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The ability to completely characterize the state of
a quantum system is an essential element for the
emerging quantum technologies. Here, we present a
compressed-sensing inspired method to ascertain any
rank-deficient qudit state, which we experimentally
encode in photonic orbital angular momentum. We
efficiently reconstruct these qudit states from a few
scans with an intensified CCD camera. Since it re-
quires only a few intensity measurements, our tech-
nique would provide an easy and accurate way to iden-
tify quantum sources, channels, and systems. © 2016
Optical Society of America

OCIS codes: (270.0270) Quantum optics; (270.5585) Quantum
information and processing; (120.3940) Metrology.
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The orbital angular momentum (OAM) of single photons, which
provides an unbounded vector space, has been recognized as a preemi-
nent platform for encoding both quantum [1–3] and classical [4, 5] in-
formation. Although the generation of photons with OAM is relatively
simple, the full characterization of a quantum state in the OAM Hilbert
space stands as a challenging task. Several methods have demonstrated
accurate projective measurements to determine OAM states [6–11].
However, these projective measurements work adequately only for pure
states. The case of mixed states requires full state tomography, and this
involves projective measurements on arbitrary superpositions of two or
more OAM eigenstates [12], a task which remains challenging.

To circumvent these problems, we propose and experimentally
demonstrate a method inspired by compressed sensing. Originating
from the context of classical signal processing [13, 14], this technique
harnesses prior assumptions about the state to reconstruct it from an
undersampled set of measurements. It is routinely used to estimate
vectors or matrices from incomplete information, with applications

in many diverse fields of research [15, 17]. Compressed sensing has
also been adapted as a tool for state tomography of discrete systems in
quantum theory [18–25]. Our scheme involves making a small number
of intensity scans with an intensified CCD camera. The compressed
sensing algorithms, supplemented with the positivity constraint [26],
which operates as a kind of regularization, enables us to construct
informationally complete measurements that are robust to noise and
modeling errors. In other words, one can use a very simple setup for
the characterization of a quantum state with a priori information about
its nature.

We begin our analysis by recalling a few basic concepts that we
will need to understand the technique. In any tomographic protocol,
one infers the quantum state, represented by the density matrix ρ , from
the distinct outcomes of a collection of measurements performed on
identical copies of the system. The outcomes of these measurements
are given by the Born rule pα = Tr(ρ Πα ), where {Πα} is the positive
operator-valued measure (POVM) describing the setup [27]. We denote
the action of the POVM by A : ρ 7→ p, that maps ρ onto the vector
containing all the probabilities {pα}.

A POVM is informationally complete (IC) when the correspond-
ing outcome probabilities are sufficient to determine an arbitrary
state [28, 29]. Obviously, the number of outcomes of any IC mea-
surement is at least d2, which makes traditional methods infeasible
as the dimensionality of the system increases. However, if we know
a priori that the rank of the system fulfills rank(ρ) ≤ r, with r� d,
then we can substantially reduce the number of measurement samples
required to uniquely reconstruct the unknown signal matrix. This can
be accomplished with a map A that satisfies the appropriate proper-
ties [30]; the true state ρ0 is then the only density matrix within the set
of positive Hermitian matrices of any rank that yields the measurement
probabilities p [26]. The corresponding estimator ρ̂ is given by,

ρ̂ = min
ρ
‖A [ρ ]−p‖ s. t. ρ ≥ 0, (1)

whose solution can be efficiently found by convex programming [31].
The insights into the regularizing effect of the positivity constraint

permit us to tackle reconstructing OAM quantum states. To represent
the structure of the transverse field we will be using the well-known
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Fig. 1. Simulation of our compressed sensing protocol with twisted photons. (a) Number of independent detections nZ generated by Z intensity
scans performed on a signal with `max = 7 (d = 15). The maximum of nZ = 218 detections is obtained for Z ≥ 8 scans. (b) Reconstructions errors,
ε̄ , from the compressed sensing protocol of the twisted photons as a function of the rank of the state for a fixed dimension (`max = 7) and for
Z = 1,2, and 3 CCD scans, with and without positivity constraint. (c) The reconstructions errors for two CCD scans and different dimensions. In
all the cases, we take a 19×19 pixels screen.

Laguerre-Gauss (LG) modes that can be written as [32],

LGp`(r,φ ,z) = 〈r,φ ,z| `, p〉=
√

2p!
π(p+ |`|)!

1
w(z)

(√
2r

w(z)

)|`|

×L|`|p

(
2r2

w(z)2

)
exp
(
−r2

[
1

w(z)2 − i
k

2R(z)

]
− i`φ − iψp`(z)

)
, (2)

where (r,φ ,z) denote cylindrical coordinates, k is the wave number,
L|`|p (.) is the generalized Laguerre polynomial, ` ∈ {0,±1,±2, . . .} is
the azimuthal mode index, and p ∈ {0,1,2, . . .} is the radial mode
index, which is related to the number of radial nodes. The parameters
R(z), w(z), and Ψp`(z) denote the radius curvature of the wave fronts,
the beam radius, and the Gouy phase at the propagation distance z,
respectively: w2(z) = w2

0
[
1+(z/zR)

2], R(z) = z
[
1+(zR/z)2], and

ψp`(z) = (2p+ |`|+ 1)arctan(z/zR), with the Rayleigh range zR =

kw2
0/2 and w0 the beam waist, which we assume located at z = 0. In

what follows, we will set p = 0 and denote ψ`(z) = ψp=0`(z).
As mentioned before, we propose to reconstruct the signal in the LG

basis from Z intensity scans registered by a CCD camera positioned at
distances z1,z2, . . . , with respect to the beam waist, which is in the spirit
of the Gerchberg-Saxton algorithm [33]. This amounts to projecting
the density matrix on free-space position eigenstates; viz,

p(r,φ ,z) = 〈r,φ ,z|ρ|r,φ ,z〉 ∝ e−2r2

∑
``′

ρ``′C``′ , (3)

where C``′ = r|`|+|`
′| exp[i(`−`′)φ ]exp{i[ψ`(z)−ψ`′ (z)]} and r(z) =

r/w(z). Each combination of r, φ , and z coordinates, which corre-
sponds to the associated pixel readings, gives us one particular linear
combination of density matrix elements. Evidently by varying r,φ , and
z, the more linearly independent these generated combinations are, the
more IC the POVM is.

Let us first consider d-dimensional states that can be represented
in the LG mode basis with nonnegative azimuthal indices only; i.e.,
` ∈ {0,1, . . . ,d− 1}. Incompleteness arises whenever two different
pairs (`′,`′′) generate the same C`′`′′ for all r and φ . Surprisingly, it
turns out (see Supplemental Material) that all density matrix elements
can be uniquely determined from a single CCD image for any dimen-
sion d. Put differently, a simple von Neumann measurement (CCD
scan) defined in an infinitely large space, becomes an IC POVM when
projected into a finite space.

Next, we examine the case in which the sign of the topolog-
ical charge is not constrained; that is, d = 2`max + 1, with ` ∈

{−`max, · · · ,0, · · · ,`max}. CCD scans are no longer IC, no matter how
many planes Z are sampled. As discussed in the Supplemental Material,
the maximum number of linearly independent measurements generated
by CCD scans is nZ→∞ = d2− (d−1)/2. Only for large dimensions,
d2� 1, does the measurement become nearly IC. The first two scans
generate nZ=1 = (d2 + 6d− 3)/4 and nZ=2 = (d2 + 5d− 8)/2 in-
dependent detections. For higher Z, the new independent detections
grow linearly with `max. A typical behaviour is shown in Fig. 1a) for
`max = 7: the maximum nZ→∞ is approximately attained with 8 scans.
Actually, one can determine (see Supplemental Material) that the mini-
mum scans required to approximately attain the maximum number of
independent detections in the signal space is Zmin = `max +1. Roughly
one quarter and one half of this total is already available after one and
two scans, respectively.

The compressive tomography is done by solving Eq. (1), where now
α = {r,φ ,z}, and Πα is defined by Tr(ρ Πα ) = p(r,φ ,z). We first
perform numerical simulations to explore the method. A set of random
states of a given rank in the `max = 7 space is chosen and scanning
measurements are simulated for Z = 1, 2, and 3 CCD planes with a
19×19 pixel geometry.

SLM

ICCD
z

Mode generation Variable lens

+ {

Fig. 2. Sketch of the experimental setup. A photonic state is gener-
ated by manipulating the phase and intensity of an incoming beam
via the spatial light modulator (SLM). The beam is then focused us-
ing a variable holographic lens imprinted on the SLM together with
the state generation hologram. The ICCD camera has a fixed posi-
tion and records intensity scans. Inset shows the state and lens phase
patterns, [0,2π), in a hue color.
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Fig. 3. Experimental reconstruction from compressed sensing. (a) Density matrix of the true state and (b) Reconstructed density matrix after two
intensity scans with a signal space spanned by ` ∈ {−4, . . . ,4}. The upper row shows four experimental ICCD scans at the planes z/zR =0, 1/3,
1/2, and 1, respectively. The lower row shows the predictions from the reconstructed state of the same ICCD scans at before.

The data is subject to quantum state reconstruction with and without
the positivity constraints, where the latter is implemented with the
help of the Moore-Penrose pseudoinverse [34]. Finally, for each true
state, the corresponding Hilbert-Schmidt distances between the true
and reconstructed states are calculated and the mean is taken over
the set of true states of the same rank. We take this as the error
ε̄ = E[Tr(ρtrue− ρ̂)2].

In Fig. 1b), we have plotted the errors ε̄ as a function of the rank of
the state, for `max = 7. We observe a strong regularizing effect of the
positivity constraint, especially on low-rank signals. First, positivity
always makes the reconstruction errors smaller. Second, it cures the
informational incompleteness of the tomography, provided the com-
plexity of the measured signal stays below a certain threshold. Last,
this threshold gets increased as we collect more scans. Notice though
that protocols with positivity perform worse on more complex signals
because the regularizing effect of positivity weakens. Loosely speaking,
in comparing neighbourhoods of low- and high-rank states, one finds
more nonphysical matrices in the former. Those objects get filtered by
the positivity constraints leading to improved performance. The oppo-
site is true of the protocols without positivity. Here, the more mixed
states are less biased in the space of density matrices, so their average
distance to the reconstructed matrix is smaller. Notice that this discus-
sion does not apply to mutually compatible observations, for which
positivity constraints are of no consequence. This can be observed in
Fig. 1c) for a single scan, where the regularizing effect of positivity
disappears. Stronger incompatibilities introduced by detections from
different planes [Πα ,Πα ′ ] 6= 0 are required to promote signal sparsity.
The influence of the signal dimension with a fixed measurement is
also illustrated in Fig. 1c), for the particular case of two scans. The
quality of the compressive OAM tomography improves with the signal
dimension. At first glance, this might seem counterintuitive; however,
note that the sparsity of a signal of a given rank grows with dimension
and so do the regularizing effects of positivity constraints.

To verify our scheme, we construct an experimental setup that al-
lows us to generate and detect vortex beams at the single photon level
using a spatial light modulator (SLM) and an intensified CCD (ICCD)
camera, respectively. A simplified sketch is shown in Fig. 2. A quasi-
continuous UV laser, at a wavelength of 355 nm, is used to pump a
type-I β -barium borate (BBO) crystal in order to generate single pho-
tons via spontaneous parametric downconversion. The spatial modes
of the generated photons are filtered to the fundamental Gaussian mode

by coupling them to a single mode fibre (SMF). The photons are then
coupled out of the SMF and are made incident on an SLM, (X10468-07,
Hamamatsu) consisting of an electronically controlled nematic liquid
crystal device with 792×600 pixels. The phase and the intensity of the
generated photons are controlled via a holographic intensity masking
technique [35], with a diffraction efficiency greater than 70 %. To
achieve a higher mode quality, a 10× microscope objective with a
numerical aperture of 0.25 is employed to obtain a relatively large col-
limated beam at the SLM. The mode waist of the amplitude-modulated
hologram at the SLM is determined to have an effectively flat phase
and intensity for the incoming beam over the region of interest of the
hologram. By doing so, we may generate any arbitrary spatial mode
with a high-level of accuracy. In the case of pure states, a single holo-
gram is used for shaping the transverse modes of all photons in the
ensemble. For mixed states, the appropriate holograms are randomly
varied to generate incoherent statistical mixtures of the desired modes.
A single intensity scan is then recorded over the whole ensemble of
generated photons.

To observe the intensity variation of LG modes upon propagation,
due to the differences in Gouy phases, the beam must propagate for
distances that are on the order of the Rayleigh range zR. This is
achieved by simply focusing the beam. In the scheme described above,
the ICCD camera is moved along the path of the beam in the z-direction.
However, this is equivalent to varying the focal length of the lens and
considering a fixed position of the ICCD camera. This is accomplished
by imprinting a phase profile of the form exp

(
−i k r2/2 f

)
, where f

is the focal length of the flat lens. By doing so, our experimental
reconstruction does not require any mechanical displacement of the
components in the setup. Intensity scans are recorded for different
focal lengths corresponding to positions of z/zR = 0, 1/3, 1/2 and 1.

The true states are chosen to be following rank–2 states,

ρ = p |0〉〈0|+(1− p) |Ψ〉〈Ψ| , (4)

with |Ψ〉 = cosθ |−3〉+ sinθ |3〉. In the experiment, we randomly
generate 20 states for values of p and θ chosen. The experiment was
also carried out with other sets of states; the results can be found in the
Supplemental Material. In Fig. 3, we present the results for a typical
state ρ with two ICCD scans. The corresponding reconstructed density
matrix is plotted in the left column. Even though we are dealing with
informationally incomplete measurements, the protocol with positivity
using two intensity scans fits the theoretical data quite well. Without the
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Fig. 4. Entropy S as a function of the number of intensity scans Z,
for a signal space spanned by ` ∈ {−4, . . . ,4} and for true states of
the form in Eq. (4). The circles are obtained by averaging over 20
random states and the error bars indicate the corresponding variance.
Blue refers to protocol with positivity, while red is without positivity.

positivity constraint, the reconstructed states are very different from the
true ones. We have also experimentally checked that when the signal
space is constrained to only positive topological charges `, one intensity
scan is enough to accurately predict the intensity scans in other planes,
as anticipated by our theory. To assess the degree of IC for the intensity
scans, we first consider a matrix of reconstructed states {ρ̂ j} with its
jth column defined as a flattened ρ j . A unique solution for the extremal
problem (1) then implies that the entropy of normalized singular values
for this matrix is zero. To compute the entropy, we reconstructed 20
true states for every ICCD scan, and average over all of them. As can
be seen in Fig. 4, the protocol with positivity constraints is enough to
characterize the input state with solely two scans. We corroborate once
again that if we restrict our space to be spanned only with nonnegative
azimuthal indices, the measurement is IC for both strategies (with and
without positivity) with only one intensity scan.

In summary, we have developed a compressed sensing scheme
able to uniquely reconstruct any rank-deficient qudit state encoded in
the OAM degree of freedom. The positivity constraint has played a
substantial role as a powerful regularization to perform a tomographic
reconstruction in the regime of informationally incomplete data for
intermediately sized quantum systems. This establishes a novel and
efficient tomographic paradigm for OAM systems that could trigger
interesting experimental research on complex quantum states, which
otherwise might have been infeasible with currently known detection
schemes in such experiments.
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