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CRYSTAL STRUCTURES FOR DOUBLE STANLEY SYMMETRIC FUNCTIONS

GRAHAM HAWKES

Abstract. We relate the combinatorial definitions of the type An and type Cn Stanley symmetric functions, via

a combinatorially defined “double Stanley symmetric function,” which gives the type A case at (x, 0) and gives

the type C case at (x, x). We induce a type A bicrystal structure on the underlying combinatorial objects of this

function which has previously been done in the type A and type C cases. Next we prove a few statements about

the algebraic relationship of these three Stanley symmetric functions. We conclude with some conjectures about

what happens when we generalize our constructions to type C.

1. Introduction and Notation

In this paper we will relate the combinatorial definitions of the type An ([Sta84]) and type Cn+1 [BH95],

[FK96] Stanley symmetric functions. To do this, we define combinatorially a “double Stanley symmetric

function” and show that it is indeed a symmetric function in two sets of infinite variables. Precisely, our

double Stanley symmetric function gives the type A Stanley symmetric function at (x, 0) and gives the type

C Stanley symmetric function at (x, x).

Both the type A and type C functions are Schur positive, and a crystal-theoretic interpretation of these

facts has been given in [MS16] and [HPS17] respectively. Furthermore, crystal analysis for the (type A)

stable limit of double Schubert polynomials is carried out [Len04] by considering a crystal structure on

the underlying combinatorial objects of rc graphs (in other literature known as pipe dreams). In the paper

we will carry out this procedure for our new double Stanley symmetric function by considering a crystal

sructure for the underlying objects of reduced signed increasing factorizations. To do this we first write the

double Stanley symmetric functions as a sum of characters of certain tableaux (section 2). Next, we in-

troduce explicit crystal operators on these tableaux, which allows us to write the double Stanley symmetric

function as sum of products of Schur functions (section 3). Then, we introduce a notion of conversion which

helps us explore the algebraic relationship of all three of these Stanley symmetric functions, in particular,

recovering some results of Lam [Lam95] (section 4). Although sections 2-4 are restricted to the type A case,

we conclude (section 5) with a quick survey of some results (without proof) and conjectures about the type

C case.

Throughout the paper, when some k ∈ N is specified x will refer to the list of variables (x1, . . . , xk) and

y will refer to the list of variables (y1, . . . , yk). On the other hand x will refer to the infinite list of variables

(x1, x2, . . .) and y will refer to the infinite list of variables (y1, y2, . . .). If the polynomial P(x) or P(x, y) is

defined for arbitrary k then P(x) or, respectively, P(x, y) will represent the corresponding function obtained

by letting k → ∞.

The An Coxeter system is defined as the Coxeter system with generators, s1, . . . , sn and relations (sis j)
mi j =

1 where mi j is an integer determined as follows:

• If |i − j| = 0, mi j = 1.

• If |i − j| = 1, mi j = 3.

• If |i − j| > 1, mi j = 2.
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2 G. HAWKES

By abuse of notation, we will also refer to the corresponding Coxeter group of size (n+1)! as An. The Cn+1

Coxeter system is defined as the Coxeter system with generators, s0, s1, . . . , sn and relations (sis j)
mi j = 1

where mi j is an integer determined as follows:

• If |i − j| = 0, mi j = 1.

• If i > 0 and j > 0, and |i − j| = 1, mi j = 3.

• If i = 0 or j = 0, and |i − j| = 1, mi j = 4.

• If |i − j| > 1, mi j = 2.

Similarly, we will sometimes refer to the corresponding group of size 2n+1(n + 1)! itself as Cn+1. Given

the relations above one can define two types of symmetric functions, indexed, respectively, by elements of

An and Cn+1.

First, suppose ω ∈ An. A reduced word for ω is an expression, u, for ω using the generators s1, . . . , sn

such that no other such expression for ω is shorter than u. Given a fixed k, a reduced increasing factorization

(RIFk), v, for ω is a reduced word u, for ω along with a subdivision of u into k parts such that each part is

increasing under the order s1 < · · · < sn. The weight of v is the vector whose ith entry records the number of

generators in the ith subdivision of v. The type A Stanley symmetric polynomial [Sta84] in k variables for ω

is:

FA
ω(x) =

∑

v∈RIFk(ω)

xwt(v),

where RIFk(ω) is the set of reduced increasing factorizations of ω, and wt(v) is the weight of v. Letting

k → ∞ in the type A Stanley symmetric polynomial gives the type A Stanley symmetric function for ω.

Now suppose ω ∈ Cn+1. A reduced word forω is an expression, u, forω using the generators s0, s1, . . . , sn

such that no other such expression for ω is shorter than u. Given a fixed k, a reduced unimodal factorization

(RUFk), v, for ω is a reduced word u, for ω along with a subdivision of u into k parts such that each part

is unimodal (i.e., decreasing and then increasing) under the order s0 < s1 < · · · < sn. The weight of v is

the vector whose ith entry records the number of generators in the ith subdivision of v. The type C Stanley

symmetric polynomial [BH95], [FK96], in k variables for ω is:

FC
ω(x) =

∑

v∈RUFk(ω)

2ne(v) xwt(v),

where ne(v) is the number of nonempty subdivisions of v, RUFk(ω) is the set of reduced unimodal factor-

izations of ω, and wt(v) is the weight of v. Letting k → ∞ in the type C Stanley symmetric polynomial gives

the type C Stanley symmetric function for ω.

Next consider the generators s−n, . . . s−1, s0, s1, . . . , sn and impose relations (sis j)
mi j = 1 where mi j is an

integer determined as follows:

• If |(|i| − | j|)| = 0, mi j = 1.

• If i , 0 and j , 0, and |(|i| − | j|)| = 1, mi j = 3.

• If |(|i| − | j|)| > 1, mi j = 2.

• If i = 0 or j = 0, and |(|i| − | j|)| = 1, mi j = 4.

Of course, the resulting system is not Coxeter, for instance, the relations imply that s−i = si holds, 1 so the

generating set is obviously not minimal.

1This makes sense on the level of Weyl groups: the reflection over the plane perpendicular to the ith simple root is equal to the

reflection over the plane perpendicular to the opposite of the ith simple root.
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In this setting, a reduced word forω is an expression, u, forω using the generators s−n, . . . , s−1, s0, s1, . . . , sn

such that no other such expression for ω is shorter than u. Given a fixed k, a reduced signed increasing fac-

torization (RS IFk), v, for ω is a reduced word u, for ω along with a subdivision of u into k parts such that

each part is increasing under the order s−n < · · · s−1 < s0 < s1 < · · · < sn.

The double weight of v, denoted (dw(v, 1), dw(v, 2)) is the pair (X, Y), where the ith entry of X records the

number of generators with negative index in the ith subdivision of v, and the ith entry of Y records the number

of generators with nonnegative index in the ith subdivision of v. For instance, v = (s−3s−2s1)(s−5s2s3)(s−4s−3)

is an RS IF (with k = 3) for ω = s3s2s1s2s3s5s4s3 with double weight ((2, 1, 2), (1, 2, 0)). We define the

double Stanley symmetric polynomial in k variables for ω ∈ Cn+1 to be:

Fd
ω(x, y) =

∑

v∈RS IFk(ω)

xdw(v,1)ydw(v,2),

where RS IFk(ω) is the set of reduced signed increasing factorizations of ω into k parts. Letting k → ∞

in the double Stanley symmetric polynomial gives the double Stanley symmetric function for ω. We will

frequently use the shorthand i for si and ī for s−i when it is clear we are discussing expressions of Coxeter

elements. For instance, v above may be rewritten: v = (3̄2̄1)(5̄23)(4̄3̄).

In sections 2-4 we consider the special case where ω ∈ An. In section 5 we give a short overview of

what happens when ω ∈ Cn+1 (in general the double Stanley “symmetric” function may not be symmetric

if ω < An). The fact that Fd
ω(x, y) is symmetric for ω ∈ An is not obvious and will require some effort

to show. For now, we simply note some equalities that do follow immediately from the constructions:

For any ω ∈ An ⊆ Cn+1 we can define all three Stanley symmetric functions mentioned, and we have:

Fd
ω(0, x) = FA

ω(x) and Fd
ω(x, x) = FC

ω(x) and Fd
ω(x, y) = Fd

ω−1(y, x).

2. Expansion in Terms of Primed Tableaux

In this section we expand the function Fd
ω for ω ∈ An in terms of a certain generating function for primed

tableaux. Now, we fix some k ∈ N for the remainder of this section. We will work over the alphabet

X̄′
k
= {k̄ < · · · < 2̄ < 1̄ < 1′ < 1 < 2′ < 2 < · · · < k′ < k} (these elements are not related to generators

si or s−i. This association is only made when numbers appear within parenthesis inside a factorization or

within an Edelman-Greene tableau (defined later)). An element in this alphabet is called marked if it is

barred or it is primed, and called unmarked otherwise. The subset of X̄′
k

which contains no primed letters is

denote X̄k. The subset of X̄′
k

which contains no barred letters is denoted X′
k
. Inside tableaux, barred entries

will be represented using a small -, for example -4 -3 -1 2 2 represents the one row tableau with entries

{4̄, 3̄, 1̄, 2, 2} because moving the bar in front of the number makes it easier to see.

The definition of primed tableau (given below) appears as a specific case of a more general definition.

(This more general definition will be needed later.)

Definition 2.1. Fix partitions µ ⊆ λ. Fix vectors X and Y in Zk
≥0

. Finally, fix 0 ≤ j ≤ k. We define the set of

primed signed tableaux corresponding to these parameters, by declaring that T ∈ PS T (λ/µ, X, Y, j) if:

(1) T has shape λ/µ.

(2) T has entries from X̄′
k
.

(3) The rows and columns of T are weakly increasing.

(4) Each row of T has at most one marked i and each column has at most one unmarked i.

(5) T contains Y(i) unmarked is.

(6) T contains X(i) barred is (and no primed is) for each i > j.

(7) T contains X(i) primed is (and no barred is) for each i ≤ j.
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Example 2.2. Let λ = (4, 3, 2, 2). The following lies in PS T

(

λ/∅,
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-4 -3 1 4
-4 1′ 2′

-3 1 2′

2 2

Definition 2.3. Let X, Y ∈ Zk
≥0

. A primed tableau of shape λ/µ and double weight (X, Y) is an element of

PS T (λ/µ, X, Y, k).

Definition 2.4. Let X, Y ∈ Zk
≥0

. A signed tableau of shape λ/µ and double weight (X, Y) is an element of

PS T (λ/µ, X, Y, 0).

In other words, a primed tableau is a primed signed tableau in X′
k

and a signed tableau is a primed signed

tableau in X̄k. For shorthand, we also refer to the set of primed tableaux, PS T (λ/µ, X, Y, k), as PTk(λ/µ)

with double weight (X, Y). We now define a polynomial in the variables (x, y) by:

Rλ/µ(x, y) =
∑

T∈PTk(λ/µ)

xdw(T,1)ydw(T,2),

where (dw(T, 1), dw(T, 2)) represents the double weight of the primed tableau, T . Our goal is to show that

Fd
ω expands in terms of Rλ.

Let ω ∈ An. An Edelman-Greene tableau for ω is a tableau in {s1, . . . , sn} which is row-wise and column-

wise increasing with respect to the order s1 < · · · < sn, and which, if read by rows, left to right, bottom to

top, forms a reduced word for ω. For viewing convenience we will write i to mean si . We use Edelman-

Greene insertion, [EG87], to create a bijection between RS IFk(ω) and pairs of tableaux, (P,Q), where P is

an Edelman-Greene tableau for ω, and Q is a primed tableau of the same shape. This bijection is described

below.

Definition 2.5. Primed-Recording Edelman-Greene map. Suppose v ∈ RS IFk(ω). Create the insertion

tableau P by applying Edelman-Greene insertion to |v|, the expression obtained by ignoring the subdivisions

of v and replacing s−i by si for each i. Create the recording tableau, Q, as follows: Each time a box is added

to P say in position (i, j) add a box to Q in position (i, j) and fill it as follows: Suppose box (i, j) was added

to P when |v|r was inserted. Let l be the subdivision of v in which vr occurs in v. If vr is barred in v, fill box

(i, j) of Q with l′. If vr is unbarred in v, fill box (i, j) of Q with l.

Example 2.6. Let v = (3̄2̄14)(3̄2̄)(4̄13).
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Theorem 2.7. The Primed-Recording Edelman-Greene map is a double weight preserving bijection: RS IFk(ω)⇒

(P,Q), where P is an Edelman-Greene tableau for ω, and Q is a primed tableau of the same shape. (The

double weight of (P,Q) refers to the double weight of Q.)

Proof. The proof relies on a basic fact of Edelman-Greene insertion of an unsigned reduced word v: If

v = v1 . . . vs is inserted under Edelman-Greene, then vr < vr+1 if and only if the box added to the insertion

tableau in the rth step is in a row weakly above the row where a box is added in the (r + 1)st step. To see the

map is well-defined: Certainly P is an Edelman-Greene tableau. Certainly Q has weakly increasing rows

and columns. Moreover, for each value of i, there is at most one i in each column because of the forward

direction of the basic fact. And there is at most one i′ in each row because of the backwards direction of the

basic fact.
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The inverse is obtained by applying reverse Edelman-Greene insertion to P in the order prescribed by the

standardization of Q. (The standardization being the standard Young tableau obtained from Q by extending

the partial order induced on the boxes of Q by the order of X′ and then using the following rule: If box b

and box b′ both contain i then b < b′ if and only if b lies in a column to the left of b′. If box b and box b′

both contain i′ then b < b′ if and only if b lies in a row above b′.) This produces an element of An. Now, to

make it a signed factorization, its subdivisions and the signs on the indices are then added in the unique way

such that the resulting factorization has the same double weight as Q. Again, the basic fact implies that this

inverse is well-defined.

�

It now immediately follows from Theorem 2.7 that:

Theorem 2.8.

Fd
ω(x, y) =

∑

T∈E(ω)

Rsh(T )(x, y),

where E(ω) is the set of Edelman-Greene tableaux for ω and sh(T ) denotes the shape of T .

3. Crystal Structure and Schur expansion

An (abstract) bicrystal of type Ak−1 is a nonempty set B together with the maps

ei, fi : B→ B ∪ {0}

eī, fī : B→ B ∪ {0}

dw : B→ Λ × Λ

(3.1)

where Λ = Zk
>0

is the weight lattice of the root of type Ak−1 and 1 ≤ i ≤ k − 1. Denote by αi = ǫi − ǫi+1 for

the simple roots of type Ak−1, where ǫi is the i-th standard basis vector of Zk. Then we require:

A1. For b, b′ ∈ B, we have fib = b′ if and only if b = eib
′. In this case dw(b′) = dw(b) − (0, αi).

A2. For b, b′ ∈ B, we have fīb = b′ if and only if b = eīb
′. In this case dw(b′) = dw(b) − (αi, 0).

In this section we induce (via Theorem 2.7) an Ak−1 (k as before) bicrystal structure on the set of reduced

signed increasing factorizations of ω by explicitly defining crystal operators on the set of primed tableaux.

This structure is isomorphic to the bicrystal structure on pairs of SSYT obtained by doubling the usual

crystal structure on SSYT (see [BS17]). As a result, we will obtain an expansion of Fd
ω as a product of

Schur functions corresponding to certain highest weight primed tableaux.

Given a primed tableau T , we will define the reading word of T to be the word, composed only of

unprimed entries, obtained by reading the unprimed numbers by row, left to right, moving from bottom to

top. Throughout the remainder of the section, we will set j = i + 1. The i − j subword of a word is defined

to be the word of is and js obtained by erasing all other entries from the word. The i − j bracketing on the

i − j subword is defined as usual in type A. Each step in the ordering 1′ < 1 < 2′ < 2 · · · will be considered

a half unit. In particular, we say that i is obtained from i′ by increasing by a half unit, j′ is obtained from i

by increasing by a half unit, and j is obtained from j′ by increasing by a half unit. Finally, if p is a position

in T , we will write c(p) to mean the content of p. By convention if position p does not describe a filled box

of T we take c(p) = ∞.

First we define operators fi on the set of primed tableaux as follows.

Definition 3.1 ( fi operator). First, if the i − j reading subword of T has no unbracketed is, then fi(T ) = 0.

Otherwise let x denote the position in T corresponding to the rightmost unbracketed i in the i − j reading

subword of T . fi(T ) is obtained from T by increasing c(x) and c(q) by a half unit for some box q, determined

as follows: Denote the position immediately to the right of x as Ex and the position immediately below it as

S x:

F1: If c(Ex) ≥ j and c(S x) > j, set q = x.

F2: If c(Ex) = j′, set q = Ex.
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F3: If c(Ex) ≥ j and c(S x) = j′ or c(S x) = j, consider the maximal ribbon beginning on S x and extending

in the South and/or West directions which contains only js and j′s. Let q be the Southwest-most

position of this ribbon.

Lemma 3.2. If the hypothesis of case F2 holds, then c(S q) > j. If the hypothesis of case F3 holds, then for

each j in the ribbon, there is an i in the box diagonally above and to the left of this j, and c(q) = j′.

Proof. For the first statement, note that we cannot have c(S q) = j′ as this would imply c(S x) < j′, which

contradicts c(S x) > i = c(x). Moreover, if we have c(S q) = j, then let k denote the number of js in this row.

In order for the i in x to be unbracketed the row above must have at least k + 1 is. This implies its leftmost

two is lie above entries less than j. The only such possibility is j′ which would contradict the condition that

there is at most one j′ in each row.

Now to the second statement. In order for the i in position x to be unbracketed, every j in the ribbon must

be bracketed with an i which appears in between q and x in the reading word order. The only way to fit all

the necessary is is as described in the statement of the lemma. Now, if c(q) , j′ then c(q) = j which implies

the box diagonally above q contains an i by the previous sentence. But this implies the entry to the left of q

is j or j′ which contradicts the maximality of the ribbon. �

Lemma 3.3. If fi(T ) , 0 then either q = x, in which case fi changes an i in x to a j, or else fi changes an i

in x to j′ and a j′ in q to j. Moreover, fi(T ) is a valid primed tableau.

Proof. This is immediate for F1. For the other two cases it follows from the previous lemma. �

Now we define operators ei on the set of primed tableaux as follows.

Definition 3.4 (ei operator). First, if the i − j reading subword of T has no unbracketed js, then ei(T ) = 0.

Otherwise let y denote the position in T corresponding to the leftmost unbracketed j in the i − j reading

subword of T . ei(T ) is obtained from T by decreasing c(y) and c(p) by a half unit for some box p, determined

as follows: Denote the position immediately to the left of y as Wy and the position immediately above it as

Ny:

(1) If c(Wy) ≤ i and c(Ny) < i, set p = y.

(2) If c(Wy) = j′, set p = Wy.

(3) If c(Wy) ≤ i and c(Ny) = i or c(Ny) = j′, consider the maximal ribbon beginning on Ny and extending

in the North and/or East directions which contains only is and j′s. Let p be Northeast-most position

of this ribbon.

Symmetric arguments to those given above show:

Lemma 3.5. If ei(T ) , 0 then either p = y, in which case ei changes a j in y to an i, or else ei changes an j

in y to j′ and a j′ in p to i. Moreover, ei(T ) is a valid primed tableau.

In fact fi and ei so defined are inverses:

Proposition 3.6. If fi(T ) , 0 then ei( fi(T )) = T. Similarly, if ei(T ) , 0 then fi(ei(T )) = T.

Proof. Suppose that fi(T ) is obtained from T by case C (C ∈ {1, 2, 3}) of the definition of fi, with x and

q representing the positions selected as in the definition. Then it is not difficult to see that ei( fi(T )) can be

obtained from fi(T ) by case k in the definition of ei with positions y = q and p = x. Since a half unit has

been added and then subtracted from positions x and q it is clear that ei( fi(T )) = T . The second statement is

proved symmetrically. �

We now define operators fī and eī on the set of primed tableaux and on words. On words these operators

act as the usual type A operators restricted to primed entries. To describe their action on primed tableaux,

we use a special type of transposition.
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1′ 1
1 2′

1′ 2′

1 2

1′ 2′

2 2

1′ 2′

1 3

1′ 2′

2 3
1′ 2′

3 3

f1

f1

f2

f2

f2

1′ 1
1 3′

1′ 2
1 3′

1′ 2
2 3′

1′ 3′

1 3

1′ 3′

2 3
1′ 3′
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f1 f2

1 1
2′ 3′

1 2
2′ 3′

2′ 2
2 3′

1 3′

2′ 3

2′ 3′

2 3
2′ 3′

3 3

f1

f2

f2

f1

f2

f1̄ f1̄ f1̄ f1̄

f2̄ f2̄ f2̄ f2̄

Figure 1. A connected component of the A2 bicrystal for λ = (2, 2). A few labels are

omitted to prevent cluttering.

Definition 3.7. Given a primed tableau, T , we define T+ to be obtained by transposing T and then adding a

half unit to each entry. Similarly we define T− to be obtained by transposing T and then subtracting a half

unit from each entry. Applied to a word w, w+ and w− indicate simply adding a half unit and subtracting a

half unit from each entry respectively.

Clearly, we have (T+)− = T and (w+)− = w.

Definition 3.8. We define fī(T ) = ( fi(T
+))− and eī(T ) = (ei(T

+))− for any primed tableau, T . Similarly we

define fī(w) = ( fi(w
+))− and eī(w) = (ei(w

+))− for any primed word, w.

3.1. Proof that the operators fi, ei, fī, eī form an Ak−1 bicrystal. We consider words in the alphabet X′
k
.

For such a word w, The double weight of w, denoted (dw(w, 1), dw(w, 2)) is the pair (X, Y), where the ith

entry of X records the number of primed is in w, and the ith entry of Y records the number of unprimed is in

w. We have a natural bicrystal structure on such words: fi(w) and ei(w) refer to the usual crystal operators on

words (e.g., [BS17]) restricted to the nonprimed letters of w, while fī(w) and eī(w) refer to the usual crystal

operator on words (e.g., [BS17]) restricted to the primed letters of w. (The operators never change whether

a letter is primed or not.)

Next we consider the (nonshifted) mixed Haiman insertion of a word w, denote P(w), for a word w

from the alphabet X′
k
. Given a word w = w1w2 . . .wh we recursively construct a sequence of tableaux

∅ = T0, T1, . . . , Th. To obtain the tableau Ts, insert the letter ws into Ts−1 as follows. First, if ws is unprimed,

insert ws into the top row of Ts−1, bumping out the leftmost element y that is strictly greater than ws. If ws is

primed, insert ws into the leftmost column of T , bumping out the uppermost element y that is strictly greater

than ws.
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(1) If y is not primed, then insert it into the next row below, bumping out the leftmost element that is

strictly greater than y from that row.

(2) If y is primed, then insert it into the next column to the right, bumping out the uppermost element

that is strictly greater than y from that column.

Continue until an element is inserted which is greater than or equal to all elements in the row/column it is

inserted into, and append this element to the end of this row. We define the recording tableau for such an

insertion to be the standard Young tableau that records the sequence of shapes of the Ti.

Note that it follows from the symmetry in the definition of Haiman insertion that P(w+) = (P(w))+ and

P(w−) = (P(w))−.

Theorem 3.9. [Hai89] Haiman insertion gives a double weight preserving bijection from words from X′
k

to

pairs of tableaux (T, S ), where T is a primed tableau and S is a standard Young tableau of the same shape.

Our next goal is to show that fi(P(w)) = P( fi(w)) (where the lefthand side involves the operator defined

in this paper and the right hand side involves the usual crystal operator on primed words restricted to the

nonprimed entries). To do this we consider Haiman insertion step by step.

Suppose w1 . . .wh is a primed word and that Ti are the tableaux as in the definition of Haiman insertion.

For each s define the reading word of (Ts−1,ws · · ·wh) to be the reading word of T concatenated with the

unprimed entries of ws · · ·wh. fi acts on (Ts−1,ws · · ·wh) by selecting the rightmost unbracketed i in its

reading word. If this is an element of ws · · ·wh, it simply changes this i to j. Otherwise, fi acts according to

the rules for primed tableaux specified earlier.

Lemma 3.10. Let (Ts,ws+1 · · ·wh) denote the result of applying one insertion step to (Ts−1,ws · · ·wh). Then

set fi(Ts−1,ws · · ·wh) = (T ∗
s−1
,w∗s · · ·w

∗
h
). Finally, let (T ∗s ,w

∗
s+1
· · ·w∗

h
) denote the result of applying one

insertion step to (T ∗
s−1
,w∗s · · ·w

∗
h
). Then we have (T ∗s ,w

∗
s+1
· · ·w∗

h
) = fi(Ts,ws+1 · · ·wh).

Proof. First of all, if fi acts on some wk for k > s (or is 0) then since (as is easily verified) the reading

word of (Ts−1,ws) and the reading word of Ts have the same number of bracketed is, it follows that fi
acts on (Ts,ws+1 · · ·wh) at wk (or is 0) as well and the result follows. Hence we may assume h = s and

fi(Ts−1,ws · · ·wh) , 0.

Next, since the fi operator only concerns is, j′s, and js, it suffices “ignore” entries smaller than i or greater

than j. In other words it suffices to prove the following: Let T be a primed tableau of arbitrary skew shape

composed only of is, j′s, and js. Then if z is some inner corner box of T , and Vz(T ) denotes removing the

entry in box z and continuing mixed Haiman insertion from this point as if the entry of z had been bumped,

we have the following equality: fi(Vz(T )) = Vz( fi(T )), where the operator fi is applied to a skew tableau just

as for a straight shape tableau.

Example 3.11. Set T =
2 2

2 3′ 3
3′

and let z be the box containing the red entry. To compute Vz(T ), we remove

the red 2, insert it in the 2nd row, bumping a 3′, which is inserted in the 3rd column, bumping a 3, which is

appended to the 3rd row. Thus Vz(T ) =
2

2 2 3′

3′ 3

. Then f2 acts on Vz(T ) =
2

2 2 3′

3′ 3

via F3 at the blue and

green entries in boxes x and q to give f2(Vz(T )) =
3′

2 2 3
3′ 3

.
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On the other hand f2 acts on T =
2 2

2 3′ 3
3′

via F3 at the blue and green entries in boxes x and q to give

f2(T ) =
2 3′

2 3 3
3′

. Then, Vz( f2(T )) is computed by removing the red entry from f2(T ) =
2 3′

2 3 3
3′

, inserting

it into the 2nd row, bumping a 3, which is appended to the 3rd row to give Vz( f2(T )) =
3′

2 2 3
3′ 3

.

As before, let x and q denote the position of T in which fi acts. Let rx, rq, and rz denote the rows

containing x, q, and z respectively. For each possible way in which fi(T ) could be formed from T , we

explain how fi acts on Vz(T ) := T ′. It is left to the reader to see that applying Vz to fi(T ) has the same result.

(1) Suppose fi acts on T by F1 at x.

(a) If rz > rx then fi acts on T ′ by F1 at x unless z is in the column to the left of x and c(z) = j′. In

this case fi acts on T ′ by F3 at x and S x.

(b) If rz = rx the row rx + 1 contains no j (otherwise, the i in rx would be bracketed). If it also

contains no j′, then fi acts by F1 on T ′ at the last entry of row rx + 1. Otherwise fi acts by F2

at the last two entries of row rx + 1.

(c) If rz = rx − 1, then fi acts on T ′ by F1 at x unless c(z) = i. In this case we must have c(Ex) = j

(or else the i in z would be unbracketed), so that fi acts on T ′ by F1 at Ex.

(d) If rz < rx − 1 then fi acts on T ′ by F1 at x.

(2) Suppose fi acts on T by F2 at x and Ex.

(a) If rz > rx then fi acts on T ′ by F2 at x and Ex.

(b) If rz = rx the row rx + 1 contains no j (otherwise, the i in rx would be bracketed). If it also

contains no j′, then fi acts by F1 on T ′ at the last entry of row rx + 1. Otherwise fi acts by F2

at the last two entries of row rx + 1.

(c) If rz = rx − 1, then fi acts on T ′ by F2 at x and Ex unless c(z) = i. In this case we must have a j

to the right of Ex (or else the i in z would be unbracketed), so that fi acts on T ′ by F2 at Ex and

the position to the right of Ex.

(d) If rz < rx − 1 then fi acts on T ′ by F2 at x and Ex.

(3) Suppose fi acts on T by F3 at x and q.

(a) If rz > rq then fi acts on T ′ by F3 at x and q unless z is in the column to the left of x and

c(z) = j′. In this case fi acts on T ′ by F3 at x and S q.

(b) If rz = rq, then q = Ez and c(z) = i. If the row rq + 1 contains a j′ in the column to the left of q

then fi acts on T ′ by F3 at x and S q. Otherwise fi acts on T ′ by F3 at x and q.

(c) If rz = rq − 1, then z is above q with c(z) = i. If z , x then fi acts on T ′ by F3 at x and Eq.

Otherwise fi acts on T ′ by F1 at q.

(d) If rz < rq − 1, and rz > rx, then fi acts by F3 at x and q (but one of the boxes in the ribbon

defined in F3 has moved diagonally down and to the right).

(e) If rz < rq − 1, and rz = rx + 1. Then c(Ex) = j and fi acts on T ′ by F3 at Ex and q.

(f) If rz < rq − 1, and rz = rx, then fi acts by F3 at S x and q.

(g) If rz < rq − 1 and rz < rx + 1 then fi acts on T ′ by F3 at x and q.

�

It is immediate from this definition and Proposition 3.6 that eī and fī are also inverses. Moreover, the

relationship to Haiman insertion is the same as for the non-barred operators:

Theorem 3.12. P( fi(w)) = fi(P(w)) and P( fī(w)) = fī(P(w)).

Proof. The first equality is immediate from Theorem 3.10. For the second, note that:

P( fī(w)) = P(( fi(w
+))−) = (P( fi(w

+)))− = ( fi(P(w))+)− = fī(P(w)).
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�

From this and Theorem 3.9 it follows that Haiman insertion is a bicrystal isomorphism, hence proving

that the crystal operators do in fact give a type A bicrystal on primed tableaux. From this we conclude:

Theorem 3.13. For any ω ∈ An:

Fd
ω(x, y) =

∑

T∈E(ω)

∑

S ∈H(sh(T ))

sdw(S ,1)(x)sdw(S ,2)(y),

whereH(sh(T )) denotes all primed tableaux S of the same shape as T such that the reading word of S and

S + are both reverse Yamanouchi words.

Next we give an example of the theorem:

Example 3.14. If ω = 121, then

E(ω) =

{

1 2
2

}

H(2, 1) =

{

1 1
2
,

1′ 1
1
,

1′ 1
2
,

1′ 1
1′

,
1′ 2′

1
,

1′ 2′

1′

}

Fd
ω(x, y) = s21(x) + s2(x)s1(y) + s11(x)s1(y) + s1(x)s2(y) + s1(x)s11(y) + s21(y)

4. Primed Signed Tableaux

In this section we prove that primed tableaux and signed tableaux are in bijective correspondence. This

will then allow us to investigate the algebraic relationship between the type A Stanley symmetric function

and the double Stanley symmetric function (see the end of the section).

If T ∈ PS T (λ/µ, X, Y, j), then we may obtain an element of PS T (λ/µ, X, Y, j− 1) if j > 0 by applying the

following inward conversion 2 procedure to T X( j) times:

(1) Change the uppermost primed j in T to a barred j.

(2) Repeat the following procedure until all rows and columns are weakly increasing: Switch the low-

ermost barred j with either the entry above it or to its left, determined as follows:

• If only one of the entries exists, take it.

• If these entries are not equal, take the larger.

• If they are equal and are unmarked, take the one above.

• If they are equal and are marked, take the one on the left.

It is not immediately clear that the result is in fact a PS T–namely it seems possible that the result of the

algorithm above may contain two or more barred js in the same row. To see this is impossible we reason as

follows: For each of the X( j) conversions, let the corresponding conversion path be the set of boxes which

are altered during this conversion. If p1, . . . , pX( j) denote these paths, then it is not difficult to check the

following.

Lemma 4.1. Let 1 ≤ i < X j. If b is the highest box in its column that belongs to pi then neither b nor any

box above b in this column belongs to pi+1. Further, any box in pi+1 that lies to the left of the upper leftmost

box of pi also lies below it.

This implies there will never be more than one barred j in any row during the inward conversions.

2A somewhat similar definition appears in [Hai89] for the case where letters may not be repeated. In fact, one can use a certain

standardization process along with Haiman’s mixed insertion, Haiman’s conversion, and Haiman’s Theorem 3.12, [Hai89] to derive

Theorem 4.4 below for the specific case of µ = ∅, i.e., for straightshape tableaux. However, the proofs needed to do this are

somewhat more complicated than those employed below, and the result, of course, less general.
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Example 4.2. Applying inward conversion twice to

-4 -3 1 4
-4 1′ 2′

-3 1 2′

2 2

yields

-4 -3 -2 4
-4 -2 1′

-3 1 1
2 2

.

Similarly, if T ∈ PS T (λ/µ, X, Y, j), then we may obtain an element of PS T (λ/µ, X, Y, j + 1) if j < k by

the outward conversion procedure to T X( j + 1) times:

(1) Change the lowermost barred j in T to a primed j if it exists.

(2) Repeat the following procedure until all rows and columns are weakly increasing: Switch the up-

permost primed j with either the entry below it or to its right, determined as follows:

• If only one of the entries exists, take it.

• If these entries are not equal, take the smaller.

• If they are equal and are unmarked, take the one below.

• If they are equal and are marked, take the one on the right.

Analogously, we have: If q1, . . . , qX( j) denote the conversion paths, then it is not difficult to check the

following.

Lemma 4.3. Let 1 ≤ i < X j. If b is the lowest box in its column which belongs to qi then neither b nor

any box below q in this column belongs to qi+1. Further, any box in qi+1 that lies to the right of the lower

rightmost box of qi also lies above it.

This implies there will never be more than one barred j in any column during the outward conversions.

This construction leads to the major result of this section:

Theorem 4.4. Fix λ, µ, X, and Y. Then for any 1 ≤ j ≤ k there is a bijection PS T (λ/µ, X, Y, j) ⇒

PS T (λ/µ, X, Y, j − 1).

Proof. The bijection is given by applying inward conversion X( j) times (and the inverse by applying outward

conversion X( j) times). �

Definition 4.5. Let X, Y ∈ Zk
≥0

.

A signed tableau of shape λ/µ and double weight (X, Y) is an element of PS T (λ, µ, X, Y, 0).

Corollary 4.6. Letting PT (λ/µ) denote the set of all primed tableaux of shape λ/µ and S T (λ/µ) denote the

set of all signed tableaux of shape λ/µ, there is a double weight preserving bijection: PT (λ/µ)⇒ S T (λ/µ).

Given any symmetric function F we may consider its value on the doubled set of variables (x, y), de-

noted simply F(x, y). Applying the involution on the ring of symmetric functions ω defined by condition

ω(sλ(x)) = sλ′(x) to the function F(x, y) considered as function in the variable x (over the ring of symmetric

functions in y) yields a symmetric function which we denote F(x/y). Since it follows from 4.6 that

Rλ/µ(x, y) :=
∑

T∈PT (λ/µ)

xdw(T,1)ydw(T,2) =
∑

T∈S T (λ/µ)

xdw(T,1)ydw(T,2),

it is clear from the definition of S T (λ/µ) that we have Rλ/µ(x, y) = sλ/µ(x/y). From this and Theorem 2.8 it

follows that for all ω ∈ An, Fd
ω(x, y) = FA

ω(x/y). In particular this implies a relationship first noted by Lam

([Lam95]): FC
ω(x) = Fd

ω(x, x) = FA
ω(x/x) for ω ∈ An.

5. Conjectures for type C

Recall that the concept of RS IFk was defined for any ω ∈ Cn+1, not just ω ∈ An. However, we only

defined Fd
ω(x, y) for elements of An. This is because, unfortunately, generalizing Fd

ω(x, y) in the canonical

manner to Cn+1 does not result in a symmetric function. There are some cases however, where Fd
ω(x, y)

does exhibit some nice symmetry properties when we generalize to elements outside of An. The approaches

needed to investigate this symmetry are unrelated to those in the rest of the paper and are relatively technical

so we will not include them in detail, but rather give a short overview of some constructions and conjectures.
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Definition 5.1. We say an element ω ∈ Cn+1 is unknotted3 if the following hold for all reduced words w for

ω:

(1) If the sequence s0s1s0s1 appears in w, then s2 does not.

(2) For i > 0 if the sequence sisi+1si appears in w then si+2 does not.

For instance, the permutations corresponding to the reduced words, s1s2s3s4s5s4, s2s1s0s1s2s3s2,

s1s0s1s0s3s4s3, and s2s1s3s2s4s3 are unknotted.

Definition 5.2. A signed Edelman-Greene tableau for an unknotted signed permutation, ω, is a tableau

composed of entries from the alphabet {· · · <-3 <-2 <-1 < 0 < 1 < 2 < 3 < · · · } such that:

(1) The reading word of T , obtained from reading the rows of T left to right, bottom to top and then

changing any i or -i to si is a reduced word for ω.

(2) The rows and columns of T are weakly increasing.

(3) Whenever Ti j = T(i+1) j then we have one of:

• There exists k > j such that |T(i+1)k | = |Ti j| + 1.

• There exists l < j such that |Til | = |Ti j | + 1.

• Ti j =-1 = T(i+1) j and Ti( j+1) = 0 = T(i+1)( j+1).

Example 5.3. The following is a signed Edelman-Greene tableau for the unknotted signed permutation

{−2,−1, 5, 4, 3, 8, 7, 6} ∈ C8:

-7 -1 0 6
-3 -1 0 6
-3 4

since its reading word s3s4s3s1s0s6s7s1s0s6 produces the given signed permutation, and each of the four

instances of repeated entries in a column is allowed by rule (3).

We are now ready to state the three conjectures of this section.

Conjecture 5.4. Suppose ω ∈ Cn+1 is unknotted, Then we have:

Fd
ω(x, x) =

∑

λ

Ēλωsλ(x)

where Ēλω is the number of signed Edelman-Greene tableaux for ω with shape λ.

Conjecture 5.5. Suppose ω ∈ Cn+1 is unknotted and any reduced word for ω has at most one s0. Then:

Fd
ω(x,−x) =

∑

r even

∑

λ

Ēλrω sλ(x) −
∑

r odd

∑

λ

Ēλrω sλ(x)

where Ēλrω is the number of signed Edelman-Greene tableaux for ωwith shape λ and exactly r barred entries.

Conjecture 5.6. Suppose ω ∈ Cn+1 is unknotted and any reduced word for ω has no s0 (i.e., ω ∈ An). Then:

Fd
ω(x, tx) =

∑

λ

Ēλrω sλ(x)tr

where Ēλrω is the number of signed Edelman-Greene tableaux for ωwith shape λ and exactly r barred entries.

3The conjectures of this section are theorems if we replace unknotted with the slightly stronger concept of untangled. An

element ω ∈ Cn+1 is untangled if for all reduced words w for ω:

(1) s2 does not appear in w.

(2) For i > 2, if si and si+1 appear in w, and one of si or si+1 appears more than once, then si−1 and si+2 do not appear in w.

However, we do not provide the proofs here.
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Example 5.7. Let ω be the unknotted signed permutation {−2,−1, 4, 3}. Then we have the following signed

Edelman-Greene tableaux for ω:

-3 -1 0 1
0

-1 0 1 3
0

-3 -1 0
-1 0

-1 0 3
-1 0

-3 0 1
0 1

-1 0 1
0 3

-3 0 1
-1
0

-1 0 1
0
3

-3 -1 0
0
1

-1 0 3
0
1

-3 0
0 1
1

-1 0
-1 0
3

-1 0
0 3
1

-3 -1
-1 0
0

-3 0
-1
0
1

-1 0
0
1
3

By conjecture 5.4, Fd
ω(x, x) = 2s41(x) + 4s32(x) + 4s311(x) + 4s221(x) + 2s2111(x).

Example 5.8. Let ω be the unknotted signed permutation {3, 2,−1, 4}. Then we have the following signed

Edelman-Greene tableaux for ω:

-2 0 1 2

0 1 2
2

-2 1 2
0

-2 -1 2
0

-1 2
0 2

-2 1
-1 2

-2 1
-1
0

-2 -1
-1
0

-1 2
0
2

-2
-1
0
2

By conjecture 5.4, Fd
ω(x, x) = s4(x) + 3s31(x) + 2s22(x) + 3s211(x) + s1111(x).

By conjecture 5.5, Fd
ω(x,−x) = −s4(x) + s31(x) − s211(x) + s1111(x).

Example 5.9. Let ω be the unknotted signed permutation {3, 2, 1, 4}. Then we have the following signed

Edelman-Greene tableaux for ω:
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-2 1 2 -2 -1 2

1 2
2

-1 2
2

-2 1
1

-2 -1
1

-2 1
-1

-2 -1
-1

-2
1
2

-2
-1
2

By conjecture 5.4, Fd
ω(x, x) = 2s3(x) + 6s21(x) + 2s111.

By conjecture 5.5, Fd
ω(x,−x) = 0.

By conjecture 5.6, Fd
ω(x, tx) = s21(x)+ ts3(x)+ 2ts21(x)+ ts111(x)+ t2s3(x)+ 2t2s21(x)+ t2s111(x)+ t3s21(x).

Remark 5.10. We will call a signed Edelman-Greene tableau for ω a signed unimodal tableau for ω if

changing all -i to i for each i produces a unimodal tableau for ω as defined in 3.1 of [HPS17] (after sliding

rows to attain a shifted shape).

Example 5.11. The signed unimodal tableaux that appear in example 5.7 are:

-3 -1 0 1
0

-1 0 1 3
0

-3 -1 0
-1 0

-3 0 1
0 1

Example 5.12. The signed unimodal tableaux that appear in example 5.8 are:

-2 0 1 2
-2 1 2
0

-2 -1 2
0

Example 5.13. The signed unimodal tableaux that appear in example 5.9 are:

-2 1 2 -2 -1 2
-2 1
1

-2 -1
1

-2 1
-1

-2 -1
-1

It is apparent from the definitions of Fd
ω and FC

ω given in section 1 that 2ze(ω)Fd
ω(x, x) = FC

ω(x) where ze(ω)

is the number of s0 in a reduced word for ω. From this and equation (3.3) of [HPS17] it can be deduced that:

Fd
ω(x, x) =

∑

λ

ŪλωPλ(x),

where Ūλω is the number of signed unimodal tableaux for ω with shape λ. If ω is unknotted we may apply

conjecture 5.4 to the left hand side and expand the right hand side in terms of Schur polynomials to get:
∑

µ

Ē
µ
ωsµ(x) =

∑

λ

∑

µ

Ūλωhλµsµ(x),

where hλµ is the multiplicity of sµ in the Schur expansion of Pλ. Since hλλ = 1 and hλµ = 0 for µ ≺ λ in

dominance order, it follows that if µ is maximal such Ē
µ
ω > 0 then Ē

µ
ω = Ū

µ
ω. Hence, for such maximal µ

the set of signed Edelman-Greene tableau for ω with shape µ must be equal to the set of signed unimodal

tableau for ω with shape µ.
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