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ABSTRACT

Future climate projections require Earth system models to simulate conditions outside their calibration

range. It is therefore crucial to understand the applicability of such models and their modules under transient

conditions. This study assesses the robustness of different types of models in terms of rainfall–runoffmodeling

under changing conditions. In particular, two process-based models and one data-driven model are consid-

ered: 1) the physically based land surface model of the European Centre for Medium-Range Weather

Forecasts, 2) the conceptual Simple Water Balance Model, and 3) the Long Short-Term Memory-Based

Runoff model. Using streamflow data from 161 catchments across Europe, a differential split-sample test is

performed, i.e., models are calibrated within a reference period (e.g., wet years) and then evaluated during a

climatically contrasting period (e.g., drier years). Models show overall performance loss, which generally

increases the more conditions deviate from the reference climate. Further analysis reveals that the models

have difficulties in capturing temporal shifts in the hydroclimate of the catchments, e.g., between energy- and

water-limited conditions. Overall, relatively high robustness is demonstrated by the physically based model.

This suggests that improvements of physics-based parameterizations can be a promising avenue toward re-

liable climate change simulations. Further, our study illustrates that comparison across process-based and

data-driven models is challenging due to their different nature. While we find rather low robustness of the

data-driven model in our particular split-sample setup, this must not apply generally; by contrast, such model

schemes have great potential as they can learn diverse conditions from observed spatial and temporal vari-

ability both at the same time to yield robust performance.

1. Introduction

Land surface–hydrology models (LSMs) have been

evaluated against observations and intercompared with

each other over the past few decades, often by joint

efforts of broad international groups, in order to identify

strengths and inadequacies of existing model schemes.

For instance, the Project for Intercomparison of Land

Surface Parameterization Schemes (PILPS), launched

in 1993, has examined differences among the partici-

pating models in the formulation of individual processes

(Henderson-Sellers et al. 1993, 1995). The community

effort was later expanded to regional and global scales

(e.g., Dirmeyer et al. 1999; Boone et al. 2009; Dirmeyer

2011). PILPS also facilitated the Protocol for theAnalysis

of Land Surface Models (PALS) Land Surface Model

Benchmarking Evaluation Project (PLUMBER), which

aims to reveal the potential for model improvements by

benchmarking LSMs against simple linear regressions
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(Best et al. 2015). Further recentmultimodel experiments

have focused on the role of LSMs in coupled climate

models (e.g., Koster et al. 2006; Wei and Dirmeyer 2010;

Seneviratne et al. 2013), some investigated model per-

formance for hydrologic simulations (e.g., Reed et al.

2004; Haddeland et al. 2011; Beck et al. 2017), and others

evaluated simulated energy fluxes and balances (e.g.,

Abramowitz et al. 2008; Jiménez et al. 2011). These ex-

periments have led to a better understanding of land

surface processes and a correspondingly more accurate

representation within the models.

Meanwhile, with a growing recognition of non-

stationarity in climate and hydrology, the functioning

of models outside their training climate has become a

focus of interest. Ongoing climate change challenges

the reliability of LSMs for future climate projections,

even if they function well under current conditions

(Xu et al. 2005; Milly et al. 2008; Merz et al. 2011).

As a result, numerous research studies have been

undertaken by a range of model communities (so far,

rather sporadically) to assess the extrapolation ca-

pacity of models under nonstationary conditions. To

this end, corresponding model experiments have followed

a differential split-sample testing (DSST; Kleme�s 1986;

Refsgaard et al. 2014), i.e., models are calibrated within a

reference period (e.g., wet and cold seasons) and then as-

sessed during a period characterized by different climate

conditions (e.g., dry and warm seasons). Examples of ap-

plication of DSST can be found in Seibert (2003), Wilby

(2005), Vaze et al. (2010), Merz et al. (2011), Coron et al.

(2012), Li et al. (2012), Seiller et al. (2012), Brigode

et al. (2013), Kling et al. (2015), Li et al. (2015), Seiller

et al. (2015), Thirel et al. (2015a), Broderick et al.

(2016), Fowler et al. (2016), and Vormoor et al. (2018).

However, no common method for testing models, e.g.,

selection of evaluation criteria, definition of condi-

tions, has yet been agreed upon. Therefore, only pre-

liminary conclusions could be drawn regarding model

deficiency under changing conditions.

This study builds upon the earlier DSST studies for

assessment of model robustness under changing condi-

tions. Our model experiment focuses on rainfall–runoff

modeling using data from 161 catchments in Europe

encompassing diverse hydroclimatic regimes. Contrasting

periods (i.e., wet versus dry conditions) are defined based

on mean precipitation, because precipitation is the most

commonly used climatic indication in the aforementioned

DSST studies. For the first time, we extend the scope of

suchmodel evaluation by considering a diverse set of state-

of-the-art models. Three different models with widely

varying complexities are employed, namely, physically

based, conceptual, and empirical models: the Hydrology-

Tiled European Centre for Medium Range Weather

Forecasting (ECMWF) Scheme for Surface Exchanges

over Land (HTESSEL; Balsamo et al. 2009), the Simple

Water Balance Model (SWBM; Koster and Mahanama

2012; Orth and Seneviratne 2015), and the Long Short-

TermMemory-Based Runoff model (LSTM-Runoff, built

in this study using LSTM; Hochreiter and Schmidhuber

1997), respectively. We define ‘‘model complexity’’ in

terms of a degree of explicit consideration of physical

knowledge or theoretical principles that govern hydrologic

and relevant processes, rather than by the number of pa-

rameters or conceptual approaches. With this definition,

HTESSEL is the most complex model, followed by

SWBM and LSTM-Runoff. The LSTM-based machine

learning is a relatively new approach in rainfall–runoff

modeling, with a recently increasing interest because of

its ‘‘memory’’; the ability to store information from pre-

vious inputs for many time steps during model training.

Its comparable performance to conventional models has

been demonstrated, for instance, by Hu et al. (2018),

Kratzert et al. (2018), Zhang et al. (2018), and Kratzert

et al. (2019), yet, to our knowledge, there has been no

hydrology study with a consideration on model transfer-

ability between contrasting conditions.

When it comes to process-based models, complex

models tend to utilize a broader set of input data than

simpler models and they are able to represent more

processes and variables. However, often, conceptual

models outperform their physically based counterparts

in specific settings, and for particular variables, despite

using less input information and weaker physical con-

straints (e.g., Perrin et al. 2001; Materia et al. 2010; Orth

et al. 2015; Tegegne et al. 2017). This can be explained,

on the one hand, by higher calibration flexibility in

simple models, bearing the risk of overfitting. On the

other hand, complex models may suffer from an in-

complete representation of land surface processes due

to knowledge gaps (Beck et al. 2017) or from an incom-

patibility between relevant simulated processes (Koster

and Milly 1997). Beven (1989) suggested the use of three

to five parameters to reproduce the most dominant hy-

drologic processes while avoiding overparameterization.

However, those studies did not explicitly consider the

model skills in the context of changing conditions, but

rather focused on the capacity of model to describe

‘‘current’’ processes. Some previous DSST studies have

attempted to take into account model complexity (e.g.,

Vaze et al. 2010; Coron et al. 2012), but no significant

difference between models was observed. It should be

noted that in those DSST studies, the complexity was

defined by the number of parameters or model structure

among considered conceptual models.

Expanding upon known differences in the nature of

conceptual and physically based models, we aim to test
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in this study to what extent model complexity influences

the robustness of model performance under transient

climate conditions. More complex models typically rep-

resent a wider range of relevant land surface processes.

The physically based model HTESSEL also implements

land energy processes, while the conceptual model SWBM

describes only hydrologic processes. Further, the LSTM-

Runoff is designed to merely produce runoff time series.

All threemodels are calibrated or trained using streamflow

observations only. We also seek to elucidate how different

hydroclimatic conditions between contrasting periods can

influencemodel performance and discuss opportunities for

enhancement of model robustness under transient condi-

tions. Additionally, we test our results with different,

equifinal sets of well-performing parameters to analyze the

impact of parameter selection on our robustness assess-

ment. The following section 2 and section 3 describe

models and methodology used in this study, respectively.

The results are presented in section 4. Discussion and

conclusions are summarized in section 5.

2. Models

In this study, HTESSEL, SWBM, and LSTM-Runoff

represent physically based, conceptual, and empirical

models, respectively. Note that both HTESSEL and

SWBM include representations of hydrologic processes

and are therefore referred to as ‘‘process-based models’’

hereafter. In contrast, LSTM-Runoff contains no ex-

plicit physical or conceptual representation of the hy-

drologic processes. Themodel can self-learn the relation

between input and output, making it a ‘‘data-driven

model.’’ The main characteristics of each model are

summarized in Table 1.

a. Hydrology Tiled ECMWF Scheme of Surface
Exchanges over Land

HTESSEL is a land surface model used operationally

in the Integrated Forecast System (IFS) of ECMWF for

short-range forecasts to seasonal predictions, and re-

analysis, to simulate surface water and energy fluxes and

the evolution of soil and snow (Balsamo et al. 2009). A

grid box is divided into up to six land tiles representing

different subgrid surface types. In each grid box, two

vegetation types (a high and a low vegetation) are

represented. Vegetation growth and decay is seasonally

variable, but does not respond to weather and climate

anomalies. An interception layer accumulates precipi-

tation until it is saturated, and excess precipitation is

partitioned into surface runoff and infiltration. The

subsurface fluxes are modeled in four layers and a single

layer snowpack. More detailed information can be

found in ECMWF (2016) and Balsamo et al. (2015).

b. Simple Water Balance Model

SWBM is a conceptual, lumped model originally

proposed by Koster andMahanama (2012) and has been

modified and widely applied over European catchments

by Orth and Seneviratne (2013, 2015). The model as-

sumes simple dependencies of evapotranspiration (nor-

malized by net radiation) and runoff (normalized by

precipitation) on soil moisture. Runoff depends on pre-

cipitation and soil moisture only. The model accounts for

snowwith a degree-daymethod. In contrast toHTESSEL,

subsurface flow is disregarded (bucket-type approach)

and soil or vegetation information is not employed.

More detailed information can be found in Orth and

Seneviratne (2013).

c. Long Short-Term Memory-Based Runoff model

LSTM is a specific type of recurrent neural network

that was designed to model sequences (e.g., time se-

ries) and their long-term dependencies (Hochreiter

and Schmidhuber 1997). Recently, LSTM-based ap-

proaches are increasingly used in Earth system science

including hydrologic modeling (e.g., Hu et al. 2018;

Kratzert et al. 2018; Zhang et al. 2018; Kratzert et al.

2019; Sahoo et al. 2019). In this study, LSTM-Runoff is

designed to predict runoff at a given time step using

meteorological forcing over multiple prior time steps

(look-back). Note that the model has no knowledge of

land surface or hydrologic processes. LSTM-Runoff it-

self learns a relation between input and output series

(meteorological conditions and runoff in our case) by

repeated updating of trainable parameters (weights),

followed by the computation of error signals for all

parameters; i.e., feed-forward and back-propagation.

On the other hand, users specify a model configura-

tion through hyperparameters which determine model

architectures and learning methods. For instance,

TABLE 1. Models used in the study.

Model Description Type Method Complexity Reference

HTESSEL ECMWF land surface scheme Physically based Differential equations High Balsamo et al. (2009, 2015)

SWBM Simple Water Balance Model Conceptual Simplified equations Medium Orth and Seneviratne (2015)

LSTM-Runoff LSTM-based runoff model Data-driven Black-box concept Low Hochreiter and

Schmidhuber (1997)
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the architecture-related hyperparameters include in-

put dimension, the amount of neurons, and the number

of hidden layers, while the learning-related hyper-

parameters include cost functions, iterations of for-

ward and backward propagation for all training data

(epochs), and dropping out units as a regularization

technique (dropout).

3. Methodology

a. Study area

In an initial setup, 398 near-natural catchments over

Europe are considered, where long-term streamflow

records (mostly from 1984 to 2007) are available (Stahl

et al. 2010). To ensure the general applicability of

models, we select a subset of catchments in which all

three models exhibit satisfactory performance; see

section 3c for more details. Eventually, a total of 161

catchments in 11 countries is chosen (Fig. 1). The me-

dian basin size is 261 km2, ranging from 4 to 3781 km2.

For further analysis, the chosen catchments are then

grouped into three different hydroclimatic regimes

according to their aridity index (long-term dryness;

Budyko 1974): humid, moderate, and arid. Aridity in-

dex, the ratio of atmospheric water supply to demand,

is defined as the ratio between mean net radiation and

respective unit-scaled precipitation during the entire

24 years. The grouping indicates only relative dryness

among the catchments because the same number of

catchments are assigned to each group using the 33.3rd

and 66.6th percentiles as thresholds.

b. Forcing data

The models are all driven in an uncoupled mode with

daily forcing data at a 0.58 3 0.58 scale and applied in a

lumped fashion. All models commonly employ precipi-

tation, temperature, and radiation information, while

HTESSEL and LSTM-Runoff further use additional

forcing variables (Table 2). Forcing datasets are ob-

tained from the WATCH Forcing Data ERA-Interim

(WFDEI) meteorological dataset (Weedon et al. 2014),

except for precipitation and temperature data which are

obtained from the station-based E-OBS dataset (Cornes

et al. 2018). Precipitation data are upscaled by 10% to

account for undercatch biases (Hofstra et al. 2009),

following Orth and Seneviratne (2015). Net radiation

data for SWBM are obtained from ERA-Interim (Dee

et al. 2011). For HTESSEL, precipitation data are pre-

processed to be assigned as rainfall when 2-m temper-

ature exceeds 08C, and solid phase otherwise. In this

study, LSTM-Runoff is trained using the same forcing

data (features) as for HTESSEL to derive the main re-

sults. It is further trained with the same inputs as for

SWBM in the context of the hyperparameter uncer-

tainty analysis in section 4c. In the case of LSTM-

Runoff, precipitation is log-transformed. In addition,

all input data are normalized using their mean and

standard deviation for training efficiency (LeCun et al.

2012). ForHTESSEL, static information describing land

cover (vegetation cover and types), soil textures and

mean climatologies of leaf area index and surface albedo

are also required. No climatic or static data are used in

SWBM or LSTM-Runoff.

c. Simulation setup

This section outlines the simulations setup imple-

mented in this study (see also Table 3). First, we carry

out continuous simulations over the entire time period

(i.e., 24 years) to test whether models adequately re-

produce runoff in each catchment. Second, models are

calibrated for each catchment during reference periods,

except for LSTM-Runoff which is trained using data

from the reference periods of all catchments at once, as

further explained in section 3c(2). This is done for the

FIG. 1. Location of the 161 study catchments distributed across

Europe. Inset shows the summary of NSE values for model simu-

lations over the entire study period; 25th and 75th percentiles

(boxes), median (lines within boxes), range from 10th to 90th

percentiles (whiskers), and mean (triangles). The catchments are

grouped into humid, moderate, and arid regions according to their

aridity index. The map is created using the Matplotlib basemap

toolkit (Hunter 2007).
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wettest and driest years, respectively. Finally, models

are run over all remaining years so that model results

can be examined along the changing conditions, i.e.,

across increasingly drier years (wet2dry) and increas-

ingly wetter years (dry2wet), respectively.

1) MODEL SIMULATIONS FOR CATCHMENT

SELECTION

We run the models over the entire time period for

each catchment to verify the general suitability of the

models and the quality of input–output data. In the case

of the process-based models, a total of 500 simulations

are carried out for every catchment, each with a differ-

ent, randomly generated parameter set. Information

about model calibration and parameter sampling can be

found in appendix. When any of the 500 simulations

yields a Nash–Sutcliffe efficiency (NSE; Nash and

Sutcliffe 1970) that exceeds or equals to 0.36, for both

HTESSEL and SWBM, the catchment is selected for

further study. The NSE criterion is adopted from

Motovilov et al. (1999) and Moriasi et al. (2007). As a

result, 161 suitable catchments are selected. Model ef-

ficiency for the selected catchments is shown in the inset

of Fig. 1. The remaining catchments, where the NSE ,
0.36 for all 500 simulations by either HTESSEL or

SWBM, are discarded. The poor performance could be

due to contaminated observations, e.g., by human in-

terference, spatial mismatch of observations and model

outputs, or shortcomings of the models themselves.

Note that the performance of LSTM-Runoff is not

considered here to select the study catchments. This is

because the model could yield reasonably high perfor-

mance, by an undesired overfitting, with all catchment

observations given its large number of parameters and

flexibility which is not limited by physical constraints.

For verification purposes, the performance of LSTM-

Runoff in the above-selected 161 catchments is deter-

mined, showing consistentlyNSE$ 0.36with epochs5 50,

as expected.

2) MODEL CALIBRATION TO REFERENCE

CONDITIONS

For each catchment, we use the wettest calendar year

for model calibration and retain the remaining 23 years

as an independent evaluation period. The same is car-

ried out vice versa with the driest calendar year. The

wet/dry conditions are defined according to annual

mean precipitation. Note that even during the driest

year few runoff peaks may occur which then inform

model calibration. Precipitation is the most commonly

used climatic characteristic in DSST as a primary driver

of the natural hydrologic cycle, and consequently runoff.

Moreover, Coron et al. (2012) showed that precipitation

is more influential to the dependency of model perfor-

mance (runoff simulation) on considered conditions

than other climatic variables like temperature or potential

evapotranspiration. For the process-based models, the 500

parameter sets sampled in the previous section are used

TABLE 3. Model simulations.

Simulation Time period No. of catchments Purpose Used (hyper)parameters

Catchment

selection

Complete period

(24 years)

398 Check general model suitability

and data quality in tested

catchments

500 parameter sets for

HTESSEL and SWBM, while

hyperparameters of interest

for LSTM-Runoff

Calibration The wettest/driest year,

while randomly chosen

year for LSTM-Runoff*

161 Train models under

hypothetical reference

conditions

500 parameter sets for

HTESSEL and SWBM, while

hyperparameters of interest

for LSTM-Runoff

Evaluation Remaining drier/wetter

years (mostly 23 years)

161 Evaluate model performance

under contrasted conditions

Best-performing (hyper)parameter

set during calibration

TABLE 2. Daily atmospheric forcing data (1984–2007) at 0.58 spatial resolution. An x indicates that the data are used for models.

Variable Data source HTESSEL SWBM LSTM-Runoff

Surface incident longwave radiation WFDEI x x

Surface incident shortwave radiation WFDEI x x

Net radiation ERA-Interim x

Precipitation E-OBS x x x

Temperature E-OBS x x x

Near-surface specific humidity WFDEI x x

Surface pressure WFDEI x x

Wind speed WFDEI x x
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here again to calibrate the models for each of the 161

catchments. Given our calibration with one year of forcing

data, the model simulations are iterated repeatedly over

the reference year until the model state reaches an equi-

librium, i.e., model output values remain unchanged.

Even when calibrated with intentionally constrained

training data, the process-basedmodels can benefit from

their physics foundations given that these foundations

are based on knowledge from diverse climate condi-

tions. The data-driven model does not rely on such

foundations but learns the input–output relationship

exclusively from the training data. Consequently, setting

up the split-sample experiment, in a way that is com-

parable across all the different model types, is not

straightforward. In any case, a fair setup of the data-

driven model requires more (diverse) training data than

for the other two models to compensate for the missing

physics foundations, which represent knowledge from

diverse climate conditions. Therefore, we proceed with

two versions of the data-driven model, also to illustrate

the impact of the training data and strategy. First, LSTM-

Runoff is trained with the reference years from all 161

catchments (5365 days3 161 days’ 60000 days). In this

way, LSTM-Runoff is trained with more (hydroclimati-

cally diverse) data than the process-based models (see

Fig. S1 in the online supplemental material). Second,

LSTM-Runoff* is trained with the same amount of data

(;60000 days) as LSTM-Runoff, but with one randomly

selected year from each catchment rather than the re-

spective extreme reference year. Therefore, LSTM-

Runoff* is allowed to experience an even wider range of

hydroclimatic conditions. Consequently, in this version

the data-drivenmodel can build its own knowledge from

all observed conditions. The hyperparameters of LSTM-

Runoff and LSTM-Runoff* are selected through a grid

search with tenfold cross validation (see also appendix).

3) MODEL EVALUATION OVER YEARS UNDER

CHANGING CONDITIONS

With optimized parameters obtained from calibration

over the reference periods, model simulations are car-

ried out over the remaining years. The evaluation period

is assumed to be representative of transient climatic

conditions. This permits assessment of model perfor-

mance along gradually changing conditions and thus

inferring the respective behavior of the models. The

process-based models are run repeatedly over each year

until the models approach their equilibrium, just as

conducted for calibration. For LSTM-Runoff, 10 runs

for the selected network configuration are performed

and final runoff is computed as an average of the 10 runs

given the random initialization of the model; the model

weights are initialized with theGlorot/Xavier initialization

(Glorot andBengio 2010). For Fig. 5 and the supplemental

material, we perform five runs; the number of runs only

marginally affects our results as we examine the average

behavior of the model across catchments.

4. Results

In this section, we first assess the robustness of runoff

simulations under changing conditions (i.e., wet2dry and

dry2wet) and compare results between models and be-

tween aridity regimes. Second, model performance is

further investigated along temporal shifts in aridity, in

addition to changes in precipitation; the yearly aridity is

considered as a potential factor affecting model per-

formance in transient conditions. Finally, parameter

uncertainty is assessed to test the role of the chosen

(hyper)parameter sets for the conclusions of our study.

a. Model robustness with respect to transient
conditions

We compare the three models, examining their per-

formance along changing annual precipitation totals as a

function of 1) NSE of daily runoff and 2) percentage bias

of annual runoff Qdiff. With the optimal value of 0,

positive values ofQdiff indicate an overestimation bias in

simulated runoff, and negative values indicate under-

estimation. Figure 2 portrays the changing performance

of the models in response to changing precipitation av-

eraged across catchments (median). Given that the

wettest/driest years are defined for each catchment,

the number of performance values (NSE orQdiff) at the

reference period is the total number of catchments, i.e.,

161 values (top panel of Fig. 2).Most, but not necessarily

all, catchments contribute to all the following precipi-

tation P bins over the validation period. If a catchment

contributes more than one year for the same P bin,

catchment-averaged performance is calculated first.

For wet2dry (Fig. 2, left), LSTM-Runoff and SWBM

show comparable performance overall in terms of NSE

(0.62 and 0.64, respectively) during the wettest years,

while HTESSEL shows comparatively weaker perfor-

mance (0.47). Similar results are noted for the driest

years (Fig. 2, right); NSE values of 0.66, 0.61, and 0.42 for

LSTM-Runoff, SWBM, and HTESSEL, respectively.

Despite its higher complexity, the physically based

model does not necessarily outperform the simpler

model types, e.g., due to a lack of sufficient data to ad-

equately characterize themodel parameters. In turn, the

physical constraints are weaker in LSTM-Runoff and

SWBM such that these models can be forced to describe

runoff hydrographs more accurately during the cali-

bration period, which at the same time increases the

potential risk of overfitting. For performance evaluation,
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runoff simulations from March to December are consid-

ered for all models in the figure as LSTM-Runoff simu-

lations can only start in March due to the applied 60 days

look-back (see section 2c and appendix). The perfor-

mance of process-based models has been recalculated

with outputs of the full 1-yr period and results remain

very similar (not shown).

In the wet2dry simulation, all three models yield robust

performance under conditions similar to the reference

periods, i.e.,P. 70%.However, as the conditions change,

an overall decrease in general performance, with respect to

both NSE and Qdiff, is observed by all three models. The

decline of NSE is faster for SWBM and LSTM-Runoff

such that their performance becomes poorer than that of

the physically based model as precipitation is reduced.

Interestingly, model performance does not decrease at a

constant rate, but there is an apparent acceleration at

around P5 70%. It is more clearly detected in the case of

SWBM and LSTM-Runoff. A similar pattern is found for

runoff biases. For dry2wet, we observe the opposite be-

havior with a rapid performance drop until approximately

P5 120% and a levelling off afterward. These patterns of

model performance deterioration are further analyzed in

section 4b.

In the case of the Qdiff evolution across changing

precipitation conditions, the process-based models and

the data-driven model reflect opposite behaviors; in-

creasing underestimation bias in HTESSEL and SWBM

versus growing overestimation in LSTM-Runoff for

wet2dry, and vice versa in the case of dry2wet. LSTM-

Runoff probably adapts to the range of runoff during the

training years. For instance, with a runoff ranging be-

tween 10 and 20mm for the wettest year, LSTM-Runoff

tends to predict runoff within this range even though the

actual runoff range decreased (e.g., 5–10mm) during the

drier years, which leads to the overestimation bias. This

explanation applies correspondingly for dry2wet. In the

case of the process-based models, we hypothesize that

the partitioning of precipitation into runoff and evapo-

transpiration (ET) is not flexible enough but rather fixed

during calibration and wrongly maintained under changed

conditions, leading to the observed runoff biases.

We also repeat the entire analysis by calibrating and

evaluating model simulations with 2-yr periods instead

FIG. 2. Model performance under changing annual precipitation totals, (left) from wettest to drier and (right)

from driest to wetter years. (top) The number of catchments that have at least 1-yr time series for each relative

precipitation bin; total precipitation of the wettest or driest years is assumed to be 100%. (middle) NSE and

(bottom) Qdiff (relative bias in annual runoff) are used to compare the performance between the models.

Catchment-averages are calculated first if a catchment has more than 1 year for the same precipitation bin, before

averaging across all catchments contributing data to a particular bin. Lines show median and the shading denotes

the interquartile range.
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of single years. Overall, we find similar results in terms of

the difference between the changes in model perfor-

mance, as displayed in Fig. S2. This illustrates that the use

of 1-yr periods is not detrimental for model calibration.

When it comes to LSTM-Runoff*, better perfor-

mance at the wettest or driest years is not clearly cap-

tured because the newly selected reference years for

training the model are randomly distributed over the P

bins. Both LSTM-Runoff perform almost equally well

under conditions closer to the wettest/driest years.

However, LSTM-Runoff* shows a stable performance

along the changing conditions. It eventually outper-

forms LSTM-Runoff after the P 5 70% in the case of

wet2dry, despite the same amount of training data. It

demonstrates that LSTM-Runoff* learns possible changes

to a catchment from others’ current conditions. The

results stay the same when LSTM-Runoff* is trained

with different combinations of randomly selected years

(not shown).

The interquartile error range increases the more

conditions deviate from the reference conditions, im-

plying varying patterns of deterioration of model per-

formance among the catchments. We evaluate model

performance for each catchment group, defined in

section 3a: humid, moderate, and arid regions. For

brevity, only wet2dry results are discussed here. Model

performance under the reference conditions is compa-

rable among the region groups for the same models

(Fig. 3). However, it is apparent that all three models

show a faster decline in performance along the changing

conditions in the arid group of catchments. On the

contrary, the model performance remains relatively

stable during the evaluation period in the more humid

catchments. As expected, LSTM-Runoff* shows a highly

robust performance for all catchment groups. Similar

results are obtained for dry2wet and displayed in Fig. S3.

The difference in the model robustness between the re-

gions is further discussed in the following section.

b. Why and when does model performance
deteriorate?

In this section, we introduce yearly aridity to under-

stand observed changes in model performance in more

details. The definition of yearly aridity is similar to the

aridity index used for the catchment grouping; i.e., the

ratio of mean net radiation to mean unit-scaled precipi-

tation, but for each year. Obviously, catchment-averaged

aridity is increasing for wet2dry due to both decreases in

precipitation and increases in net radiation under drier

conditions (Fig. 4, left). Aridity is an indicator for dis-

tinguishing water-limited versus energy-limited environ-

ments (Denissen et al. 2020). Therefore, a shift of yearly

aridity across 1 implies profound changes in the hydro-

climatic conditions experienced in the catchments.

The relative precipitation at which yearly aridity

crosses 1 is found at P’ 70% for wet2dry and P’ 120%

in the case of dry2wet. Interestingly, therefore the switch

between water- and energy-limited conditions is found

just where the models exhibit the aforementioned

accelerated performance deterioration (Fig. 2). This is

an important finding, as it presents a mechanistic expla-

nation of model performance loss in transient climate

conditions. Models apparently have difficulties in repre-

senting hydroclimatic regime shifts; in energy-limited

FIG. 3. As in Fig. 2, but for the catchments of humid, moderate, and arid groups (blue, gray, and red, respectively). Note that for simplicity

only wet2dry results are shown. Results from dry2wet can be found in the supplemental material (Fig. S3).
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environments, ET and hence surface temperature and

moisture supply into the atmosphere, are controlled by

atmospheric energy supply, while under water-limited

environments this is mostly governed by soil moisture

availability (Troch et al. 2009; Orth and Destouni 2018).

The temporal shifts in aridity also explain why we ob-

serve differences in model robustness between the groups

of humid, moderate, and arid. Only aridity lines of the arid

and moderate groups are crossing aridity 5 1, meaning

that the catchments of those groups are experiencing the

regime shift for bothwet2dry and dry2wet (Fig. 4, bottom).

To the contrary, for the humid group the yearly aridity

values are always found to be ,1, allowing the models to

deliver more reliable simulations even under different

precipitation conditions. Also note that runoff modeling in

water-limited environments (arid and semiarid) could be

inherently more challenging owing to their distinctive hy-

drologic processes, e.g., absence of baseflow and bigger

role of vegetation in hydrology (Pilgrim et al. 1988).

Further, the yearly aridity of the reference years is closer to

1 in dry2wet than in wet2dry. This means that in the

dry2wet case the models benefit from training data which

more abundantly covers both water- and energy-limited

environments (see also Fig. S1). This explains why the

changes in model performance outside training conditions

are less evident for dry2wet (Fig. 2, right). This is par-

ticularly the case for LSTM-Runoff and LSTM-Runoff*

as the models are trained with data from all catchments

across arid to humid groups.

c. Parameter uncertainty

In this section, we investigate the effect of (hyper)

parameter selection on the stability of our results. This is

to address the concern that multiple parameter sets

provide equally acceptable model outputs during cali-

bration, while they may yield rather variable predictions

(Ebel and Loague 2006), even for such a simple index

like a sign of change in mean annual runoff (Melsen et al.

2018). Fowler et al. (2016) particularly addressed this

equifinality issue in the framework of DSST and showed

that calibration methods often fail to identify parameter

sets that are robust over a wide variety of conditions.

All simulations during the evaluation period are re-

peated with different sets of parameters for the process-

based models. In addition to the best parameter values

used for the main analyses, we choose the fifth, tenth,

and twentieth best-performing parameter sets based on

model performance during calibration. As depicted in

FIG. 4. Annual aridity along the changing annual precipitation totals, (left) fromwettest to drier and (right) from

driest to wetter years; averaged (middle) for all catchments and (bottom) for each catchment group. (top) The

number of catchments for each relative precipitation bin. Lines show the median, and the shading denotes the

interquartile range. Note the log scale of y axis.
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Fig. 5 (left and center panels for HTESSEL and SWBM,

respectively), the model results obtained with the dif-

ferent parameter sets are very similar to those with the

best (reference) parameter set. This suggests that the

calibration methodology overall does not impact our

conclusions. In addition, we generate ensemble simula-

tions, i.e., the four simulated runoff outputs from the

same model are averaged to obtain a single represen-

tative result. As depicted in the relevant figure (red

lines), ensemble means show performance comparable

with the default simulation, or even better performance

as in the case of SWBM. By combining different param-

eter sets, their individual weaknesses can be compen-

sated. This highlights how multiparameter ensembles

might be a potential avenue to increase models’ robust-

ness in the future (Yokohata et al. 2012; Orth et al. 2016;

Her et al. 2019).

Similarly, LSTM-Runoff models are rerun with dif-

ferent sets of hyperparameters that show comparable

performance during model training (Fig. 5, right panel);

the second, third, and fourth best-performing hyper-

parameter sets. The selected ranks are different from

those for the process-based models given the fewer

number of hyperparameter sets. We additionally train

the model with the three input variables same as those

used for SWBM. As seen from the process-based

models, the overall results remain the same regard-

less of the selected hyperparameters or input information.

Interestingly, we observe that simulations with the three

inputs exhibit more reliable performance along the

changing conditions. This indicates that using less num-

bers of forcing variables can prevent LSTM-Runoff from

overfitting by permitting it to focus on the dominant

processes.As a result, we conclude that our results are not

significantly affected by the selection of (hyper)parame-

ters for all three models.

5. Discussion and conclusions

This study assesses the robustness of three different

LSMs under changing climatic conditions. The employed

models represent physically based, conceptual, and em-

pirical schemes, respectively, and therefore include dif-

ferent levels of knowledge about land surface states and

processes, and hence complexity. All three models fea-

ture a gradual decrease in overall performance as con-

ditions deviate from the reference, but at different rates

depending on their complexity. Our main findings are

summarized in Fig. 6. The figure is derived by applying a

linear regression to the main result of Fig. 2 and rates

(slope) of deterioration ofmodel performance are used as

an indication of models’ robustness. This analysis high-

lights our main conclusion, namely, when comparing

physically based and conceptual models, the robustness

of model performance in transient climate conditions

is increased the more physics (e.g., water and energy

FIG. 5. As in Fig. 2, but for simulations with the fifth, tenth, and twentieth best-performing parameter sets for (left) HTESSEL and

(center) SWBM. Black lines (ref) show performance from the best-performing parameter sets, i.e., same as results in Fig. 2. The ensemble

mean (red) is obtained from averaged runoff from all four simulations. (right) For LSTM-Runoff, simulations with different model

configurations are shown. Themodel is trainedwith the second, third, and fourth best-performing hyperparameters, respectively, and their

ensemble mean is shown in red. Additionally, LSTM-Runoff is trained with three input variables as for SWBM (green). Note that for

simplicity only wet2dry results are shown, while respective dry2wet results can be found in the supplemental material (Fig. S4).
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conservation in HTESSEL) is applied to constrain a

model. More importantly, we further find that deterio-

rated model performance under transient conditions is

partially attributable to temporal shifts between hydro-

climatic regimes that cannot be adequately described

by time-invariant model parameters. LSTM-Runoff can

overcome this issue by employing training data from

multiple catchments across contrasting conditions, with-

out increasing the amount of training data.

In the light of the relatively short 1-yr periods used for

calibration, our study should be regarded as a first-order

experiment to trigger further future research. While it is

uncommon to calibrate models over such short periods,

this allows us to assess model performance under a wide

range of climate conditions as the difference between

driest and wettest 1-yr periods exceeds that of longer

periods. Somewhat addressing the short calibration time

period, we run the process-based models several times

for any given year. The resulting multiyear simulations

enable the models to reach equilibrium states. For

LSTM-Runoff, we use training data from all available

catchments. Further, recomputing our analysis using

2-yr periods (Fig. S2) illustrates that our conclusions are

not significantly impacted by the choice of the length of

the time period.

Next to the findings on model robustness, our study

constitutes a pioneer effort in comparing process-based

and data-driven models. This is inherently difficult as

process-based models are developed with knowledge of

and from all climatic conditions, and then calibrated for

constrained extreme conditions in our study. This is not

reproducible for data-driven models as their knowledge

is developed purely from the given training conditions

during calibration. We address this issue by 1) giving the

combined calibration data from all catchments to the

data-driven model (LSTM-Runoff) and by 2) giving

the combined calibration data, but across all available

conditions, from all catchments to the data-driven model

(LSTM-Runoff*). The results of LSTM-Runoff show

that models of this type suffer clearly from limited per-

formance outside the training conditions, which can be

understood from their missing physics foundations.

However, the strong robustness of LSTM-Runoff*

demonstrates the potential of such machine-learning

approaches for modeling under changing conditions.

Essentially, they can efficiently ‘‘trade space for time.’’

This involves assuming an analogy between extrapolation

in time (predictions under climate change) and extrapo-

lation in space (predictions in ungauged basins); i.e.,

trainingmodels withmultiple catchments such thatmodels

can experience various conditions (e.g., Peel and Blöschl
2011; Singh et al. 2011).

Despite the first-order nature of the analysis, our re-

sults have important implications for hydrologic pre-

diction and climate impact studies. While land surface

and hydrological models are a primary tool for climate

impact assessment in hydrologic systems, predictive er-

rors of the models can be substantial because of a

transient climate. This will be particularly the case in

regions which are expected to experience significant

changes in their hydroclimatic conditions (Berg et al.

2016; Lin et al. 2018). Further, our findings suggest po-

tential difficulties of LSM predictions in semiarid re-

gions, where a regime change between energy- and

water-limited conditions is expected. Moreover, these

regions are particularly vulnerable to climate change in

terms of water availability, e.g., for agricultural, indus-

trial, and domestic demands (Ragab and Prudhomme

2002; Herrera-Pantoja and Hiscock 2015).

Most importantly, the relatively robust performance

of the most complex model, HTESSEL, highlights the

need for further improved and expanded processes

representations in current LSMs. This will also improve

the efficacy of LSMs within coupled Earth system

models used for climate change projections. The con-

sequent increase of the number of model parameters

potentially raises the risk of overparameterization.

However, given our findings, this is not a problem as

long as the additional parameters introduce stronger

physical constraints to the model. In contrast, adding

parameters without enhancing the physical constraints,

FIG. 6. Relation between model complexity and performance

robustness under changing conditions. Robustness is depicted by

its inverse relation with slope values of model performance dete-

rioration, which are obtained by applying a linear regression to

results of Fig. 2. Note that this figure summarizes the results found

from our study; it does not show absolute performance of model

schemes.
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as carried out in many conceptual models, does not nec-

essarily lead to improved robustness toward transient

conditions (e.g., Vaze et al. 2010; Coron et al. 2012),

probably owing to overfitting problems.

For empirical and machine learning-based models,

establishing a physics foundation can be realized via a

hybrid approach. Such methodology aims to bridge the

gap between process-based and data-driven models, by

developing algorithms to ensure optimal combinations

of respective models, for more secure application in

climate research (Reichstein et al. 2019). For instance,

the performance metric used to train machine learning

models can be modified to account for the physical

consistency of themodel predictions, i.e., physics-guided

machine learning (e.g., Karpatne et al. 2017; Yang et al.

2019). In this way, we might better guarantee the model

robustness beyond the climatic conditions over the

available data period. In addition, it should be noted

that, given the flexibility of LSTM, this study does not

aim to provide any conclusive remarks on the extrapo-

lation capacity or absolute performance of LSTM or

LSTM-based models. In this context, there are ample

possibilities for LSTM-based models to learn a wide

range of physics relevant to hydrologic processes (i.e.,

increasing model complexity). For instance, Kratzert

et al. (2019) showed that LSTM can extract information

benefiting its runoff modeling performance from static

catchment attributes. Therefore, LSTM-based models

have great potential to improve their robustness by ex-

tracting ‘‘hidden’’ information from diverse data possi-

bly including those that are generally not used in

process-based models, e.g., time series of ecological-

status data from remote sensing.

While our study indicates benefits of LSM complexity

for more robust performance in transient climate, this

inspires follow-up questions: howmuch more complexity

will still be useful given increasingly difficult parameter

estimation? Which are the key physical mechanisms that

are particularly relevant for more reliable future projec-

tions? These comprehensive questions, and the potential

that correspondingly improved understanding holds, call

for a collaborative effort among climate modeling com-

munities, e.g., PILPS or PLUMBER-like projects for

model intercomparison and benchmarking under a com-

mon framework. As expressed by Best et al. (2015), such

project permits ‘‘to target areas requiring improvements

common to all groups, as well as areas specific to individual

modelling groups.’’Multimodel evaluation in the context of

climate change has been attempted by Thirel et al. (2015b),

but to a limited extent. Our results emphasize the need to

include broader ranges of models within a systematic as-

sessment for comparison of model behaviors and for

identification of required degrees of realism. Additionally,

model evaluation should be extended to address more

variables beyond runoff, such as soil moisture and ET, and

furthermore to assess the physical consistency of their

simulated interplay. Importantly, more research is

needed on key climatic indices that can explain model

performance deterioration under transient climate

conditions. Indices such as aridity identified in our

study, have great potential to guide future model devel-

opment which enables more reliable climate predictions,

TABLE A1. Model parameters and their perturbed range for HTESSEL.

Parameter Description Range of multiplicative perturbation

Minimum stomatal resistance Scales leaf area index in the computation of canopy resistance [0.25, 4]

Soil moisture stress Determines the shape (e.g., 1 for linear) of dependency of

canopy resistance on soil moisture

[0.25, 4]

Total soil depth Lower boundaries of the particular soil layers; top layer not

impacted by perturbations to avoid impacts on the fast

thermal response

[0.5, 2]

Van Genuchten alpha Soil-dependent soil texture parameter in calculation of

hydraulic conductivity

[0.25, 4]

Saturated hydraulic conductivity Soil-dependent parameter; governs vertical percolation of

water within the soil profile

[0.25, 4]

TABLE A2. Model parameters and their prior range for SWBM.

Parameter Description Prior range

Water holding capacity Maximum water storage [50, 1500]

Runoff function exponent Sensitivity of normalized runoff to soil moisture [0.4, 15]

ET function exponent Sensitivity of ET to soil moisture [0.03, 1.25]

Maximum ET ratio Maximum fraction of ET [0.30, 0.99]

Melting parameter Speed of snow melting [0.15, 12]

Runoff delay Conversion of runoff to streamflow [0.05, 1.5]
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however, additional experiments with various models and

regions are required to generalize the findings.
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APPENDIX

Model Calibration and Training

a. HTESSEL

We choose five parameters exerting the most influ-

ence on model runoff outputs based on the results from

sensitivity analysis conducted by Orth et al. (2016) and

MacLeod et al. (2016). See Table A1. Note that only a

small fraction of the model parameters is selected for

better calibration efficiency. Following the previous

studies, default values of the parameters are perturbed

at once using multiplicative factors between 0.25 and 4

(between 0.5 and 2 for the soil depth). In total 500 sets of

multiplicative factors are randomly selected using Latin

hypercube sampling (LHS; McKay et al. 1979), which

allows to explore the parameter space as completely as

possible. The best-performing set of parameter pertur-

bation factors are determined by root-mean-square er-

ror (RMSE) between observed and simulated runoff.

b. SWBM

The same calibration strategy as adopted for HTESSEL

is applied to SWBM. All six parameters of the model are

optimized. Ranges of parameter spaces are specified based

on the range of calibrated values found in Orth and

Seneviratne (2013) and Orth and Seneviratne (2015). See

alsoTableA2. In total 500 sets of parameters are randomly

sampled using LHS, and RMSE is used to verify model

performance during calibration, as done for HTESSEL.

c. LSTM-Runoff

Following a calibration strategy for the machine learn-

ing, known as tuning of hyperparameters (Chollet 2017),

training data during the reference period, i.e., 1 year3 161

catchments are divided into two splits to train and validate

the LSTM-based model. Training-validation is a task to

find an optimal set of hyperparameters during model

training through cross validation on a portion of training

data. In this study, hyperparameters are selected through a

grid search with k-fold cross validation (k5 10); each fold

is held out to evaluate performance of the model trained

on the remaining K 2 1 folds. The final model con-

figuration is decided by choosing the hyperparameter

set that resulted in the smallest average RMSE across

k-folds among all considered configurations. The hy-

perparameter values considered in this study are listed

in Table A3.
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