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Data streams of gravitational-wave detectors are polluted by transient noise features, or “glitches,” of
instrumental and environmental origin. In this work we investigate the use of total variation methods
and learned dictionaries to mitigate the effect of those transients in the data. We focus on a specific type of
transient, “blip" glitches, as this is the most common type of glitch present in the LIGO detectors and their
waveforms are easy to identify. We randomly select 100 blip glitches scattered in the data from advanced
LIGO’s O1 run, as provided by the citizen-science project Gravity Spy. Our results show that dictionary-
learning methods are a valid approach to model and subtract most of the glitch contribution in all cases
analyzed, particularly at frequencies below ∼1 kHz. The high-frequency component of the glitch is best
removed when a combination of dictionaries with different atom length is employed. As a further example
we apply our approach to the glitch visible in the LIGO-Livingston data around the time of merger of
binary neutron star signal GW170817, finding satisfactory results. This paper is the first step in our ongoing
program to automatically classify and subtract all families of gravitational-wave glitches employing
variational methods.
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I. INTRODUCTION

The third observational campaign of the advanced
gravitational-wave (GW) detectors LIGO [1] and Virgo
[2], O3, is currently ongoing. During the previous two
campaigns, O1 and O2, the GW detector network reported
the observation of eleven compact binary mergers [3]
comprising ten binary black holes and one binary neutron
star. The latter, GW170817 [4], was accompanied by
extensive and very successful follow-up observations of
electromagnetic emission originated from the same astro-
nomical source [5]. Moreover, neutrino searches were

also carried out, yet no detection has been reported [6].
The entire GW strain data from O1/O2 has been made
publicly available and, in particular, the data around the
time of each of the eleven O1/O2 events are accessible
through the Gravitational-Wave Open Science Center.1

Since the start of O3 on April 1st 2019, GW candidate
events are being released as public alerts to facilitate the
rapid identification of electromagnetic or neutrino counter-
parts. The growing list of candidates can be inspected at the
GW Candidate Event Database [7]. Toward the end of O3,
the GW detector network may be increased by yet another
facility with the addition of the KAGRA detector [8].
The detection of GWs is severely hampered by many

sources of noise that contribute to a nonstationary back-
ground in the time series of data in which actual GW
signals reside. The theoretical sensitivity of the instru-
ments is limited at low frequencies (below ∼20 Hz) by
gravity-gradient (seismic) noise and at high frequencies
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(above ∼2 kHz) by photon-shot noise originated by quan-
tum fluctuations of the laser. The detectors are most sensitive
at intermediate frequencies (∼200 Hz) where the Brownian
motion of the suspensions and mirrors is the limiting source
of so-called thermal noise [9]. While these theoretical limits
have not yet been entirely satisfied, they can be anticipated
to be limiting in future observing runs. At present, the most
limiting source of noise at low frequencies is control noise.
Moreover, the data stream is polluted with the presence of
transient (short duration) noise signals, commonly known
as “glitches,” whose origin is not astrophysical but rather
instrumental and environmental. We refer to [10] for a
comprehensive overview of the LIGO/Virgo detector noise
and the extraction of GW signals.
Glitches impedeGWdata analysis for a number of reasons.

By their short-duration nature they contribute significantly
to the background of transient GW searches. Glitches may
occur sufficiently frequently to potentially affect true signals,
particularly when occurring in (or almost in) coincidence.
Furthermore, some types of glitches show time-frequency
morphologies remarkably similar to actual transient astro-
physical signals, which increases the false-alarm rate of
potential triggers. Moreover, having to remove portions of
data in which glitches are present downgrades the duty cycle
of the detectors. It is however not trivial to remove defective
segments of data. The simplest approach, i.e., setting them to
zero, might result in a leakage of excess power, which may
turn the mitigating approach more damaging than the very
effect of the glitch. Traditional automated approaches to
discard triggers, like that of [11], analyze auxiliary channels
from the detectorswhich are insensitive toGWsignals. These
approaches efficiently produce vetoes ranking the statistical
relationship between triggers in auxiliary channels and
remove the corresponding data in the GW channel.
For all these reasons, understanding the origin of glitches

and mitigating their effects is a major effort in the charac-
terization of GW detectors [12,13]. Indeed, in recent years
many strategies have been developed to automatically
classify glitches. The approaches are as diverse as
Bayesian inference, machine learning, deep learning, and
citizen science [14–22]. Recent examples of glitch mitiga-
tion are reported in [23–26]. Reference [23] describes
various deglitching methods to extract the strong glitch
present in the LIGO-Livingston detector about 1s before the
merger of the binary neutron star that produced the signal
GW170817 [4]. In [24,25] the impact of loud glitches is
reduced by using an inpainting filter that fills the hole created
after windowing the glitch. Glitch reduction, together with
other techniques, was shown to improve the statistical
significance of a GW trigger. In addition, deep learning
approaches have also proven very effective to recover the
true GW signal even in the presence of glitches [26].
There are many different families of glitches identified

during the advanced LIGO-Virgo observing runs
[16,27,28]. Glitches from each family have a similar

morphology, although the characteristics of each specific
glitch in terms of duration, bandwidth and signal-to-noise
(SNR) ratio can vary significantly even for glitches inside
the same family. In this work we focus on blip glitches, a
noise transient characterized by a duration of about 10 ms
and a frequency bandwidth of about 100 Hz. This type of
glitch, which has mainly been found in the two LIGO
detectors, significantly reduce the sensitivity of searches for
high-mass compact binary coalescences. Blip glitches in
LIGO data are identified using both the PyCBC pipeline
search (see [27] and references therein) and the citizen-
science effort Gravity Spy [16]. PyCBC is a matched filter
technique that uses short-duration compact binary coales-
cence templates while Gravity Spy uses the time-frequency
morphology to classify glitches among different families.
The recent study of [27] based on PyCBC has found that
Advanced LIGO data during O1/O2 contains approxi-
mately two blip glitches per hour of data (amounting to
thousands of blip glitches in total). The physical origin of
most of them remains unclear. This paper explores the
performance of dictionary-learning methods [29] to miti-
gate the presence of blip glitches in advanced LIGO data.
To this aim we select a large number of blip glitches
randomly distributed along the data stream from advanced
LIGO’s first observing run. For each glitch, the data
correspond to a one-second window centered at the GPS
time of the glitch as provided by Gravity Spy [16]. As in
[23,24,26] the goal of our work is to mitigate the impact of
glitches in GW data in order to increase the statistical
significance of astrophysical triggers. Our results show that
dictionary-learning techniques are able to model blip
glitches and to subtract them from the data without
significantly disturbing the background.
The paper is organized as follows: In Sec. II we

summarize the mathematical framework of the variational
methods which are at the core of the dictionary-learning
approach we use. Section III discusses technical aspects,
namely the whitening procedure we employ to remove noise
lines and other artefacts, the training of the dictionaries,
and how we perform the reconstruction of the glitches. The
results of our study are presented in Sec. IV. Finally, a
summary is provided in Sec. V. Appendix shows the
spectrograms of the 16 blip glitches from O1 we employ
in our test set and reports their main characteristics.

II. REVIEW OF L1-NORM VARIATIONAL
METHODS

A. Total variation methods

In this paper we employ two different variational
techniques based on the L1 norm, the Rudin-Osher-
Fatemi (ROF) method [30] and a dictionary learning
method [29]. We have recently begun to use these proce-
dures in the context of GW data analysis in [20,31–33].
Both approaches solve the denoising problem, y ¼ uþ n,
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where u is the true signal and n is the noise, as a variational
problem. The solution u is thus obtained as

uλ ¼ argmin
u

�
RðuÞ þ λ

2
F ðuÞ

�
; ð2:1Þ

where R is the regularization term, i.e., the constraint to
impose in the data and F is the fidelity term, which
measures the similarity of the solution to the data. The
parameter λ is the regularization parameter and controls the
relative weight of both terms in the equation. Even though
both methods solve the same general problem, each one of
them approaches the problem in a different way and,
therefore, the regularization term and the fidelity term have
different expressions.
In 1992, Rudin, Osher and Fatemi (ROF) [30] proposed

the use of the so-called total-variation (TV) norm as the
regularization termRðuÞ¼R

Ω j∇uj constrained to ky − uk2.
Note that j · j and k · k represent the L1 and L2 norms,
respectively. This specific formulation of the variational
problem (2.1) is called the ROF model and reads

uλ ¼ argmin
u

�Z
Ω
j∇uj þ λ

2
ky − uk2

�
: ð2:2Þ

This model preserves steep gradients, reduces noise by
sparsifying (i.e., promoting zeros) the gradient of the signal
and avoids spurious oscillations (Gibbs effect). However, the
associated Euler-Lagrange equation, given by

∇ ·
∇u
j∇uj þ λðy − uÞ ¼ 0; ð2:3Þ

becomes singular when j∇uj ¼ 0. This issue can be easily
solved by changing the standard TV norm by a slightly
perturbed version (see [31] for a detailed explanation),

TVβðuÞ ≔
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j∇uj þ β
p

; ð2:4Þ

where β is a small positive parameter. We refer to this
modified version of the regularization term in the method as
regularized ROF (rROF).

B. Sparse reconstruction over a fixed dictionary

In dictionary-based methods, the denoising is performed
by assuming that the true signal u can be represented as a
linear combination of the columns (atoms) of a matrix D
called the dictionary. If the signal can be represented with a
few columns of D, the dictionary is adapted to u. In other
words, there exists a “sparse vector” α such that u ∼ Dα. As
a result, the fidelity term in Eq. (2.1) reads,

F ðαÞ ¼ ky − Dαk2: ð2:5Þ

In other words, the problem reduces to finding a sparse
vector α that represents the signal u over the columns of the
dictionary. The next step is to find a regularization term
that induces sparsity over the coefficients of α. Classical
dictionary-learning techniques [34,35] use as regularization
term the L0-norm, which is chosen to ensure that the
solution has the fewest possible number of nonzero
coefficients. However, this problem is not convex and is
NP-hard, i.e., it can be solved in nondeterministic poly-
nomial time. If the L1-norm is used instead of the L0-norm,
the problem becomes convex. This type of regularization
promotes zeros in the components of the vector coefficient
α, and the solution is the sparsest one in most cases. The
variational problem thus reads,

αλ ¼ argmin
α

�
jαj þ λ

2
kDα − yk2

�
; ð2:6Þ

which is known as basis pursuit [36] or LASSO [37]. In this
paper we solve Eq. (2.6) using the alternating direction
method of multipliers (ADMM) algorithm [38].

C. Dictionary learning

In the previous section we have assumed that the
dictionary D is fixed and we only solve the problem of
representation. Traditionally, predefined dictionaries based
on wavelets, curvelets, etc., have been used. However,
signal reconstruction can be dramatically improved by
learning the dictionary instead of using a predefined one
[39]. In this approach a set of training signals is divided into
patches in such a way that the length of the patches is
less than the total length of the training signals. In most
common problems, the number of training patches m is
large compared with the length of each patch n, n ≪ m.
The procedure to train the dictionary is similar to Eq. (2.6)
except that the dictionary D should now be added as
variable,

αλ;Dλ ¼ argmin
α;D

�
1

n

Xm
i¼1

kDαi − xik22 þ λjαij
�
; ð2:7Þ

where xi denotes the ith training patch. Unfortunately, this
problem is not jointly convex unless the variables are
considered separately. In [29] a method based on stochastic
approximations was proposed. These approximations proc-
ess one sample at a time and the method takes advantage
of the problem structure to efficiently solve it. For each
element in the training set, the algorithm alternates a
classical sparse coding step, to solve for α using a dic-
tionary D obtained in the previous iteration, with a dic-
tionary update step, where the new dictionary is calculated
with the recently calculated values of α, namely
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αkþ1 ¼ argmin
α

�
1

n

Xm
i¼1

kDkαi − uik2 þ λjαij
�

ð2:8Þ

Dkþ1 ¼ argmin
D

�
1

n

Xm
i¼1

kDαkþ1
i − uik2 þ λjαij

�
ð2:9Þ

As in [29] we use a block-coordinate descent method [40]
for solving D and αi iteratively.

III. DATA SELECTION AND DICTIONARY
GENERATION

In our previous work we applied learned dictionaries to
denoise numerically generated gravitational waveforms
from simulations of supernovae core-collapse and binary
black hole mergers [32] and to classify simulated glitches
[20]. The data employed was in either case embedded in
nonwhite Gaussian noise to simulate the background noise
of advanced LIGO in its broadband configuration. This
work takes a step further in our efforts by tackling the
denoising problem with dictionaries employing real data, in
the form of actual glitches from advanced LIGO’s O1 data.
We focus on blip glitches, the most common type of

glitch found in the two LIGO detectors and whose origin
remains mostly unknown [27]. Blip glitches, characterized
by a duration of ∼10 ms and a frequency bandwidth of
∼100 Hz, have a distinctive tear-drop shape morphology
when seen is a time-frequency (spectrogram) plot. By their
intrinsic properties and recurring presence they can sig-
nificantly reduce the sensitivity of searches for high-mass
compact binary coalescences. In order to focus only in
these noise transients, we apply a whitening procedure to
the O1 data to remove all systematic sources of noise from
the data, like the calibration and control signals that appear
as lines in the spectrum, and also to flatten the data in
frequency. The whitening algorithm uses the autoregressive
(AR) model of [41,42]. The AR model employs 3000
coefficients estimated using 300 s of data at the beginning
of the corresponding science segment of every glitch. This
type of whitening has proved to be very robust and, as it is
applied in the time domain, it is not affected by the typical
border problems that appear in frequency-domain methods.
To measure the accuracy of the glitch reconstruction and

mitigation we employ two quantitative estimators. The first
one is based on the time-frequency distribution of the
power of the signal. We integrate the power spectrum for all
frequencies for each temporal bin, and then we calculate the
ratio between the maximum power and the mean power for
all times. We will refer to this estimator as SNR:

SNR ¼ maxðSðtÞÞ
SðtÞ ; SðtÞ ¼

Z fs
2

20

Sðt; fÞdf; ð3:1Þ

where Sðt; fÞ is the time-frequency representation of the
data, and fs is the sampling frequency. This SNR estimator

is different from the one provided by the optimal filter,
which is based in theoretical templates. Our second
estimator is called the “whiteness” [42]

W ¼ expð1=fs
R fs=2
−fs=2 lnðPðfÞÞdfÞ

1=fs
R fs=2
−fs=2 PðfÞdf

; ð3:2Þ

where PðfÞ is the power spectral density (PSD) of the data.
The whiteness measures the spectral flatness. As the
presence of glitches implies an increment of power with
respect to a glitchfree background, if PðfÞ is very peaky
then W ∼ 0, and if PðfÞ is flat then W ¼ 1.

A. Training

We use the set of blip glitches identified by Gravity Spy
in the data from advanced LIGO’s first observing run [16]
and randomly select 100 blip glitches. This sample, despite
not being too large, is sufficient to assess the performance
of learned dictionaries in removing glitches while at the
same time is computationally cheap. In contrast to other
machine-learning approaches (e.g., deep learning) which
have hundreds or thousands of parameters to adjust, dic-
tionary-learning techniques do not require a large number
of training examples to produce satisfactory results. The
data corresponds to a window of 1 s centered at the GPS
time of the glitch as provided by Gravity Spy. The data is
divided in two different sets; 85% is used to train the
dictionary while the remaining 15% (which includes 16
blip glitches) is used to test the algorithm. The morphol-
ogies of all 16 glitches are presented in Appendix. The data
is downsampled from their original 16384 Hz to 8192 Hz to
speed up the algorithm and reduce the computational cost.
The training process is performed as follows. After

whitening all the data, we select the main glitch morphol-
ogy using a window of 1024 samples around the GPS time
of the glitch. Then, data from all glitches are aligned and
organized in a matrix to build the initial dictionary. Next,
we select 30000 random patches of a given length and start
the block-coordinate descend method to obtain the trained
dictionary. The length of the patches is the same as the
atoms of the dictionary and, jointly with the number of
atoms, is a hyperparameter of the model.
We explore dictionaries formed by atoms of length in the

range ½23; 29�. We also vary the number of atoms of each
length to understand its possible effect on the results. Our
study shows that a dictionary of 128 samples for atoms is a
good choice. The number of atoms seems not to be very
relevant as long as the dictionary is overcompleted, i.e., the
number of atoms is larger than the length of the atoms.
One intrinsic difficulty of applying dictionary-

reconstruction techniques to noise transients instead of
to actual signals is that we lack a “clean” signal to use as a
model to the dictionary. Glitches have a random component
due to the background. Even though the learning step has
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denoising capabilities, the block-coordinate descend
method can have problems of convergence when the
patches contain a large stochastic component. To improve
the convergence of the learning step and the extraction
results, we introduce an additional step between the
whitening and the patch extraction. Namely, we use the
rROF method to reduce the variance of the data used for
training. This process results in smoother atoms and in a
cleaner reconstruction of the glitch, which translates in a
better separation between the background and the glitch
morphology. An example of a dictionary is shown in Fig. 1.

B. Reconstruction

Once the training step is complete, we use the resulting
dictionary to extract the blip glitch from the background.
As the length of the atoms is always shorter than the length
of the test signals, we perform the reconstruction with a
sliding window with an overlap of n − 4 samples, where n
is the length of the atoms. The overlapped samples are
averaged to obtain the final reconstruction.
In addition, we apply the ADMM algorithm in an

iterative way. Starting with the original data y, we perform
a reconstruction over the dictionary u. Then, this recon-
structed signal is subtracted from the original data and the
resulting residual is used as the new input. This procedure
converges in the sense that in each iteration we subtract
less signal from the background. Therefore, this iterative
process is applied until the differences between the resid-
uals of consecutive iterations is less than a given tolerance.

For most cases, a typical tolerance of 10−3–10−4 is enough
to produce good results.

C. Regularization parameter search

Reconstruction results heavily depend on the value of the
regularization parameter λ. If its value is large, the relative
weight of the regularization term in Eq. (2.6) is larger and
more atoms are used. On the contrary, with a low value of λ
less atoms are used and more details of the signal (and
noise) are recovered. In previous papers [31–33], we found
the optimal value, i.e., the one that produces the best
results, comparing the denoised signal with the original one
from GW catalogs from numerical relativity. In the present
case, as there is not a true signal to compare with, we cannot
determine the optimal λ in the same way.
However, as our goal is to extract the glitch trying to

keep the background unaltered, we design a different
approach to obtain an optimal value of λ. One of the good
properties of dictionary-learning methods we found in our
previous studies is that the reconstruction returns zero when
the data are very different from the dictionary. This state-
ment is true for sufficiently large values of λ. As mentioned
before, if the value is too low, the regularization term in
Eq. (2.6) becomes negligible and we would be solving
essentially a least mean-squares fit, which in practice
translates in a very oscillating reconstruction. If the value
is very large, it is the fidelity term the one that becomes
negligible, and the problem transforms in the minimization
of the L1-norm of the vector α, whose solution is the vector
zero. Therefore, our goal is to find the first value of λ
that returns zeros in the part of the data dominated by
the background but also produces a reconstruction for the
glitch. The resulting reconstruction will be zero on the
window border and will avoid discontinuities. We select a
small window at the beginning of the data window where
we are sure that the data is mostly dominated by the
background. After that, a bisection algorithm tries to find
the largest value that returns a nonzero reconstruction. We
will refer to this value as λmin.

IV. RESULTS

A. Blip glitch subtraction with a single dictionary

We start applying dictionaries of different length and
number of atoms to the 16 blip glitches we use as tests. The
bisection procedure introduced in Sec. III C is used to find
the lower value of λ that returns zeros at the beginning of
the data stream. The reconstructed glitch is then subtracted
from the data to obtain a cleaner background.
As mentioned previously, we explore the results of using

dictionaries formed by atoms of length inside the range
½23; 29�. All options are able to reconstruct the glitches and
reduce their impact significantly. However, we observe
slightly different results depending of the length of the
atoms. In particular, dictionaries with shorter atom length

FIG. 1. Example of a dictionary composed by a total of 192
atoms with 128 samples each. Only 16 atoms randomly selected
are shown.
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are able to extract more high frequency features than those
with larger atom length, but at the expense of leaving more
energy at lower and middle frequencies. We have also
explored the effect of the number of atoms. We find that
once the number of atoms is sufficient large, above ∼2.5
times the length of the atoms, there is no appreciable
improvement in the results.
Figure 2 displays the time-series of three illustrative

examples of our sample of blip glitches reconstructed with
a dictionary of 192 atoms, each with a length of 128
samples. Correspondingly, Fig. 3 shows the time-frequency
diagram (spectrogram) of the same data. In all these
examples (and in the whole set of glitches of our sample)
the amplitude of the reconstruction is almost zero in the
parts of the data stream that contain only background,
and only the parts of the signals with larger amplitude are
reconstructed. The examples in Fig. 2 reveal that the
algorithm is able to reconstruct all blips present in the
data. The subtraction residuals (bottom panels of Fig. 2)
show that the impact of the glitches is significantly reduced
in all cases. However, some non-negligible part of the glitch
still remains in the data (see middle and right panels).
Let us now focus on the spectrograms shown in Fig. 3.

The upper panels display the original data (after the
whitening procedure) and the lower panels show the
reconstructed spectrograms obtained when using a single
dictionary of 192 atoms, each with a length of 128 samples.
The three blips chosen to illustrate our procedure show
several features that make them interesting cases of study.
The left panel shows a blip with the typical tear-drop shape
morphology. The middle panel displays a blip glitch with a

strong contribution at high frequencies. Finally, a strong
spectral line around ∼1400 Hz is well visible in the right
panel and it is simultaneous to the occurrence of the blip
glitch. The spectrograms of the reconstructed data confirm
the analysis of the time-series plots. The power of the
glitches is reduced for the low and middle frequencies (up to
∼500 Hz) while in other parts of the spectrogram both the
signal and the background remain unaltered. This effect is
clearly visible in the right plot of the lower panel of Fig. 3
which shows that the prominent spectral line is still present
after the reconstruction. This is both a good and a bad feature
of the method. On the one hand, it is a good result because,
as the morphology of the line is totally different to that of the
blip glitch, the dictionary does not reconstruct it; that would
be a nice feature of the method in the case of a coincidence
(both temporal and in frequency) of a blip glitch with an
actual GW signal. On the other hand, it is a bad result
because, as spectral lines are another source of noise, they
require additional techniques to mitigate their impact.
The most obvious conclusion from the spectrograms is

that the dictionary has difficulties in reducing the high-
frequency content of the glitches. In the next subsection we
discuss how to improve the performance at high frequen-
cies and present quantitative estimates, using the SNR and
W metrics, of our two deglitching procedures.

B. Combining dictionaries

We turn next to describe the results obtained when using
a combination of different dictionaries to improve the
results at high frequencies (above ∼500 Hz). This combi-
nation is a natural extension of our original algorithm based

FIG. 2. Time-series plots of three illustrative examples of blip glitches, corresponding to numbers 7, 9 and 15 from the test set. The
data have been band-passed between 100 Hz and 1 kHz to better show the morphology of the glitches. The upper panel shows the
original signal (blue) with the reconstructed glitch (orange) superimposed using a dictionary of 192 atoms of 128 samples. The residual
is shown in the bottom panel (Note that the interval of the vertical axes is smaller.).
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on a single dictionary. Now the algorithm reads as follows:
first we perform the reconstruction in the same way than
before using the largest dictionary (i.e., 192 atoms of 128
samples length each). Then, a second dictionary is applied
to the residual obtained from the first one. However, we do
not use λmin for this second dictionary. As our goal is to
improve the results at high frequencies, we use a slightly
lower value of λ, around 85% less. To keep the background
from being affected due to this lower value of λ we restrict
the reconstruction to a window which contains the most
significant part of the blip. This window is determined by
the reconstruction using the first dictionary, selecting the
part of the signal which is not zero.
As an example we discuss results using a combination

of two dictionaries, one formed by 192 atoms of 128
samples and another one comprising 40 atoms of only 16
samples. The results are presented in Figs. 4 and 5. The
comparison of the time-series plots of Figs. 4 and 2 does
not show an obvious improvement when two dictionaries
are used instead of one. The inspection of Fig. 4 reveals
that two of the peaks at the maximum of the glitch
disappear in the left and right panels while part of the
peak of the glitch in the center panel is also reduced.
Comparing the spectrograms (i.e., Figs. 3 and 5) yields
more meaningful information. One can observe that the
high-frequency contribution that remains from the blip

reconstruction with a single dictionary (up to ∼1000 Hz)
is further reduced by using a second, smaller dictionary. In
addition, the background is not significantly perturbed.
This also holds when the first dictionary is able to extract
the blip glitch completely, as shown in the left panel
of Fig. 5.
We have also analyzed the results for lower values of λ

than the 0.85λmin value used in this example. We find that the
high-frequency component of the glitch can be reduced even
more. However, at low and middle frequencies the back-
ground is affected and the spectrogram shows a significant
reduction of power in the glitch there. Our tests indicate that
a value of λ around 0.85λmin yields a good tradeoff.
Table I reports the two metrics, SNR and W, for all test

cases shown in Figs. 2–5. The values of SNR and W for the
original signals are shown in columns 2 and 5, respectively.
The comparison using a single dictionary (columns 3
and 6) indicates that the dictionary is able to reduce the
SNR significantly. The values of the whiteness increase
sightly as expected. Note that as the data is whitened before
the reconstruction, most of the original values of W are
already close to one. For our procedure combining two
dictionaries (columns 4 and 7 in Table I) the estimators
show that in those cases where the first denoising does not
reduce the glitch completely, the second dictionary is able
to improve the results. In addition, in cases where the first

FIG. 3. Time-frequency diagram of the same three examples in Fig. 2. The original data and the residuals are represented in upper and
bottom panel respectively.
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dictionary already shows good performance and the SNR is
reduced significantly, the addition of a second dictionary
barely modifies the results. As a summary we conclude
that, in general, glitch denoising with multiple dictionaries

is a convenient strategy. For our test set of 16 blip glitches it
reduces the SNR by a factor of ∼11 on average, while with
a single dictionary the average reduction is ∼7.5, with a
negligible increment in computational cost.

FIG. 4. Time-series plot of the same three examples of Fig. 2 when the reconstruction is done combining dictionaries. The data have
been band-passed between 100 Hz and 1 kHz to better show the morphology of the glitches. The original data and the residuals are
shown in the top and bottom panels, respectively.

FIG. 5. Time-frequency diagram of the same three examples of Fig. 2 when using combined dictionaries.
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C. Deglitching of GW170817

In [4] the LIGO-Virgo Collaboration reported the first
detection of GWs from a binary neutron star inspiral,
GW170817. About 1.1s before the coalescence time of
GW170817, a short instrumental noise transient appeared
in the LIGO-Livingston detector (see Fig. 6, upper panel).
The glitch was modeled with a time-frequency wavelet
reconstruction and subtracted from the data, as shown in
Fig. 2 of [4].
In this section we evaluate the use of learned dictionaries

to deglitch the noise transient appearing in GW170817.
The results are plotted in Fig. 6. We note that the spectro-
grams in this figure look different to those shown in the
previous sections. This is because we use the routines of the
Q-transform included in the GWpy libraries [43] in order to
obtain similar plots to those reported in [4] to facilitate the
comparison. It is worth stressing that the shape of the
GW170817 glitch is not the same as that of the blip glitches
we use to train our dictionaries. Therefore, these are not
specifically tailored to deglitch the particular noise transient
affecting GW170817. Nevertheless, this example still pro-
vides an excellent test to assess the capabilities of our trained
dictionaries to reconstruct other types of glitches. In addi-
tion, the presence of the binary neutron star signal allows us
to analyze if it is affected by the deglitching procedure.
The bottom panel of Fig. 6 shows the results after applying

one single dictionary of 256 samples, which is the dictionary
that produces the best results in terms of reducing the
contribution of both high and low frequencies. This is
expected because the GW170817 glitch lasted significantly
longer than the test cases discussed before. This figure shows

that for the most part the glitch is removed from the data and,
at the same time, the actual chirp signal from the inspiraling
neutron stars behind the glitch is recovered almost com-
pletely. Nevertheless, part of the glitch at frequencies of
∼400 Hz and below ∼50 Hz remains visible after the first
reconstruction. Subsequently applying a second dictionary
composed by atoms of 16 samples does not significantly
improve the results of the first dictionary in this example. This
may be related to the fact that our trained dictionaries are
not specifically customized to the morphological type of the
GW170817glitch.Wenote that these results couldpotentially
improve if we trained our dictionaries with a larger set of
glitch morphologies, instead of only using blips. We plan to
investigate this possibility in the future.

V. SUMMARY

We have investigated the application of learned diction-
aries to mitigate the effect of noise transients in the data of
GW detectors. Although the data show the presence of
many families of glitches, each with a different morphology
and time-frequency shape, we have focused on “blip"
glitches because they are the most common type of glitches
found in the twin LIGO detectors and their waveforms are
easy to identify. This paper is the first step in our ongoing
program to automatically classify and subtract all families
of glitches employing variational methods.
Our approach combines two different variational tech-

niques based on the L1 norm, namely the Rudin-Osher-
Fatemi method [30] and a dictionary learning method [29].

TABLE I. Quantitative assessment of our deglitching proce-
dures. The columns report the values of our estimators, SNR and
W, for the data containing the original noise transients (subindex
“o”) and for the residuals after deglitching, and both for a single
dictionary (subindex “single”) and for multiple dictionaries
(subindex “multi”).

Test No. SNRo SNRsingle SNRmulti Wo Wsingle Wmulti

1 5.3 1.3 1.3 0.99 0.99 0.99
2 5.2 2.4 1.3 0.94 0.94 0.93
3 9.2 1.3 1.3 0.99 0.99 0.99
4 37.1 10.2 1.5 0.84 0.92 0.97
5 18.1 2.3 1.7 0.99 0.98 0.98
6 13.5 3.8 1.7 0.98 0.98 0.98
7 4.1 1.3 1.3 0.98 0.98 0.98
8 6.3 1.3 1.3 0.96 0.97 0.97
9 13.4 9.8 2.9 0.98 0.98 0.98
10 8.7 3.0 1.7 1.00 0.99 0.99
11 7.3 1.3 1.3 0.99 0.99 0.99
12 5.8 1.3 1.2 0.99 1.00 1.00
13 4.5 1.8 1.3 0.99 0.99 0.99
14 14.2 1.2 1.2 0.99 0.99 0.99
15 15.2 2.2 1.3 0.88 0.88 0.89
16 6.2 1.3 1.3 0.99 0.99 0.99

FIG. 6. Time-frequency diagram of 8 seconds of data corre-
sponding to the GW170817 signal. The times shown are relative
to August 17, 2017 12∶41:04 UTC. The top panel shows the
original data from LIGO-Livingston. The bottom panel displays
the data after subtracting the glitch using a single blip-trained
dictionary with 256 samples.
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We have randomly selected 100 blip glitches scattered in
the data from advanced LIGO’s O1 run. The data corre-
sponds to a window of 1 s centred at the GPS time of each
glitch as provided by Gravity Spy [16]. 85% of the glitches
have been used to train the dictionary while the other 15%
have been employed as examples to test the performance
of the algorithm. The test set has included 16 blip glitches.
In our approach we have incorporated a regularized ROF
denoising step before the training step to obtain a smooth
dictionary, which has proved to be more effective to model
and subtract the glitches from the data.
The determination of a good value of the regularization

parameter λ is not a trivial task. In this paper we have
deviated from our previous works where the optimal value
of λ could be determined by comparison with an analytical
or numerical template [20,31–33]. To preserve the back-
ground as unaltered as possible, we find the first value of λ
that only produces a reconstruction of the glitch and returns
zeros for the surrounding background. This procedure has
the advantage that λ is calculated only from the data and
does not require any systematic search using templates. Our
results have shown that this approach is valid to model and
subtract most of the contribution of the blip glitches in all
cases analyzed. They also have revealed, however, that the
high-frequency component of the blips (above ∼500 Hz) is
not completely removed. This issue has been ameliorated
by using a combination of dictionaries with different atom
length, one much shorter than the other. This seems to be
the best strategy to mitigate the blips at all frequencies. We
have also shown that our approach yields satisfactory
results when applied to the GW170817 glitch [4] despite
this transient noise feature is not of the blip glitch class.
Learned dictionaries trained with a different set of glitches
can remove the GW170817 glitch from the data without
affecting the actual signal from the binary neutron star
inspiral. Potentially, this result could be further improved
by training the dictionaries with larger datasets accounting
for other types of glitches.
Our results for GW170817 show that if the amplitude of

the glitch is larger than the astrophysical signal, the latter is
treated as part of the background. Even though this is a
remarkable result it is unclear how our method performs
in a superposition of a GW signal and a glitch with

comparable amplitude and morphology. In our previous
work [32] we analyzed a similar situation employing
dictionaries to reconstruct numerically simulated signals
injected in noise in coincidence, namely binary black hole
signals and core-collapse supernova signals. We found that
employing dictionaries individually learned for each type
of signal allowed to separate the two. The possibility to
accomplish glitch and GW signal separation using diction-
aries will be explored elsewhere.
In order to eventually employ this approach in a low-

latency pipeline in actualGWdetectors, it would benecessary
to improve the computational performance of the method.
The current version of the code is implemented in MATLAB
and not optimized. On average, the amount of time to process
1 s of data sampled at 8192 Hz is ∼1.5 s using a MacBook
Pro with a 2,3 GHz Intel Core i5 processor and 16 Gb of
RAM memory using 4 cores. We note, however, that the
reconstruction can be trivially parallelized since each segment
can be processed independently of the others. Therefore, there
is still a considerable margin for improvement in execution
time, developing an optimized and compiled version of the
code. In the near future, we plan to extend the work initiated
in [20] to account for other families of glitches and use
classification algorithms as a previous step to the glitch
subtraction procedure presented in this work.
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APPENDIX: PROPERTIES OF THE TEST SET

This Appendix summarizes the main properties and
time-frequency characteristics of the 16 blips used to test
our algorithms. The physical parameters are reported in
Table II while Fig. 7 displays the time-frequency diagrams
of all the 16 blips.

TABLE II. Physical parameters of the 16 blip glitches of the test set. Note that the SNR values reported in the table are those provided
by Gravity Spy [16] and are different to the values of our SNR estimator.

Test No. GPS time [s]
Peak

frequency [Hz] SNR Amplitude
Central

frequency [Hz] Duration [s] Bandwidth [Hz] IFO

1 113 587 356 0.669 170.65 25.114 1.79 × 10−22 294.23 0.375 521.87 H1
2 112 671 444 4.138 339.88 33.524 6.89 × 10−21 809.47 0.188 1554.9 H1
3 112 7209 450.153 149.41 35.98 5.12 × 10−22 300.04 0.281 536.07 L1
4 112 679 234 7.938 417.4 142.21 2.37 × 10−19 1212.7 0.563 2361.5 L1

(Table continued)
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FIG. 7. Time-frequency diagrams of all the blip glitches used as a test set.

TABLE II. (Continued)

Test No. GPS time [s]
Peak

frequency [Hz] SNR Amplitude
Central

frequency [Hz] Duration [s] Bandwidth [Hz] IFO

5 113 586 605 7.468 211.48 58.114 4.34 × 10−22 1926.7 0.625 3798.3 H1
6 113 240 024 7.362 324.75 40.023 2.52 × 10−21 1262.8 0.281 2457.2 L1
7 113 513 027 1.231 211.48 18.767 1.77 × 10−22 2421.1 0.248 4737.3 L1
8 113 281 005 0.112 137.71 29.714 2.75 × 10−22 298.75 0.375 512.83 L1
9 112 745 579 1.581 1166 40.429 1.47 × 10−20 1563.5 0.375 3063.1 H1
10 113 277 974 1.205 402.44 27.316 1.98 × 10−20 2391.7 0.263 4698.8 L1
11 113 512 999 0.751 211.48 30.26 2.83 × 10−22 720.44 0.375 1372.6 L1
12 113 515 384 5.843 262.06 26.046 5.26 × 10−22 440.05 0.156 824.97 L1
13 113 194 993 9.534 324.75 19.041 5.65 × 10−22 1934.1 0.094 3783.6 H1
14 112 679 539 9.374 183.5 50.77 7.09 × 10−22 444.39 0.313 824.77 L1
15 112 705 424 2.325 149.41 53.247 4.29 × 10−22 1232.6 0.313 2386.5 H1
16 113 585 488 5.481 137.71 30.468 2.57 × 10−22 194.54 0.625 333.95 H1
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M. Cavaglià, I. S. Heng, and J. A. Font, Classical Quantum
Gravity 34, 034002 (2017).

[16] M. Zevin, S. Coughlin, S. Bahaadini, E. Besler, N. Rohani,
S. Allen, M. Cabero, K. Crowston, A. K. Katsaggelos, S. L.
Larson et al., Classical Quantum Gravity 34, 064003
(2017).

[17] N. Mukund, S. Abraham, S. Kandhasamy, S. Mitra, and
N. S. Philip, Phys. Rev. D 95, 104059 (2017).

[18] D. George and E. A. Huerta, Phys. Lett. B 778, 64 (2018).
[19] M. Razzano and E. Cuoco, Classical Quantum Gravity 35,

095016 (2018).

[20] M. Llorens-Monteagudo, A. Torres-Forné, J. A. Font, and A.
Marquina, Classical Quantum Gravity 36, 075005 (2019).

[21] S. Coughlin, S. Bahaadini, N. Rohani, M. Zevin, O. Patane,
M. Harandi, C. Jackson, V. Noroozi, S. Allen, J. Areeda
et al., Phys. Rev. D 99, 082002 (2019).

[22] R. E. Colgan, K. R. Corley, Y. Lau, I. Bartos, J. N. Wright,
Z. Marka, and S. Marka, Phys. Rev. D 101, 102003 (2020).

[23] C. Pankow, K. Chatziioannou, E. A. Chase, T. B. Littenberg,
M. Evans, J. McIver, N. J. Cornish, C.-J. Haster, J. Kanner,
V. Raymond et al., Phys. Rev. D 98, 084016 (2018).

[24] B. Zackay, T. Venumadhav, J. Roulet, L. Dai, and
M. Zaldarriaga, arXiv:1908.05644 [Phys. Rev. D (to be
published)].

[25] T. Venumadhav, B. Zackay, J. Roulet, L. Dai, and M.
Zaldarriaga, Phys. Rev. D 100, 023011 (2019).

[26] W. Wei and E. A. Huerta, Phys. Lett. B 800, 135081 (2020).
[27] M. Cabero, A. Lundgren, A. H. Nitz, T. Dent, D. Barker, E.

Goetz, J. S. Kissel, L. K. Nuttall, P. Schale, R. Schofield
et al., Classical Quantum Gravity 36, 155010 (2019).

[28] A. H. Nitz, Classical Quantum Gravity 35, 035016 (2018).
[29] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, in Proceedings

of the 26th Annual International Conference on Machine
Learning (ACM, New York, 2009), pp. 689–696.

[30] L. I. Rudin, S. Osher, and E. Fatemi, Physica (Amsterdam)
60D, 259 (1992).

[31] A. Torres, A. Marquina, J. A. Font, and J. M. Ibáñez, Phys.
Rev. D 90, 084029 (2014).
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