everywhere in space, if
taken as fundamental, is simply a continuous collapse model. More precisely, one obtains:
(i) The Continuous Spontaneous Localization (CSL) model [39,40] for:

ΓCSL(x,y) = 4γ
m2
N

× δ(x− y), (49)

where mN is the mass of a nucleon and γ is the collapse “strength”. It is a rate × distance3,
the corresponding rate is λCSL ≡ γ/(4πr2

c )3/2 historically fixed at λCSL ' 10−16s−1 (the so
called “GRW” value).

(ii) The Diósi-Penrose (DP) model [41,42] for:

ΓDP(x− y) = 2G
h̄
× 1
|x− y| . (50)

The interest of knowing that, at a mathematical level, this model has a continuous measurement
interpretation, is that it allows us to introduce the “signal” SM̂rc (x) (44). This is not a natural
object to consider in the collapse model context, but it is fundamental to implement a consistent
semiclassical interaction.

As in the discrete, we can implement gravity by sourcing the gravitational field from the mass
density signal:

∇2Φt(x) = 4πGSMrc (x)(t). (51)
As before, this expression is a bit formal because the signal has white noise fluctuations. We
nonetheless keep on formally, and invert the Poisson equation to get:

Φt(x) = −G
∫

dy
SMrc (x))(t)
|x− y| . (52)

The corresponding signal dependent feedback potential to introduce in the Schrödinger equation
thus reads (still formally):

V̂ f.b. =
∫

dx Φt(x)M̂rc(x). (53)

This is equivalent with feeding back directly the operator Φ̂rc(x) multiplied by the mass density
signal with

Φ̂rc(x) := −G
∫

dy M̂rc(y)
|x− y|

. (54)
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Now more rigorously, we can write the elementary feedback step as in (36):

ρt + dρf.b.
t = exp(−idV̂ f.b./h̄)(ρt + dρt) exp(idV̂ f.b./h̄) (55)

with
dV̂ f.b. = −G

∫
dxdy M̂rc(x) dRt(y)

|x− y| =
∫

dx Φ̂rc(x) dRt(x). (56)

Following the same steps as before, it yields the master equation for matter

d
dt ρ̄ = − i

h̄

[
V̂ , ρ̄

]
−
∫

dxdyΓ(x,y)
8

[
M̂rc(x)

[
M̂rc(y), ρ̄

]]
︸ ︷︷ ︸

measurement decoherence

−
∫

dxdyΓ−1(x,y)
2h̄2

[
Φ̂rc(x)

[
Φ̂rc(y), ρ̄

]]
︸ ︷︷ ︸

feedback induced decoherence
(57)

with the pair potential

V̂ = −G2

∫
dxdyM̂rc(x)M̂rc(y)

|x− y|
. (58)

This pair potential is exactly the quantum pair potential one would have obtained at the non-
relativistic limit of a fully quantum theory of gravity, up to the smearing of the interaction
for distances shorter than rc. The additional decoherence terms in (57) precisely insure that
the resulting interaction remains classical. They would have been non-trivial to guess starting
directly from a master equation. This decomposition of semiclassical gravity into 3 decoupled
terms –a purely quantum potential, “intrinsic” measurement decoherence, and “gravitational”
feedback decoherence – is a major advantage of the continuum. The master equation (21) we
obtained for the discrete model where flashes source the gravitational field, while simpler to
derive, had no such simple decomposition.

4.3. Minimum decoherence prescription
We constructed a class of non-relativistic theories of semiclassical gravity parameterized by a
kernel Γ(x,y). Should we take the CSL kernel which looks simpler, as it is local, or the DP
kernel, which is non-local but requires one parameter less? Should we pick yet anoter kernel?
Following [7], we may want to find a principle allowing us to single out one kernel. A natural
principle is to ask that the total decoherence induced by the model be minimal. Decoherence
coming from the measurement and feedback parts can be grouped in a single kernel Γf.b.

d
dt ρ̄ = − i

h̄

[
V̂ , ρ̄

]
− 1

8

∫
dxdy Γf.b.(x,y)

[
M̂rc(x)

[
M̂rc(y), ρ̄

]]
(59)

where
Γf.b. = Γ + 4 (4πG/h̄)2 1

∇2 Γ−1 1
∇2 . (60)

There are many ways to define the minimum for such a kernel. Assuming a translation invariant
kernel Γ(x,y) = Γ(x − y) we can go to Fourier space where all terms in (60) are diagonal.
A natural prescription is then to minimize decoherence Fourier mode by Fourier mode, or
eingenvalue per eigenvalue. This will insure that the kernel we find is indeed the minimum for
most commonly used norms. Going back to real space, this yields a minimal total decoherence
kernel Γf.b.

min:
Γf.b.

min(x,y) = 2 Γmin(x,y) = 4G
h̄

1
|x− y| . (61)
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This is precisely the decoherence kernel of the Diósi-Penrose model (up to a factor 2)6. At
the minimum of decoherence, exactly as much decoherence is provided by the continuous
measurement and feedback parts.

5. Consequences and limitations of “measurement and feedback” inspired
semiclassical models
5.1. Non-linear stochastic description and the measurement problem
An important byproduct of the semiclassical approach we have considered is that it is intimately
tied to a solution of the measurement problem. Starting from the will to implement gravity
in a semiclassical manner, one is lead to the need to have a quantity formally behaving like
a measurement result. Extracting such a result cannot be done without a backreaction on
the quantum state, acting in kicks or continuously, that kills off macroscopic superpositions.
Requiring that a force is implemented semiclassically, formally as a measurement + feedback
scheme naturally leads to objective collapse models. Conversly, taking a collapse model for
granted, one gets a way to implement consistent semiclassical interactions “for free”.

We have focused on feedback master equations averaged over measurement outcomes (or
collapse events), which are indeed sufficient to get all possible predictions in all possible
experimental situations. But the stochastic description with pure states is important: it is
necessary to understand why this approach solves the measurement problem by collapsing
macroscopic superpositions. Further, without the initial stochastic state description, there is
no way to implement the feedback in the first place, and the empirical content does depend on
the measurement stochastic Schrödinger equation one starts with. Different unravelings of the
measurement master equation yield different feedback master equations.

Is it generic that a fundamentally semiclassical theory of gravity is tied to a solution of the
measurement problem? I think so. In any reasonable semiclassical theory of gravity, there is
a classical configuration associated to spacetime. This classical configuration can be directly
given the status of local beable or used, via Einstein’s equation, to define a configuration for
matter beables. In any case, one has something tangible which can, for example, yield definite
measurement outcomes upon coarse graining.

5.2. Regularization and complete falsifiability
An undoubtedly unappealing feature of the present approach is the need for an arbitrary
spacetime regularization of the mass-density measurement. Sending the smearing length-scale
rc to zero yields a divergent model even for the kernel Γf.b.

min yielding minimal decoherence (Diósi-
Penrose kernel). For standard collapse models, this regularization freedom in principle allows to
escape falsifiability indefinitely. In practice, if regularization length-scales get too large, collapse
models no longer achieve their purpose of collapsing macroscopic superpositions. This gives a
rather soft metaphysical bound that one can easily move by orders of magnitude (see e.g. [43]).

In contrast here, the gravitational potential V̂ is inevitably smeared at the same lengthscale
as decoherence. Making the regularization lengthscale too large destroys the Newtonian pair
potential at short distances. This means that rc can be experimentally lower bounded by
probing intrinsic decoherence and upper bounded by probing gravity at short distances. The
semiclassical models we presented are thus falsifiable for all values of rc, although they are so
far not falsified.
6 The present approach gives more than the initial Diósi-Penrose model. First the derivation of the kernel is
not heuristic but motivated by a precise principle: the fact that we get a kernel ∝ 1/|x| is not by analogy with
gravity, it comes naturally. Second, our model does contain an effective gravitational interaction V̂ , which is not
in the historical DP model.
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5.3. Difficult relativistic extension
The main limitation of the approach I have discussed here is that the construction is made
directly in the Newtonian limit. There is so far no complete relativistic theory from which
one obtains the Newtonian limit after a robust derivation. What goes in the way of such a
construction?

First, constructing a fully relativistic theory of continuous quantum measurement seems
difficult. Intuitively, it seems necessary to continuously measure local operators to preserve
Lorentz invariance, as was e.g. proposed in [44]. The difficulty is that such theories are divergent
in a way that does not seem easily curable except with an explicit smearing like the one we
used for non-relativistic models. In the Lorentzian context, a space smearing necessarily goes
hand in hand with a time smearing, i.e. some form of non-Markovianity. While the theory of
non-Markovian stochastic Schrödinger equations is well developed [45–49], the latter have no
real-time continuous measurement interpretation [50–53] and cannot be used to implement a
consistent semiclassical interaction (at least not in any obvious way). There have nonetheless
been recent attempts at making general relativistic collapse models with discrete jumps [54] that
may be usable to extend the first toy model we presented.

Once a proper continuous measurement model or collapse model is available in the general
relativistic setting, there is still a difficulty. Generically, the signal obtained will not verify the
conservation laws the corresponding field would obey in the classical theory. For example,
the “signal” stress-energy tensor will not be conserved, which makes it unusable as source
in Einstein’s equations. This lack of conservation can be dealt with by going to unimodular
gravity [55], but the precise consequences in a complete model are yet to be explored.

A promising avenue of research, in the foreseeable future, is cosmology, where having a
complete relativistic model is not necessary. The cosmological consequences of a semiclassical
coupling in the spirit of the one we presented here, but for the scale factor, have been explored
already by Altamirano et al. in [56,57].

6. Conclusion
The core of the argument in favor of merely considering the option that gravity could be
fundamentally semiclassical is that one can construct semiclassical models that are not obviously
falsified and that bypass the main no-go argument against semiclassical theories. Admittedly,
these models are not the most appealing on the market, one might even say that they are ugly.
Further, they have been made precise only in Newtonian settings: while this is the setting
in which criticisms of semiclassical gravity have been formulated, and thus where it is fair to
refute them, this is a strong limitation. As a result, the semiclassical models which have been
explored in the last 5 years and which I presented here should not be taken too seriously as an
alternative to more developed programs like String Theory or Asymptotically safe gravity (to
name only a few), but rather as counter examples, as toys, simply reminding us to remain open
minded. It is unlikely that semiclassical gravity can be eliminated exploiting purely theoretical
arguments, and a hint about the nature of gravity will most likely have to be found in tabletop
experiments [58,59].
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[3] Wüthrich C 2005 Philosophy of Science 72 777–788
[4] Kafri D, Taylor J M and Milburn G J 2014 New J. Phys. 16 065020
[5] Kafri D, Milburn G J and Taylor J M 2015 New J. Phys. 17 015006
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[54] Juárez-Aubry B A, Kay B S and Sudarsky D 2018 Phys. Rev. D 97(2) 025010
[55] Josset T, Perez A and Sudarsky D 2017 Phys. Rev. Lett. 118(2) 021102
[56] Altamirano N, Corona-Ugalde P, Khosla K E, Milburn G J and Mann R B 2017 Class. Quantum Grav. 34

http://cds.cern.ch/record/980036/files/197508125.pdf
http://www.ijqf.org/archives/2394
http://www.ijqf.org/archives/2394


9th International Workshop DICE2018  : Spacetime - Matter - Quantum Mechanics

IOP Conf. Series: Journal of Physics: Conf. Series 1275 (2019) 012006

IOP Publishing

doi:10.1088/1742-6596/1275/1/012006

17

115007
[57] Altamirano N, Pascalie R and Mann R B 2018 Gen. Relativ. Gravit. 50 120 ISSN 1572-9532
[58] Bose S, Mazumdar A, Morley G W, Ulbricht H, Toroš M, Paternostro M, Geraci A A, Barker P F, Kim M S

and Milburn G 2017 Phys. Rev. Lett. 119(24) 240401
[59] Carney D, Stamp P C E and Taylor J M 2019 Class. Quantum Grav. 36 034001


