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We present analytic expressions for the s-parametrized currents on the sphere for both unitary and dissipative
evolutions. We examine the spatial distribution of the flow generated by these currents for quadratic Hamilto-
nians. The results are applied for the study of the quantum dissipative dynamics of the time-honored Kerr and
Lipkin models, exploring the appearance of the semiclassical limit in stable, unstable and tunnelling regimes.

I. INTRODUCTION

Presenting quantum mechanics as a statistical theory on a
classical phase space has attracted a great deal of attention
since the very early days of this discipline. This framework
gives an alternative point of view that provides more insight
and understanding [1–6], and, in addition, avoids the operator
formalism, thereby freeing quantization of the burden of the
Hilbert space [7].

The main ingredient for any successful phase-space method
is a bona fide mapping that relates operators with functions
defined on a smooth manifold M , the phase space of the sys-
tem, endowed with a very precise mathematical structure [8].
This mapping, first suggested by Weyl [9] and later put on
solid grounds by Stratonovitch [10], is not unique. In fact,
a whole family of s-parametrized functions can be assigned
to each operator and the choice of a particular element of
the family depends on its convenience for each problem. In
particular, the time-honored quasiprobability distributions are
the functions connected with the density operator. The most
common choices of s are +1, 0, and −1, which correspond
to the P (Glauber-Sudarshan) [11, 12], W (Wigner) [13],
and Q (Husimi) [14] functions, respectively. For continu-
ous variables (such as Cartesian position and momentum), the
quintessential example that fuelled the interest for this field,
the parameter s defines different orderings of the basic vari-
ables.

These quasiprobability distributions and their correspond-
ing equations of motion give the right tools for the repre-
sentation of quantum dynamics entirely in the language of
phase-space variables. Actually, a substantial step to address-
ing this question came from the work of Groenewold [15] and
Moyal [16], who showed that the evolution equation can be
written as

∂tW
(s)
ρ (Ω, t) = {{W (s)

ρ (Ω, t),W (s)
H (Ω)}} , (1.1)

where Ω ∈M are points in phase space, W (s)
H (Ω) is the Weyl

symbol of the Hamiltonian and the Moyal bracket {{·, ·}} is
the image of the commutator [times (ih̄)−1] under the Weyl-
Stratonovitch map. Therefore, (1.1) is formally identical with
its quantum version for the density operator, if one replaces
the commutator with the Moyal bracket. This equation con-
tains, in general, higher-order derivatives, which reflects the
analytical properties of the map. This complicates, in general,
getting any analytical solution [17].

It turns out that the dynamics in (1.1) can be rewritten as a
continuity equation

∂tW
(s)
ρ (Ω, t) =−∇ ·J(s)(Ω, t) , (1.2)

as it was recently discussed for one-dimensional systems [18–
23]. Nonetheless, there is a substantial difference between the
classical and quantum regimes.

In classical statistical mechanics, the conservative evolution
of the (positive) phase-space distribution function f (Ω, t) is
given by the famous Liouville equation [24]

∂t f (Ω, t) = { f (Ω, t),Hcl} , (1.3)

with {·, ·} being the Poisson brackets on M . This can also be
expressed as a continuity equation

∂t f (Ω, t) =−∇ ·Jcl(Ω, t) , (1.4)

but now the classical current is

Jcl = v(Ω) f (Ω, t) (1.5)

where v(Ω) ∝ ∇Hcl is related to the velocity field generated
by the Hamiltonian Hcl on M . In other words, v(Ω) induces
a Hamiltonian propagation

f (Ω,0) v7−→ f (Ω, t) = f (Ωcl(t),0) , (1.6)

so that the distribution function is preserved along every clas-
sical trajectory Ωcl(t). The stagnation points {Ω j}, where
Jcl(Ω j, t) = 0, coincide either with the zeros of v(Ω) or those
of f (Ω,0).

For the quantum dynamics, J(s)(Ω, t) can be conve-
niently represented as a (differential) operator acting on the
quasiprobability distribution; i.e.,

J(s)(Ω, t) = Ĵ(s)(Ω)W (s)
ρ (Ω, t) . (1.7)

In the semiclassical limit, when the dynamics of distribution
resembles the motion of an incompressible fluid, Ĵ(s)(Ω)→
v(Ω). In contradistinction, in the full quantum regime tra-
jectories do not exist globally for systems whose phase-space
distributions can develop areas with nonpositive values and
the velocity is not a well-defined function [25]. Consequently,
(1.7) not only describes the propagation and deformations of
W (s)

ρ (Ω, t), as in (1.6), but also the emergence of interference
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patterns (in particular, the evolution of W (s)
ρ (Ω) into a zero-

amplitude function at the nonclassical stagnation points).
The currents J(s)(Ω, t) bear several unexpected features

from a classical viewpoint [19–23]. The distribution and char-
acter of the stagnation points can be used for detecting the
quantumness of the evolution, both from the Wigner and the
Husimi currents [26].

Interestingly, the quasiprobability currents can be properly
defined not only in the unitary case, but also in the presence of
dissipation [27–29]. The analysis of these dissipative currents
can provide interesting insights into the decoherence dynam-
ics [30], especially in the presence of purely quantum effects,
such as self-interference and tunnelling.

Recently, it has been shown that the description of the evo-
lution in terms of currents can be extended in natural ways to
spinlike systems, where the classical phase space is the unit
sphere [31]. Actually, in the simplest yet relevant case of a
nonlinear Kerr medium, the spatial distribution of the phase-
space Wigner current and in, particular, of the stagnation lines
(one of the components of the Kerr current is always zero)
allows one to distinguish quantum from classical dynamics,
even for short times.

In the present paper we introduce the s-ordered currents
for spinlike systems whose evolution is governed by quadratic
Hamiltonians and apply it to the analysis of the dynamics of
the Kerr [32, 33] and Lipkin-Meshkov-Glick [34–36] models,
both in the unitary and the dissipative case. The most rep-
resentative examples of spin dynamics, stable, unstable and
tunnelling (evolution in the classically forbidden regions), will
be analyzed on the basis of spatial distributions of the quan-
tum currents. Although we shall get analytical expressions
for any s-ordered distribution, our numerical analysis will be
focused on the Wigner propagation, for it reveals in the most
conspicuous manner the quantum dynamical behavior in case
of nonlinear evolution.

II. QUASIPROBABILITY DISTRIBUTIONS ON THE
SPHERE

We consider a system whose dynamical symmetry group is
SU(2). The corresponding Lie algebra su(2) is spanned by
the operators {Ŝx, Ŝy, Ŝz} satisfying the standard commutation
relations [Ŝx, Ŝy] = iŜz and cyclic permutations (in units h̄ =
1, which will be used throughout). The Casimir operator is
Ŝ2 = Ŝ2

x + Ŝ2
y + Ŝ2

z = S(S + 1)11, so the eigenvalue S (which
is a nonnegative integer or half integer) labels the irreducible
representations (irreps).

We take a fixed irrep of spin S, with a (2S+1)-dimensional
carrier space HS spanned by the standard angular momentum
basis {|S,m〉 |m =−S, . . . ,S}, whose elements are simultane-
ous eigenstates of Ŝ2 and Ŝz:

Ŝ2|S,m〉= S(S+1)|S,m〉 , Ŝz|S,m〉= m|S,m〉 . (2.1)

The highest weight state is |S,S〉 and it is annihilated by
the ladder operator Ŝ+ (with Ŝ± = Ŝx ± iŜy). The isotropy
subgroup (i.e., the largest subgroup that leaves the highest

weight state invariant) consists of all the elements of the form
exp(iχ Ŝz), so it is isomorphic to U(1). The coset space is then
SU(2)/U(1), which is just the unit sphere S2 (the so-called
Bloch sphere) and it is the classical phase space, the natural
arena to describe the dynamics.

The s-parametrized Weyl-Stratanovich map

Â 7→W (s)
A (Ω) = Tr[Â ŵ(s)(Ω)], (2.2)

where Ω = (θ ,φ) ∈ S2, puts in one-to-one correspondence
each operator Â invariantly acting on HS with a function on
the sphere S2. The corresponding kernels ŵ(s) are defined
as [37–39]

ŵ(s)(Ω) =

√
4π

2S+1

2S

∑
K=0

K

∑
q=−K

(CSS
SS,K0)

−s Y ∗Kq(Ω)T̂ S
Kq , (2.3)

where YKq(Ω) are the spherical harmonics, CSm
S1m1,S2m2

the
Clebsch-Gordan coefficients and T̂ S

Kq the irreducible tensor
operators [40, 41]

T̂ S
Kq =

√
2K +1
2S+1

S

∑
m,m′=−S

CSm′
Sm,Kq |S,m′〉〈S,m| . (2.4)

As expected, they are properly normalized

Tr[ŵ(s)(Ω)] = 1 ,
2S+1

4π

∫
S2

dΩ ŵ(s)(Ω) = 11 , (2.5)

with dΩ = sinθ dθ dφ the invariant measure on the sphere.
Consequently, the symbol of Â can be concisely expressed

as

W (s)
A (Ω) =

√
4π

2S+1

2S

∑
K=0

K

∑
q=−K

(CSS
SS,K0)

−sAKq Y ∗LM(Ω) , (2.6)

where AKq = Tr(ÂT̂ S†
Kq). As some relevant examples we shall

need in what follows we quote

Ŝi 7→ W (s)
Si

=

(
S

S+1

)−s/2√
S(S+1)ni ,

{Ŝi, Ŝ j}+ 7→ W (s)
{Si,S j}+ = C

(s)
i j nin j +

1
3 δi j[2S(S+1)−C

(s)
i j ],

(2.7)
where n is a unit vector in the direction of Ω ∈ S2, {·, ·}+
stands for the anticommutator and C

(s)
i j = (1− 1

2 δi j)[S(2S−
1)](1−s)/2[(2S+3)(S+1)](1+s)/2.

The traditional SU(2) quasiprobability distributions are just
the s-symbols of the density operator ρ̂ . The value s= 0 corre-
sponds to the standard Wigner function, whereas s =±1 leads
to P and Q functions respectively, defined as dual coefficients
in the basis of spin coherent states [42, 43]

|Ω〉= exp[
1
2

θ(Ŝ+e−iφ − Ŝ−eiφ )]|S,S〉 , (2.8)

according to

Q(Ω) = 〈Ω|ρ̂|Ω〉 , ρ̂ =
2S+1

4π

∫
S2

dΩ P(Ω) |Ω〉〈Ω| .

(2.9)
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The symbols W (s)
A (Ω) are covariant under SU(2) transforma-

tions and provide the overlap relation

Tr(ρ̂Â) =
2S+1

4π

∫
S2

dΩW (s)
ρ (Ω)W (−s)

A (Ω) . (2.10)

A number of alternative generalized quasiprobability distribu-
tions can be found using the method of Cohen [44] (see also
Ref.[45]).

In this representation, the Moyal equation (1.1), as indi-
cated in the Introduction, involves higher-order derivatives.
However, it admits an expansion on the parameter ε = (2S+
1)−1. When ε � 1 we are in the semiclassical limit and one
can show that [46–49]

∂tW
(s)
ρ (Ω, t)' 2ε{W (s)

ρ (Ω, t),W (s)
H (Ω)}+ sO(ε2)+O(ε3),

(2.11)
where {·, ·} are the Poisson brackets on the sphere S2

{ f (Ω),g(Ω)}= 1
sinθ

(∂φ f ∂θ g−∂θ f ∂φ g). (2.12)

Therefore, the first-order corrections to the classical evolu-
tion ∼ O(ε2) vanish for the Wigner function and consist of
second-order derivatives of W (±1)

ρ (Ω).
The lowest order approximation, known as the Truncated

Wigner Approximation (TWA) [50–56], describes propaga-
tion of every point of the initial distribution along the corre-
sponding classical trajectories Ω(t), which are solutions of the
Hamilton equations; viz,

W (s)
ρ (Ω, t)'W (s)

ρ (Ω(−t), t = 0) . (2.13)

This semiclassical evolution allows one to predict the short-
time behavior [57, 58]. The positive and negative parts of
W (s)

ρ (Ω, t = 0) are deformed according to (2.13), so that their
volumes are preserved during the validity of the TWA.

III. HAMILTONIAN DYNAMICS AND CURRENTS ON
THE SPHERE

The exact evolution equation for W (s)
ρ (Ω) has been derived

in [59] (see also [60] and [61], where the corresponding star-
product for the map is discussed). In most physical applica-
tions only Hamiltonians quadratic in the spin generators play
an important role. Typical examples include second-harmonic
generation, homogeneous spin-spin interactions, spin-orbit
splitting, and atom-field interactions in the dipole approxima-
tion [62]. The generic second-order Hamiltonian reads

Ĥ = ∑
i

ai Ŝi +∑
jk

b jk {Ŝ j, Ŝk}+ ≡ ĤL + ĤNL (3.1)

where ĤL and ĤNL refer to the linear and nonlinear parts of
the Hamiltonian.

The evolution equation for the Hamiltonian (3.1) can be
rewritten in terms of the Poisson brackets (2.12) as follows:

∂tW
(s)
ρ =

(
S

S+1

)−s/2

∑
i

ai{W (s)
ρ ,ni}

+
1

2ε
∑
j,k

b jk[{ĜkW
(s)
ρ ,n j}+{Ĝ jW

(s)
ρ ,nk}] , (3.2)

where

Ĝ(±1)
k = nk(1± ε) ± iε(n× L̂)k ,

(3.3)

Ĝ(0)
k =

1
2

nkΦ(L 2)− 1
2

ε
2[nk +2i(n× L̂)k]Φ

−1(L 2) .

Here, L̂ = (L̂x, L̂y, L̂z) are a differential realization of the an-
gular momentum operators; viz,

L̂x = i(sinφ∂θ + cotθ cosφ∂φ ) ,

L̂y = i(−cosφ∂θ + cotθ sinφ∂φ ) , (3.4)

L̂z =−i∂φ ,

and L̂ 2 = L̂2
x + L̂2

y + L̂2
z is the realization of the Casimir oper-

ator on the sphere, namely

L̂ 2 =−
(

∂θθ + cotθ ∂θ +
1

sin2
θ

∂φφ

)
, (3.5)

so that L̂ 2YLm(Ω) = L(L+ 1)YLm(Ω) (note that, except for a
sign, it is the Laplacian operator on the sphere). Finally, the
function Φ reads

Φ(x) =
[

2− ε
2(2x2 +1)+2

√
1− ε2(2x2 +1)+ ε4x4

]1/2

.

(3.6)
The equation of motion (3.2) can be immediately recast in

the form (1.2). The currents (1.7), J(s) = (J(s)
θ
,J(s)

φ
), can be

conveniently represented as the actions of differential opera-
tors on the corresponding quasiprobability distributions:

J(s)(Ω, t) = Ĵ(s) W (s)
ρ (Ω, t) , (3.7)

with

Ĵ(s)
θ

=

(
1− ε

1+ ε

)−s/2 1
sinθ

∑
i

ai∂φ ni

+
1

2ε sinθ
∑
jk

b jk[∂φ n jĜ
(s)
k +∂φ nkĜ(s)

j ] ,

(3.8)

Ĵ(s)
φ

=−
(

1− ε

1+ ε

)−s/2

∑
i

ai ∂θ ni

− 1
2ε

∑
jk

b jk[∂θ n jĜ
(s)
k +∂θ nkĜ(s)

j ] .

It is worth noticing that Ĵ(±1) are first-order operators (ob-
serve that n×L̂ is just the angular part of the gradient operator



4

in spherical coordinates [41]), whereas Ĵ(0) contains higher-
order derivatives because of the to dependence on the Casimir
operator L̂ 2.

The current associated to the linear Hamiltonian ĤL gener-
ates a rigid rotation of the initial distribution; i.e., the quantum
and classical currents coincide in this case.

In the general case, the quantum dynamics is described by
current operators that do not reduce to a multiplication by
some phase-space function, as in the classical case. This leads
to a nontrivial evolution of the stagnation points Ω j, wherein
J(s)(Ω j, t) = 0, as we shall see in Sec. V. The properties
of the vector field J(s)(Ω, t) in the vicinity of the stagnation
points can be studied, e.g., with the winding number [19, 26]
I(Ω j) =

1
2π

∮
L dϕ , where ϕ is the angle between the flow and

some fixed reference axis in the loop L. This number takes
the values I(Ω j) = ±1 for vortices and saddle points, cor-
respondingly. Nontrivial stagnation points [that do not co-
incide with zeros of the initial distribution and the gradient
field ∇W (s)

H (Ω)] dynamically emerge/disappear only by pairs
(topological dipoles [26]) according to Poincaré-Hopf theo-
rem.

It is worth noting that the evolution (3.2) can be rewritten
in terms solely of the Poisson brackets with the Weyl symbol
of the Hamiltonian (3.1) in two instances: for the linear case
ĤL and when the Hamiltonian is the square of an element of
the su(2) algebra; i.e., up to an SU(2) rotation, it has the form

ĤNL = bz Ŝ2
z , ∂tW

(s)
ρ = {Γ̂(s)

z W (s)
ρ ,W (s)

HNL
} , (3.9)

where

Γ̂
(±)
z =

(1± ε)

ε
± i

(n× L̂)z

nz
,

(3.10)

Γ̂
(0)
z =

1
2ε

Φ(L 2)− 1
2

ε

[
1+2i

(n× L̂)z

nz

]
Φ
−1(L 2) ,

and here i(n× L̂)z/nz = tanθ ∂θ (in general, an arbitrary
direction can be chosen instead of the z component). The
equation of motion in the form (3.9) appears as the so-called
second-kind continuity equation [63].

IV. DISSIPATIVE QUASIPROBABILITY CURRENTS ON
THE SPHERE

A. Dissipative currents

Models of dissipation address the interaction of a system
with an environment, whose characteristics are encoded in its
spectral density [64]. Here, we assume that the spin system
is coupled to a thermal bath at temperature T . The resulting
effective dynamics is appropriately described by the Lindblad
equation [27–29]

∂t ρ̂ =−i[Ĥ, ρ̂]+
1
2

γ (n+1)Λ̂1(ρ̂)+
1
2

γ nΛ̂2(ρ̂) , (4.1)
where Λ̂1,2 are the superoperators

Λ̂1(ρ̂) = 2Ŝ−ρ̂ Ŝ+− Ŝ+Ŝ−ρ̂− ρ̂ Ŝ+Ŝ− ,
(4.2)

Λ̂2(ρ̂) = 2Ŝ+ρ̂ Ŝ−− Ŝ−Ŝ+ρ̂− ρ̂ Ŝ−Ŝ+ ,

and n = [exp(h̄ω0/kT )− 1]−1 is the average number of exci-
tations in the bath.

In the phase-space picture, the action of the superoperators
Λ̂1,2(ρ̂) is represented by the following differential operators

s =±1


Λ̂1(ρ̂) 7→ [−L̂ 2(1± cosθ)+ L̂2

z − 1
ε
(2cosθ + sinθ∂θ )]W

(±1)
ρ (Ω),

Λ̂2(ρ̂) 7→ [−L̂ 2(1∓ cosθ)+ L̂2
z +

1
ε
(2cosθ + sinθ∂θ )]W

(±1)
ρ (Ω) ,

(4.3)

s = 0


Λ̂1(ρ̂) 7→ [−L̂ 2 + L̂2

z − 1
ε
(cosθ + 1

2 sinθ∂θ )Φ(L 2)+ ε(L̂ 2− cosθ − 1
2 sinθ∂θ )Φ

−1(L̂ 2)]W (0)
ρ (Ω),

Λ̂2(ρ̂) 7→ [−L̂ 2 + L̂2
z +

1
ε
(cosθ + 1

2 sinθ∂θ )Φ(L̂ 2)− ε(L̂ 2− cosθ − 1
2 sinθ∂θ )Φ

−1(L̂ 2)]W (0)
ρ (Ω) .

The dissipative phase-space dynamics of these spinlike sys-
tems has been investigated by a number of authors [43, 65,
66]. Interestingly, the Lindblad evolution can also be recast as
a continuity equation with current operators given by

Ĵ(±1)
θ

=
1
2

γ

[
1
ε

sinθ −∂θ (1+2n± cosθ)

]
,

Ĵ(±1)
φ

=−1
2

γ

[
(± tanθ +(2n+1)

cosθ

tanθ

]
∂φ ;

(4.4)

Ĵ(0)
θ

=
1
2

γ

[
1

2ε
sinθ Φ(L̂ 2)− (2n+1)∂θ

+ ε

(
∂θ +

1
2

sinθ

)
Φ
−1(L̂ 2)

]
,

Ĵ(0)
φ

=−1
2

γ

[
(2n+1)

cosθ

tanθ
− ε

sinθ
Φ
−1(L̂ 2)

]
∂φ .
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In the high-temperature regime (n � 1), all the maps (s =
±1,0) lead to the same equation of motion; viz,

Λ̂(ρ̂)' 1
2

γ n
(
Λ̂1 + Λ̂2

)
(ρ̂) 7→ −1

2
γ n
(
L̂ 2 +∂φφ

)
W (s)

ρ (Ω),

(4.5)
and the currents take the simple form

Ĵ(s)
θ
'−γ n∂θ , Ĵ(s)

φ
'−γ n

cosθ

tanθ
∂φ . (4.6)

In the presence of dissipation, the stagnation points may
become sinks and sources. For instance, (4.6) generate a sin-
gle source of a free-evolving vector field at the point (θ =
π/2,φ = 0) for an initial spin coherent state centered on the
X axis |Ω = (π/2,0)〉. In the opposite limit of n = 0 in addi-
tion to that source, several sinks appear.

B. Classical limit

In the large spin limit, ε → 0, only the Wigner current
tends to the classical form. Indeed, taking into account that
Φ(L̂ 2)' 2+O(ε2), the operators Ĵ(0) reduce to c-numbers,
that is, Ĵ(0) ' v+O(ε), with

v = 2ε

 1
sinθ

∂φW (0)
H (Ω)

−∂θW (0)
H (Ω)

= 2ε∇W (0)
H (Ω) . (4.7)

Here, W (0)
H (Ω) is the corresponding symbol of the Hamilto-

nian, which, using (2.7), is

W (0)
H (Ω) =

1
2ε

∑
i

ai ni +
1

4ε2 ∑
jk

b jk nkn j . (4.8)

According to (3.7), in this limit the points of the distribution
W (0)

ρ (Ω) just follow the flow generated by Jcl. In contradis-
tinction, the Q and P currents have nonvanishing corrections
in this semiclassical limit.

In the same limit, the dominant term in the dissipative cur-
rents (4.4) is Ĵ(s)

θ
and this yields Fokker-Planck equations.

This also indicates that the main direction of the dissipative
motion is towards the South pole of the Bloch sphere, repre-
senting the ground state of the system.

V. EXAMPLES: KERR AND LIPKIN-MESHKOV-GLICK
MODELS

A. Kerr model

The simplest quadratic Hamiltonian corresponds to the so-
called Kerr medium, which is described by

ĤKerr = χ Ŝ2
z . (5.1)

This leads to a remarkable non-Gaussian operation that has
set off a lot of interest due to possible applications in a variety

(a) (b)

FIG. 1. The Wigner symbol W (0)
H (Ω) for (a) the Kerr and (b) the

LMG Hamiltonians.

of fields, such as quantum nondemolition measurements [67–
71], generation of quantum superpositions [72–79], quan-
tumteleportation [80, 81], and quantum logic [82–85].

As shown in Fig. 1, the Wigner symbol of ĤKerr has the
aspect of a valley centered at θ = π/2. The unitary currents
have only one nonzero component, (Ĵ(s)

θ
= 0), and they are

Ĵ(0)
φ

= sinθ
[ 1

2ε
cosθ Φ(L̂ 2)− 1

2 ε(cosθ +2sinθ∂θ )Φ
−1(L̂ 2)

]
,

Ĵ(1)
φ

= sinθ [2(S+1)cosθ + sinθ∂θ ] , (5.2)

Ĵ(−1)
φ

= sinθ [2Scosθ − sinθ∂θ ] .

A peculiarity of these currents is the existence of stag-
nation lines, where J(s)

φ
(Ω) = 0 (see also the discussion in

[31]). When dissipation is included, both components are
present. In Fig. 2 we plot two snapshots of the Wigner func-
tion for an initial coherent state (2.8) located at the equator
Ω = (π/2,0) both for unitary and dissipative dynamics. The
first one is at the best squeezing time (χt ∼ S−2/3), where
the maximum value of the spin squeezing, evaluated as the
normalized minimum fluctuation of spin components ∆2s(t)
on the tangent plane, orthogonal to the initial mean spin vec-
tor n = 〈Ŝ(t)〉 (s ·n = 0) is achieved. The second one is
at the two-component cat time (χt = π/2) [33], when the
state becomes a superposition of two spin coherent states
(|Ω = (π/2,0)〉+ |Ω = (π/2,π)〉).

The currents (5.2) apparently generate a fast motion of ini-
tial distributions to the south pole of the Bloch sphere; i. e., a
decay into the ground state |S,−S〉. Nonetheless, distributions
localized inside the potential valley move quite slowly into the
south pole, so that even some quantum interference effects
like residual Schrödinger cat states can be observed. In Fig. 2
we see that the interference pattern is partially destroyed for
times χt ∼ 1, as expected, but the distribution is still mainly
concentrated inside the valley, in spite of the strong dissipa-
tion.

This can be understood by taking into account that for S =

10 at the minimum of the valley W (0)
H (θmin,φ) ' 0.125 and

the energy fluctuation in the state |Ω = (π/2,0)〉 is ∆H ' 6.8,
while at the south pole WH(θ = π,φ) ' 109.75. Thus, the
distribution should overcome a significant potential barrier in
order to reach the south pole, which slows down the decay of
equatorially localized distributions to the ground state.



6

FIG. 2. Snapshots of the Wigner function corresponding to the Kerr Hamiltonian (5.1) and the initial spin coherent state |Ω = (π/2,0)〉 at
the best squeezing time χt = 0.32 and two-component Schrödinger cat time χt = π/2. Left panel, unitary evolution; right panel, dissipative
evolution with γ = 0.015. Red and white lines are stagnation lines for Jθ and Jφ , respectively. The pseudocolor encodes the Wigner function
and the black arrows indicate the direction and strength of the flow. We have used S = 10.

It is interesting to stress that, in contrast to the previous be-
havior, when the distributions are localized below the equator
they rapidly slide toward the south pole. This can be readably
observed in Fig. 3, where the Wigner function of an initial
spin coherent state with Ω = (3π/4,0) at the two-component
cat time, χt = π/2, is shown.

0

FIG. 3. Pseudocolor plot of the Wigner function for the initial state
|Ω = (3π/4,0)〉 at the two-component cat time in case of dissipative
evolution (γ = 0.015) with S = 10.

B. Lipkin-Meshkov-Glick model

The Lipkin-Meshkov-Glick (LMG) model [34–36] was
originally proposed to deal with phase transitions in the nu-
clei. The model captures well the physics of two-mode Bose-
Einstein condensates [86] and Josephon junctions [87, 88]. In
the language of spin operators the LMG Hamiltonian can be
written as

ĤLMG =−hŜx +
λ

2(2S+1)
(Ŝ2

z −S2
y) . (5.3)

For different values of the parameter λ , the associated classi-
cal symbol has either one or two minima. Here, we take λ ∼ S,
which corresponds to a double-well potential, as shown in
Fig. 1. The minima are located at (θmin = π/2,φmin = 1.459)
and (θmin = π/2,φmin = −1.459), separated by a local max-
imum with a saddle point at (θs = π/2,φs = 0). The LMG
current operators are significantly more involved than (5.2),
and have the form in accordance with the general expres-
sions (3.8).

We consider two dynamical regimes:

1. Stable motion

We take an initial spin coherent state with Ω= (π/2,1.459)
located inside one of the potential wells (actually, the right
one). The classical stable motion corresponds to oscillations
inside that well. Yet, due to tunnelling, the state is slowly
transfered to the other well. In Fig. 4 we plot snapshots of the
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FIG. 4. Snapshots of the Wigner function corresponding to the LMG Hamiltonian (5.3) for the stable case. The initial spin coherent state
is |Ω = (π/2,−1.459)〉 at the times ht/T = 0.1 (back), ht/T = 0.5 (middle) and ht/T = 1 (front), where T here is the period of oscillation
between the two wells. Left panel, unitary evolution; right panel, dissipative evolution with γ = 1×10−7. Red and white lines are stagnation
lines for Jθ and Jφ , respectively. In both cases the total spin is S = 10.

Wigner current at some representative times. The dynamics
of the tunnelling as well as the formation of the corresponding
interference patterns can be clearly appreciated.

The current directions and its intensity distribution provide
nontrivial information about tunnelling dynamics indicating
the main paths of the state transfer. In particular, phase-
space currents explicitly show the spatial distribution of the

FIG. 5. Zoom of the Wigner function and the distribution of currents
at ht/T = 0.1 in the vicinity of the saddle point for the LMG Hamil-
tonian for the stable unitary evolution. The initial stat is the same as
in Fig. 4.

quasiprobability flow in classically forbidden areas, where the
standard density current j ∝ Im(ψ∗∇ψ) is zero. The red/white
lines correspond to zero lines of J(0)

φ
/J(0)

θ
, respectively, and

their intersections reveals the position of the stagnation points.
In Fig. 5 we plot a magnification of the vicinity of the saddle

point, φs = 0 [at the same time as the first plot in Fig. 4]. The
tunnelling flow in both directions is manifest.

The counterclockwise vector field in the vicinity of the sta-

0 0.5 1

- 0.4

0

0.4

FIG. 6. The flow I (φ = 0, t) (5.4) for the same unitary (blue line)
and dissipative (red line) dynamics as in Fig. 4 in terms of the dimen-
sionless time ht/T .



8

FIG. 7. Snapshots of the Wigner function corresponding to the LMG Hamiltonian for the unstable case. The initial spin coherent state is
|Ω = (π/2,0)〉 and the dimensionless times ht = 0.279 (back) and ht = 0.837 (front). Left panel, unitary evolution; right panel, dissipative
evolution with γ = 0.05. Red and white lines are stagnation lines for Jθ and Jφ , respectively. Again, the total spin is S = 10.

ble point (θmin = π/2,φmin = −1.459) extends into the clas-
sically forbidden region, generating a left-to-right flow with
the highest intensity in the region θ < π/2 (above the equa-
tor). The tunnelling flow freely crosses the stagnation (white)
line J(0)

θ
(Ω) = 0. The flow in the opposite direction is mainly

below the equator, as one can see in Fig. 5.
When a moderate dissipation is present, the tunnelling be-

comes slower, in agreement with general considerations [89].
The interference pattern is largely destroyed. Nonetheless, in
spite of the very long transfer times from one well into an-
other, the distribution does not show any fingerprint of de-
cay to the ground state at the half-period of motion (when the
distribution has passed to another minimum). The reason of
such a behavior is the same as in the Kerr medium: to reach
the south pole following the lines of the dissipative current,
a distribution initially localized in the minimum of the poten-
tial should overcome a potential barrier, which is significantly
higher than the local maximum: W (0)

H (θmin,φmin) =−47.567;
the energy fluctuation in the state |Ω = (π/2,1.459)〉 is ∆H ∼
2.996, WH(θs,φs) =−10.488, while WH(θ = π,φ) = 46.982,
for our case of S = 10.

The dissipative evolution for larger times drastically dif-
fers from the unitary one: while the Hamiltonian evolution is
quasiperiodic and the distribution oscillates between the po-
tential wells, the dissipation does not allow to the transfer of
the whole distribution to the other well, and the inverse tun-
nelling back to the original well is significantly suppressed
in comparison with the unitary case. Actually, the decoher-
ence in a two-well tunnelling acts as a viscous medium, in the
sense that it leads to a phase-space equilibration at long-times,

when the initial quasiprobability becomes equally distributed
between the wells in the form of an incoherent superposition.

Useful information about the tunnelling is provided by the
integral flow at the line φ = 0 (which separates the potential
wells),

I (φ = 0, t) =
∫

dθ sinθ J(0)
φ

(θ ,φ = 0, t) , (5.4)

which typifies the dominant direction of the propagation at a
given time.

In Fig. 6 we plot the flow (5.4) for one period of the tun-
nelling oscillation. During this time the initial distribution is
transferred to the other potential minimum and returns back.
One can observe that the direction of the Hamiltonian evolu-
tion changes from right-to-left to left-to-right when the dis-
tribution is completely transferred from the right to the left
potential well. The flow in the presence of dissipation is sig-
nificantly smaller in the second half-period of motion.

2. Unstable motion.

Next, we consider the initial spin coherent state |Ω =
(π/2,0)〉 centered at the saddle point (the classical separa-
trix). The directions of the current clearly indicate the hyper-
bolic nature of the stagnation point (θs = π/2,φs = 0). Quan-
tum instability is reflected in a separation of the initial distri-
bution into two symmetric pieces moving toward the minima,
according to the current direction, with a subsequent forma-
tion of a complex interference picture. This can be seen in
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Fig. 7, where the snapshots of the Wigner function along with
the corresponding current lines are plotted. As the state is
initially at the local maxima, the decay to the ground state
is quite fast in the presence of dissipation. The distribution
clearly tends to the south pole along the current lines at times
approximately corresponding to the half-period of oscillations
in the Hamiltonian case, in sharp contrast with the stable situ-
ation.

VI. CONCLUSIONS

In summary, we expect to have provided compelling evi-
dence demonstrating that the quantum currents J(s)(Ω|t)are a
useful tool for the analysis of the evolution in phase space.
Indeed, the spatial distribution of the quantum current allows
one to visualize the main directions of propagation of the dis-
tribution. Our analytic current operators explicitly underlines
the strong differences between the Wigner and the Q and P-
currents for SU(2) quadratic Hamiltonians: while for Q and
P the quantum effects are generated by the gradient operator,
the Wigner current also involves action of the Laplace opera-

tor, which leads to a significantly more involved phase-space
interference patterns.

The effect of dissipation is twofold: it destroys the inter-
ference and generates a flow towards the south pole. Never-
theless, as we have seen in the example of the stable LMG
evolution, the impact of the decoherence on a given Hamilto-
nian dynamics depends essentially on the location of the initial
distribution.

It is worth noting that in multi-spin case, when the clas-
sical phase space is a direct product of several two-spheres,
the geometrical representation of the currents (3.7) would not
be directly possible, but the analytical properties of the stag-
nation points (e.g. the winding numbers) still can provide a
useful information about the character of nonlinear evolution.
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