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Abstract

In this paper, we present a projection-based interpolation framework for structure-preserving model order reduction of para-
metric bilinear dynamical systems. We introduce a general setting, covering a broad variety of different structures for paramet-
ric bilinear systems, and then provide conditions on projection spaces for the interpolation of structured subsystem transfer
functions such that the system structure and parameter dependencies are preserved in the reduced-order model. Two bench-
mark examples with different parameter dependencies are used to demonstrate the theoretical analysis.
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1 Introduction

Design and control processes usually involve simulating
systems of differential equations describing the under-
lying dynamics. An important class of such systems are
parametric bilinear time-invariant systems. These sys-
tems naturally appear in the modeling of thermal and
mechanical systems (see Hu & Wang (2002), Mohler
(1973)), plasma devices (see Ou (2010)), electrical cir-
cuits (see Al-Baiyat et al. (1993)), or medical applica-
tions (see Saputra et al. (2019)). They are also an im-
portant tool in the analysis of linear stochastic systems
like in Benner & Damm (2011) and linear parameter-
varying systems as in Benner & Breiten (2011). Bilinear
systems also appear from in the linearization process of
more general nonlinear systems using the Carleman lin-
earization method; see Carleman (1932). In most cases,
these bilinear systems have special structures resulting
from the underlying physical model and the dynamics
are parameter dependent. For example, in case of para-
metric bilinear mechanical systems, they have the form
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M(µ)ẍ(t;µ) +D(µ)ẋ(t;µ) +K(µ)x(t;µ) = Bu(µ)u(t)

+

m∑
j=1

Np,j(µ)x(t;µ)uj(t) +

m∑
j=1

Nv,j(µ)ẋ(t;µ)uj(t),

y(t;µ) = Cp(µ)x(t;µ) + Cv(µ)ẋ(t;µ),
(1)

where M(µ), D(µ), K(µ), Np,j(µ), Nv,j(µ) ∈ Rn×n, for
j = 1, . . . ,m; Bu(µ) ∈ Rn×m and Cp(µ), Cv(µ) ∈ Rp×n
are constant matrices; and µ ∈ M ⊂ Rd represents the
time-invariant parameters affecting the dynamics. In (1),

u(t) =
[
u1(t), u2(t), . . . , um(t)

]T
∈ Rm denotes the in-

puts (forcing), y(t;µ) ∈ Rp the outputs (measurements),
and x(t;µ) ∈ Rn×n the internal variables. The parame-
ter µ may represent variations in, e.g., material proper-
ties or system geometry.

Due to an increasing demand for accuracy in the mod-
eling stage, systems as in (1) become larger and larger,
e.g., n > 106, imposing overwhelming demands on com-
putational resources like time and memory. The situa-
tion is even more prominent in the parametric problems
we consider here due to the need to evaluate/simulate (1)
for many samples of µ. The aim of parametric model or-
der reduction is to construct a cheap-to-evaluate approx-
imation of the input-to-output behavior of the original
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system by reducing the state-space dimension, i.e., the
number of equations n, in such a way that the reduced
model provides a high-fidelity approximation to the orig-
inal one for the parameter range of interest. Addition-
ally, the reduced-order model should have the same in-
ternal structure as well as the parameter dependencies as
the original to retain the underlying physical structure.
For example, for the system (1), the structure-preserving
parametric reduced-order model will have the form

M̂(µ)¨̂x(t;µ) + D̂(µ) ˙̂x(t;µ) + K̂(µ)x̂(t;µ) = B̂u(µ)u(t)

+

m∑
j=1

N̂p,j(µ)x̂(t;µ)uj(t) +

m∑
j=1

N̂v,j(µ) ˙̂x(t;µ)uj(t),

ŷ(t;µ) = Ĉp(µ)x̂(t;µ) + Ĉv(µ) ˙̂x(t;µ),
(2)

with M̂(µ), D̂(µ), K̂(µ), N̂p,j(µ), N̂v,j(µ) ∈ Rr×r, for

j = 1, . . . ,m, B̂u(µ) ∈ Rr×m, Ĉp(µ), Ĉv(µ) ∈ Rp×r,
and r � n. Note that the reduced-order model (2) has
the same structure as (1) and can be interpreted as
a physically meaningful reduced-order mechanical sys-
tem. The structure preservation can also be very benefi-
cial in terms of computational speed and accuracy; see,
e.g., Benner et al. (2021).

Model reduction for linear and general nonlinear (para-
metric) systems has been studied heavily, especially over
the last three decades, using a variety of approaches; see,
e.g., Benner et al. (2017), Quarteroni & Rozza (2014),
Scarciotti & Astolfi (2017), Schilders et al. (2008). In re-
cent years, the class of bilinear control systems received
additional focus as an important link between linear and
nonlinear systems, since they only involve the multipli-
cation of states and inputs as nonlinearities. In this pa-
per, we will concentrate on structure-preserving model
reduction for parametric bilinear systems. For paramet-
ric unstructured (classical) bilinear systems, i.e., for sys-
tems of the form

E(µ)ẋ(t;µ) = A(µ)x(t;µ) +B(µ)u(t)

+

m∑
j=1

Nj(µ)x(t;µ)uj(t),

y(t;µ) = C(µ)x(t;µ),

(3)

the interpolatory parametric model reduction frame-
work was developed in Rodriguez et al. (2018) by syn-
thesizing the interpolation theory for parametric linear
dynamical systems from, e.g., Antoulas et al. (2020),
Baur et al. (2011), with the subsystem interpolation
approaches for bilinear systems; see Antoulas et al.
(2020), Bai & Skoogh (2006), Breiten & Damm (2010),
Condon & Ivanov (2007). There are other approaches
to model reduction of unstructured bilinear systems,
e.g., bilinear balanced truncation from Al-Baiyat et al.
(1993), Benner & Damm (2011), Hsu et al. (1983),
Volterra series interpolation as in Benner & Breiten
(2012), Flagg & Gugercin (2015), Zhang & Lam (2002),
or the bilinear Loewner framework from Antoulas et al.
(2016), Gosea et al. (2019). Those approaches do neither
provide extensions for the parametric bilinear system

case nor have extensions for structured systems and,
therefore, will not be further discussed in this paper.
Recently in Benner et al. (2021), the structured inter-
polation framework of Beattie & Gugercin (2009) for
linear dynamical systems has been extended to the case
of non-parametric structured bilinear systems. In this
paper, we will extend this interpolation theory to the
case of structured parametric bilinear systems by de-
veloping the subspace conditions to be enforced in the
projection-based model reduction framework.

In Section 2, we introduce basic mathematical concepts
and notation. We prove the structure-preserving inter-
polation framework for parametric bilinear systems in
Section 3. The established theory is then extended in
Section 4 to the interpolation of parameter sensitivities.
Section 5 illustrates the analysis in two numerical bench-
mark examples, followed by conclusions in Section 6.

2 Mathematical preliminaries

For a complex-valued matrix X ∈ Cn×m, XH := X
T

will denote its conjugate transpose. Given two matrices
A ∈ Cn×m and B ∈ Cp×q, (A ⊗ B) will denote the
Kronecker product, i.e.,

A⊗B :=


a11B · · · a1mB

...
...

an1B · · · anmB

 ∈ Cnp×mq,

where aij is the (i, j)-th element of A.

Under some mild assumptions, the output of the bilinear
system (3) can be rewritten in terms of a Volterra series,
i.e.,

y(t;µ) =

∞∑
k=1

t∫
0

t1∫
0

. . .

tk−1∫
0

gk(t1, . . . , tk, µ)

×

(
u(t−

k∑
i=1

ti)⊗ · · · ⊗ u(t− t1)

)
dtk · · ·dt1,

where gk denotes the k-th regular Volterra kernel;
see, e.g., Rugh (1981). Using the multivariate Laplace
transformation from Rugh (1981), the regular Volterra
kernels yield the frequency representation (4), as the
k-th regular subsystem transfer function of (3), where

N(µ) =
[
N1(µ), . . . , Nm(µ)

]
. The model reduction

theory in Rodriguez et al. (2018) is based on the inter-
polation of (4), i.e., unstructured (classical) parametric
subsystems.

In this paper, we consider a much more general setting
of multivariate transfer functions. The interpolation
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Gk(s1, . . . , sk, µ) = C(µ)(skE(µ)−A(µ))−1

k−1∏
j=1

(Imj−1 ⊗N(µ))(Imj ⊗ (sk−jE(µ)−A(µ))−1)

 (Imk−1 ⊗B(µ)), k ≥ 1 (4)

Gk(s1, . . . , sk, µ) = C(sk, µ)K(sk, µ)−1

k−1∏
j=1

(Imj−1 ⊗N (sk−j , µ))(Imj ⊗K(sk−j , µ)
−1)

 (Imk−1 ⊗ B(s1, µ)), k ≥ 1 (5)

Ĝk(s1, . . . , sk, µ) = Ĉ(sk, µ)K̂(sk, µ)−1

k−1∏
j=1

(Imj−1 ⊗ N̂ (sk−j , µ))(Imj ⊗ K̂(sk−j , µ)
−1)

 (Imk−1 ⊗ B̂(s1, µ)), k ≥ 1 (6)

of structured transfer functions for linear systems was
developed in Beattie & Gugercin (2009) and then ex-
tended to the parametric setting in Antoulas et al.
(2010). As the structured transfer functions were re-
cently extended to non-parametric bilinear systems
in Benner et al. (2021), we consider here structured
parametric multivariate transfer functions of the form
(5) with frequency points s1, . . . , sk ∈ C, parameters

µ ∈ M ⊂ Rd, N (s, µ) =
[
N1(s, µ), . . . , Nm(s, µ)

]
, and

matrix functions

C : C×M→ Cp×n, K : C×M→ Cn×n,
B : C×M→ Cn×m, Nj : C×M→ Cn×n,

for j = 1, . . . ,m. For the parametric bilinear mechanical
system (1), these matrix functions are realized by

K(s, µ) = s2M(µ) + sD(µ) +K(µ),

Nj(s, µ) = Np,j(µ) + sNv,j(µ) for j = 1, . . . ,m,

B(s, µ) = Bu(µ), and C(s, µ) = Cp(µ) + sCv(µ).

The reduced-order models are then computed by pro-
jection: Given model reduction bases V,W ∈ Cn×r, the
reduced-order model Ĝ is described by the reduced-order
matrix functions

Ĉ(s, µ) = C(s, µ)V, K̂(s, µ) = WHK(s, µ)V,

B̂(s, µ) = WHB(s, µ), N̂ j(s, µ) = WHNj(s, µ)V,
(7)

for j = 1, . . . ,m. Model reduction by projection in the
sense of (7) is structure-preserving by nature. In gen-
eral, every matrix-valued function can be affinely decom-
posed with respect to its arguments, here frequency and
parameter, and we can write

K(s, µ) =

nK∑
j=1

hK,j(s, µ)Kj , (8)

where hK,j : C ×M → C are scalar functions depend-
ing on frequency and parameter, and Kj ∈ Cn×n are
constant matrices, for j = 1, . . . , nK. In the worst-case
scenario, we have nK = n2 and the Kj ’s are elemen-
tary matrices. However, we are interested in cases where
nK � n, which is true in most applications. In the nu-
merical examples we present in Section 5, nK is at most

3. The choice of the scalar functions hK,j encodes the
internal structure of the system. Using the affine decom-
position, the reduced-order matrix function is given by

K̂(s, µ) =

nK∑
j=1

hK,j(s, µ)WHKjV =

nK∑
j=1

hK,j(s, µ)K̂j .

This works analogously for the other matrix functions
in (7), which gives a computable realization of the
reduced-order model. Since the functions hK,j stay un-
changed, the internal structure and parameter depen-
dency of the original matrix functions (and thus of the
original system) are retained. The reduced-order model
is then given by replacing the original system matrices
in the affine decomposition (8) by their reduced-order
counterparts.

In the following, we will use an abbreviation for the no-
tion of partial derivatives, namely we denote

∂
s
j1
1 ···s

jk
k

f(z1, . . . , zk) :=
∂j1+...+jkf

∂sj11 · · · ∂s
jk
k

(t1, . . . , tk),

for the differentiation of an analytic function f : Ck →
C` with respect to the variables s1, . . . , sk and evaluated
at z1, . . . , zk. Also, we denote the vertical concatenation

of the bilinear terms by Ñ (s, µ) =


N1(s, µ)

...

Nm(s, µ)

.

3 Structured interpolation

Interpolatory model reduction has been one of the most
commonly used and effective approaches to model re-
duction and shown to provide locally optimal reduced
models for linear, bilinear, quadratic-bilinear dynamical
systems; we refer the reader to Antoulas et al. (2020),
Baur et al. (2014), Scarciotti & Astolfi (2017) and refer-
ences therein for details on interpolatory model reduc-
tion for linear and nonlinear systems. In this setting,
one chooses V and W in (7) such that the reduced-or-
der transfer functions interpolate the transfer functions
of the original system at selected points. In the setting
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of parametric structured multivariate transfer functions
Gk in (5), we want to construct V and W such that the

reduced transfer functions Ĝk in (6) satisfy

Gk(σ1, . . . , σk, µ̂) = Ĝk(σ1, . . . , σk, µ̂) and (9)

∇Gk(σ1, . . . , σk, µ̂) = ∇Ĝk(σ1, . . . , σk, µ̂), (10)

for given frequency interpolation points σ1, . . . , σk ∈ C,
the parameter interpolation point µ̂ ∈ M, and where
∇Gk denotes the Jacobian matrix

∇Gk =
[
∂s1Gk, . . . , ∂skGk, ∂µ1Gk, . . . , ∂µdGk

]
.

We emphasize that for multi-input/multi-output
(MIMO) systems we consider here, transfer functionsGk
are matrix valued. Therefore, conditions in (9) and (10)
enforce matrix interpolation. This is not usually needed.
For MIMO linear dynamical systems, for example,
one enforces tangential interpolation, meaning matrix-
interpolation along selected directions; see, e.g., An-
toulas et al. (2020). However, for brevity and to keep the
notation concise, we will focus on matrix interpolation.

Even though we have only listed two sets of interpolation
conditions in (9) and (10), Theorems 1 and 2 below will
show how to construct V and W to enforce interpola-
tion for more general cases, including higher-order par-
tial derivatives. The recent work in Benner et al. (2021)
showed how to enforce (9) and (10) for non-parametric
structured bilinear systems. Our theory below will ex-
tend these results to the parametric case. Note that the
first condition (9) does not involve any differentiation
with respect to the parameter µ̂ and can be viewed as
interpolation for a fixed parameter µ = µ̂. Therefore, we
might expect that the subspace constructions from Ben-
ner et al. (2021) for the non-parametric problem might
yield the desired subspaces. This is indeed what we dis-
cuss first in Theorems 1 and 2. However, the second con-
dition (10) involves matching sensitivity with respect to
the parameter as well, which will be discussed in Sec-
tion 4.

Theorem 1 (Structured matrix interpolation)
Let G be a parametric bilinear system, with its struc-
tured subsystem transfer functions Gk in (5), and Ĝ
be the reduced-order parametric bilinear system, con-
structed as in (7) with its subsystem transfer functions

Ĝk in (6). Let the matrix functions C(s, µ), K(s, µ)−1,

N (s, µ), B(s, µ), and K̂(s, µ)−1 be defined for given sets
of frequency interpolation points σ1, . . . , σk ∈ C and
ς1, . . . , ςθ ∈ C, and the parameter interpolation point
µ̂ ∈M.

(a) If V is constructed such that

span(V ) ⊇ span([V1, . . . , Vk]),

where

V1 = K(σ1, µ̂)−1B(σ1, µ̂) and

Vj = K(σj , µ̂)−1N (σj−1, µ̂)(Im ⊗ Vj−1),
(11)

for 2 ≤ j ≤ k, then the following interpolation con-
ditions hold true:

Gj(σ1, . . . , σj , µ̂) = Ĝj(σ1, . . . , σj , µ̂), (12)

for j = 1, . . . , k.
(b) If W is constructed such that

span(W ) ⊇ span([W1, . . . ,Wθ]),

where

W1 = K(ςθ, µ̂)−HC(ςθ, µ̂)H and

Wi = K(ςθ−i+1, µ̂)−HÑ (ςθ−i+1, µ̂)H(Im ⊗Wi−1),

for 2 ≤ i ≤ θ, then the following interpolation con-
ditions hold true:

Gi(ςθ−i+1, . . . , ςθ, µ̂) = Ĝi(ςθ−i+1, . . . , ςθ, µ̂), (13)

for i = 1, . . . , θ.
(c) Let V be constructed as in Part (a) and W as in

Part (b). Then, in addition to (12) and (13), the
interpolation conditions

Gq+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ, µ̂)

= Ĝq+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ, µ̂),
(14)

hold for 1 ≤ q ≤ k and 1 ≤ η ≤ θ.

PROOF. Given the fixed parameter µ̂ ∈ M, the ma-
trix functions C(s, µ̂), K(s, µ̂), N (s, µ̂) and B(s, µ̂) can
be viewed as the realization of a non-parametric bilin-
ear system. Then, the interpolation conditions (12)–(14)
can be considered as subsystem interpolation of a non-
parametric bilinear system as these conditions do not in-
volve any variation/sensitivity with respect to µ. There-
fore, the subspace conditions in (Benner et al. 2021, The-
orem 8), for interpolating a non-parametric structured
bilinear system, apply here as well, which are precisely
the subspace conditions listed in Parts (a)–(c). However,
to make the paper self-contained and the proof of The-
orem 4 in Section 4 easier to follow, we will still prove
Part (a) for k = 2. By induction over k, the rest of the
result in (a) follows directly using the same arguments.
Using (6), the second reduced-order transfer function is
given by

Ĝ2(σ1, σ2, µ̂) = Ĉ(σ2, µ̂)K̂(σ2, µ̂)−1N̂ (σ1, µ̂)

× (Im ⊗ K̂(σ1, µ̂)−1)(Im ⊗ B̂(σ1, µ̂)).
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We observe that with (7) it holds

(Im ⊗ V )(Im ⊗ K̂(σ1, µ̂)−1)(Im ⊗ B̂(σ1, µ̂))

= (Im ⊗ V K̂(σ1, µ̂)−1WHK(σ1, µ̂)︸ ︷︷ ︸
PV1

K(σ1, µ̂)−1B(σ1, µ̂)︸ ︷︷ ︸
V1

),

where PV1 is a projector onto span(V ) and V1 is as
defined in (11). By construction, we have span(V1) ⊆
span(V ); thus PV1

V1 = V1 and, therefore

(Im ⊗ V )(Im ⊗ K̂(σ1, µ̂)−1)(Im ⊗ B̂(σ1, µ̂))

= (Im ⊗K(σ1, µ̂)−1)(Im ⊗ B(σ1, µ̂)).

Then, Ĝ2 can be written as

Ĝ2(σ1, σ2, µ̂) = C(σ2, µ̂)V K̂(σ2, µ̂)−1WHN (σ1, µ̂)

× (Im ⊗ V1).

Also, it holds that

V K̂(σ2, µ̂)−1WHN (σ1, µ̂)(Im ⊗ V1)

= V K̂(σ2, µ̂)−1WHK(σ2, µ̂)︸ ︷︷ ︸
PV2

× K(σ2, µ̂)−1N (σ1, µ̂)(Im ⊗ V1)︸ ︷︷ ︸
V2

= K(σ2, µ̂)−1N (σ1, µ̂)(Im ⊗ V1),

using the fact thatPV2 is another projector onto span(V )
and that span(V2) ⊆ span(V ). Inserting this last equal-
ity into the second reduced-order transfer function yields

Ĝ2(σ1, σ2, µ̂) = G2(σ1, σ2, µ̂).

Constructing further projectors onto span(V ) for higher-
order transfer functions gives the result in (a). The result
in Part (b) follows exactly the same way by using the
Hermitian transposed matrix functions and constructing
now projectors onto span(W ). Part (c) is then resulting
from the application of both types of projectors onto
span(V ) and span(W ).

In practice, one would construct the final basis matri-
ces V and W via a rank-revealing orthogonalization of
the concatenation, e.g., [V1, . . . , Vk]. This could be done,
for example, via a rank-revealing QR decomposition or
SVD afterwards, or by a repeated re-orthogonalization
process in every step after each computation of the next
Vi. This yields basis matrices with orthonormal columns
and reveals rank deficiency in the constructed matrices,
leading to smaller subspace dimension and thus a smaller
reduced order.

In Theorem 1, only function values are matched, i.e., the
zeroth derivative. The following theorem extends these
results to matching higher-order derivatives in the fre-
quency arguments, i.e., to enforcing Hermite interpola-
tion conditions.

Theorem 2 (Hermite matrix interpolation) Let
G be a parametric bilinear system, with its structured
subsystem transfer functions Gk in (5) and Ĝ be the re-
duced-order parametric bilinear system, constructed as
in (7) with its subsystem transfer functions Ĝk in (6). Let
the matrix functions C(s, µ),K(s, µ)−1,N (s, µ), B(s, µ),

and K̂(s, µ)−1 be analytic for given sets of frequency
interpolation points σ1, . . . , σk ∈ C and ς1, . . . , ςθ ∈ C,
and the parameter interpolation point µ̂ ∈M.

(a) If V is constructed such that

span(V ) ⊇ span([V1,0, . . . , Vk,`k ]),

where

V1,j1 = ∂sj1 (K−1B)(σ1, µ̂) and

Vq,jq = ∂sjqK−1(σq, µ̂)

×

q−2∏
j=1

∂s`q−j
(
(Imj−1 ⊗N )

× (Imj ⊗K)
)
(σq−j , µ̂)


× ∂s`1

(
(Imq−2 ⊗N )(Imq−1 ⊗K)

× (Imq−1 ⊗ B)
)
(σ1, µ̂) ,

for 2 ≤ q ≤ k and 0 ≤ j1 ≤ `1; 0 ≤ jq ≤ `q, then
the following interpolation conditions hold true:

∂
s
`1
1 ···s

`q−1
q−1

s
jq
q

Gq(σ1, . . . , σq, µ̂)

= ∂
s
`1
1 ···s

`q−1
q−1

s
jq
q

Ĝq(σ1, . . . , σq, µ̂),
(15)

for q = 1, . . . , k and jq = 0, . . . , `q.
(b) If W is constructed such that

span(W ) ⊇ span([W1,0, . . . ,Wθ,νθ ]),

where

W1,iθ = ∂siθ (K−HCH)(ςθ, µ̂) and

Wη,iθ−η+1 = ∂
s
iθ−η+1 (K−HÑH)(ςθ−η+1, µ̂)

×

 θ−1∏
i=θ−η+2

∂sνi (Imi−1 ⊗K−HÑH)(ςi, µ̂)


×
(
Imθ−1 ⊗ ∂sνθ (K−HCH)(ςθ, µ̂)

)
,
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for 2 ≤ η ≤ θ and 0 ≤ iθ ≤ νθ; 0 ≤ iθ−η+1 ≤
νθ−η+1, then the following interpolation conditions
hold true:

∂
s
iθ−η+1
1 s

νθ−η+2
2 ···sνθ

θ

Gη(ςθ−η+1, . . . , ςθ, µ̂)

= ∂
s
iθ−η+1
1 s

νθ−η+2
2 ···sνθ

θ

Ĝη(ςθ−η+1, . . . , ςθ, µ̂),

(16)
for η = 1, . . . , θ and iθ−η+1 = 0, . . . , νθ−η+1.

(c) Let V be constructed as in (a) and W as in (b).
Then, in addition to (15) and (16), the interpolation
conditions (17) hold for jq = 0, . . . , `q; iθ−η+1 = 0,
. . . , νθ−η+1; 1 ≤ q ≤ k and 1 ≤ η ≤ θ.

PROOF. As in Theorem 1, all the interpolation con-
ditions are for a fixed parameter µ̂ ∈ M, i.e., they can
be proven using a similar construction of projectors onto
suitable subspaces as in Theorem 1. Therefore, the sub-
space conditions in (Benner et al. 2021, Theorem 9) can
be applied here, which are precisely the subspace condi-
tions listed in Theorem 2.

Remark 3 We note that the major computational cost
stems from solving (sparse) linear systems of equations
to construct the basis matrices V and W , as common to
the interpolatory model reduction framework in general.

4 Matching parameter sensitivities

So far, the interpolation conditions enforced did not
show variability with respect to the parameter µ. Even
in the Hermite conditions matched in Theorem 2, the
matched derivatives (sensitivities) are with respect to
the frequency points. This enabled us to directly em-
ploy the conditions and analysis from Benner et al.
(2021). However, for parametric systems it is important
to match the parameter sensitivity with respect to the
parameter variation as well. This is what we establish
in the next result, extending the similar results from
linear dynamics in Baur et al. (2011) and unstructured
bilinear dynamics in Rodriguez et al. (2018) to the
new parametric structured framework. An important
conclusion is that the parameter sensitivity is matched
implicitly, i.e., without ever explicitly computing it.
This is achieved by using the same set of frequency
interpolation points for V and W .

Theorem 4 (Two-sided matrix interpolation)
Let G be a parametric bilinear system, with its struc-
tured subsystem transfer functions Gk in (5) and Ĝ
be the reduced-order parametric bilinear system, con-
structed as in (7) with its subsystem transfer functions

Ĝk in (6). Let the matrix functions C(s, µ), K(s, µ)−1,

N (s, µ), B(s, µ), and K̂(s, µ)−1 be analytic for a given
set of frequency interpolation points σ1, . . . , σk ∈ C and
the parameter interpolation point µ̂ ∈M.

(a) Let V be constructed as in Theorem 1 Part (a) and
W be constructed as in Theorem 1 Part (b) with
ςi = σi for i = 1, 2, . . . , k. Then, in addition to
(12)–(14) it holds

∇Gk(σ1, . . . , σk, µ̂) = ∇Ĝk(σ1, . . . , σk, µ̂). (18)

(b) Let V be constructed as in Theorem 2 Part (a) and
W be constructed as in Theorem 2 Part (b) with
ςi = σi for i = 1, 2, . . . , k. Then, in addition to
(15)–(17), it holds

∇
(
∂
s
`1
1 ···s

`k
k

Gk(σ1, . . . , σk, µ̂)
)

= ∇
(
∂
s
`1
1 ···s

`k
k

Ĝk(σ1, . . . , σk, µ̂)
)
.

(19)

PROOF. For brevity, we only prove (18). The proof
of (19) follows analogously. As in the proof of Theo-
rem 1, we will construct appropriate projectors onto the
projection spaces span(V ) or span(W ). In contrast to
Theorem 2, we now also interpolate the derivative with
respect to the parameters. Using the product rule, the
partial derivative of Ĝk with respect to a single param-
eter entry µi, for 1 ≤ i ≤ d, is given by

∂µiĜk(σ1, . . . , σk, µ̂)

=
∑
α∈A

(
∂µα1

i
Ĉ(σk, µ̂)

)(
∂µα2

i
K̂−1(σk, µ̂)

)

×

k−1∏
j=1

(Imj−1 ⊗ ∂
µ
α2j+1
i

N̂ (σk−j , µ̂))

× (Imj ⊗ ∂µα2j+2
i

K̂−1(σk−j , µ̂))


× (Imk−1 ⊗ ∂

µ
α2k+1
i

B̂(σ1, µ̂)),

(20)

where A denotes the set of all columns of the identity ma-
trix of size 2k+1. In other words, (20) is a sum of 2k+1
terms where each term corresponds to the vector α tak-
ing a value from this set of columns. Therefore, in each
term only a single matrix function is differentiated. We
will show that every single term in the sum (20) matches
the same term in the full-order model, thus, summed to-
gether, proving the desired interpolation property (18).
Consider, e.g., the second term in (20), i.e., the term
in which α is the second column of the identity matrix:

α =
[
α1 α2 α3 · · · α2k+1

]T
=
[
0 1 0 . . . 0

]T
. Denote

the corresponding term by Ĥ2. Then,

Ĥ2 := Ĉ(σk, µ̂)
(
∂µiK̂−1(σk, µ̂)

)
×

k−1∏
j=1

(Imj−1 ⊗ N̂ (σk−j , µ̂))
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∂
s
`1
1 ···s

`q−1
q−1

s
jq
q s

iθ−η+1
q+1

s
νθ−η+2
q+2

···sνθ
q+η

Gq+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ, µ̂)

= ∂
s
`1
1 ···s

`q−1
q−1

s
jq
q s

iθ−η+1
q+1

s
νθ−η+2
q+2

···sνθ
q+η

Ĝq+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ, µ̂)
(17)

× (Imj ⊗ K̂(σk−j , µ̂)−1)

 (Imk−1 ⊗ B̂(σ1, µ̂)).

The derivative of the inverse appearing in Ĥ2 is given by

∂µiK̂−1(σk, µ̂) = −K̂(σk, µ̂)−1
(
∂µiK̂(σk, µ̂)

)
K̂(σk, µ̂)−1.

Therefore, Ĥ2 can be rewritten as

Ĥ2 = −Ĉ(σk, µ̂)K̂(σk, µ̂)−1
(
∂µiK̂(σk, µ̂)

)
K̂(σk, µ̂)−1

×

k−1∏
j=1

(Imj−1 ⊗ N̂ (σk−j , µ̂))

× (Imj ⊗ K̂(σk−j , µ̂)−1)

 (Imk−1 ⊗ B̂(σ1, µ̂))

=: −ŴH
1

(
∂µiK̂(σk, µ̂)

)̂
V k.

Noting that the model reduction matrix V is constructed
as in Theorem 1, we obtain

V V̂ k = V K̂(σk, µ̂)−1WHK(σk, µ̂)︸ ︷︷ ︸
PVk

Vk = Vk,

where PVk is a projector onto span(V ). Similarly, we
have

WŴ 1 = W K̂(σk, µ̂)−HVK(σk, µ̂)H︸ ︷︷ ︸
PW1

K(σk, µ̂)−HC(σk, µ̂)H︸ ︷︷ ︸
W1

= W1,

with PW1 a projector onto span(W ). Using those two
identities, we obtain

Ĥ2 = −ŴH
1W

H
(
∂µiK(σk, µ̂)

)
V V̂ k

= −WH
1

(
∂µiK(σk, µ̂)

)
Vk,

i.e., Ĥ2 is identical to the term using the original matrix
functions. Since the same technique can be used for all
other α values corresponding the other columns in the
set A, we obtain, for all 1 ≤ i ≤ d,

∂µiĜk(σ1, . . . , σk, µ̂) = ∂µiGk(σ1, . . . , σk, µ̂). (21)

Interpolation of the partial derivatives with respect to
the frequency parameters follows by using the fixed pa-
rameter µ̂ in (Benner et al. 2021, Corollary 2). Together
with (21), this proves (18).

Remark 5 Theorem 4 shows how to match the param-
eter sensitivity implicitly without ever computing this
quantity. Matching the parameter sensitivities is impor-
tant, especially in the setting of optimization and design.
These results can be extended to match the parameter
Hessian as well; compare to Rodriguez et al. (2018). How-
ever, we skip those details for brevity.

Remark 6 All the results in Theorems 1 to 4 are formu-
lated for a single parameter interpolation point µ̂ ∈ M.
However, the results directly extend to interpolation at
multiple parameter sampling points µ̂(1), . . . , µ̂(q) ∈ M
by constructing the projection spaces for every parameter
sample and then concatenating the resulting spaces into
a single global projection space. As example, consider the
task of interpolating

G1(σ1, µ̂
(1)), G2(σ1, σ2, µ̂

(1)),

G1(σ3, µ̂
(2)), G2(σ3, σ4, µ̂

(2)),
(22)

with the four frequency points σ1, σ2, σ3, σ4 and the two
parameter points µ̂(1), µ̂(2). Using Theorem 1 Part (a), we
can construct basis matrices V (1), V (2) for the interpola-
tion in either µ̂(1) or µ̂(2), respectively. The construction
of a reduced-order model that satisfies all interpolation
conditions (22) is then given by constructing V such that

span(V ) ⊇ span([V (1), V (2)]).

Remark 7 The results simplify drastically for single-
input/single-output (SISO) systems. In that case, the
multivariate transfer functions corresponding to bilin-
ear systems (5) can be written without Kronecker prod-
ucts (23) and the construction of the corresponding pro-
jection spaces simplifies such that no Kronecker products
are involved anymore.

5 Numerical examples

We illustrate the analysis with two benchmark exam-
ples. The experiments reported here have been executed
on a machine with 2 Intel(R) Xeon(R) Silver 4110
CPU processors running at 2.10GHz and equipped with
192 GB total main memory. The computer is run on
CentOS Linux release 7.5.1804 (Core) with MATLAB
9.7.0.1190202 (R2019b).
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Gk(s1, . . . , sk, µ) = C(sk, µ)K(sk, µ)−1

k−1∏
j=1

N (sk−j , µ)K(sk−j , µ)−1)

B(s1, µ) (23)
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(b) Relative error of the first transfer function.

Fig. 1. Relative errors for the time-delay system.

5.1 Parametric bilinear time-delay system

In the first example from Gosea et al. (2019), we consider
a time-delayed heated rod modeled by a one-dimensional
heat equation

∂tv(ζ, t) = ∂2ζv(ζ, t)+a1(ζ)v(ζ, t)+a2(ζ)v(ζ, t−1)+u(t),

with homogeneous Dirichlet boundary conditions. We
parameterize the diffusivity using the coefficients

a1 = −µ sin(ζ) and a2 = µ sin(ζ), for µ ∈ [1, 10].

The non-parametric example in Gosea et al. (2019) is
recovered for µ = 2. After a spatial discretization, we
obtain a parametric bilinear system of the form

Eẋ(t) = (A0 − µAd)x(t) + µAdx(t− 1)

+Nx(t)u(t) +Bu(t),

y(t) = Cx(t),

with m = p = 1 and n = 5 000. In our structured para-
metric setting, this model corresponds to the matrix
functions

K(s, µ) = sE − (A0 − µAd)− µe−sAd,

B(s, µ) = B, N (s, µ) = N, and C(s, µ) = C.

The reduced-order model is constructed via Theorem 4
Part (a) with the frequency sampling points {±10−4i,
±104i} and the parameter sampling points {1, 5.5, 10}
for the first two transfer functions. By construction,
the reduced-order model has the same parametric time-
delay structure as the original one, where the reduced
matrices are given by

Ê = WHEV, Â0 = WHA0V, Âd = WHAdV,

N̂ = WHNV, B̂ = WHB, Ĉ = CV,

using the orthogonal truncation matrices V and W . The
reduced-order system has the state-space dimension r =
24.

Figure 1a shows the relative time response error in the
output, given by

err1,t(t, µ) :=
|y(t;µ)− ŷ(t;µ)|
|y(t;µ)|

,

for t ∈ [0, 10] and µ ∈ [1, 10], using the same
test input signal as in Gosea et al. (2019), namely,
u(t) = 0.05 (cos(10t) + cos(5t)). The maximum error in
the time and parameter domain is

max
µ∈[1,10]

(
max
t∈[0,10]

err1,t(t, µ)

)
≈ 9.993 · 10−6,

illustrating a high-fidelity parametric reduced model
over the full parameter domain. Figure 1b depicts the
relative error in the first transfer function over the
parameter range, computed as

err1,f(ω1, µ) :=
|G1(ω1i, µ)− Ĝ1(ω1i, µ)|

|G1(ω1i, µ)|
,

where ω1 ∈ [10−4, 104] and µ ∈ [1, 10]. As for the time
domain error, we computed the maximum error to obtain

max
µ∈[1,10]

(
max

ω1∈[10−4,104]
err1,f(ω1, µ)

)
≈ 7.002 · 10−6,

showing the accuracy of the parametric reduced model
in the frequency domain as well. We computed the
maximum relative error in the second transfer function
G2(s1, s2, µ) as well to obtain

max
µ∈[1,10]

(
max

ω1,ω2∈[10−4,10+4]
err1,f(ω1, ω2, µ)

)
≈ 6.657 · 10−4,
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Fig. 2. First transfer functions for the damped mass-spring system.

where

err1,f(ω1, ω2, µ) :=
|G2(ω1i, ω2i, µ)− Ĝ2(ω1i, ω2i, µ)|

|G2(ω1i, ω2i, µ)| .

All these results show that the structure-preserving
parametric reduced-order model is an accurate approx-
imation of the original system over the full parameter
domain.

5.2 Parametric bilinear mechanical system

As second example, we consider a parametrized version
of the multi-input/multi-output damped mass-spring
system from Benner et al. (2021), a special case of the
model (1), given by

Mẍ(t;µ) +Dẋ(t;µ) +Kx(t;µ) = Buu(t)

+ µ1Np,1x(t)u1(t) + µ2Np,2x(t)u2(t),

y(t;µ) = Cpx(t;µ)ẋ(t;µ),

where µ = (µ1, µ2) is the parameter entering through
the bilinear terms and all the other matrices are exactly
as in Benner et al. (2021), except for Cp, which we set
as Cp = [e2, en−3]T, where ej denotes the j-th column
of the n-dimensional identity matrix. We have then n =
1 000 masses, m = 2 inputs and p = 2 outputs. The
parameter set is M = [0, 1] × [0, 1]. Note that for µ =
(0, 0), the system becomes linear as the bilinear terms
are multiplied with 0. In our setting, this parametric
bilinear model corresponds to

K(s, µ) = s2M + sD +K, B(s, µ) = Bu,

N (s, µ) =
[
µ1Np,1, µ2Np,2

]
, and C(s, µ) = Cp.

Two reduced-order models are constructed via Theo-
rem 1 to illustrate, on the one hand, the qualitative be-
havior of the structure-preserving reduced-order models,
and, on the other hand, the effect of interpolation point

selection. For the first reduced-order model, the interpo-
lation points {±10−4i, ±104i} are used in the frequency
domain for the first two transfer function levels and com-
bined with {(0, 1), (1, 0)} in the parameter domain. To
preserve the structural properties, such as positive def-
initeness of the mass, damping and stiffness matrices,
we use a one-sided projection, i.e., we choose W = V .
Since the first transfer function (the linear term) is in-
dependent of the parameter, some of the vectors in the
construction of V are redundant and removed, yielding a
structured parametric reduced-order model with r = 40.
The reduced-order system matrices are then given by

M̂ = V HMV, D̂ = V HDV, K̂ = V HKV,

N̂p,1 = V HNp,1V, N̂p,2 = V HNp,2V,

B̂u = V HBu, Ĉp = CpV,

with the orthogonal truncation matrix V .

Next, we investigate the first transfer function of this
reduced-order model in Figure 2. For most frequencies,
the relative error, computed by

err2,f(ω1) :=
‖G1(ω1i)− Ĝ1(ω1i)‖2

‖G(ωi)‖2
,

over the frequency range ω1 ∈ [10−4, 10+4], is at ma-
chine precision except for a bump in the middle, where
the transfer function behavior changes. To reduce the
error in this region, we construct a second reduced-order
model by adding an additional frequency interpolation
point where the first reduced-order model attains its
maximum error, around the frequency ±1.85i. The sec-
ond reduced-order model has the order r = 60.

Figure 2 illustrates the expected error behavior. The in-
terpolation is numerically exact in the additional inter-
polation point and, additionally, has a significantly re-
duced error in the surrounding region. For a more de-
tailed comparison, we have computed the maximum er-
rors in frequency and time domain, which are provided
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Table 1
Maximum errors for the damped mass-spring system.

StrInt (r = 40) StrInt (r = 60)

max
µ

err2,t(µ) 2.7665e-3 8.3947e-6

max
ω1

err2,f(ω1) 1.3407e-4 9.9974e-8

max
µ,ω1,ω2

err2,f(ω1, ω1, µ) 1.4242e-3 9.1448e-6

in Table 1, with

err2,t(µ) := max
j∈{1,2}

(
max

t∈[0,100]
|yj(.;µ)− ŷj(.;µ)|

|yj(.;µ)|

)
,

for the time simulations using the input signal u(t) =[
sin(200t) + 200, − cos(200t)− 200

]T
, and

err2,f(ω1, ω1, µ) :=
‖G2(ω1i, ω2i, µ)− Ĝ2(ω1i, ω2i, µ)‖2

‖G2(ω1i, ω2i, µ)‖2
,

for the second transfer functions with ω1, ω2 ∈
[10−4, 10+4] and µ ∈ [0, 1]2. In both frequency and time
domain, the errors of the larger reduced-order model
with the additional interpolation point are significantly
smaller than for the smaller reduced system. This sug-
gests that a greedy procedure based on an error estima-
tor, and selecting the next interpolation point based on
minimizing the error with respect to the estimator as
suggested for linear parametric time-invariant systems
in Feng & Benner (2019) will be a promising future
research direction.

6 Conclusions

We have presented a structure-preserving interpolation
framework for model order reduction of parametric bi-
linear systems. We have established the subspace condi-
tions to enforce interpolation both in the frequency and
parameter domains. Two numerical examples illustrate
that the approach is well suited for efficient structure-
preserving model order reduction of parametric bilinear
systems. The presented approach covers arbitrary pa-
rameter dependencies of the system as well as more sys-
tem structures than shown in the examples.

An important open question is the appropriate choice
of interpolation points in the frequency as well as the
parameter domains to minimize the approximation er-
ror in some appropriate measure. In the parametric lin-
ear system case, this problem can be solved using er-
ror estimators in a greedy interpolation point selection.
But for parametric bilinear systems, such error estima-
tors are not yet developed. Preservation of stability in
the structured parametric bilinear reduced-order model

is another important avenue to investigate. While there
are some special structures where stability can be pre-
served, this is a topic of future research for the general
bilinear structure we considered in this paper.
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