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Abstract 

Chromophobe renal cell carcinoma (chRCC) and renal oncocytoma (RO) are closely related, 

rare kidney tumors. Mutations in complex I (CI)-encoding genes play an important role in 

dysfunction of the oxidative phosphorylation (OXPHOS) system in RO but are less frequently 

observed in chRCC. As such, the relevance of OXPHOS status and role of CI mutations in 

chRCC remain unknown. To address this issue, we performed proteome and metabolome 

profiling as well as mitochondrial whole-exome sequencing to detect mitochondrial alterations in 

chRCC tissue specimens. Multi-omic analysis revealed downregulation of electron transport 

chain (ETC) components in chRCC that differed from the expression profile in RO. A decrease 

in mitochondrial (mt)DNA content, rather than CI mutations, was the main cause for reduced 

OXPHOS in chRCC. There was a negative correlation between protein and transcript levels of 

nuclear DNA- but not mtDNA-encoded ETC complex subunits in chRCC. In addition, the 

reactive oxygen species scavenger glutathione (GSH) was upregulated in chRCC due to 

decreased expression of proteins involved in GSH degradation. These results demonstrate that 

distinct mechanisms of OXPHOS exist in chRCC and RO and that expression levels of ETC 

complex subunits can serve as a diagnostic marker for this rare malignancy. 

 

Significance: Findings establish potential diagnostic markers to distinguish malignant chRCC 

from its highly similar but benign counterpart, renal oncocytoma. 
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Introduction 

Chromophobe renal cell carcinoma (chRCC) and renal oncocytoma (RO) originate from 

intercalated cells of the collecting duct, with each accounting for approximately 5% of all renal 

neoplasms (1,2). The World Health Organization (WHO) chRCC classification guidelines define 

a classic and an eosinophilic variant (1). Classic chRCC (about 75-80% of chRCC) consist of 

large cells with reticular cytoplasm and prominent cell membranes (pale) cells that are 

characterized by numerous cytoplasmic microvesicles, which is propably related to defective 

mitochondrial development, whereas mitochondria are abundant in the eosinophilic phenotype 

(3-6). The characteristic genetic feature of chRCC is monosomy of chromosomes 1, 2, 6, 10, 

13, 17, and often 21 (7-9). Although the typical mutations in tumor protein 53 (TP53; 32%) and 

phosphatase and tensin homolog (PTEN; 9%) genes have been reported (7,10,11), chRCC has 

a low mutational burden overall; there are no clear driver mutations in >50% of chRCC cases 

(10,11). This is in contrast to clear cell (cc)RCC in which the frequency of the Von Hippel-Lindau 

(VHL) gene mutation is >80% (12).  

RO is classified as a benign renal epithelial neoplasm (13,14) that is usually treatable by 

nephrectomy. The main molecular hallmark of RO is the marked reduction or complete loss of 

complex I (CI) enzyme activity in the electron transport chain (ETC) (15,16). This is primarily 

caused by mutations in mitochondrial (mt)DNA and especially, but not exclusively, in genes 

encoding CI subunits (15,17). Most of the mtDNA mutations are well above the threshold for a 

pathogenic phenotypic effect resulting from high heteroplasmic loads (15,17), and inhibit tumor 

growth through adverse effects on respiratory complex assembly (18,19). Thus, mtDNA 

mutations are thought to be the main cause of the indolent, low-proliferating, non-invasive 

behavior of RO and are driving the cancer phenotype (17,20,21). 

ChRCC is considered as the malignant counterpart to RO (21) with similar origin, gene 

expression patterns, and mitochondrial pathology, making them difficult to distinguish 

histologically (2,10,21). The 2 tumor types have distinct mtDNA mutation profiles (18,19). In 
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contrast to RO, only 13% of chRCC cases harbor CI mutations, with a heteroplasmy rate >50% 

(22). Transcriptome analyses have shown that chRCC cases with mutations in CI subunit-

encoding genes did not have RNA expression patterns associated with loss of oxidative 

phosphorylation (OXPHOS) (22,23), contrary to expectation (24). This suggests possible 

alternative roles for CI mutations in OXPHOS or, as-yet unknown, compensatory mechanisms 

leading to increased transcript levels of OXPHOS-related factors. It was recently reported that 

chRCC and RO have elevated levels of GSH (25-29), which is a novel hallmark of all RCCs and 

a potential therapeutic target (30). Enhanced GSH biosynthesis in RO is presumed to be an 

adaptive event resulting from loss-of-function mutations in CI subunits (25,26). However, given 

the low frequency of CI mutations in chRCC (22), it is likely that the elevated GSH level is the 

result of an alternative mechanism. 

Here we demonstrate that protein levels of ETC complex subunits were decreased 

whereas global mitochondrial mass was unchanged in chRCC compared to healthy kidney 

tissue. This is in contrast to RO, in which there was a general increase in mitochondrial mass 

but not in CI subunit expression. There was a negative correlation between protein and mRNA 

levels of ETC complex subunits in chRCC, and a reduction in mtDNA content rather than CI 

mutations was found to be responsible for the decrease in OXPHOS. Interestingly, GSH levels 

increased with mtDNA depletion. These features may serve as markers for distinguishing 

between these 2 closely related tumor types. 

 

Materials and Methods 

Sample Acquisition and Verification 

Nine pairs of chRCC and adjacent healthy kidney tissue derived from nephrectomies at the 

Charité – Universitätsmedizin Berlin were collected in liquid nitrogen within 30 minutes after 

surgery and preserved at -80°C. The clinical characteristics of the tumors are reported in Table 
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S1. From the collected tissue samples, histologic sections were stained with hematoxylin and 

eosin. The diagnosis of chRCC and the corresponding matched tumor-free kidney tissue was 

done according to the WHO classification criteria. Only cases with a clear diagnosis of chRCC 

were considered for the study. The typical genetic feature of chRCC, the monosomy of 

chromosomes 1, 2, 6, 10, 13, 17, and 21, was confirmed in all cases by analyzing the 

chromosome copy number variation based on the whole-exome sequencing data (Figure S1). 

The study was approved by the institutional Ethics Committee (no. EA1/134/12) and was carried 

out in accordance with the Declaration of Helsinki. All participants gave written informed 

consent. 

 

Proteomic Analysis 

The tissue samples for proteomics were processed with iST 96X kits following the 

manufacturer’s protocol (iST sample preparation kit 96X, PreOmics, Martinsried, Germany). 

Briefly, tissues were homogenized under denaturing conditions with a FastPrep (three times for 

60 s, 6.5 m x s-1), followed by boiling at 95°C for 10 min. The lysates containing 40 µg protein 

were then digested by trypsin and Lys-C protease mixture at 37 ◦C overnight. Subsequently, 

the peptides were purified with the cartridge and each sample was further separated using three 

fractions according to (31). A total of 10 µg of each fraction was analyzed by LC-MS for 

proteome profiling. All fractions were allocated to the corresponding replicate and analyzed 

jointly by the software tool MaxQuant (32). 

LC−MS/MS was carried out by nanoflow reverse-phase liquid chromatography (Dionex 

Ultimate 3000, Thermo Scientific, Waltham, MA) coupled online to a Q-Exactive HF Orbitrap 

mass spectrometer (Thermo Scientific, Waltham, MA). Briefly, the LC separation was performed 

using a PicoFrit analytical column (75 μm ID × 55 cm long, 15 µm Tip ID (New Objectives, 

Woburn, MA) in-house packed with 3-µm C18 resin (Reprosil-AQ Pur, Dr. Maisch, Ammerbuch-
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Entringen, Germany). Peptides were eluted using a gradient from 3.8 to 40% solvent B in 

solvent A over 120 min at 266 nL per minute flow rate. Solvent A was 0.1 % formic acid and 

solvent B was 79.9% acetonitrile, 20% H2O, 0.1% formic acid. Nanoelectrospray was generated 

by applying 3.5 kV. A cycle of one full Fourier transformation scan mass spectrum (300−1750 

m/z, resolution of 60,000 at m/z 200, AGC target 1e6) was followed by 16 data-dependent 

MS/MS scans (resolution of 30,000, AGC target 5e5) with a normalized collision energy of 27 

eV. In order to avoid repeated sequencing of the same peptides, a dynamic exclusion window of 

30 sec was used. In addition, only peptide charge states between two to eight were sequenced. 

Raw MS data were processed with MaxQuant software (v1.6.0.1) (32) and searched 

against the human proteome database UniProtKB with 70,941 entries, released in 01/2017. 

Parameters of MaxQuant database searching were: A false discovery rate (FDR) of 0.01 for 

proteins and peptides, a minimum peptide length of 7 amino acids, a mass tolerance of 4.5 ppm 

for precursor and 20 ppm for fragment ions were required. A maximum of two missed cleavages 

was allowed for the tryptic digest. Cysteine carbamidomethylation was set as a fixed 

modification, while N-terminal acetylation and methionine oxidation were set as variable 

modifications. MaxQuant processed output files can be found in Table S2, showing peptide and 

protein identification, accession numbers, % sequence coverage of the protein, q-values, and 

LFQ intensities. Contaminants, as well as proteins that were only identified by site modifications 

and proteins derived from the reversed part of the decoy database, were strictly excluded from 

further analysis. 

 

Metabolite Profiling 

About 30 mg of nine unrelated and N2 shock frozen chRCC and corresponding healthy kidney 

tissues were used for metabolite profiling. Metabolite extraction and tandem LC-MS 

measurements were done as previously reported by us (25). In brief, methyl-tert-butyl ester 
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(MTBE), methanol, ammonium acetate, and water were used for metabolite extraction. The 

subsequent separation was performed on an LC instrument (1290 series UHPLC; Agilent, Santa 

Clara, CA), online coupled to a triple quadrupole hybrid ion trap mass spectrometer QTrap 6500 

(Sciex, Foster City, CA), as reported previously (33). Transition settings for multiple reaction 

monitoring (MRM) are provided in Table S3. 

The metabolite identification was based on three levels: (i) the correct retention time, (ii) 

up to three MRM’s and (iii) a matching MRM ion ratio of tuned pure metabolites as a reference 

(33). Relative quantification was performed using MultiQuantTM software v.2.1.1 (Sciex, Foster 

City, CA). The integration setting was a peak splitting factor of 2 and all peaks were reviewed 

manually. Only the average peak area of the first transition was used for calculations. 

Normalization was done according to used amounts of tissues and subsequently by internal 

standards, as indicated in Table S3.  

 

Determination of Free and Total GSH in Plasma and Urine  

The GSH level in plasma- (6 RO, 6 ccRCC, 12 pRCC, 6 chRCC, and 6 healthy) and urine 

specimens (8 RO, 20 ccRCC, 19 pRCC, 7 chRCC, and 20 healthy) was investigated to see if it 

can be used as a non-invasive metabolic marker. Free and total GSH were measured using a 

GSH fluorescent detection kit (cat.no. EIAGSHF) according to the manufacturer’s protocol 

(Invitrogen, Carlsbad, CA).  

 

Enzyme Activity Measurement 

Sample preparation to spectrophotometrically assay enzyme activity was done as reported 

previously (33). In brief, approximately 5 mg of the tumor and healthy kidney tissues were 

homogenized and centrifuged at 600 g at 4 °C for 10 min. The protein concentrations of 

supernatants were further determined with a BCA assay (Thermo Fisher, Germany). For 



8 

complex I, II, and V, 4 µg protein of each sample were used for the enzymatic activity 

measurement; for complex III, and IV, 2 µg protein was used. Rotenone (10 µM), malonic acid 

(5 mM), antimycin A (5 µg/ml), potassium cyanide (500 µM), and oligomycin (5 µg/ml) served as 

specific inhibitors for complex I to V, respectively.  

 

Whole Exome Sequencing and Mitochondrial Bioinformatics Analysis 

DNA was isolated from the remaining pellets after metabolite extraction with a DNA purification 

kit according to the manufacturer’s protocol (QIAmp DNA Mini Kit for Tissues, QIAGEN, Hilden, 

Germany). In brief, the pellets were lysed by proteinase K and the RNA was removed by 

RNase, the RNA-free genomic DNA was then purified and eluted on QIAamp Mini spin columns 

for library preparation. The library preparation was performed according to Agilent’s SureSelect 

protocol (SureSelectXT Human All Exon V5, protocol version B4 August 2015) for Illumina 

paired-end sequencing, as reported previously (25). The fastq files were used as input for the 

MToolBox pipeline (34), in order to extract mitochondrial DNA sequences and quantify each 

variant allele heteroplasmy, as done previously (25). Copy number variation (CNV) was inferred 

and visualized with the CNVkit (35). 

 

Analysis of TCGA RNA-seq Data 

TCGA (ID: KICH) RNA-seq data were obtained from UCSC Xena (36) 

(https://xenabrowser.net/). Accurate transcript quantification of chRCC (n=66) and controls 

(n=25) was based on the RNA-Seq by the Expectation Maximization method (37). 
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Cell Culture 

The recently established and chRCC-derived cell line UOK276 (38) was a kind gift from Prof. 

Marston Linehan (Center for Cancer Research at the National Cancer Institute, USA). The 

ccRCC derived cell line 786-O and the normal kidney cell line HK2 were obtained from ATCC. 

No mycoplasma testing were performed before the experiments. The three cell lines were 

cultivated in Dulbecco’s modified Eagle medium (DMEM, Life Technologies, New York, NY) 

containing 4.5 g/L glucose, supplemented with 10% fetal bovine serum (FBS, Silantes, Munich, 

Germany) and 1% penicillin-streptomycin-neomycin (Invitrogen, Carlsbad, CA) at 37°C in a 

humidified atmosphere of 5% CO2.  

The three types of cells were seeded into 6-well plates and the cell medium was supplemented 

with 100 ng/ml ethidium bromide (EtBr) and 50 µg/ml uridine to induce mtDNA depletion. On 

days 0, 2, 5, 8, 13, and 19, the cells were collected and frozen immediately at -80°C for the 

measurement of GSH, mtDNA, RNA and protein correlation. 

 

Western blotting 

The proteins were extracted from the cells by using the TRIzol reagent (Sigma), and then 

resolved by SDS–PAGE. Separated proteins were transferred to polyvinylidene fluoride 

membranes and incubated with indicated primary antibodies diluted in TBST (20 mM Tris, 150 

mM NaCl, and 0.1% Tween 20) supplemented with 5% bovine serum albumin (Sigma). Primary 

antibodies were detected with horseradish peroxidase-conjugated secondary antibodies 

followed by exposure to ECL reagents (Bio-Rad). The used primary antibodies and dilutions are 

as follows: Anti MT-ND5 (Thermo Fisher, PA5-39277, 1:500); anti NDUFS1 (Proteintech, 

12444-1-AP, 1:1000); anti SDHB (Sigma, HPA002868, 1:500); anti UQCRC2 (Sigma, 

HPA007998, 1:250).   
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Quantitative PCR 

Total RNA and the genomic DNA were isolated using the TRIzol reagent (Sigma), and the 

QIAamp DNA micro kit (Qiagen) according to the manufactures’ instruction, respectively. The 

quantitative PCR analysis was performed using GoTaq qPCR regents (Promega) mixed with 

indicated primers in a 7900 Real-Time PCR system (Applied Biosystems). Pre-designed primers 

were synthesized by Eurofins Genomics detecting the following transcripts: MT-ND5 (5’-

CCGGAAGCCTATTCGCAGGA, 5’-ACAGCGAGGGCTGTGAGTTT), NDUFS1 (5’-

TGCTGAAGCCCTGGTAGCTC, 5’-TGCCTCTTCCACACCAGCAA), SDHB (5’-

GACGGGCTCTACGAGTGCAT, 5’-TGATGGTGTGGCAGCGGTAT), UQCRC2 (5’-

AACCACCCATTTGCTGCGTC, 5’-TCCCTTGTTGCGGTCACACT), SLC1A4 (5’-

AGCAGCCATCTTCCAGTGTGT, 5’-GGTCATGAGTAGGCAGCCCAA). The depletion of 

mtDNA in EtBr treated cells was verified by quantifying a 399-bp mtDNA product that spans the 

region of nt 3153 – nt 3551 (Primer: 5’-TTCACAAAGCGCCTTCCCCCGT, 5’-

GCGATGGTGAGAGCTAAGGTCGGG) and a 238-bp nuclear DNA product that spans the 

region of exon 5 (nt 55953445 – nt 55953207) of the gene USMG5 (Primer: 5’-

AGTGTCTTAAGAGTAAAGCTGGCCACA, 5’-TTGCCTTTGTTGCATTTTCTACAG). 

 

Experimental Design and Statistical Rationale, and Pathway Analyses 

For proteome and metabolome data sets, a two-sample t-test was performed. Multiple test 

correction was done by Benjamini-Hochberg with an FDR of 0.05 by using Perseus (v1.6.0.2) 

(39). Significantly regulated proteins and metabolites were marked by a plus sign in the 

corresponding Tables S2 and S3. The Mann–Whitney U test was used to determine whether 

GSH levels from independent urine and plasma samples have the same distribution; the p-value 

significance cut-off was ≤ 0.01. 
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For comprehensive proteome data analyses, gene set enrichment analysis (GSEA, v3.0) 

(40) was applied in order to see, if a priori defined sets of proteins show statistically significant, 

concordant differences between chRCC and kidney tissues. Only proteins with valid values in at 

least six of nine samples in at least one group with replacing missing values from the normal 

distribution for the other group were used (Table S2). GSEA default settings were applied, 

except that the minimum size exclusion was set to 10 and KEGG v6.2 was used as a gene set 

database. The cut-off for significantly regulated pathways was set to a p-value ≤ 0.01 and FDR 

≤ 0.05. 

 

Data Availability 

The datasets generated in the current study are available as supplementary files and in the 

following repositories: 

WES files can be accessed via https://www.ncbi.nlm.nih.gov/sra with the accession number: 

PRJNA413158. Proteomics raw data have been deposited to the ProteomeXchange 

Consortium via the Pride partner repository (41) with the dataset identifier PXD019123. 

Metabolomics data have been deposited in the publically available repository PeptideAtlas with 

the identifier PASS01250 and can be downloaded via http://www.peptideatlas.org/PASS/ 

PASS01250. 

 

Results 

Proteomic Analysis Reveals OXPHOS Dysregulation in ChRCC 

The loss of CI and compensatory increases in the protein levels and enzymatic activity of the 

other ETC complexes are the primary molecular hallmarks of RO (15,16,25,26). To determine 

whether mitochondrial dysfunction is also present in chRCC, we carried out a proteomic 

analysis of 9 chRCC and adjacent normal kidney tissue samples (Table S1). There was a 
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general decrease in the expression of ETC complex subunits in chRCC relative to normal 

kidney tissue that predominantly affected CI (Fig. 1A), as determined with the t test with 

Benjamini-Hochberg correction (false discovery rate [FDR] < 0.05) (Table S2). The average log2 

fold change (chRCC vs kidney) was −1.79 for CI, −1.05 for CII, −0.91 for CIV, and −0.57 for CV, 

with no change observed for CIII (Fig. 1A). A comparison with RO proteome data (25) revealed 

that only CI subunits were downregulated in both tumors, whereas protein levels of the 

components of all other complexes were increased in RO and decreased in chRCC relative to 

normal tissue (Fig. 1A and B). It is worth noting that increased mitochondrial mass, a 

histological hallmark of RO, was consistently observed by allocation analysis of the proteome 

data, with mitochondrial proteins showing an obvious shift towards upregulation (Fig. 1C). This 

confirmed the strong reduction or complete loss of CI in RO (15,25), as the increased 

mitochondrial mass would be expected to reflect an increase in all mitochondrial proteins. 

However, allocation analysis of the chRCC proteome did not reveal any significant shifts in 

mitochondrial proteins (Fig. 1D), indicating that the decrease in OXPHOS in chRCC relative to 

normal kidney tissue does not result from a change in the amount of mitochondria. 

A comparative proteome analysis of chRCC and RO revealed a marked reduction of CI in 

both tumor types, whereas other ETC complexes showed opposite trends in RO vs chRCC 

(upregulated and downregulated, respectively), suggesting that differences in OXPHOS are a 

potential marker for distinguishing between the two types of tumor. 

 

ChRCC Exhibits a Discrepancy between mRNA and Protein Levels of ETC Complex 

Subunits 

In contrast to the decreased abundance of ETC complex proteins observed by proteome 

profiling, a transcriptome analysis of chRCC (Kidney Chromophobe dataset from The Cancer 

Genome Atlas [TCGA]) indicated that genes encoding ETC components were highly expressed 

(10,23). Gene Set Enrichment Analysis (GSEA) (40) of all quantified proteins showed a negative 
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enrichment score (−0.36) for the Kyoto Encyclopedia of Genes and Genomes pathway 

“oxidative phosphorylation” (Fig. 2A) but a positive score (0.47) for the transcriptome data (Fig. 

2B). We therefore performed a correlation analysis of proteome and transcriptome data and 

found a high overall correlation between protein and mRNA levels (r=0.671) similar to the value 

for all compounds of mitochondria (r=0.712; Fig. 2C). However, the protein abundance of 

individual ETC complex subunits showed a low correlation with the corresponding transcript 

(r=0.196).  

To clarify the biological significance of this inverse and ETC specific regulation of the 

proteome and transcriptome, we compared the enzyme activity of all ETC complexes between 

chRCC and adjacent healthy kidney tissue samples and found a significant reduction in the 

activities of CI, CII, CIV, and CV, but no change in that of CIII in chRCC (Fig. 2D–H), which was 

consistent with the observed trend in protein levels (Fig. 1A). 

 

GSH Level is Increased Whereas Expression of GSH-degrading Enzymes Is Decreased in 

ChRCC 

Reactive oxygen species (ROS) are produced by the ETC, primarily by CI and CIII (42,43). The 

levels of GSH, the major intracellular ROS scavenger, as well as its related metabolites are 

elevated in RO as an adaptive response to CI deficiency (25,26). Here we found that the top 

three metabolites with higher levels in chRCC compared with normal kidney tissue were all 

related to GSH metabolism, i.e., GSH (115 fold), glutathione disulfide (GSSG, 54 fold), and 

gamma-glutamylcysteine (15 fold) (Fig. 3A–C and Table S3). GSH/GSSG ratio, an indicator of 

cellular oxidative stress status (44), was increased in all chRCC samples except the Case 4 

sample (Fig. 3D), implying a general reduction in oxidative stress in chRCC resulting from the 

≥100-fold higher GSH and GSSG levels compared to a normal kidney. Contrary to the 

increased levels of GSH-related metabolites, the GSH metabolism pathway was 

underrepresented (P ≤ 0.005) in the chRCC proteome GSEA (Table S2). This was mainly due 



14 

to downregulation (42-fold lower on average) of GSH-degrading and -conjugating enzymes such 

as gamma-glutamyltransferase (GGT)1, GGT5, glutathione S-transferase mu (GSTM)2, 

GSTM3, GST alpha 1 (GSTA1), and aminopeptidase N (ANPEP), as well as GSH peroxidase 

(GPX)3, which catalyzes the reduction of hydrogen peroxide (Fig. 3E). However, expression of 

glutathione synthetase and glutamate-cysteine ligase (GSS and GCLC, 2 key enzymes involved 

in GSH synthesis) and the other GSH-related enzymes, GPX1 and GPX4, the GSH S-

transferases GST omega 1 (GSTO1) and GST pi 1 (GSTP1), and GSH reductase (GSR) were 

not significantly altered (Fig. 3E). Thus, the elevated levels of GSH-related metabolites in 

chRCC are attributable to a decreased abundance of proteins involved in GSH degradation, and 

not to an increase in GSH synthesis. 

We analyzed free and total GSH levels in the plasma and urine of ccRCC, papillary 

(p)RCC, chRCC, and RO patients vs controls to determine whether GSH can serve as a non-

invasive diagnostic marker. The results showed that free (Fig. S2A and B) and total (Fig. S2C 

and D) GSH levels were similar across tumor types. Thus, urine or plasma GSH levels are not a 

useful metabolic marker for distinguishing between renal tumor types and healthy individuals. 

 

Decreased mtDNA Content and Mutations Lead to OXPHOS Dysfunction in chRCC 

To investigate whether mtDNA mutations are the main cause of OXPHOS dysfunction in 

chRCC, as in RO (15-17,25,26), we examined assembled mitochondrial whole-exome 

sequencing (WES) reads to identify somatic and germline mtDNA mutations in chRCC by 

pairwise comparisons between tumor and healthy tissues. We found adequate coverage 

(>99.9%) and quality for reliable mtDNA reconstruction and variant calling (Table S4). Neither 

the common deletion (mDNA4977), a 4977 bp deletion of mtDNA that specifically disrupts CI, 

CIV, and CV on the ETC, causes a wide spectrums of clinical manifestations (45), and is 

suspected to be associated with carcinogenesis (46), nor any other mtDNA deletions were 

detected in our chRCC cohort. Five somatic non-synonymous events were identified with a high 
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disease score (>0.7) that are potentially pathogenic (Fig. 4A and Table S4): 4 involved CI genes 

from 4 cases and 1 involved CIV genes. The chRCC specimen for Case 4—the only sample 

with a GSH/GSSG ratio lower than that of adjacent healthy tissue—harbored a somatic mutation 

in the mitochondria-encoded NADH-ubiquinone oxidoreductase chain 5 protein gene (MT-ND5; 

>60% heteroplasmy). The very low rate of heteroplasmy for the other events, i.e., 2 events 

<30%, 2 at ~5%, and no non-synonymous CI mutations in the remaining chRCC cases (Fig. 4A 

and Table S4), suggests that mechanisms other than loss-of-function mutations in CI lead to 

OXPHOS dysfunction and increase GSH levels in some chRCC cases. 

ρ0 cells are devoid of mtDNA and show drastic reduction of all ETC proteins (47). As a 

lower mtDNA copy number has been reported in chRCC (48), we speculated that the decreased 

levels of ETC complex subunits could be explained by a fewer number of copies of mtDNA. To 

evaluate mtDNA copy number in chRCC, we compared mtDNA reads between chRCC and 

healthy kidney tissue, as read depth in a specific region of the genome is roughly proportional to 

DNA copy number in that region. The mtDNA read depth was decreased 3 fold in chRCC 

relative to normal tissue (Fig. 4B), indicating a lower mtDNA content. 

 

Low mtDNA Content Causes Downregulation of ETC Complex Subunits and Elevation of 

GSH Levels 

To investigate the influence of mtDNA content on protein and transcript levels of ETC complex 

subunits and GSH levels, UOK276 (a chRCC cell line) (38), was chronically exposed to a low 

concentration of ethidium bromide (EtBr) for 19 days to deplete mtDNA (49). Samples collected 

on days 0, 2, 5, 8, 13, and 19 for analysis showed that mtDNA content decreased within 5 days 

and reached ρ0 status (complete mtDNA depletion) after 13 days (Fig. 5A). The protein levels of 

4 ETC complex subunits, including those encoded by mtDNA (MT-ND5 [CI]) and nuclear DNA 

(NADH:ubiquinone oxidoreductase core subunit [NDUFS]1 [CI], succinate dehydrogenase 

complex iron sulfur subunit [SDH]B [CII], and ubiquinol-cytochrome C reductase core protein 
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[UQCRC]2 [CIII]), were analyzed by Western blotting. All subunits showed a time-dependent 

decrease in expression and were almost undetectable after 13 days (Fig. 5B), implying a direct 

link between mtDNA depletion and a reduction in ETC proteins. 

We next performed metabolome profiling to determine whether GSH levels correlated with 

mtDNA depletion in ρ0 cells and found that they increased during the process of mtDNA 

depletion, reaching a plateau on day 13 (Fig. 5C). Interestingly, there were 2 distinct mRNA 

expression profiles for the 4 ETC complex subunits: nuclear DNA-encoded transcripts 

decreased until day 8 (NDUFS1) or day 13 (SDHB and UQCRC2), before increasing (Fig. 5D). 

The mRNA levels were mostly unrelated to those of the corresponding protein (Fig. 5B). A 

notable exception was the transcript level of the mtDNA-encoded MT-ND5, which decreased 

after just 2 days and did not recover (Fig. 5D), closely mirroring protein expression (Fig. 5B). 

The same EtBr experiments were performed in the ccRCC cell line 786-O (harboring the Von 

Hippel-Lindau gene mutation) and normal human kidney cell line (HK-2) to see whether the 

decrease of mtDNA content and OXPHOS dysfunction is chRCC specific. Similar results were 

found in these two cell lines compared with that in UOK276 cells (Fig. S3A-D). Taken together, 

these results indicate that the decrease in mtDNA content is the main cause of OXPHOS 

dysfunction in chRCC and leads to an elevation in GSH levels. 

 

Discussion 

Although chRCC was identified 30 years ago as a type of kidney cancer (50), it is not well 

understood because of its rarity. Two recent studies comprising around 100 cases investigated 

the genetic causes of chRCC but failed to identify obvious driver mutations in >50% of cases 

(10,23). In contrast, mutations in CI genes and mitochondrial abnormalities are frequently 

observed in RO. To investigate the characteristics of mitochondria in chRCC and their role in 

disease progression, we used a combination of proteomic, transcriptomic (TCGA), and 

metabolomic approaches, and performed mitochondrial WES to elucidate the mtDNA mutation 
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landscape and identify differences in mitochondrial function between chRCC and healthy 

adjacent kidney tissue. Our results showed that a decrease in mtDNA content, and not 

mutational load, was the main cause of the observed decreases in the levels and activity of 

nearly all ETC complex subunits (except for CIII), which increased GSH levels and resulted in a 

discrepancy between mRNA and protein levels of these subunits. 

As in many cancer types, glycolytic metabolism is enhanced in chRCC (28). In company 

with the downregulation of OXPHOS found in this study, we propose that chRCC features the 

typical “Warburg effect”. We previously reported that the activity of all mitochondrial enzymes 

was reduced in ccRCC and pRCC (48). This is in contrast to the benign RO, in which only CI 

subunits show reduced expression and activity, which are increased for all other complexes 

(25). 

The metabolites showing the greatest increase in chRCC relative to healthy adjacent 

kidney tissue were those involved in GSH metabolism (GSH, GSSG, and gamma-

glutamylcysteine), which is consistent with findings for chRCC (27,28), pRCC (51), RO (25,26), 

and ccRCC (52,53). As GSH is an ROS scavenger (54), the increased GSH levels and 

GSH/GSSG ratio in chRCC may be a strategy for the tumor to overcome ROS stress originating 

from dysregulated OXPHOS. As in RO, the abundance of enzymes involved in GSH synthesis 

was unchanged in chRCC whereas the level of enzymes involved in GSH degradation was 

reduced, resulting in high levels of GSH in tumor cells and a microenvironment with a low 

oxidative stress burden. 

The opposite trends in transcript and protein levels of ETC components observed in our 

chRCC cohort has also been reported in RO (25). The negative correlation suggests that the 

pathogenic mechanisms of RCC can only been understood by evaluating different levels of 

molecular information. For example, the enzymatic activity of ETC complex subunits in chRCC 

and RO (15) corresponds to the abundance of the proteins and not gene expression. A study of 

mtDNA-depleted ρ0 cells showed that the levels of all ETC components were significantly 
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reduced because complex assembly is not possible without the core mtDNA-encoded subunits 

(47). Thus, the inverse relationship between transcript and protein levels in chRCC was mainly 

due to reduced mtDNA content. This was confirmed by monitoring mtDNA depletion and the 

abundance of ETC complex subunits over time in a chRCC cell line. All proteins involved in 

OXPHOS were decreased in parallel with mtDNA content, but there was a discrepancy between 

mtDNA- and nuclear DNA-encoded ETC complex subunits: the former almost completely 

disappeared whereas the latter remained stable when cells reached ρ0 status. In addition, GSH 

levels were negatively correlated with mtDNA content, indicating that defective respiration might 

cause ROS stress, which is compensated for by an increase in the level of GSH, the main ROS 

scavenger. Another possibility is that the dysfunctional OXPHOS impairs the turnover of NADH 

and NADPH and thus keeps reduced GSH in chRCC at a higher level. 

The mitochondrial genome in RO and thyroid cancers have a high mutational burden 

(15,17,55). Although we identified multiple potentially pathogenic mtDNA mutations with mostly 

low heteroplasmy loads (except Case 4, which harbored a mutated MT-ND5 gene with >60% 

heteroplasmy), these low heteroplasmic mtDNA mutation rates are unlikely to influence chRCC 

phenotype as the cases did not show differential regulation of OXPHOS and shared the same 

overall proteome profile. Although all chRCC cases had similarly high levels of GSH and related 

metabolites, Case 4 showed a decreased GSH/GSSG ratio in chRCC relative to normal kidney 

tissue, unlike the other cases. This indicates that oxidative stress was increased by the mutation 

in the MT-ND5 gene, possibly through increased conversion of GSH to GSSG as excessive 

ROS are produced by CI deficiency caused by MT-ND5 mutations.  

Histopathological differentiation of benign RO from malignant chRCC remains challenging, 

even by immunohistochemistry using multiple markers (56). Additionally, there are case reports 

on rare hybrid tumors (57,58), including oncocytic content, and the rare genetic disorder Brit-

Hogg-Dube syndrome (59), in which RO and chRCC coexist. Microvesicle accumulation in the 

cytoplasm, which has been attributed to defective mitochondriogenesis, is a key histological 
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feature of chRCC, but has no diagnostic utility as it is also observed in RO and eosinophilic 

variants of ccRCC (4). Our data demonstrate that the expression profiles of ETC complex 

subunits can be used to distinguish these 2 tumor species. However, we want to point out that 

the phenotype of the 9 chRCC cases in our cohort are obviously very similar and probably 

belong to the classic variant, as no mitochondrial mass increase was oberserved by a case-by-

case mitochondrial allocation analysis of the proteome data.  

In summary, chRCC is characterized by downregulation of the components of the ETC 

and increased GSH levels, which are mainly caused by decreased mtDNA content and not CI 

mutation. Moreover, decreased mtDNA content in chRCC underlies the negative correlation 

between protein and transcript levels of nuclear DNA- but not mtDNA-encoded ETC complex 

subunits. These results provide insight into the molecular basis for chRCC pathology as well as 

markers for distinguishing this rare neoplasm from the closely related RO. 
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Figure legends 

Figure 1. Differential regulation of ETC complexes in chRCC and RO. (A, B) Comparison of 

protein abundance ratios (log2) of ETC complex subunits between chRCC (A) and RO (B) tissue 

vs healthy kidney tissue samples. The 5 ETC complexes—including all quantified subunits and 

assembly factors—and corresponding log2 fold changes are shown. The color gradient reflects 

low (blue) or high (red) abundance of the protein in the tumor. The abundance of CI subunits 

was decreased in chRCC and RO, whereas the levels of all other ETC complexes were 

increased in RO while generally showing low abundance in chRCC. Assembly factors (bold 

type) that are not part of the final complex were upregulated in both tumor types. *FDR ≤ 0.05. 

(C, D) Comparison of the density of mitochondrial and non-mitochondrial proteins vs log2 fold 

change of proteins between RO and health kidney tissue (C) and between chRCC and healthy 

kidney tissue (D). Mitochondrial proteins are shown in red (Human Mito Carta, 1158 entries) and 

non-mitochondrial proteins are shown in blue. 

 

Figure 2. Comparative analysis of RNA and protein abundance between chRCC and 

healthy kidney tissue. (A, B) GSEA revealed that ETC complex components were 

downregulated at the protein level (this study) (A) and upregulated at the transcript level (TCGA 

data; B). (C) Global transcript versus protein levels are shown as blue dots, proteins localized to 

mitochondria as red triangles, and specific factors involved in the ETC as green squares, 

indicating the discrepancy between transcript and protein levels exclusively for the ETC. RNA 

data were retrieved from TCGA. (D–H) Comparison of enzyme activity (nmol/min/mg protein, 

n=9) of ETC complexes between chRCC and healthy kidney tissue, including CI (D), CII (E), CIII 

(F), CIV (G), and CV (H). *P<0.05, **P<0.01, ***P<0.001 (paired t test); n.s., not significant. 

 

Figure 3. GSH levels are elevated in chRCC. (A–C) Relative abundance of metabolites 

involved in GSH metabolism is shown for chRCC and healthy kidney tissue samples. Levels of 
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reduced GSH (A), oxidized GSH (B), and gamma-glutamylcysteine (C) are shown. (D) 

GSH/GSSG ratio calculated based on relative signal intensity. (E) Heatmap of quantified 

proteins involved in GSH metabolism in chRCC. The color gradient represents a low (blue) or 

high (red) log2 fold change in chRCC vs normal kidney tissue. **P<0.01, ***P<0.001 (2-tailed 

Student’s t test). A.U., arbitrary units. 

 

Figure 4. Identified somatic mtDNA mutations and mtDNA copy number in chRCC. (A) 

Somatic mtDNA mutations with a high disease score (>0.7) were detected in 5 tumors; only the 

MT-ND5 mutation in Case 4 had a significant heteroplasmy rate. (B) Decreased mtDNA read 

depth indicating a lower mtDNA copy number in chRCC compared to normal kidney tissue 

(n=9). *P<0.05 (paired t test). 

 

Figure 5. Correlation between mtDNA content, ETC protein and transcript levels, and 

GSH level. (A) mtDNA content over time in UOK276 chRCC cells treated with ethidium bromide 

(EtBr) (100 ng/ml). The cells were used for all subsequent analyses (n = 3). (B) Western blot 

analysis of mtDNA- and nuclear DNA-encoded ETC complex subunits MT-ND5, NDUFS1, 

SDHB, and UQCRC2, showing a time-dependent decrease in abundance. (C) Increased GSH 

level in chRCC cells and an inverse correlation with mtDNA content over time. (D) Transcript 

levels of nuclear DNA-encoded NDUFS1, SDHB, and UQCRC2 initially decreased but then 

increased. The mtDNA-encoded MT-ND5 transcript decreased in the first 2 days in parallel with 

mtDNA content, but did not increase thereafter. The error bar indicates the standard deviation. 

*P<0.05 (2-tailed Student’s t-test). n.s., not significant. 
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