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SUMMARY

Macrophage polarization involves a coordinated
metabolic and transcriptional rewiring that is only
partially understood. By using an integrated high-
throughput transcriptional-metabolic profiling and
analysis pipeline, we characterized systemic chan-
ges during murine macrophage M1 and M2 polariza-
tion. M2 polarization was found to activate glutamine
catabolism and UDP-GlcNAc-associated modules.
Correspondingly, glutamine deprivation or inhibition
of N-glycosylation decreased M2 polarization and
production of chemokine CCL22. In M1 macro-
phages, we identified a metabolic break at Idh, the
enzyme that converts isocitrate to alpha-ketogluta-
rate, providing mechanistic explanation for TCA
cycle fragmentation. 13C-tracer studies suggested
the presence of an active variant of the aspartate-ar-
ginosuccinate shunt that compensated for this
break. Consistently, inhibition of aspartate-amino-
transferase, a key enzyme of the shunt, inhibited
nitric oxide and interleukin-6 production in M1
macrophages, while promoting mitochondrial respi-
ration. This systems approach provides a highly
integrated picture of the physiological modules sup-
porting macrophage polarization, identifying poten-
tial pharmacologic control points for both macro-
phage phenotypes.

INTRODUCTION

The ability to assume different activation states in response to

environmental factors is critical to the role played by murine

macrophages in a broad range of responses. Resting macro-

phages (M0) develop pro-inflammatory microbicidal and tumor-

icidal properties after stimulation with interferon-g (IFN-g) and
toll-like receptor (TLR) agonists (M1 or classical activation),

but they will promote adipose tissue homeostasis and wound

healing and mediate anti-helminth immune responses when

stimulated with interleukin-4 (IL-4) and IL-13 (M2 or alternative

activation). This phenotypic polarization of murine macrophages

in response to their microenvironment is highly regulated at both

transcriptional and metabolic levels (McGettrick and O’Neill,

2013; O’Neill and Hardie, 2013).

The metabolism of M1 macrophages is characterized by

increased glycolytic flux and reduced mitochondrial oxidative

phosphorylation compared to M0 cells (Rodrı́guez-Prados

et al., 2010). This metabolic shift occurs in the context of an

altered TCA cycle, which is needed to support the production

of key M1 cellular products such as acetyl CoA (AcCoA), succi-

nate, and nitric oxide (NO) (Tannahill et al., 2013). However, the

precise metabolic flows that alter the mitochondrial activity

and the corresponding compensatory mechanisms that main-

tain basic cellular metabolic functions in the absence of an active

TCA cycling in M1 macrophages are unclear. Likewise, although

it is understood that M2 activation is coupled to changes in

polyamine synthesis, iron metabolism, and fatty acid oxidation

(Biswas and Mantovani, 2012; Vats et al., 2006), we currently

lack a systems-level understanding of central metabolic rewiring

during alternative activation.

In principle, integration of top-down transcriptional and meta-

bolic ‘‘omics’’ approaches provide a strategy for non-targeted

characterization of systems-level changes, but two obstacles

impede realization of such a strategy. First is the lack of parallel

experimental approaches to enable synchronized metabolomic

and transcriptional profiling on simultaneously prepared bio-

mass; the throughput of current experimental approaches for

metabolic profiling are typically quite low and require a con-

siderable amount of input material, making it difficult to perform

parallel sample preparation for transcriptional profiling. A second

challenge is the uncertainty associated with integrating the

two data types in a physiologically meaningful way that can be

further validated through functional testing. Here, we introduce

a combined experimental and computational pipeline, concor-

dant metabolomics integration with transcription (CoMBI-T),
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Figure 1. Integrated Metabolic-Transcrip-

tional Profiling and Analysis Pipeline

Cells derived from the same culture batch are

grown in 96-well plates, stimulated, then lysed and

processed in 96-well format to collect global

metabolic and RNA-seq-based transcriptional

profiles. Individual datasets are then processed

and differential regulation data are mapped onto

a global metabolic network that includes both

enzymes and metabolites. Integrated network

analysis then identifies the most coordinately

responsive subnetwork and uncovers novel points

of metabolic rewiring during macrophage polari-

zation. Predictions of CoMBI-T profiling analysis

are then validated mechanistically through labeling

experiments and through the effects of targeted

media perturbation and pharmacologic agents on

cell phenotype.
that overcomes these challenges and provides a non-targeted

systems-level characterization of coordinated transcriptional

and metabolic rewiring during the macrophage polarization

process. This approach identified statistically significant mod-

ules within the metabo-transcriptional network that contribute

to and defineM1 versusM2 polarization, which were functionally

validated via a combination of targeted media perturbations,

pharmacological inhibition, and 13C-glucose and 13C- and 15N-

glutamine labeling experiments. In M2-polarized macrophages,

CoMBI-T reveals involvement of two new previously uncharac-

terized modules: a glutamine-associated module and a UDP-

GlcNAc-associated module. Perturbation of either of these

pathways led to impairment of M2 polarization. Furthermore,
420 Immunity 42, 419–430, March 17, 2015 ª2015 Elsevier Inc.
glutamine deprivation is shown to be

associated with profound functional con-

sequences in M2 macrophages, such as

decreased chemokine Ccl22 production.

On the other hand, in M1 macrophages,

CoMBI-T identified a metabolic interrup-

tion in the tricarboxylic acid (TCA) cycle

carbon flow duringM1 polarization, which

was validated by isotope labeling. Based

on that labeling data, we propose that a

variant of the aspartate-arginosuccinate

shunt connects the fragmented (ana-

pleurotic) TCA cycle metabolites with

NO production during the inflammatory

response. Consistent with this model, in-

hibition of a key enzyme in the shunt,

aspartate aminotransferase (AAT), led to

decreased NO production and increased

oxygen consumption rates (OCR) due to

mitochondrial respiration in M1 macro-

phages. Overall, our data and analysis

provide a comprehensive view of the inte-

grated transcriptional and central meta-

bolic changes during murine macrophage

polarization, yielding a deeper contextual

understanding of established polarization

markers, while simultaneously uncovering
targets for pharmacological intervention and control of the polar-

ization process.

RESULTS

CoMBI-T Data Acquisition: Parallel High-Throughput
Metabolic and Transcriptional Profiling
The CoMBI-T pipeline to generate and integratemass spectrom-

etry-based metabolic profiling with RNA-seq-based transcrip-

tional profiling data sets is shown schematically in Figure 1. To

provide the raw biological material for the data acquisition,

bone marrow cells were isolated from a single mouse and

seeded into 96-well plates as described previously (Everts



Figure 2. Knowledge-Based Pathway Analysis of Metabolic and

Transcriptional Data

(A) Pathway analysis of enzymes that are transcriptionally upregulated inM1 or

M2 states. Green bar points to the enzymes upregulated inM1 conditions (blue

for M2) and corresponding enriched pathways are listed in the green box on

the right (blue for M2).

(B) Pathway enrichment analysis across metabolome profiling data shows

KEGG pathways that are differentially regulated between all possible pairs of

conditions (M1 versus M0, M2 versus M0, M1 versus M2).

(C) Volcano plot shows metabolites differentially expressed between M1 and

M2 conditions. x axis shows log-fold change between M1 and M2 conditions

with positive values corresponding to metabolites upregulated in M1 macro-

phages. y axis shows p value for corresponding metabolite. Top M1-specific

metabolites (itaconate and arginine) are highlighted in green, and top M2-

specific metabolites are marked as red circles.
et al., 2014). At day 7, the bone-marrow-derived macrophages

(BMDMs) were stimulated with either lipopolysaccharide (LPS)

and IFN-g or IL-4 treatment for 24 hr to obtainM1- andM2-polar-

ized cells (respectively, as confirmed by expression of major

markers such as Il12b, Nos2, Arg1, etc.). Cultures destined for

either of the two analyses were treated identically until cells

were lysed for metabolite and RNA extractions, providing mini-
mal divergence in cell handling and maximum degree of consis-

tency between metabolic and transcriptional profiles. To obtain

metabolic profiles, we used a non-targeted, flow-injection-anal-

ysis (FIA) mass spectrometry (MS) method (Fuhrer et al., 2011),

enabling broad metabolite coverage between 50 and 1,000 dal-

tons and yielding quantitative information on approximately

10,000 MS spectral features (Fuhrer et al., 2011), of which

approximately 2,200 were annotated as high-confidencemetab-

olites in these studies. For transcriptional profiling, we used 30

end focused RNA sequencing with a barcode-first strategy that

allows sample pooling at the cDNA stage, improving sensitivity

and consistency between samples and allowing construction

of a high-throughput library from material extracted from cell

lysates in a single well of a 96-well plate (Sojka et al., 2014)

(Experimental Procedures). Overall, we analyzed five and three

bio-replicates per condition for metabolic and transcriptional

profiles, respectively.

CoMBI-T Analysis: Network-Based Integration of High-
Throughput Metabolic and Transcriptional Profiles
To date, predictive powers of integrated analysis have been

tested only to a very limited degree, largely due to a lack of

large-scale, parallel metabo-transcriptional datasets. Overall,

analytical strategies used for integration of metabolic and tran-

scriptional data can be broadly divided into two major classes:

modifications of constraint-based models (such as flux balance

analysis) (Bordbar et al., 2012; Patil and Nielsen, 2005) and

network-based approaches (Beisser et al., 2012; Zhu et al.,

2012). In order to leverage the large metabolite coverage

achieved in our profiling experiments, we adopted a network-

based strategy that integrates the power of both transcriptional

and metabolic profiles while minimizing the drawbacks inherent

to each dataset with respect to computational analysis. For

instance, metabolic profiling often has a high false negative

rate, being neither exhaustive nor adequately sensitive for low-

abundance metabolites. Nevertheless, metabolism is described

by a relatively well-defined network, capturing the interconver-

sion of various metabolites in a framework particularly suitable

for systems-scale analysis. The opposite is true for transcrip-

tional data: RNA-seq profiling provides an exhaustive list of

mature transcripts, but their corresponding regulatory networks

are defined very loosely, limiting the ability to follow causal

relationships. Our integration strategy seeks to identify func-

tional modules characteristic to the M1 and M2 states based

on proximity of differentially regulated metabolites and enzymes

in the global metabolic network. Such core subnetworks typi-

cally consist of combinations of metabolites and enzymes from

multiple canonical metabolic pathways (see examples below)

and provide relatively unbiased characterization of metabolic

changes in the system of interest.

As such, this approach differs from the typical knowledge-

based pathway enrichment analysis (PEA) because it allows

the capture of major routes of metabolic rewiring that occur on

a global level but that do not necessarily follow known definitions

of pathways. For instance, pathway analysis of obtained meta-

bolic and transcriptional profiles (Figure 2A) revealed a combina-

tion of known pathways regulating macrophage polarization

without specific understanding of functional interconnections

between them. Genes involved in glycolysis and phospholipid
Immunity 42, 419–430, March 17, 2015 ª2015 Elsevier Inc. 421



metabolism, differentially expressed between M1 (LPS + IFN-g

stimulation) and M2 (IL-4 stimulation) macrophages, are major

distinguishing features of inflammatory (M1) macrophages,

whereas oxidative phosphorylation, purine synthesis, arginine,

and nucleotide sugar metabolism are enhanced in M2 macro-

phages. Global metabolic changes showed differential regula-

tion of glycolysis/gluconeogenesis, urea cycle, arginine, mito-

chondrial, and fatty acid metabolism (Figure 2B). However, the

interpretative utility of these findings is severely limited because

the interconnections between these pathways are not revealed

even though macrophage polarization requires them to be glob-

ally coordinated. Furthermore, pathway-based analysis fails to

account for many of the most differentially expressed metabo-

lites: in M1 macrophages itaconic acid (Figure 2C, green circle)

is currently not annotated to be the part of any individual

pathway, and a number of the most altered M2 metabolites

such as UDP-glucose and 6-phosphogluconate (Figure 2C, red

circles) are not associated with any of the enriched pathways.

Finally, pathway analyses that are carried out on the individual

levels of regulation (whether transcriptional or metabolic) inher-

ently fail to leverage the notion of coherent changes between

these regulatory events, diminishing their power to identify

important regulators of metabolic rewiring.

In order to address these issues, we constructed a global mu-

rine cellular reaction network (CRN) that connects �3,000 me-

tabolites and corresponding enzymes based on the latest edition

of the KEGG database (Kanehisa et al., 2012) (see Experimental

Procedures). We then sought the most differentially regulated

subnetwork (typically of the size �100 nodes) within the CRN,

accounting for both the nodal connectivity and the degree of dif-

ferential expression of metabolites and enzymes in the network.

We first assign weights to nodes in the global cellular reaction

network: differential expression p values for M1 versus M2

comparison were transformed to enzymatic node weights, and

differential intensity p values of metabolites corresponded to

metabolic node weights. By structuring the CRN in this manner,

we were able to apply the BioNet algorithm (Beisser et al., 2010),

developed for integration of protein-protein interaction data-

bases with microarray datasets, to identify the most differentially

regulated network as a maximum-weight connected subgraph

(MWCS) problem (Figure 3; Experimental Procedures). Overall,

CoMBI-T analysis indicated that divergent macrophage polari-

zation is characterized by significant differences in three me-

tabo-transcriptional modules (the UDP-GlcNAc biosynthesis

module, a glutamine/glutamate-associated module in M2 mac-

rophages, and an Idh-centered TCA pathway break-point

coupled with dramatic itaconate production in M1-polarized

macrophages) that together with known regulatory pathways

make up a densely connected core that governs macrophage

metabolic response to polarization stimuli (Figure 3). Next, we

sought to investigate the function of these modules in greater

detail.

CoMBI-T Reveals Increased UDP-GlcNAc Synthesis as a
Critical Feature of M2 Polarization
CoMBI-T identified two previously unreported M2-specific

metabolic modules. First, increased amino sugar and nucleotide

sugar metabolism, characterized by high levels of UDP-GlcNAc,

UDP-glucose, and UDP-glucuronate, and corresponding tran-
422 Immunity 42, 419–430, March 17, 2015 ª2015 Elsevier Inc.
scriptional upregulation of enzymes involved in the production

of these intermediates (e.g., Enpp1, Pgm1), were observed in

M2 macrophages (Figure 3). To validate that this module is

indeed metabolically active in M2-polarized macrophages, we

traced the fate of 13C-glucose and 13C-glutamine in M2 cells

to the intermediates of these pathways. Labeling distribution

analyses revealed partially labeled forms of TCA metabolites

(malate, citrate, AKG, succinate) in M0 and M2 macrophages

(Figure 4A), reflecting reported active oxygen consumption rates

and complete TCA cycling in M2 macrophages (Haschemi et al.,

2012). Consistent with the known hexosamine biosynthetic

route, we found glucose and glutamine as the major sources of

carbon and nitrogen, respectively, in UDP-GlcNAc, an important

intermediate that links signaling to metabolism (Figure 4A;

Wellen and Thompson, 2012; Yi et al., 2012). Together with tran-

scriptional upregulation of steps in the N-glycan pathway re-

vealed through pathway enrichment analysis (see Figure 2A),

this observation suggests the importance of N-glycosylation in

M2 macrophages. It is well established that highly glycosylated

lectin/mannose receptors are among the most typical M2 polar-

ization markers (Sica and Mantovani, 2012). We investigated the

functional importance of the UDP-GlcNAc pathway by asking

directly whether N-glycosylation plays a role in M2 activation.

Accordingly, we stimulated macrophages with IL-4 in the pres-

ence or absence of the N-glycosylation inhibitor tunicamycin

(Varki, 2009). We found that tunicamycin significantly inhibited

expression of the canonical M2 activation markers Relma (Fig-

ure 4B), CD206, and CD301 (Figure 4C), only mildly affecting

M1 polarization as measured by inducible nitric oxide synthase

(iNOS) protein expression (Figure S1A) or regulation of major

M1-specific cytokines (Figure S1B). Similarly, M2-specific de-

fects were observed when we inhibited the hexosamine pathway

via glucosamine (Figure S1C; Koch et al., 1979). Thus, the UDP-

GlcNAc synthesis pathway identified by CoMBI-T as being upre-

gulated in M2 macrophages plays a direct, specific, and critical

role in the M2 polarization process.

CoMBI-T Reveals Glutamine Metabolism as a
Characteristic Feature of M2 Polarization
The second M2-specific module revealed by CoMBI-T was

centered on glutamate management and included glutamate,

AKG, ornithine, and corresponding transcripts of Gatm, Arg1,

Oat, Got2, and Gpt2 as well as several other closely related

transcripts and metabolites (Figure 3). This result together

with the participation of glutamine in supporting an active

TCA cycle and providing structural features for UDP-GlcNAc

synthesis led us to hypothesize that this amino acid plays a

crucial, specific role in M2 polarization. The extent of glutamine

dependence in M2 macrophages was suggested by the fact

that a third of all carbons in TCA metabolites in M2 cells origi-

nated from glutamine (versus �20% for M1) and that within 4 hr

of addition of 15N-labeled glutamine, more than half of the nitro-

gen in UDP-GlcNAc derived from glutamine (Figure 4A). To

functionally validate these findings from CoMBI-T, we tran-

siently (for 4 hr prior to stimulation) deprived macrophages of

glutamine and assessed M2 commitment, using expression

of CD206, CD301, and Relma as markers of M2 activation.

We found that glutamine deprivation had a substantial effect

on M2 polarization, reducing the committed population by



Figure 3. Major Metabolic Modules Are Rewired during Macrophage Polarization

CoMBI-T reveals the most regulated subnetwork within global murine metabolic network that consists of more than 2,000 enzymes and metabolites measured

through the CoMBI-T profiling pipeline. For comparison between M1- and M2-polarized macrophages, the most regulated metabolic subnetwork encompasses

seven distinct modules highlighted by distinct background shading. Threemajor novel features of macrophage polarization identified by CoMBI-T are highlighted

with dotted line squares—green for M1-specific module and red for M2. Round nodes represent metabolites within core regulatory network. Enzymes are

represented by square nodes. Differential expression of corresponding enzyme/metabolite is indicated by the size of the node, and fold-change by red (M2) to

green (M1) color scale. Enzymes in reactions with single product-substrate pair are represented by edges for visual convenience with thickness and color of the

edge reflecting –log(p) and fold-change of differential expression correspondingly. For visual convenience, nodes of fatty acid synthesis module are not labeled.

The complete metabolomic data used for CoMBI-T are available in Table S1.
about 50% (Figure 5A), whereas removal of glutamine had no

effect on capacity for M1 polarization as measured by Nos2 up-

regulation (Figure 5B).

We next sought to determine specific functional defects in

M2-polarized macrophages due to glutamine deprivation. We

obtained transcriptional profiles for macrophages polarized in

either complete media or in glutamine-deprived media and

found that most of the differentially expressed transcripts that

are downregulated upon glutamine withdrawal are M2-specific

marker genes, including Irf4, Klf4, Ccl22, and Il4i1. Notably,

glutamine-deprived M2 macrophages exhibited a distinctly

downregulated transcriptional signature of TCA cycle activity

(Figure 5C) when compared to M2 macrophages polarized in

full media, thus providing support for a causal link between

glutamine usage, regulation of oxidative phosphorylation, and
M2 polarization, as opposed to other possibilities such as an

effect via the mTOR pathway (Byles et al., 2013), which was

not regulated upon glutamine deprivation (Figures S2A–S2C).

This is consistent with literature reporting that transient gluta-

mine deprivation in a human cell line led to perturbation of

TCA cycle and autophagy as opposed to the activation of

mTOR signaling typically seen in more severe starvation condi-

tions (Shanware et al., 2014). Strikingly, the chemokine

pathway (Figure S2B) was found to be among those most

downregulated upon glutamine deprivation, and therefore we

tested the effect of glutamine depletion on production of

CCL22, because expression of the encoding gene Ccl22 is

markedly upregulated in M2 macrophages and it is the second

most-downregulated transcript upon glutamine deprivation

(p = 10�57; Figure 5D, in red are shown transcripts that are
Immunity 42, 419–430, March 17, 2015 ª2015 Elsevier Inc. 423



Figure 4. Labeling and Pharmacological

Inhibition Experiments Validate the Critical

Role of UDP-GlcNAc Pathway in M2 Polari-

zation

(A) U-13C glucose (green outline) and U-13C (black

outline), 15N2 (blue outline) glutamine were used

as media for unstimulated/Il4-stimulated macro-

phages. Circle sizes are scaled with respect to

pool sizes for individual metabolites in each con-

dition. Exact labeling distributions and patterns

are detailed in Table S2 for each metabolite. Thin

black arrows represent known metabolic pathway

connections; background arrows indicate

deduced major metabolic flows in M2 macro-

phages.

(B and C) Results of inhibition of N-glycosylation by

tunicamycin: in the presence of the inhibitor, M2

commitment is significantly blocked by both Relma

(B) and CD206-CD301 staining (C).
M2-specific up- or downregulated markers). Accordingly,

secreted protein levels of CCL22 was lower in supernatants

of M2 macrophages activated in the absence of glutamine

compared to in complete medium, reflecting a marked and

M2-specific downstream functional defect due to media pertur-

bation (Figure 5E). The CCR2 transcript was expressed in only

low amounts basally, and hence differential transcript expres-

sion did not translate to differences in surface protein expres-

sion (Figure S2D).

TCABreakpoint at IDHCoupledwith Itaconate Synthesis
Is a Major Feature of M1 Polarization
One of the major metabolic signatures of macrophage activation

upon LPS stimulation is a defect in overall mitochondrial function
424 Immunity 42, 419–430, March 17, 2015 ª2015 Elsevier Inc.
(Biswas andMantovani, 2012) and associ-

ated defects in the TCA cycle. However,

the specific mechanism leading to such

mitochondrial dysfunction is not under-

stood. CoMBI-T analysis revealed a po-

tential breakpoint in the metabolic flow of

the TCA cycle at the isocitrate-to-oxoglu-

tarate (AKG) conversion, which was spe-

cific to M1 versus M2 macrophages

(Figure 3, green square). This effect was

characterized by a significantly increased

pool of (iso)citrate and decreased pool of

AKG (the ratio of (iso)citrate:AKG is �3

times higher in M1 compared to M0; Table

S2) and was accompanied by significant

transcriptional downregulation of Idh1,

the enzyme that interconverts these two

metabolites (7-fold decrease in M1). To

further validate that this alteration of cit-

rate and AKG steady-state levels results

from reduced flow through IDH, we per-

formed stable isotopic labeling experi-

ments, tracing the fate of 13C-labels from

U-13C-glucose and U-13C-glutamine in

M1 macrophages with a single time point
analysis to estimate relative rates of accumulation (4 hr labeling

time). Consistent with CoMBI-T results, we observed that�20%

of citrate was synthesized from glucose, whereas the AKG pool

accumulated 0% glucose-derived carbon labeling at the 4 hr

time point (Figure 6). Carbon flow from glutamine to AKG

was detectable in M1 macrophages (Figure 6: 10%–12%

U-13C-AKG from U-13C-glutamine after 4 hr labeling), yet still

significantly smaller than in the M0 state, where �25% of the

AKG pool acquired uniform labeling. Of note, partially labeled

forms in the AKG pool present in M0 state reflective of

active TCA cycling disappeared from the AKG pool in M1 mac-

rophages (Figure 6, pie charts in black and green ovals next to

AKG). Such a lack of partial labeling indicates interrupted TCA

cycle activity and provides a mechanistic explanation for the



Figure 5. Labeling and Media Perturbation

Experiments Validate the Critical Role of

Glutamine in M2 Polarization

(A) Glutamine deprivation shows significant (�50%)

defect in M2 commitment in glutamine-deprived

media based on CD301-CD206.

(B) Relma staining and Nos2 upregulation indicate a

comparative lack of effect for glutamine deprivation

on M1 versus M2 commitment.

(C) Gene set enrichment analysis identifies signifi-

cant transcriptional downregulation of TCA cycle.

(D) Top 30 differentially expressed genes between

M2 macrophages polarized in full media versus

glutamine-deprivedmedia. Corresponding p values

are shown for glutamine-no glutamine M2 macro-

phages, genes that are statistically different be-

tween M0 and M2 macrophages are indicated

in red.

(E) Serum protein production of M2-specific che-

mokine CCL22 are downregulated when macro-

phages are polarized in glutamine-deprived condi-

tions (error bars computed based on at least three

independent experiments).
reports of mitochondrial dysfunction in M1 state. Notably,

reverse flow at Idh is also undetectably low based on the

absence of 5 carbon label from glutamine feed in citrate (from

5-labeled AKG).

It is important to point out that in the context of greatly

reduced Idh activity and associated reduction of carbon flow

to AKG, citric acid is redirected to serve as a precursor for ita-

conic acid synthesis, an important anti-microbial metabolite

identified recently (Michelucci et al., 2013). Our U-13C-glucose

and U-13C-glutamine labeling studies here are consistent with

citrate serving as the direct chemical source for itaconic acid

(Figure 6). Further supporting this possibility, we found Irg1,

which encodes the enzyme catalyzing the aconitate-to-itaco-

nate reaction (Michelucci et al., 2013), to be one of the most up-

regulated transcripts in M1 relative to M0 macrophages

(Figure 3).
Immunity 42, 419–4
Inflammatory Aspartate-
Arginosuccinate Shunt Connects
Anapleurosis of the TCA Cycle and
NO Synthesis
The U-13C-glutamine tracing experiments

suggested an additional breakpoint in the

TCA forM1macrophages (Figure 7A). After

4 hr of labeling, initiated after 20 hr of expo-

sure to LPS, approximately 35% of the

succinate pool but only 22% of malate

can be attributed to glutamine in M1s, as

opposed to comparable labeling of these

metabolites in M0 conditions (�39% and

�35%, respectively, Figure 7A). Addition-

ally, the total pool of malate increased

significantly in M1 conditions contrary to

the only moderate increase in the steady-

state concentration of succinate (see rela-

tiveM0/M1sizes of pie charts in Figure 7A).

These data together suggest that the suc-
cinate-to-fumarate transition in M1 cells is not as efficient as it is

in M0 macrophages, and there might be an alternative route for

malate accumulation. Further examination revealed that the

glutamine carbon-labeling pattern and M0/M1 pool ratio for

malate were strikingly consistent to those observed for argino-

succinate, aspartate, and citrate (Figure 7A; Table S2). Such

conserved labeling distribution patterns are characteristic of me-

tabolites partaking in common metabolic cycles, in which pool

sizes and labels are equilibrated among all members of the cycle,

as illustrated by TCA cycle metabolites in M0 and M2 macro-

phages (Figure 4A). Notably, aspartate, arginosuccinate, malate,

and fumarate are common components of the aspartate-argino-

succinate shunt (Lehninger et al., 2008), a set of transformations

connecting the TCA cycle with the urea cycle (Allen et al., 2011),

with active ornithine-to-citruline conversion. An inflammation-

associated version of this shunt would account for the observed
30, March 17, 2015 ª2015 Elsevier Inc. 425



Figure 6. A Breakpoint in TCA Cycle Is a Major Metabolic Marker of
Macrophage M1 Polarization

Labeling data show that (iso)citrate labeled by glucose does not transfer

carbon to AKG in M1 macrophages, consistently with transcriptional down-

regulation of Idh1, resulting in isocitrate-to-2-oxoglutarate (AKG) transition

blocked in M1-activated macrophages.
labeling patterns in these TCA intermediates and amino acids in

M1 macrophages, connecting the TCA cycle metabolites with

the NO cycle.

To functionally validate the importance of this apparent aspar-

tate-arginosuccinate shunt, we pharmacologically inhibited the

aspartate aminotransferase Got1 (marked with lightning in Fig-

ure 7A) by using aminooxyacetic acid (AOAA) (Kauppinen

et al., 1987). As expected from the U-13C-glutamine labeling re-

sults, pretreatment with AOAA at concentrations ranging from 1

to 10 mM inhibited M1 polarization as measured by NO produc-

tion (Figure 7B) and by iNOS expression (Figure S3A, left) in a

dose-dependent manner, although it did not affect macrophage

viability (Figure S3B). Because NO production plays a role in the

suppression of mitochondrial respiration in TLR-agonist-acti-

vated dendritic cells (Everts et al., 2012), we asked whether

oxygen consumption rates (OCRs) increased in AOAA-treated

M1 macrophages in which NO production was inhibited. As

expected, untreated M1 macrophages exhibited very little

mitochondrion-dependent (rotenone- and antimycin-inhibitable)

oxygen consumption, and rather had very high, compensatory

extracellular acidification rates (ECARs), a mark of exaggerated

aerobic glycolysis (Everts et al., 2012). In contrast, M1 macro-

phages in which Got1/2 was inhibited retained mitochondrial

respiratory function and exhibited ECARs similar to M0 macro-

phages (Figure 7C). This observation could reflect an inability

of macrophages to execute anapleurosis of the TCA cycle in

the presence of NO-based inhibition of succinate dehydroge-
426 Immunity 42, 419–430, March 17, 2015 ª2015 Elsevier Inc.
nase if there is no proper balancing mechanism provided by

the aspartate-aminotransferase as a part of aspartate-argino-

succinate shunt. Furthermore, we observe that perturbation of

the shunt leads to profound functional consequences, such as

a defect in inflammatory cytokine production, e.g., IL6 (Figure 7B,

right).

CoMBI-T Provides Insight into Redox Balance
Regulation in M1-Polarized Macrophages
A related aspect of de novo fatty acid synthesis and the pro-

duction of NO is the significant stoichiometric demand for nico-

tinamide adenine dinucleotide phosphate (NADPH) in these

processes (Knowles and Moncada, 1994). Another NADPH-

demanding process is the regulation of reactive oxygen species

(ROS) levels, mediated in M1 macrophages by Cybb-encoded

NADPH oxidase (Nox2), which we found to be transcriptionally

upregulated in M1 macrophages and downregulated in M2 cells

(Figure S4). Downregulation of Idh in M1-polarized cells compro-

mises one of the sources for NADPH (Geisbrecht and Gould,

1999). In the context of macrophage polarization, two major

sources of NADPH production are typically discussed: conver-

sion of malate to pyruvate by malic enzyme and the oxidative

branch of the pentose phosphate pathway (PPP), whichwas pre-

viously shown to play a role in macrophage polarization (Ha-

schemi et al., 2012) and is also one of the seven M1 versus M2

defining modules identified by CoMBI-T (Figure 3). In our data,

we did not detect signatures of malic enzyme activity in M1mac-

rophages, corresponding to labeled pyruvate or lactate from

U-13C-glutamine (Figures S5A and S5B). We did, however,

confirm significant carbon flow through the oxidative arm

of PPP (Haschemi et al., 2012) in M1 macrophages by using
13C-glucose carbon tracing experiments, finding that both the

total pool of pentose-5-phosphates and their labeled fraction

increased significantly in M1 relative to M0 cells (Figure S5C).

In addition to the previously described role of Carkl (Haschemi

et al., 2012), metabolic and transcriptional regulation of the

PPP pathway was indicated by the relation of levels of early

PPP metabolites (D-Glucono-1,5-lactone 6-phosphate and 6-

Phospho-D-gluconate, Figure 3) and transcriptional regulation

of the downstream enzyme Pgd that converts 6-Phospho-D-glu-

conate to ribulose-5P. Pgd’s upregulation under M1 conditions

(Figure S6A) is consistent with increased flux through the PPP,

leading to a decrease in steady-state levels of early PPP metab-

olites relative to levels in M0 and M2 cells (hence, these metab-

olites are marked in red in Figure 3). These effects of oxidative

stress are typically counterbalanced by reducing agents such

as glutathione, and indeed, we observed coordinated transcrip-

tional regulation of glutathione reductase (Gsr, upregulated

in M1 cells) and glutathione peroxidase (Gpx1, downregulated

in M1 cells) (Figure S6B), which was consistent with labeling

data showing increased labeling of oxidized glutathione by

glutamine-derived carbon in M1, but not M2, macrophages

(Figure S6C).

DISCUSSION

In this work, we developed a pipeline for high-throughput parallel

metabolic and transcriptional data profiling with integration

of these datasets that allows non-targeted identification of



Figure 7. Labeling Data Reveal an Inflammatory Version of the Aspartate-Arginoscucinate Shunt in M1-Polarized Macrophages

(A) U-13C glucose (green outline), U-13C (black outline), and 15N2-glutamine (blue outline) were used as media for unstimulated andM1-stimulated macrophages.

Circle sizes are scaled with respect to pool sizes for individual metabolites in each condition. Exact labeling distributions and patterns are detailed in Table S2 for

each metabolite.

(B) Inhibition of Got1/2 (aspartate-aminotransferase, marked with lightning sign in A) with AOAA decreases nitric oxide and IL-6 production in a dose-dependent

manner without affecting macrophage viability (Figure S3B) (error bars computed based on at least three independent experiments).

(C) SeaHorse data on oxygen consumption rate (OCR) and extracellular acidification rates (ECAR), both rotenone and antimycin inhibited, and very high,

compensatory M1 macrophages in which Got1/2 was inhibited, retain mitochondrial respiratory function (top), and exhibited ECARs similar to M0 macrophages

(bottom).
regulated metabolic modules. We applied this approach to un-

cover an integrated global picture of the metabolic rewiring that

characterizes macrophage polarization and revealed a set of

known and novel modules that define the M1- and M2-polarized

states, including the UDP-GlcNAc biosynthesis pathway, gluta-

mine-related pathway flows, an M1-specific TCA cycle break-

point at Idh, and the engagement of aspartate-arginosuccinate

shunt to balance carbon flow in the presence of NO production.

We additionally confirmed previously recognized metabolic fea-

tures, such as elevated glycolytic activity and reduction in oxida-

tive phosphorylation activity upon polarization to M1, which are

metabolically consistent with, and gain mechanistic context

from, our findings of flux discontinuity within the canonical TCA

cycle (at Idh and succinate dehydrogenase). The discontinuity

at Idh is evident at both the transcriptional and the steady-state

metabolic level and was confirmed by the pathway flow studies.

Themetabolic role of this pathway flow constriction downstream

of isocitrate, in parallel with high carbon flow into the TCA up-
stream of citrate, appears to be the metabolic mechanism to

enable significant production of large pools of fatty acids and

itaconate, which exhibits a labeling pattern identical with its up-

stream precursors citrate/isocitrate (the LCMS methods used

here do not distinguish the two citrate isomers). Itaconate itself

was recently described as an important anti-microbial agent, dis-

rupting the glyoxylate shunt, a pathway used in some pathogens

(e.g.,Mycobacterium tuberculosis) but not mammalian cells (Mi-

chelucci et al., 2013). The significance of flux re-direction in M1

macrophages at the level of citrate/aconitate is also evident

from recent studies, where knock-down of the mitochondrial cit-

rate carrier was shown to lead to defects in macrophage activa-

tion in response toLPS (Infantino et al., 2011;O’Neill, 2011) due to

blocking production of cytosolic AcCoA. Overall, our data show

that themodule embodying citrate/isocitrate, Irg1, and itaconate

constitutes a systems-level marker of M1 polarization that is at

least as robust as the well-established Cox2-PGE2 and iNOS-

NO transcriptional-metabolic duos (see Figure 3).
Immunity 42, 419–430, March 17, 2015 ª2015 Elsevier Inc. 427



Analysis of labeling patterns in M1 macrophages supports a

role for the aspartate-arginosuccinate shunt in coordinating the

NOcyclewith anapleurosis of the TCAcycle. Such a route of ana-

pleurosiswould likely be necessary in the context of a TCAbreak-

point at succinate dehydrogenase. Note that the flow fromaspar-

tate to oxaloacetate via aspartate transaminase replenishes the

cycle immediately downstream of this break and provides sub-

strate for citrate synthase to handle an increased flux producing

itaconic acid from the same carbon skeleton. Functionally, inhibi-

tion of aspartate transaminase led to adecrease inNOproduction

and themaintenance ofmitochondrial respiration, a finding that is

consistent with the known inhibitory effects of NO on the electron

transport chain (Everts et al., 2012). The ability of AOAA to inhibit

NO production has been previously demonstrated for astrocytes

(Schmidlin andWiesinger, 1998), where the transamination inhib-

itor eliminates flow from the aspartate nitrogen to citruline and

the citruline-arginine-NO cycle. These findings indicate that the

aspartate-arginosuccinate shunt might be an adaptation to the

fact thatNO, amajor effectormolecule ofM1macrophages, com-

petes with oxygen to inhibit complex II of the electron transport

chain and, by doing so, attenuates succinate-to-fumarate con-

version creating the aforementioned second break-point in the

TCA cycle (Stadler et al., 1991). Furthermore, the presence of

this break point would be consistent with the release of succinate

from the local metabolic network, enabling it to participate in

signaling pathways that are central to M1 polarization such as

IL-1b induction (Tannahill et al., 2013).

CoMBI-T analysis allowed us to identify two pathways critical

for M2 polarization: glutamine-related metabolism and the

UDP-GlcNAc pathway. These features of M2 polarization have,

to the best of our knowledge, not been discussed previously.

We found that transient glutamine deprivation had negative ef-

fects on the M2 activation program, which was associated with

its effects on the TCA cycle. mTOR signaling has been shown

to regulate macrophage polarization (Byles et al., 2013) and pro-

longed or harsher starvation conditions will probably lead to an

interesting interplay between macrophage polarization, meta-

bolism, and mTOR signaling, which is an exciting avenue for

future exploration. Moreover, targeted inhibition of N-glycosyla-

tion, a pathway highlighted in M2 macrophages and one that re-

quires UDP-GlcNAc as a sugar donor, also inhibited M2 activa-

tion (as measured by Relma, CD206, and CD301 expression).

This finding, which could reflect the requirement for N-glycosyla-

tion to correctly fold and traffic proteins such as Relma, CD206,

and CD301, which are destined for export to the cell surface, or

for secretion, emphasizes the importance of glutamine-depen-

dent pathways in thesecells.Our findingsdonot exclude thepos-

sibility that UDP-GlcNAc is also serving as a sugar donor for

O-glycosylation, a pathway that is recognized to serve as amajor

connecting hub between cellular metabolism and signaling

(Wellen and Thompson, 2012). The dependence of M2 activation

on glutamine is intriguing not least because of the recognized role

of M2 macrophages in wound healing (Murray and Wynn, 2011)

and the findings that glutamine supplementation might provide

a viablemeans to support recovery after surgery (Wilmore, 2001).

We are optimistic that these findings summarized above will

spur activity into the development of approaches to manipulate

the newly identified metabolic modules to affect macrophage

function in clinically relevant settings.
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EXPERIMENTAL PROCEDURES

Animals and Mouse Bone-Marrow-Derived Macrophage Culture

C57BL/6J (The Jackson Laboratory) mice were bred and maintained under

specific-pathogen-free conditions according to protocols approved by the

institutional animal care at Washington University School of Medicine and

were used at age of 8–12 weeks. BM cells were harvested from femurs and

tibia of C57BL6/J mice and differentiated in the presence of recombinant

mouseM-CSF (20 ng/ml; R&DSystems) in complete RPMI 1640 (Corning) con-

taining 10mMglucose, 2mML-glutamine, 100U/ml of penicillin/streptomycin,

and 10% FCS for 7 days. Day 7 BMDMs were washed and cultured in pres-

ence or absence (for 4 hr) of 2 mM glutamine medium containing 10 mM

glucose and 10% dialyzed FCS prior to IL-4 (20 ng/ml; PeproTech) or lipopoly-

saccharide (LPS, 20 ng/ml; Sigma) + IFN-g (50 ng/ml; R&D Systems) 24 hr

stimulation. In Got1/2 inhibition experiments, day 7 BMDMs were treated for

1 hr with 10 mM, 5 mM, or 1 mM aminooxacetic acid (AOAA; Sigma) prior to

24 hr stimulation with LPS + IFN-g. For inhibition of N-glycosylation, tunicamy-

cin (1 mMor 2 mMas indicated; Sigma) was added on day 7BMDMs 1 hr prior to

24 hr stimulation with IL-4.

Quantification of CCL22, IL-6, and Nitric Oxide in Culture

Supernatants

CCL22, IL-6, and nitric oxide concentrations were determined with, respec-

tively, the CCL22/MDC DuoSet ELISA kit (R&D Systems), the IL-6 ELISA

Ready-Set-Go! Kit, and the Griess Reagent System (Promega), according to

manufacturers’ instructions.

Flow Cytometry and Extracellular Flux Analysis

Cells were blocked with 5 mg/ml of anti-CD16/32 (clone 93, eBiosciences)

before the surface staining with antibodies to F4/80 (clone BM8, eBioscien-

ces), CD206 (clone C068C2, Biolegend), CD301 (clone ER-MP23, AbD Sero-

tec). For intracellular staining of RELMa and iNOS, cells were fixed with a fix-

ation buffer (BD Biosciences) and stained with rabbit anti-RELMa (PeproTech)

andmouse anti-NOS2 (clone C-11; Santa Cruz Biotechnology), followed by in-

cubation with appropriate fluorochrome-conjugated anti-rabbit or anti-mouse

IgG (both Jackson Immunoresearch). Cells were also stained with LIVE/DEAD

(Invitrogen) or 7-amino-actinomycin D (eBiosciences). Data were acquired on

a FACSCanto II flow cytometer (BD Biosciences) and analyzed with FlowJo

v.9.5.2 (Tree Star). Measurements of oxygen consumption rates and extracel-

lular acidification rates were made with a Seahorse extracellular flux analyzer

as described previously (Everts et al., 2012, 2014).

LC-MS and Data Analysis for Metabolomics

Data generated from a Quadrupole Time-of-flight mass spectrometer was

used as theMS input for our CoMBI-T analysis; all steps ofMS data processing

were performed with Matlab R2010b (The Mathworks) using functions native

to the Bioinformatics, Statistics, Database, and Parallel Computing toolboxes

(Fuhrer et al., 2011). For the subsequent isotopic labeling experiments to vali-

date the CoMBI-T findings (amino acid and central metabolite analyses), either

triple-quadrupole MS data were acquired using scheduled selective reaction

monitoring (SRM) in negative mode, or high-resolution accurate mass

(HRAM) LC-MS data were acquiredwith a QExactive Orbitrapmass spectrom-

eter (Thermo Fisher Scientific), in either positive or negative mode as appro-

priate; acquisition was controlled by Xcalibur 2.2 software (Thermo Fisher

Scientific). U-13C-L-glutamine and U-13C-D-glucose were purchased from

Sigma. Cell extracts were prepared from live cultures on Hamilton StarPlus

system running an automated metabolite extraction protocol using hot 70%

aq. ethanol (70�C). Supernatant of extracted samples were dried under vac-

uum and resuspended in LC-MS grade water for analysis of the relative abun-

dance of 13C and 15N metabolites (Munger et al., 2008).

RNA Sequencing

mRNA was extracted from cell lysates by means of oligo-dT beads (Invitro-

gen). For cDNA synthesis, we used custom oligo-dT primer with a barcode

and adaptor-linker sequence (CCTACACGACGCTCTTCCGATCT-XXXX

XXXX-T15). After first-strand synthesis, samples were pooled together based

on Actb qPCR values and RNA-DNA hybrid was degraded with consecutive

acid-alkali treatment. Then, a second sequencing linker (AGATCGGAAGAG



CACACGTCTG) was ligated with T4 ligase (NEB) followed by SPRI clean-up.

The mixture then was PCR enriched 12 cycles and SPRI purified to yield final

strand-specific RNA-seq libraries. Data were sequenced on HiSeq 2500 by’/

50bpX25bp pair-end sequencing. Second mate was used for sample demul-

tiplexing, at which point individual single-end fastqs were aligned to mm9

genome via TopHat and gene expression was obtained via ht-seq and DESeq2

for differential expression.

Integrated Network Analysis

To construct the network for integrated analysis of metabolomic and RNA-

seq data, we downloaded KEGG REACTION, KEGG ENZYME, KEGG

COMPOUND, and KEGG GLYCAN databases (August 2013 version) (Kane-

hisa et al., 2012). Additionally, the reaction converting cis-aconitate to itaco-

nate controlled by Irg1 (Michelucci et al., 2013) was added to the network

manually. A global combined network that connects nodes representing reac-

tions to the nodes representing metabolites was constructed, in which nodes

representing each reaction are connected to its respective substrates and

products. Then we mapped reactions to enzymes REACTION and ENZYME

databases. COMPOUND and GLYCAN databases were used to algorithmi-

cally access names for compounds. Reactions lacking at least one enzyme

with an associated mouse gene were excluded from the network; sub-reac-

tions embedded in multi-step metabolic transformations were masked, keep-

ing only net reaction in the network. Based on names, anomeric metabolites

were collapsed into a single species. Then we masked some common highly

connected metabolites in the network: non-organic metabolites (water,

ammonia, etc.), (deoxy)nucleosides phosphates (ATP, ADP, dATP, etc.), com-

mon cofactors (NADH, FAD, etc.), some generic metabolites (acceptors, ROH,

etc.), and ubiquitin. The resulting network represents topological description of

murine metabolism, independent of specific data. After data acquisition and

application to the integrated model network, p values for metabolites and

genes were calculated with limma and DESeq R-packages for differential ex-

pressions (Anders and Huber, 2010). For analysis, reactions with transcripts

not detected in any sample (number of matching reads <5, leading to 14,276

significantly expressed genes) were excluded from the network. Next, reac-

tions were assigned a differential regulation p value, corresponding to a differ-

ential expression p value for the transcript specific to the reaction. In cases

where more than one enzyme (transcript) was associated with the reaction,

we selected the single enzyme (transcript) that had the minimal p value; these

p values were assigned as reaction p values. Then groups of reactions having

at least one common metabolite and a shared most-significant gene were

collapsed into single nodes. The problem for finding most significant module

in the network was thus reduced to a maximum-weight connected subgraph

(MWCS) problem (Beisser et al., 2010). Scores were assigned to all metabo-

lites and reactions based on their p values and FDR threshold fitting a FitBum-

Model distribution separately to metabolites and genes: metabolite and

reaction p values with low p value had positive scores; ones with high p values

had negative scores. The score for metabolites absent from the data is a

parameter and was chosen to be �10. MWCS instances were solved by heinz

solver (http://www.mi.fu-berlin.de/w/LiSA/Heinz). Resulting networks were

annotated and plotted in Cytoscape.
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