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1 Introduction and summary

During the last years we have been experiencing a significant growth in understanding the

mathematical concepts leading to recursion relations for scattering amplitudes in quantum

field and string theory. A multitude of languages and approaches is available for various

quantum field theories, see for instance [4–11] and references therein. Recent progress on

string amplitudes in turn was driven by disentangling their polarization degrees of freedom

from moduli-space integrals over punctured worldsheets and finding separate recursions

for both types of building blocks. The low-energy expansion of string amplitudes exposed

by such recursions at tree and loop level contains a wealth of information on relations

between gauge theories and gravity, string dualities and counterterms including their non-

renormalization theorems. For the moduli-space integrals in open-string tree-level ampli-

tudes, a recursion based on the Knizhnik-Zamolodchikov equation was already identified

in ref. [12] based on refs. [13, 14] and later complemented by other methods put forward

in refs. [15, 16].

The problem of finding a one-loop (or genus-one) analogue of the open-string tree-level

recursions was long-standing. A first mathematical challenge was to thoroughly understand

iterated integrals on the elliptic curve and their associated special values, elliptic multiple

zeta values [17–20]. Then, the cooperation of mathematicians and physicists was instru-

mental to investigate and understand the relation of those iterated integrals to one-loop

open-string amplitudes and their differential equations [21–23]. The closed-string counter-

parts of these genus-one integrals lead to an intriguing system of non-holomorphic modular

forms [24, 25] that inspired mathematical research lines including refs. [26–30].

These structural considerations paved the way for two recent methods [1, 3] to system-

atically evaluate the integrals over punctures on the boundary of a genus-one surface order

by order in the inverse string tension α′. These integrals to be referred to as genus-one

configuration-space integrals1 form the backbone of one-loop open-string amplitudes. Both

algorithms rely on differential equations of Knizhnik-Zamolodchikov-Bernard(KZB) type

on a genus-one surface with boundaries.

• In ref. [1], a KZB-type differential equation with respect to the modular parameter τ ,

which encodes the geometry of genus-one surfaces, was established. Acting on a vec-

tor of generating functions for one-loop configuration-space integrals, the τ -derivative

can be expressed as a linear operator that mixes the components in different vector

entries. In particular, this exposes finite-dimensional conjectural matrix representa-

tions of a special derivation algebra with corresponding generators εk. Using Picard

iteration, the equation can be solved starting from a particular value which is conve-

niently chosen as the limit τ → i∞ where the genus-one configuration-space integrals

degenerate to their genus-zero counterparts with two additional legs.

• In ref. [3], a KZB-type differential equation with respect to the position of an aux-

iliary point z0 was identified. Facilitating a vector of configuration-space integrals

1We distinguish moduli-space integrals over both the punctures zi and the modular parameter τ of a

genus-one surface from the configuration-space integrals over the zi which are still functions of τ .
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with the auxiliary point (genus-one Selberg integrals), a solution can be obtained

using the KZB associator: it relates two regularized boundary values, which emerge

when sending the auxiliary point to the poles of the differential equation in two

distinct ways. At one boundary value one obtains the one-loop configuration-space

integrals, while at the other boundary one recovers again genus-zero configuration-

space integrals with two additional legs. The main players in the construction are

infinite-dimensional matrix representations of an algebra with generators xk, which

can be cut off to finite size when calculating up to a certain order in the α′-expansion

of the string amplitudes.

The two algorithms relate open-string tree-level and one-loop amplitudes in the same way:

both are capable of determining the n-point configuration-space integrals at genus one

from (n+2)-point configuration-space integrals at genus zero. On the contrary, the repre-

sentations of the KZB equations and underlying algebra generators are quite distinct. The

relation between the two approaches can be best understood and investigated by consid-

ering a formalism combining the advantages of each of the previous methods: the central

object to be considered in this article is a length-n! vector of generating functions for pla-

nar n-point one-loop configuration-space integrals to be denoted by Zτ0,n with an auxiliary

point z0: in particular

a) we will find an all-multiplicity expression for the τ -derivative of Zτ0,n in order to

connect with the approach in ref. [1]. This will be an equation of the form

2πi∂τ Zτ0,n =
(
Dτ

0,n({εk}) +Bτ
0,n({xj})

)
Zτ0,n , k = 0, 4, 6, 8, . . . , j = 1, 2, 3, . . . ,

(1.1)

where the operators Dτ
0,n and Bτ

0,n are n!×n! matrices with entries proportional to α′.

b) we will rewrite the formalism of ref. [3] in terms of the vector of generating series

Zτ0,n, leading to finite-size matrix representations and an all-multiplicity expression

for the z0-derivative of Zτ0,n of the form

∂z0 Zτ0,n = Xτ
0,n({xk}) Zτ0,n , k = 0, 1, 2, . . . , (1.2)

where Xτ
0,n is a n!×n! matrix proportional to α′ as well. The constituents xk are

related to the braid matrices that govern the genus-zero counterparts of Zτ0,n [31].

Hence, the generating functions Zτ0,n of genus-one configuration-space integrals to be intro-

duced in this work furnish integral representations for solutions to the elliptic KZB system.

Having two differential equations (1.1) and (1.2) at our disposal, we can demand commu-

tativity of the two derivatives. This implies consistency conditions for the two classes of

algebra generators involved. We have checked on a case-by-case basis that our realizations

of the generators satisfy these relations.

In section 2 we are going to provide the mathematical and physical setting: we will

discuss genus-zero and genus-one configuration-space integrals contributing to tree-level

and one-loop open-string scattering amplitudes, respectively. This will set our conventions

– 3 –
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and incorporate a review of general properties of configuration-space integrals, iterated

integrals and (elliptic) multiple zeta values. Section 3 is devoted to the discussion of

several types of differential equations allowing for recursive solutions: in subsection 3.1 we

review the genus-zero recursion from ref. [12] and bring it into the context of the later

genus-one results. In subsections 3.2 and 3.3 we discuss the τ -based and z0-based genus-

one recursions from ref. [1] and ref. [3], respectively. The central object to be discussed in

section 4 is the vector of configuration-space integrals Zτ0,n with an auxiliary point. After

introducing the vector, we will perform the two steps a) and b) lined out above, resulting in

an all-multiplicity representation of the elliptic KZB system on the twice-punctured torus.

By considering the regularized boundary values for the elliptic KZB system, we will relate

the different approaches in section 5, before we conclude in section 6.

2 Open-string scattering amplitudes and configuration-space integrals

In this review section we will introduce several mathematical objects and concepts necessary

for the description of open-string scattering amplitudes at genus zero and genus one. Rather

than providing yet another thorough and detailed introduction, we will just mention and

collect the key concepts here and provide numerous links to elaborate discussions.

The structure of scattering amplitudes in open-string theories can be most easily cap-

tured and understood when disentangling the results from evaluation of a conformal world-

sheet correlator: the latter depends on the external polarizations through a kinematical part

which we will separate from the moduli-space integrals that encode string corrections to

field-theory amplitudes through their series expansion in α′. Moduli-space integrals are

dimensionless as they depend on dimensionless Mandelstam variables

si1i2...ir = −α′(ki1 + ki2 + · · ·+ kir)
2, 1 ≤ ik ≤ n , (2.1)

where n denotes the number of external particles. Their integrands are calculated as con-

formal correlators of vertex positions zi on Riemann surfaces, whose genus refers to the

loop order in question. In the next two subsections, we are going to collect the basic for-

malism for the integration over open-string punctures at genus zero and one: tree level

and one loop, respectively. Since we do not perform the integral over the modular param-

eter τ of genus-one surfaces in this work, the integrals over the zi will be referred to as

configuration-space integrals in contradistinction to the full moduli-space integrals entering

one-loop string amplitudes.

The Mandelstam variables defined above in eq. (2.1) are going to take a role as (com-

plex) parameters in the configuration-space integrals to be considered in this article. Natu-

rally, the convergence behavior of those integrals depends on the values of the Mandelstam

variables. Convergent integrals are obtained, when the Mandelstam variables are taken

to satisfy the conditions listed below, though one can analytically continue to different

regions. The conditions are formulated in terms of Mandelstam variables whose indices are

related to consecutive insertion points on the disk or cylinder boundary.

• For genus-zero configuration-space integrals, the issue of convergence was discussed

at various places, see e.g. refs. [32, 33]: tree-level configuration-space integrals con-
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verge, if

Re(si1i2...ir) < 0 for all consecutive labels i1, i2, . . . , ir , (2.2)

unless si1i2...ir vanishes by momentum conservation.

• For the augmented genus-one configuration-space integrals Zτ0,n, we relax momentum

conservation and consider all the sij with i < j as independent. Still, the above

condition (2.2) for convergence carries over to the genus-one configuration-space in-

tegrals, where the notion of consecutive insertion points is adapted to an auxiliary

puncture z0 between zn and z1. The associated auxiliary Mandelstam invariant s01

is furthermore taken to obey

Re(si1i2...ir) < Re(s01) < 0 for all consecutive labels (i1, i2, . . . , ir) 6= (0, 1) , (2.3)

which is no restriction in the applications to one-loop open-string amplitudes since s01

will drop out from the final results. In the context of one-loop open-string amplitudes,

integrals of the type in Zτ0,n are analytically continued from their region of convergence

to physically sensible situations. The resulting singularities in the form of poles and

branch cuts have been for example explored in a closed-string context in ref. [34].

2.1 Tree level: genus zero

Calculating open-string amplitudes at tree level amounts to the evaluation of configuration-

space integrals on a genus-zero surface with boundary. The corresponding genus-zero

Green’s function is a plain logarithm

Gtree
ij = log |zij | = G(0; |zij |) (2.4)

of the distance

zij = zi − zj (2.5)

of two insertion points. The notation G refers to the iterated integrals defined in eq. (2.10)

below. In the configuration-space integrals, the Green’s function appears in terms of the

genus-zero Koba-Nielsen factor

KNtree
12...n = exp

(
−

∑
1≤i<j≤n

sijGtree
ij

)
=

∏
1≤i<j≤n

|zij |−sij . (2.6)

All configuration-space integrals for the calculation of open-string scattering amplitudes at

tree level can be expressed as linear combinations of the integrals [35–37]

Ztree
n (a1, a2, . . . , an|1, 2, . . . , n) =

∫
−∞<za1<...<zan<∞

dz1 · · · dzn
vol SL2(R)

KNtree
12...n

z12z23 · · · zn−1nzn1
, (2.7)

where the labels a1, . . . , an fix a certain succession of the insertion points on the

disk boundary. An independent cyclic ordering selects the permutation of the inverse
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z12z23 · · · zn−1nzn1, the so-called Parke-Taylor factor. For a given multiplicity and par-

ticular choice of the labels ai in the first slot, the collection of all integrals obtained for

all permutations of the ordering 1, 2, . . . , n in the second slot is not independent: inte-

grals over different Parke-Taylor factors are related by partial fraction and integration by

parts [35, 36]. A convenient basis choice, which we are going to use throughout this article,

consists of fixing the position of three of the labels in the Parke-Taylor factor, for example

Ztree
n =

(
Ztree
n (a1, a2, . . . , an|1, σ, n, n−1)

)
for σ ∈ P(2, 3, . . . , n−2) . (2.8)

For the choice of fixing the SL2(R) redundancy via (z1, zn−1, zn) = (0, 1,∞) and the order-

ing to (a1, a2, . . . , an) = (1, 2, . . . , n), the integrals are explicitly given by

Ztree
n (1, 2, . . . , n|1, σ, n, n−1) = −

∫
0<z2<...<zn−2<1

dz2 · · · dzn−2

∏
1≤i<j≤n−1 |zij |−sij

z1σ(2)zσ(2)σ(3) · · · zσ(n−3),σ(n−2)
.

(2.9)

The dimension, that is, the length of the basis vector Ztree
n for a fixed integration domain,

is (n−3)!, which is precisely the number predicted by twisted cohomology and BCJ rela-

tions [38]. The basis dimension follows from results in twisted de Rham theory [39], which

have been interpreted in a string-theory context recently [31, 40].

After taking its kinematic poles into account [33, 36, 41], a Z-integral as defined in

eq. (2.7) above is calculated by expanding the Koba-Nielsen-factor in α′ (cf. eq. (2.1)) and

then evaluating each iterated integral separately. In particular, each of the Z-integrals can

be expressed in terms of iterated integrals (multiple polylogarithms)2

G(a1, a2, . . . , ar; z) =

∫ z

0

dz1

z1 − a1
G(a2, . . . , ar; z1) (2.10)

with ai ∈ {0, 1} as well as G(; z) = 1 and z ∈ C\{0, 1}. For tree-level open-string integrals,

the outermost integration variable, e.g. one of the insertion points, can always be chosen

to equal one by fixing the volume of SL2(R) in eq. (2.7). Thus we will have to evaluate

integrals of type (2.10) at z = 1. Fortunately, all integrals appearing can be related to

well-known representations of multiple zeta values (MZVs) using the identity:

ζn1,n2,...,nr =
∑

0<k1<...<kr

k−n1
1 . . . k−nrr = (−1)rG(0, 0, . . . , 0, 1︸ ︷︷ ︸

nr

, 0, 0, . . . , 0, 1︸ ︷︷ ︸
nr−1

, . . . , 0, 0, . . . , 0, 1︸ ︷︷ ︸
n1

; 1) .

(2.11)

The integrals defined in eq. (2.10) exhibit endpoint divergences if ar = 0 or a1 = z.

Therefore, they will have to be regularized, which implies corresponding regularizations

for MZVs and may have an echo in the kinematic poles of the Z-integrals defined in

eq. (2.7). Throughout this article, we will always assume to work with regularized iterated

integrals. For instance, the multiple polylogarithms G(1, . . . ; 1) and G(. . . , 0; 1) in (2.10)

2Our conventions for multiple polylogarithms agree with refs. [42, 43].
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0

τ τ + 1

1

Im(z)

Re(z)

Figure 1. Torus with A- and B-cycle (red and blue) and their images as boundaries of the

fundamental domain. The green line marks the additional cut necessary to obtain the cylinder and

Mœbius-strip worldsheets for the open string as the parallelogram below if τ ∈ iR and τ ∈ iR + 1
2 ,

respectively.

will be shuffle-regularized based on G(0; 1) = G(1; 1) = 0 which assigns regularized values

to divergent MZVs (2.11) with nr = 1 such as ζ1 = 0 [44].

As an example, let us state the first couple of orders of the series expansion of a typical

integral Ztree
n :

Ztree
5 (1, 2, 3, 4, 5|2, 1, 4, 3, 5)

=
1

s12s34
+ ζ2

(
1− s45

s12
− s15

s34

)
− ζ3

(
s45(s34 + s45)

s12
+
s15(s12 + s15)

s34
− 2s23 − s12 − s34

)
+O(s2

ij) . (2.12)

The analogous expressions for arbitrary orders in the α′-expansion of n-point disk integrals

can for instance be generated from the Drinfeld associator [12, 45] or Berends-Giele re-

cursions [15].3 The Berends-Giele method in ref. [15] applies to Z-integrals with arbitrary

pairs of permutations Ztree
n (a1, . . . , an|b1, . . . , bn) whose decomposition in the (n−3)! bases

expanded in [12, 45] can be generated from the techniques in ref. [52].

2.2 One-loop level: genus one

The calculation of one-loop open-string amplitudes requires consideration of configuration-

space integrals on a genus-one surface with boundary. The latter can be constructed by

starting from a genus-one Riemann surface (an elliptic curve or torus) whose geometry is

usually parametrized by a modular parameter τ ∈ C with Im τ > 0. The two homology

cycles of the torus can be mapped to the boundaries of the fundamental domain of a lattice

Z + τZ, where τ is the ratio of the respective lengths of the B- and A-cycle (see figure 1).

Frequently, the modular parameter is used in an exponentiated version,

q = e2πiτ , (2.13)

which appears in the Fourier expansions of the τ→τ+1 periodic functions to be used below.

3Explicit results at n ≤ 7 points can be downloaded from ref. [46], and explicit all-multiplicity expressions

up to and including α′7 can be generated from the code available to download from ref. [47]. Earlier work

on α′-expansions at n ≤ 7 points including [16, 48–51] took advantage of connections with hypergeometric

functions.
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τ
τ + 1

1 ∼= z1

Im(z)

Re(z)

z1 z2 z3 · · · zn

τ
τ + 1

1 ∼= z1

Im(z)

Re(z)

z1 z2 z3 · · · zk

zk+1 zk+2 · · · zn

Figure 2. Insertion points for open-string configuration-space integrals on the cylinder can reside

either on one boundary only (planar case, left panel) or be located at both cylinder boundaries

(non-planar case, right panel). Following the parametrizations in [53, 54], the cylinder is obtained

from a torus with purely imaginary value for τ .

One-loop open-string amplitudes receive contributions from worldsheets of cylinder and

Mœbius-strip topology which can be obtained from a torus through involutions described

for instance in ref. [53]. The cylinder worldsheet with two boundaries at Im z = 0 and

Im z = 1
2 Im τ then arises from cutting the torus in two parts. When all insertion points zi

are located at one boundary only, the resulting situation is called planar, while insertion

points on two boundaries lead to non-planar integrals [54] (see figure 2).

The frameworks of elliptic multiple zeta values (eMZVs) [19] and elliptic polyloga-

rithms [17, 18] allow to systematically perform the integrals over open-string punctures

order by order in α′ [21]. For this purpose, the genus-one Green’s function for planar

open-string integrals is written as

Gτij = Γ
(

1
0 ; |zij |

∣∣τ)− ω(1, 0|τ) , (2.14)

see ref. [22] for their non-planar counterpart.4 The corresponding Koba-Nielsen factor is

given by

KNτ
12...n = exp

(
−

∑
1≤i<j≤n

sijGτij
)
, (2.15)

in direct analogy with (2.6) at genus zero. The elliptic iterated integrals Γ( ...... ; z|τ) encoding

the z-dependence of the genus-one Green’s function (2.14) are generally defined by5

Γ( k1 k2 ··· kra1 a2 ··· ar ; z|τ) =

∫ z

0
dz1f

(k1)(z1 − a1|τ)Γ( k2 ··· kra2 ··· ar ; z1|τ) (2.16)

with Γ(; z|τ) = 1 and z ∈ R. In the same way as MZVs can be obtained as special values

of iterated integrals on a genus-zero Riemann surface, see (2.11), one can relate Enriquez’

A-cycle eMZVs6 as special values of the elliptic iterated integrals defined in eq. (2.16):

ω(k1, k2, . . . , kr|τ) = Γ( kr kr−1 ··· k1
0 0 ··· 0

; 1|τ) . (2.17)

4For integration cycles with insertion points on two boundaries, one can as well define a suitable version

of eMZVs, which is called twisted eMZVs [22] and described and explored in ref. [55].
5Because of the non-holomorphic terms ∼ Im z

Im τ
appearing in f (k)(z|τ), the iterated integrals (2.16) by

themselves are not homotopy-invariant but can be lifted to homotopy-invariant iterated integrals by the

methods of [18] (also see section 3.1 of ref. [21]).
6Changing the integration path in eq. (2.17) to (0, τ) in the place of (0, 1) gives rise to B-cycle eMZVs [19]

whose properties have for instance been discussed in refs. [56–58].
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The integration kernels f (k)(z|τ) in (2.16) are generated by a doubly-periodic version

of a Kronecker-Eisenstein series [18, 59],

Ω(z, η|τ) = exp

(
2πiη

Im z

Im τ

)
θ′(0|τ)θ(z + η|τ)

θ(z|τ)θ(η|τ)
=

∞∑
k=0

ηk−1f (k)(z|τ) , (2.18)

where θ is the odd Jacobi theta function and θ′(0|τ) its derivative in the first argument.

The double-periodicities of the series and the integration kernels are

Ω(z, η|τ) = Ω(z+1, η|τ) = Ω(z+τ, η|τ) , f (k)(z|τ) = f (k)(z+1|τ) = f (k)(z+τ |τ) . (2.19)

Given the simple pole of f (1)(z|τ) = ∂z log θ(z|τ) + 2πi Im z
Im τ at z ∈ Z + τZ, the integrals in

eq. (2.16) and thus eMZVs exhibit endpoint divergences analogous to those in the tree-level

scenario. Throughout this work, we will employ shuffle-regularization based on the pre-

scription in section 2.2.1 of [21] which assigns the following q-expansion to the constituents

of the Green’s function (2.14),

ω(1, 0|τ) = − iπ
2

+ 2

∞∑
k,l=1

qkl

k
, (2.20)

Γ( 1
0 ; z|τ) = log(1− e2πiz)− iπz + 2

∞∑
k,l=1

1− cos(2πkz)qkl

k
, z ∈ R . (2.21)

From this q-expansion, the asymptotic behaviour for 0 < z < 1 can be read off: the limit

z → 0 yields the logarithmic divergence

Γ( 1
0 ; z|τ) = log(−2πiz) +O(z) (2.22)

while for z → 1

Γ( 1
0 ; z|τ) = log(−2πi(1−z)) +O(1− z) . (2.23)

Apart from the constant f (0)(z|τ) = 1 and f (1)(z|τ) with a simple pole, the Kronecker-

Eisenstein series (2.18) generates an infinity of kernels f (k≥2)(z|τ) that do not have any

poles in z. Hence, the genus-one case involves an infinite number of differentials instead of

the differential dzi
zij

referring to finitely many zj in the genus-zero scenario. Partial fraction,

omnipresent for manipulating products of 1
zij

in genus-zero integrands, is now replaced by

the so-called Fay identity [60]

Ω(zki, ηa|τ)Ω(zkj , ηb|τ) = Ω(zki, ηa+ηb|τ)Ω(zij , ηb|τ) + Ω(zkj , ηa+ηb|τ)Ω(zji, ηa|τ) . (2.24)

The three partial derivatives of the Kronecker-Eisenstein series (2.18) are related through

the mixed heat equation

2πi∂τΩ(z, η|τ) = ∂z∂ηΩ(z, η|τ) , z ∈ R . (2.25)
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2.2.1 Zτ -integrals at genus one

In analogy to the genus-zero integrals Ztree
n defined in eq. (2.7), let us now define a suitable

class of genus-one integrals for open-string amplitudes of the bosonic and type I theories [1],

Zτn(1, a2, . . . , an|1, 2, . . . , n) =

∫
0=z1<za2<...<zan<1

dz2 · · · dzn KNτ
12...n

× Ω12(η23...n)Ω23(η3...n) . . .Ωn−1n(ηn) , (2.26)

where we will always fix translation invariance by setting z1 = 0. When writing a

Kronecker-Eisenstein series where the first argument is of the form zij , we use the shorthand

notation

Ω(zij , η|τ) = Ωij(η) (2.27)

as well as

ηij...k = ηi + ηj + . . .+ ηk (2.28)

both of which will prove very handy below. Similar to the genus-zero case, the labels

1, a2, . . . , an in the first slot refer to an integration domain. We have adapted (2.26) to

planar genus-one integrals (cf. eq. (2)), where (1, a2, . . . , an) specifies a cyclic ordering of

insertion points on a single cylinder boundary.7

As a genus-one analogue of the so-called Parke-Taylor factor (z12 · · · zn−1,nzn1)−1 in

eq. (2.7), the labels in the second slot of eq. (2.26) indicate products of the form

f
(k1)
12 f

(k2)
23 · · · f (kn−1)

n−1,n , f
(k)
ij = f (k)(zij |τ) . (2.29)

The absence of a factor f
(kn)
n,1 to close the cycle is reminiscent of Parke-Taylor factors in

an SL2-frame with zn → ∞, where they reduce to open chains like (z12z23 · · · zn−2,n−1)−1

as in eq. (2.9). Instead of individual products (2.29), the integrands in (2.26) involve their

generating series (2.18) where the combinations
∑n

j=i ηj of expansion variables are chosen

for later convenience.

As a major advantage of the generating-series approach, the relations between different

permutations of (2.26) take a simple form: by analogy with the genus-zero case, a basis of

integrands can be found by taking the genus-one analogue of partial fraction8 into account,

the Fay identity (2.24).

7The integration domain in the non-planar situation is encoded by one cyclic ordering for both cylinder

boundaries which can for instance be addressed by two-line labels Zτn( b1,b2,...,brc1,c2,...,cs
|1, 2, . . . , n) as in [1].

8The genus-one analogue of integration-by-parts relations among Parke-Taylor factors in (2.7) does not

relate permutations of the products (2.29) for generic choices of ki. Instead, integration by parts at genus

one will play an important role in later sections to find differential equations for various Koba-Nielsen

integrals.
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While the Fay identities among the products in (2.29) shift the overall weight k1 + k2

between the two factors,

f (k1)(t− x)f (k2)(t) = −(−1)k1f (k1+k2)(x) +

k2∑
j=0

(
k1 − 1 + j

j

)
f (k2−j)(x)f (k1+j)(t− x)

+

k1∑
j=0

(
k2 − 1 + j

j

)
(−1)k1+jf (k1−j)(x)f (k2+j)(t) , (2.30)

their series in (2.26) are simply related via eq. (2.24). After performing a simultaneous

expansion of (2.26) in α′ and ηj , specific string integrals corresponding to particular inte-

grands in eq. (2.29) can be retrieved by isolating suitable coefficients.

2.2.2 Graphical notation

All configuration-space integrals for string amplitudes appearing in this article exhibit the

following features: they have a Koba-Nielsen-factor and a collection of integration kernels,

which are labeled by (at least) the difference of two vertex positions: zij . Furthermore,

there are vertex positions zi, which are integrated over, and others, which remain unin-

tegrated. For the discussion to follow, it is useful to define a graphical representation for

the corresponding integrands, extending the graphical notation of ref. [45] to genus one:

we are going to represent each occurring label as a vertex and each integration kernel as a

directed edge

1

zij
= i j , Ωij(η) = i j

η
, (2.31)

respectively.

In this graphical notation, both SL2-fixed Parke-Taylor factors (cf. eq. (2.7)) and the

integrals Zτn with fixed cyclic symmetry at genus one (cf. eq. (2.26)) exhibit a chain struc-

ture. As will be elaborated on below, partial-fraction relations and their one-loop analogue,

the Fay relation (2.24), allow to reduce tree-structures to chain-structures. The Fay iden-

tity (2.24), for example, takes the following graphical form

k

i j

ηa ηb =
k

i j

ηabηab

ηb

+
k

i j
ηa

ηabηab (2.32)

which is — not surprisingly — equivalent to the graphical representation of partial fraction

(here: (zkizkj)
−1 = (zjizkj)

−1 + (zijzki)
−1):

k

i j

=
k

i j

+
k

i j

. (2.33)

The graphical representation of Kronecker-Eisenstein integrands described above will play

a major role in the calculations of section 4.
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2.2.3 eMZVs versus iterated Eisenstein integrals

For the A-cycle eMZVs (2.17), another representation as iterated integrals of holomorphic

Eisenstein series is available which exposes their relations over Q[MZV, (2πi)−1]. While

eMZVs have been defined in eq. (2.17) in terms of special values of iterated integrals,

which featured repeated integration in insertion points zi, it is possible to write them in

terms of τ -iterated integrals. This is possible, because τ -derivatives and z-derivatives of

their integration kernels are related by the mixed-heat equation (2.25). Further details in

converting the integrals into each other including integration constants at τ → i∞ can

be found in ref. [20]. Here we would like to limit our attention to writing down the basic

definitions and properties of two types of iterated Eisenstein integrals, which will be made

use of below [20],

γ(k1, k2, . . . , kr|q)

=
1

4π2

∫
0<q′<q

dlog q′ γ(k1, . . . , kr−1|q′) Gkr(q
′)

=
1

(4π2)r

∫
0<q1<q2<...<qr<q

dlog q1 Gk1(q1) dlog q2 Gk2(q2) . . . dlog qr Gkr(qr) (2.34)

and for k1 6= 0

γ0(k1, k2, . . . , kr|q)

=
1

4π2

∫
0<q′<q

dlog q′ γ0(k1, . . . , kr−1|q′) G0
kr(q

′)

=
1

(4π2)r

∫
0<q1<q2<...<qr<q

dlog q1 G0
k1(q1) dlog q2 G0

k2(q2) . . . dlog qr G0
kr(qr) , (2.35)

where γ(|q) = γ0(|q) = 1 and the number r of integrations will be referred to as the length

of either γ and γ0. The integration kernels are holomorphic Eisenstein series9

G0(τ) = −1, G2k(τ) =
∑
m,n∈Z

(m,n) 6=(0,0)

1

(m+ nτ)k
, G2k+1 = 0 for k ∈ N (2.36)

or their modifications G0 with the constant term 2ζ2k removed for k 6= 0,

G0
0(τ) = −1, G0

2k(τ) = G2k(τ)− 2 ζ2k, G0
2k+1 = 0 for k ∈ N , (2.37)

respectively. We will interchangeably refer to the arguments of Gk, G0
k and related objects

as τ or q.

9The case of G2 requires the Eisenstein summation prescription

∑
m,n∈Z

am,n = lim
N→∞

lim
M→∞

N∑
n=−N

M∑
m=−M

am,n .
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For both of the iterated Eisenstein integrals defined in eqs. (2.34) and (2.35) as well as

for the eMZVs defined in eq. (2.17), shuffle relations follow from the iterative definitions

immediately:

ω(n1, n2, . . . , nr|τ)ω(m1,m2, . . . ,ms|τ) = ω
(
(n1, n2, . . . , nr) (m1,m2, . . . ,ms)|τ

)
,

γ(n1, n2, . . . , nr|q) γ(k1, k2, . . . , ks|q) = γ
(
(n1, n2, . . . , nr) (k1, k2, . . . , ks)|q

)
,

γ0(n1, n2, . . . , nr|q) γ0(k1, k2, . . . , ks|q) = γ0

(
(n1, n2, . . . , nr) (k1, k2, . . . , ks)|q

)
. (2.38)

Regularized objects such as γ(0|τ) = τ
2πi obtained by the tangential-base-point prescrip-

tion [61] preserve such shuffle relations. Further identities implied by Fay relations as well

as the precise relation between the spaces spanned by the respective iterated integrals have

been investigated and spelt out in refs. [20, 62, 63].

2.2.4 Two-point example

In order to wrap up this section, let us provide an example of a genus-one Z-integral (2.26)

and express the leading orders of its expansion in α′ and η = η2 in two of the languages

above:

Zτ2 (1, 2|1, 2) =

∫ 1

0

dz2 KNτ
12Ω12(η)

=
1

η

[
1 + s212

(
ω(0, 0, 2|τ)

2
+

5 ζ2
12

)
+ s312

(
ω(0, 0, 3, 0|τ)

18
− 4 ζ2

3
ω(0, 0, 1, 0|τ) +

ζ3
12

)
+O(s412)

]
+ η

[
−2 ζ2 +s12ω(0, 3|τ) + s212

(
3 ζ2 ω(0, 0, 2|τ)− ω(0, 0, 4|τ)

2
+

13 ζ4
12

)
+O(s312)

]
+ η3

[
−2 ζ4 +s12

(
ω(0, 5|τ)− 2 ζ2 ω(0, 3|τ)

)
+O(s212)

]
+O(η5)

=
1

η

[
1 + s212

(
ζ2
4
− 3γ0(4, 0|q)

)
+ s312

(
ζ3
4

+ 24 ζ2 γ0(4, 0, 0|q)− 10γ0(6, 0, 0|q)
)

+O(s412)

]
+ η

[
−2 ζ2 +3s12γ0(4|q) + s212

(
−5 ζ4

4
− 18 ζ2 γ0(4, 0|q) + 10γ0(6, 0|q)

)
+O(s312)

]
+ η3

[
−2 ζ4 +s12

(
−6 ζ2 γ0(4|q) + 5γ0(6|q)

)
+O(s212)

]
+O(η5) (2.39)

it does contain MZVs as well as eMZVs, which are still a function of the modular parameter

τ . This will be crucial for the constructions to be reviewed and discussed below.

3 Differential equations for one-loop open-string integrals

In the last section, Z-integrals for tree-level and one-loop open-string amplitudes have

been introduced. Most importantly, these integrals can be expressed in terms of iterated

integrals G and Γ over punctures zi (cf. eqs. (2.10) and (2.16)), which — if evaluated at

special points — lead to MZVs and eMZVs, respectively (cf. eqs. (2.11), (2.17) and (2.35)).

For iterated integrals with a particular class of differential forms, it is straightforward

to infer differential equations - for example does eq. (2.34) immediately imply

2πi∂τ γ(k1, k2, . . . , kr|q) = −Gkr(q) γ(k1, k2, . . . , kr−1|q) (3.1)
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while eq. (2.16) leads to

∂zΓ( k1 k2 ··· kra1 a2 ··· ar ; z|τ) = f (k1)(z − a1|τ)Γ( k2 ··· kra2 ··· ar ; z|τ) . (3.2)

Starting from those simple equations, one can consider differential equations for complete

Z-integrals. In particular, we will study augmented variants of Z-integrals where an addi-

tional unintegrated puncture z0 serves as a differentiation variable. This will require the

evaluation of the action of derivatives on the integrands and in particular on the Koba-

Nielsen factor. Suitable manipulations, partial fraction and integration by parts for Ztree
n

integrals as well as Fay identities and integration by parts for the one-loop integrals Zτn,

allow to frame differential equations as matrix equations, acting on a vector Zbasis whose

elements form a (sometimes conjectural) basis of Z-type integrals and their augmented

versions to be defined below:

d Zbasis =
∑
i

νi r(Di) Zbasis . (3.3)

Here νi are suitable differential forms in the alphabet for the iterated integrals that occur

in the α′-expansion of the respective Z-integral, whereas r(Di) denotes a particular square

matrix representation of the coefficients of νi, tailored to the basis choice. The most crucial

point of the game is the following: for all Z-type integrals we are going to consider, the

representations r(Di) turn out to be linear in the parameters sij , and thus in α′, entering

the Koba-Nielsen factors in eqs. (2.6) and (2.15). This will allow to solve the differential

equation of the above form order by order in α′, leading to the α′-expansion of the Z-

integrals. Note that the linear appearance of α′ in the above r(Di) is analogous to the

ε-form of differential equations for Feynman integrals, see e.g. [64, 65], with α′ taking the

role of the dimensional-regularization parameter ε.

Considering the integrals Ztree
n defined in eq. (2.7), the final result, i.e. the α′-expansion,

will contain numbers exclusively. In turn, a differential equation with respect to a variable

which disappears during the evaluation of the iterated integral, is not very useful. The

solution to this problem has been spelt out in both mathematics [13, 14] and physics [12, 45]

literature: one can introduce an additional auxiliary insertion point z0 and establish a

differential equation with respect to z0 for a basis vector of augmented integrals Ztree
0,n .

For the integrals Zτn at genus one, a similar augmentation can be introduced leading to

augmented one-loop integrals Zτ0,n whose constituents will be reviewed in subsection 3.3

and whose differential equations in section 4 are a central result of this work. However,

since the result in eq. (2.39) does still depend on the modular parameter τ , one can readily

use τ as a variable for differentiation when considering a vector Zτn of one-loop integrals

eq. (2.26) without z0.

By the choice of differential forms νi on the right-hand side of eq. (3.3), the re-

sulting system of differential equations is of Fuchsian type. Even more, on closer in-

spection one will find the equations to be of Knizhnik-Zamolodchikov(KZ) or Knizhnik-

Zamolodchikov-Bernard type for Ztree
0,n and Zτ0,n, respectively, whose solution theory is well

known [13, 14, 66–70]. By solving these differential equations along with suitable boundary
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conditions, one can then evaluate Z-integrals Ztree
n and Zτn at tree level and one loop order

by order in α′.

Moreover, the matrix representations r(Di) we will encounter are linear in the Mandel-

stam variables sij each of which comes with a parameter α′ (cf. eq. (2.1)). Hence, one can

obtain solutions to all Z-type integrals in eq. (3.3) in terms of regularized iterated integrals,

where the number of integrations is correlated with the power of α′.10 A major advantage

of this concept is that the series expansion in α′ follows from simple matrix algebra for

the r(Di). Once the initial value for some limit of the differentiation variable is known, no

integral has to be solved and the recursive nature of the solution algorithms allows to infer

all higher-multiplicity Z-integrals at tree level and one loop from the knowledge of a single

trivial tree-level three-point Z-integral.

In the following subsections, we are going to review the main structural points of three

languages and corresponding algorithms: the z0-language at genus zero in subsection 3.1

and τ - and z0-languages at genus one in subsections 3.2 and 3.3. For each one, there is a

basis of (augmented) Z-type integrals, a differential equation of type (3.3) with suitable

matrix representations and boundary values, which together allow to solve the differential

equation recursively.

3.1 z0-language at genus zero

The simplest instance of the algorithm described above is the recursive formalism for the

evaluation of tree-level configuration-space integrals Ztree
n . It has been put forward in

refs. [12, 45] and is based on refs. [13, 14]. At n = 4, 5 points, the augmented versions of

tree-level integrals eq. (2.7) with an extra marked point z0 are given by

Ztree
0,4 =

∫ z0

0
dz2 |z2|−s12 |1−z2|−s23 |z02|−s02

(
z−1

12

z−1
32

)
, (z1, z3) = (0, 1) (3.4)

Ztree
0,5 =

∫
0<z2<z3<z0

( 3∏
j=2

dzj |zj |−s1j |zj4|−sj4 |z0j |−s0j
)
|z23|−s23



(z12z23)−1

(z13z32)−1

(z12z43)−1

(z13z42)−1

(z43z32)−1

(z42z23)−1


, (z1, z4)=(0, 1) ,

see the references for higher-multiplicity generalizations. One can write down a differential

equation with two types of poles:

∂z0Z
tree
0,n =

(
rtree

0,n (e0)

z0
+
rtree

0,n (e1)

z0 − 1

)
Ztree

0,n . (3.5)

10This property is often referred to as uniform transcendentality and a common theme of the α′-expansion

of configuration-space integrals in string amplitudes, see e.g. refs. [1, 3, 12, 14, 16, 71, 72], and the ε-expansion

of dimensionally regularized Feynman integrals [64, 65, 73–75].
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The above differential equation is of KZ-type and can be solved by considering regularized

boundary values

Ctree
1,n = lim

z0→1
(1−z0)−r

tree
0,n (e1)Ztree

0,n ,

Ctree
0,n = lim

z0→0
(z0)−r

tree
0,n (e0)Ztree

0,n (3.6)

which are connected by the Drinfeld associator [66, 67]

Ctree
1,n = rtree

0,n (Φ(e0, e1))Ctree
0,n . (3.7)

The Drinfeld associator can be expanded in terms of shuffle-regularized MZVs with ζ1 =

0 [76],

Φ(e0, e1) =
∑
w≥0

∑
k1,...,kw≥1

ekw−1
0 e1 . . . e

k2−1
0 e1e

k1−1
0 e1ζk1,k2,...,kw

= 1− ζ2[e0, e1]− ζ3 ([e0, [e0, e1]]− [[e0, e1], e1]) + . . . , (3.8)

where11 rtree
0,n (eiej) = rtree

0,n (ei)r
tree
0,n (ej) and rtree

0,n (ei+ej) = rtree
0,n (ei)+r

tree
0,n (ej). As discussed in

ref. [12], the vector Ctree
0,n can be shown to contain the integrals Ztree

n−1 defined in eq. (2.7) for

the (n−1)-point amplitude, while Ctree
1,n contains integrals Ztree

n for the n-point amplitude.

In this formalism, the size of the matrix representations rtree
0,n (ei) is (n−2)!.

In order to calculate for example the four-point disk integral, one would use the dif-

ferential equation

∂z0Z
tree
0,4 = −

(
( s12+s02 s23

0 0 )

z0
+

( 0 0
s12 s23+s02 )

z0 − 1

)
Ztree

0,4 . (3.9)

In the kinematic limit s0i → 0 employed for the recursions of ref. [12], one can read off

rtree
0,4 (e0) = −

(
s12 s23

0 0

)
, rtree

0,4 (e1) = −

(
0 0

s12 s23

)
(3.10)

by matching eq. (3.9) with eq. (3.5), and the regularized boundary values turn out to be

Ctree
1,4 =

(∫ 1
0 dz2 |z2|−s12 |1−z2|−s23z−1

12

∗

)
,

Ctree
0,4 =

(
s−1

12

0

)
. (3.11)

The first entry of Ctree
1,4 may be recognized as the SL2-fixed disk integral

−Ztree
4 (1, 2, 3, 4|1, 2, 4, 3) via eq. (2.9), and the more subtle computation of the second entry

∗ will not be needed here. The first entry of Ctree
0,4 combines the kinematic poles s−1

12 from the

11Below, we will consider further representations rn, r0,n and rE0,n of certain Lie algebra generators.

Any such representation r of generators xi will be assumed to form an algebra homomorphism such that

r(xixj) = r(xi)r(xj) and r(xi + xj) = r(xi) + r(xj).
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integration region z2 → 0 in eq. (3.4) with the three-point integral Ztree
3 (1, 2, 3|1, 2, 3) = 1

at its residue. With the leading orders of the Drinfeld associator in eq. (3.8) and the matrix

representations in eq. (3.10), one is indeed led to the known four-point α′-expansion at tree

level in the first component of the vector Ctree
1,4 :∫ 1

0
dz2 |z2|−s12 |1−z2|−s23z−1

12 = (Ctree
1,4 )1|s0i=0

=
1

s12

[
rtree

0,n (Φ(e0, e1))
]
1,1
|s0i=0

=
1

s12
− ζ2s23 − ζ3s23(s12+s23) +O(s3

ij) . (3.12)

Similarly, the (n−3)! bases (2.8) of n-point disk integrals can be retrieved from the first

(n−3)! entries of the (n−2)!-component vectors Ctree
1,n .

3.2 τ-language at genus one

In this subsection, we are going to review the differential equation of a vector Zτn of genus-

one Z-integrals eq. (2.26) without augmentation through an extra puncture. The basis of

these Kronecker-Eisenstein-type integrals w.r.t. Fay relations and integration by parts is

(n−1)! dimensional and spanned by [1]

Zτn = Zτn
(
In|1, ρ(2, 3, . . . , n)

)
. (3.13)

The permutations ρ ∈ Sn−1 of {2, 3, . . . , n} act on both the punctures zj and the expansion

variables ηj in the factors of Ωi−1,i(ηi...n|τ) in eq. (2.26). The ordering In = 1, 2, . . . , n in

the first slot refers to a fixed planar integration domain 0 = z1 < z2 < . . . < zn < 1 on the

A-cycle of the torus (see figure 1). We will usually sort the permutations in lexicographic

order, e.g.

Zτ2 = Zτ2 (1, 2|1, 2) , Zτ3 =

(
Zτ3 (I3|1, 2, 3)

Zτ3 (I3|1, 3, 2)

)
, Zτ4 =



Zτ4 (I4|1, 2, 3, 4)

Zτ4 (I4|1, 2, 4, 3)

Zτ4 (I4|1, 3, 2, 4)

Zτ4 (I4|1, 3, 4, 2)

Zτ4 (I4|1, 4, 2, 3)

Zτ4 (I4|1, 4, 3, 2)


. (3.14)

The (n−1)!-component vector eq. (3.13) was conjectured to generate an integral basis for

arbitrary massless one-loop open-string amplitudes [1] as supported by its closure under

τ -derivatives to be reviewed below.

3.2.1 Differential equation

Based on the mixed heat equation (2.25) and the differential equation of the Koba-Nielsen

factor

2πi∂τKNτ
12...n = −

∑
1≤i<j≤n

sij(f
(2)
ij + 2ζ2)KNτ

12...n (3.15)
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one can perform the τ -derivative at the level of the integrand in eq. (2.26), see eq. (2.29)

for the shorthand f
(k)
ij . The zi-derivatives of the Ωi−1,i(ηi...n) generated by the mixed heat

equation can be integrated by parts to act on

∂ziKNτ
12...n = −

n∑
j=1
j 6=i

sijf
(1)
ij KNτ

12...n . (3.16)

Finally, the combination of f
(2)
ij and f

(1)
ij due to the Koba-Nielsen derivatives can be rewrit-

ten via

(∂η + ∂ξ)Ω12(η)Ω21(ξ) =
(
℘(η)− ℘(ξ)

)
Ω12(η − ξ) (3.17)

such that the integrand of the τ -derivative only depends on zi via Kronecker-Eisenstein

series. Moreover, repeated use of the Fay identity (2.26) allows to rearrange their first

arguments such that the τ -derivatives are expressed in terms of the (n−1)! components in

eq. (3.13).

As a result, the vector of genus-one Z-integrals in eq. (3.13) obeys the linear and

homogeneous differential equation [1]

2πi∂τZ
τ
n = Dτ

nZ
τ
n (3.18)

with an (n−1)!×(n−1)! matrix Dτ
n. The entries of the latter are linear in α′ by the Man-

delstam invariants in the Koba-Nielsen derivatives in eqs. (3.15), (3.16) and may comprise

second derivatives in ηj from an expansion of eq. (3.17) around ξ = 0. Most importantly,

the matrix Dτ
n solely depends on τ via holomorphic Eisenstein series eq. (2.36) and can

therefore be uniquely decomposed into

Dτ
n =

∞∑
k=0

(1−k) Gk(τ) rn(εk) , (3.19)

where G0 = −1 has been introduced for the τ -independent piece. The appearance of the

Gk can be traced back to the expansion of the Weierstraß ℘-function in eq. (3.17),

℘(η|τ) =
1

η2
+

∞∑
k=4

(k−1)ηk−2 Gk(τ) . (3.20)

The (n−1)!×(n−1)! matrices rn(εk) are still linear in α′, comprise second derivatives in

ηj at k = 0 and are conjectured to furnish matrix representations of Tsunogai’s deriva-

tion algebra [77]. By the appearance of these derivations in the τ -derivative of the KZB

associator [68–70], their commutator relations encode the combinations of iterated Eisen-

stein integrals eq. (2.34) that occur among eMZVs [20]. The relations in the derivation

algebra have been studied in [20, 78, 79] and were checked to be preserved by the rn(εk)

in eq. (3.19) for a wide range of n and k. An all-multiplicity proposal for rn(εk) (with a

detailed derivation in [80]) can be found in section 4 of [1], and its explicit form is encoded

in the later eq. (4.25).

Note that the matrix Dτ
n does not depend on the choice of planar or non-planar inte-

gration cycle, i.e. it takes a universal form for any In → a1, a2, . . . , an in eq. (3.13).
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3.2.2 Solution via Picard iteration

Given that the matrix Dτ
n in eq. (3.18) is linear in α′, the α′-expansion of the entire Zτn

can be conveniently organized by iterative use of

Zτn = Zi∞n +
1

2πi

∫ τ

i∞
dτ ′Dτ ′

n Zτ
′
n . (3.21)

Picard iteration of eq. (3.21) leads to a perturbative solution to eq. (3.18) with matrix

products of order (α′)` in the `’th term of

Zτn =

∞∑
`=0

(
1

2πi

)` ∫ τ

i∞
dτ1

∫ τ1

i∞
dτ2 . . .

∫ τ`−1

i∞
dτ`D

τ`
n . . . D

τ2
n D

τ1
n Zi∞n . (3.22)

By the decomposition (3.19) of the D
τj
n into holomorphic Eisenstein series, all the integrals

in eq. (3.22) line up with the definition of γ(k1, . . . , k`|q) in eq. (2.34). Hence, the entire

τ -dependence in the α′-expansion of Zτn enters via iterated Eisenstein integrals, and their

coefficients are governed by matrix products rn(εk1εk2) = rn(εk1)rn(εk2) [1],

Zτn =

∞∑
`=0

∑
k1,k2,...,k`
=0,4,6,8,...

(∏̀
j=1

(kj−1)

)
γ(k1, k2, . . . , k`|q)rn(εk` . . . εk2εk1)Zi∞n . (3.23)

The choice of summation range for the kj already incorporates the vanishing of rn(εk) at

odd k and k = 2 for any n ≥ 2. Generating functions of torus integrals in closed-string one-

loop amplitudes obey differential equations similar to eq. (3.19) [80] which can be solved

via combinations of derivations similar to eq. (3.23) [72].

3.2.3 Initial value at the cusp

In order to extract the complete α′-expansion of Zτn from eq. (3.23), it remains to analyze

the initial values Zi∞n at the cusp. Given that the torus worldsheet degenerates to a nodal

Riemann sphere as τ → i∞, the initial data at n points is expressible in terms of genus-zero

integrals with two extra points, i.e. combinations of (n+2)-point disk integrals eq. (2.7)

in the open-string case. At n = 2 points, for instance, the genus-one Z-integral (2.39)

degenerates to

Zi∞2 (1, 2|1, 2) = π cot(πη)
Γ(1−s12)[

Γ
(
1− s12

2

) ]2 , (3.24)

where the Γ-functions stem from a kinematic limit s23 → − s12
2 of the Veneziano amplitude

Ztree
4 (1, 2, 3, 4|1, 2, 4, 3) = − 1

s12

Γ(1−s12)Γ(1−s23)

Γ(1−s12−s23)
(3.25)

and yield the following α′-expansion

Γ(1−s12)[
Γ
(
1− s12

2

) ]2 = 1 +
1

4
s2

12ζ2 +
1

4
s3

12ζ3 +
19

160
s4

12ζ
2
2 +

1

16
s5

12ζ2ζ3 +
3

16
s5

12ζ5 +O(s6
12) . (3.26)

The η-dependent factor π cot(πη) in eq. (3.24) stems from the τ → i∞ limit of Ω12(η). The

detailed relation between eqs. (3.24) and (3.25) involving a trigonometric factor sin
(
π
2 s12

)
from contour deformations can be found in sections 3.4 and 5 of the first reference in ref. [1].
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3.2.4 Two-point example

In the two-point instance of the above setup, the target vector has a single component

Zτ2 (1, 2|1, 2) and the operator Dτ
2 in the differential equation (3.18) is the following scalar

instead of a matrix

2πi∂τZ
τ
2 (1, 2|1, 2) = Dτ

2Z
τ
2 (1, 2|1, 2) , Dτ

2 = s12

(
1

2
∂2
η − ℘(η|τ)− 2ζ2

)
. (3.27)

The decomposition (3.19) into holomorphic Eisenstein series allows to read off conjectural

scalar representations of the derivation algebra

r2(ε0) = s12

(
1

η2
+ 2ζ2 −

1

2
∂2
η

)
, r2(εk) = s12η

k−2 , k ≥ 4 even , (3.28)

which obey multiplicity-specific relations such as [r2(ε4), r2(ε6)] = 0 that no longer hold

at n ≥ 3 points. With the initial value (3.24) involving a four-point disk integral, the

two-point instance of the Picard iteration (3.23) is given by

Zτ2 (1, 2|1, 2) =
Γ(1−s12)[

Γ
(
1− s12

2

) ]2 (3.29)

×
∞∑
`=0

∑
k1,k2,...,k`
=0,4,6,8,...

(∏̀
j=1

(kj−1)

)
γ(k1, k2, . . . , k`|q)r2(εk` . . . εk2εk1)π cot(πη) .

Based on the expansions (3.26) and π cot(πη) = 1
η − 2

∑∞
k=1 ζ2k η

2k−1, one arrives at the

leading orders in α′ and η spelt out in eq. (2.39).

3.3 z0-language at genus one

In this subsection, we are going to sketch the formalism introduced in ref. [3]. The formalism

is the genus-one generalization of the tree-level recursion discussed in subsection 3.1: it

utilizes an auxiliary point z0 such that

0 = z1 < z2 < · · · < zn < z0 < 1 . (3.30)

In the reference, the differential equation and thus the recursion was formulated for an

infinitely long vector of genus-one n-point Selberg integrals, which are defined in terms of

a Selberg seed

SE
n (τ) = SE

n

[ ]
(z2, z3, . . . , zn, z0, τ) =

∏
0≤i<j≤n

exp (−sijΓij) , Γij = Γ
(

1
0 ; |zij |

∣∣τ) (3.31)

with z1 = 0 which agrees with an (n+1)-point Koba-Nielsen factor (2.15) upon multipli-

cation by es012...nω(1,0|τ). The Selberg seed (3.31) serves as starting point for the recursive

definition12

SE
n

[
k`, ..., k2
i`, ..., i2

]
(z`+1, . . . , zn, z0) =

∫ z`+1

0
dz` f

(k`)
`,i`

SE
n

[
k`−1, ..., k2
i`−1, ..., i2

]
(z`, z`+1, . . . , zn, z0) (3.32)

12On the locus of the purely real integration paths considered here and in ref. [3], the integration kernels

g(k) in the reference equal f (k) here. Furthermore, in the reference the auxiliary point is called z2 and

the insertion points are labeled differently, close to the notation and the notion of admissible integrals in

ref. [39].
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with ` = 2, 3, . . . , n as well as zn+1 = z0 and

i` ∈ {0, 1, `+1, `+2, . . . , n} , (3.33)

where the shorthand notation for the integration kernels f
(k)
ij was defined in eq. (2.29).

3.3.1 Differential equation and boundary values

The differential equation of the (infinitely long) vector of Selberg integrals

SE
n (z0|τ) =

(
SE
n

[
kn, ..., k2
in, ..., i2

]
(z0)

)
for k` ≥ 0, i` ∈ {0, 1, `+1, `+2, . . . , n} (3.34)

can formally be brought into the KZB form

∂z0 SE
n (z0|τ) =

∞∑
k=0

f
(k)
01 r

E
0,n(xk) SE

n (z0|τ) , (3.35)

where the representations rE
0,n of xk are block-(off-)diagonal and proportional to α′. Similar

to the tree-level scenario described in subsection 3.1, one now considers the two regularized

boundary values

CE
1,n(τ) = lim

z0→1
(−2πi(1−z0))−r

E
0,n(x1) SE

n (z0|τ) ,

CE
0,n(τ) = lim

z0→0
(−2πiz0)−r

E
0,n(x1) SE

n (z0|τ) (3.36)

which turn out to contain n-point one-loop integrals Zτn in CE
1,n and (n+2)-point tree-level

integrals Ztree
n+2 in CE

0,n. As shown in the next subsection, these two boundary values can

be related to each other, such that knowing CE
0,n from the tree-level recursion described

above, allows to infer the α′-expansion of all one-loop Selberg integrals and thus — as will

be elaborated on below — all integrals Zτn.

3.3.2 The elliptic KZB associator

As argued in section 3.3 of [3] for a general solution of the elliptic KZB equation of the

form (3.35), the regularized boundary values CE
0,n and CE

1,n are related according to

CE
1,n = rE

0,n(Φτ (xk))C
E
0,n (3.37)

by the elliptic KZB associator [81]

Φτ (xk) =
∑
w≥0

∑
k1,k2,...,kw≥0

xk1xk2 . . . xkwω(kw, . . . , k2, k1|τ)

= 1 + x0 − 2ζ2x2 +
1

2
x0x0 − [x0, x1]ω(0, 1|τ)− ζ2{x0, x2}

+ [x1, x2]
(
ω(0, 3|τ)− 2ζ2ω(0, 1|τ)

)
− [x0, x3]ω(0, 3|τ)

+ ζ4(−{x0, x4}+ 5x2x2 − 2x4) + · · · . (3.38)
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Since the matrices rE
0,n(xk) are proportional to α′, the associator eq. (3.37) yields the α′-

expansion of CE
1,n. Furthermore, by the lower triangular block structure of the matrices

rE
0,n(xk) with k ≥ 2, only finitely many terms of rE

0,n(Φτ ) contribute to each order of α′.

Instead of reviewing the formalism in detail here, we will rephrase and discuss it in

the next section: therein we are going to replace the infinite-dimensional vector SE(z0)

by a finite-dimensional vector Zτ0,n of integrals Zτ0,n that serve as a generating series of

Selberg integrals (see appendix D for details). These vectors Zτ0,n augment the vectors Zτn
of section 3.2 by an auxiliary point z0. The detailed discussion of the differential equation

and boundary values will be performed for vectors Zτ0,n. While being already closer to

the formalism to be spelt out in subsection 4.2 below, rewriting in terms of the generating

series Zτ0,n renders the representation of the matrices xk finite-dimensional.

3.3.3 Two-point example

The two-point example elaborated in [3] can be summarized as follows: the genus-one

Selberg integrals (3.32) for n = 2 are

SE
2

[
k2
i2

]
(z0) =

∫ z0

0
dz2 SE

2 f
(k2)
2,i2

, SE
2 = exp (−s12Γ12 − s01Γ01 − s02Γ02) , (3.39)

where k2 ≥ 0 and i2 ∈ {0, 1}. Note that not all of these integrals are independent: due

to the triviality of f (0) = 1 for k2 = 0 and integration by parts for k2 = 1, there are the

relations

SE
2

[
0
0

]
(z0) = SE

2

[
0
1

]
(z0) , SE

2

[
1
0

]
(z0) = −s12

s02
SE

2

[
1
1

]
(z0) . (3.40)

The corresponding vector of independent integrals

SE
2 (z0) =



SE
2

[
0
1

]
(z0)

SE
2

[
1
1

]
(z0)

SE
2

[
2
1

]
(z0)

SE
2

[
2
0

]
(z0)

...


(3.41)

satisfies the differential equation (3.35) with the block-off-diagonal matrices

rE
0,2(x0) =


0 −s12 0 0 . . .

0 0 s02 s02 . . .

0 0 0 0 . . .

0 0 0 0 . . .
...

...
...

...
. . .

 , rE
0,2(x2) =


0 0 0 0 . . .

s02 0 0 0 . . .

0 −s12 0 0 . . .

0 −s12 0 0 . . .
...

...
...

...
. . .

 , . . . (3.42)
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and the block-diagonal one

rE
0,2(x1) =


−s01 0 0 0 . . .

0 −s012 0 0 . . .

0 0 −s01−s02 s02 . . .

0 0 s12 −s01−s12 . . .
...

...
...

...
. . .

 . (3.43)

On the one hand, the only non-vanishing entry of the boundary value CE
0,2 is proportional

to the tree-level Veneziano amplitude (3.25)

CE
0,2 =


0

− 1
s12

Γ(1−s12)Γ(1−s02)
Γ(1−s12−s02)

0
...

 (3.44)

with the two independent four-point, tree-level Mandelstam variables s12 and s02 associated

to the punctures 0, z2, 1 and the well-known gamma function Γ. On the other hand, the

first entry of CE
1,2 is proportional to the simplest two-point, one-loop configuration-space

integral with Mandelstam variable s̃12 = s12 + s02

CE
1,2 =

(∫ 1
0 dz2 exp(−s̃12Γ21)

...

)
(3.45)

that occurs at the η−1-order of eq. (2.39). Therefore, due to the block-off-diagonality of

rE
0,2(xk) for k ≥ 2, the three 4 × 4 submatrices shown in eqs. (3.42) and (3.43) of rE

0,2(x0),

rE
0,2(x1) and rE

0,2(x2) are sufficient to calculate the first entry
∫ 1

0 dz2 exp(−s̃12Γ21) of CE
1,2

up to the second order in α′ using the associator equation (3.37), which results in the

expansion∫ 1

0
dz2 exp(−s̃12Γ21) = − 1

s12

Γ(1− s12)Γ(1− s02)

Γ(1− s12 − s02)

[
rE

0,2(Φτ )
]
1,2

= 1− (s12+s02)ω(1, 0|τ) + (s12+s02)2ω(1, 1, 0|τ) +O(s3
ij) . (3.46)

Upon multiplication by e(s12+s02)ω(1,0|τ), this agrees with the leading orders of eq. (2.39)

since ω(1, 1, 0|τ) − 1
2ω(1, 0|τ)2 = 1

2ω(0, 0, 2|τ) + 5ζ2
12 [20]. The two-point associator only

contributes through its entry
[
rE

0,2(Φτ )
]
1,2

because the only non-zero entry of CE
0,2 occurs

in the second line of eq. (3.44) and the desired one-loop integral occurs in the first line of

CE
1,2 in eq. (3.45).

4 Differential equations for the integrals Zτ0,n

In order to link the two formalisms described in subsections 3.2 and 3.3 above, we will

now introduce genus-one integrals Zτ0,n augmented by an auxiliary insertion position z0.

In particular, we will evaluate their derivatives with respect to both z0 and the modular
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parameter τ in closed form. While the integrals Zτ0,n contain all genus-one Selberg inte-

grals13 from subsection 3.3 in their expansion with respect to the variables ηj , they differ

from the integrals Zτn used in subsection 3.2 only by the inclusion of an auxiliary point z0:

they are ideal to bridge the gap between the different languages, in particular between the

KZB-type differential equations in z0 and τ .

4.1 Integrals with auxiliary point

In order to augment the space spanned by the integrals Zτn defined in eq. (2.26), we intro-

duce an auxiliary point z0, which is, however, not integrated over. Thus, we will consider

integrals associated to the configuration space of the twice-punctured torus, with punc-

tures z1 = 0 and z0. In order to compactly write down a conjectural14 basis Zτ0,n of such

integrals, let us define a chain of Kronecker-Eisenstein series by

ϕτ (1, 2, . . . , p) = Ω12(η23...p)Ω23(η3...p) . . .Ωp−1,p(ηp) , (4.1)

ϕτ (a1) = 1 , (4.2)

and ϕτ (a1, a2, . . . , ap) is obtained from simultaneous permutations of zi → zai and ηi → ηai .

The individual factors of Kronecker-Eisenstein series in such a chain ϕτ (a1, a2, . . . , ap)

accumulate their η-variables from right to left and, thus, the chain is said to begin at ap and

end at a1. Chains of Kronecker-Eisenstein series will turn out to be a very versatile tool in

the description of integrals Zτ0,n, and already the Zτ -integrals (2.26) without augmentation

feature ϕτ (1, 2, . . . , n) in the integrand.

Using the notation in eq. (4.1), the vector of the n! basis integrals is given by

Zτ0,n =

∫
γ12...n0

dz2 dz3 . . . dzn KNτ
0123...n (4.3)

×



ρ[ϕτ (1, 2, . . . , n)]

ρ[ϕτ (1, 2, . . . , n−1)ϕτ (0, n)]

ρ[ϕτ (1, 2, . . . , n−2)ϕτ (0, n, n−1)]
...

ρ[ϕτ (1, 2)ϕτ (0, n, n−1, . . . , 3)]

ρ[ϕτ (0, n, n−1, . . . , 2)]


,

where we keep on setting z1 = 0, and the permutations ρ ∈ P(2, 3, . . . , n) acting on the

integrand are again lexicographically ordered. The original Koba-Nielsen-factor eq. (2.15)

13Strictly speaking, the Zτ0,n in this section and the Zτn in eq. (2.26) are genus-one Selberg integrals as

well since their definition is not tied to the admissibility condition [39]. Still, we will only refer to the

integrals SE
n in section 3.3 subject to the admissibility condition as Selberg integrals.

14Also in presence of the augmentation by z0, Koba-Nielsen-type integrals over cycles of f
(k)
ij -functions

such as f
(k1)
12 f

(k2)
23 f

(k3)
31 are expected to be expressible in terms of chain integrands as in eq. (2.29) and

the ηj-expansion of eq. (4.3). Since we do not present a proof of this claim here, the Zτ0,n below are a

conjectural basis of augmented Koba-Nielsen integrals (with supporting evidence from their closure under

z0- and τ -derivatives). We will not repeat the word ,,conjectural” when referring to the Zτ0,n as a basis

later on.
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is extended by additional variables s0j with j = 1, 2, . . . , n as in eq. (3.31),

KNτ
012...n = exp

(
−

∑
0≤i<j≤n

sijGτij
)
, (4.4)

and we use the following shorthand notation for the integration domain,

γ12...n0 = {z2, z3, . . . , zn ∈ R | 0 = z1 < z2 < z3 < . . . < zn < z0} . (4.5)

The basis integrals in the components can be denoted by

Zτ0,n((1, A), (0, B)) =

∫
γ12...n0

dz2 dz3 . . . dzn KNτ
0123...nϕ

τ (1, A)ϕτ (0, B) , (4.6)

where A = (a1, a2, . . . , ap) and B = (b1, b2, . . . , bq) are disjoint sequences without repeti-

tions such that A∪B = {2, 3, . . . , n}. For simplicity, we denote Zτ0,n((1, A), (0)) = Zτ0,n(1, A)

for an empty sequence B and similarly Zτ0,n((1), (0, B)) = Zτ0,n(0, B) for A = ∅. This no-

tation directly exhibits the chain structure of the products of Kronecker-Eisenstein series:

the dictionary of section 2.2.2 assigns two rooted chains — trees without branching points

and root vertices 0 and 1 — to the integrals (4.6) with non-empty A,B.

Similar to the Zτ -integrals (3.13) without augmentation, we are studying the fixed

planar integration domain (4.5) for any choice of A,B throughout this section. Accordingly,

the two elements (1, A), (0, B) of notation in eq. (4.6) both refer to the integrand, and we

suppress a separate slot Zτ0,n(·|(1, A), (0, B)) specifying the integration domain to avoid

cluttering. Nevertheless, the differential equations to be derived below are universal to

all integration domains 0 = z1 < zσ(2) < . . . < zσ(n) < z0 < 1 with any permutation

σ ∈ P(2, 3, . . . , n).

Not surprisingly, the augmented integrals (4.3) can also be obtained from the (n+1)-

point basis Zτn+1 in eq. (3.13) by the following formal operations: dropping the integration

over the last puncture, identifying zn+1 → z0 according to the integration domain In+1

and peeling off a factor of Ω1,0. The latter can be enforced to appear in each component

of Zτn+1|
ηn+1→η0
zn+1→z0 by expanding the permutations ρ[ϕτ (1, 2, . . . , n, 0)] in the integrand in a

basis of ϕτ (. . . , 0, 1, . . .) via Fay relations.15 These operations resemble the construction of

fibration bases for configuration-space integrals at genus zero [31].

4.1.1 Further integrals from Fay identities

The main ingredients to the integrals in the basis (4.6) are chains, which can conveniently

be associated with a chain graph using the dictionary from section 2.2.2, for example16 of

15The augmented integrals Zτ0,2 at two points are for instance obtained by starting from the inte-

grands Ω12(η20)Ω20(η0) and Ω10(η20)Ω02(η2) of Zτ3 |η3→η0z3→z0 and rewriting the former as Ω10(η0)Ω12(η2) −
Ω10(η20)Ω02(η2). After peeling off the factors of Ω10(η0) and Ω10(η20), one is left with the integrands

Ω12(η2) and Ω02(η2) in the first and second component of eq. (4.3) at n = 2, respectively.
16For notational simplicity, in graphs we use the convention ηa2a3...ap = ηa23...p and similarly for other

sums of η-variables associated to sequences of the form (a2, a3, . . . ap).
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the form

ϕτ (1, 2, 3, 4) = Ω12(η234)Ω23(η34)Ω34(η4) =

1

2

η234

3

η34

4

η4

. (4.7)

Multiplying chains corresponds to combining chain graphs. Whenever the same label ap-

pears in two different chains, the Fay identity (2.24) can be used to link the chains and

produce tree graphs. In fact, repeated use of Fay identities implies various identities shown

and proven in appendix A satisfied by products of chains ϕτ . Such identities among chains

are not only useful for the translation to basis integrals, but also for expressing differential

equations satisfied by these basis integrals in closed form in subsections 4.2 and 4.3 below.

For each disconnected pair of tree graphs, the associated product of Kronecker-Eisenstein

series can be represented as a linear combination of the integrals in eq. (4.6), resulting in

integrals of the form∫
γ12...n0

dz2 · · · dzn KNτ
012...n Ωi22(ξ2)Ωi33(ξ3) . . .Ωinn(ξn) . (4.8)

Since the indices ik ∈ {0, . . . , n}, ik 6= k of the Ωikk(ξk) in the integrand are related

to the basis (4.3) via Fay identities with graphical form eq. (2.32), the associated edges

between vertices ik and k form tree graphs. The counting of vertices and edges only admits

one or two connected components, and the vertices 0, 1 cannot be in the same connected

component. Moreover, each vertex k 6= 0, 1 has only one outgoing edge, while the vertices

k = 0, 1 have none.

The precise form of the variables ξk in eq. (4.8) can be deduced from the graph: for the

edge pointing away from the vertex k, the associated ξk is a combination of η2, η3, . . . , ηn
obtained by accumulating (adding) all ηj-labels from edges higher in the tree pointing

towards the vertex k. In other words, ξk for a given edge is the sum of all the ηj of

those vertices j which become disconnected from 0 or 1 through deletion of the edge under

consideration.

As detailed in appendix D the integrals eq. (4.8) with suitable restrictions on the ik
generate the Selberg integrals eq. (3.32) upon expansion in the ξk. From this observation

as well as the aforementioned formal relation between the n! bases Zτ0,n and Zτn+1, one can

already anticipate the potential of the augmented Zτ -integrals eq. (4.3) to relate the two

approaches of refs. [1, 3] to genus-one α′-expansions.

4.1.2 Five-point example

A typical example for (4.8) at n = 5 is the integral∫
γ123450

dz2 · · · dz5 KNτ
01...5 Ω12(η234) Ω23(η3) Ω24(η4) Ω05(η5) , (4.9)
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which is represented by the following diagram:

Ω12(η234) Ω23(η3) Ω24(η4) Ω05(η5) =

1

2

η234

3
η3

4
η4

0

5

η5 , (4.10)

where the η-variables with multiple indices have been defined in eq. (2.28) . In parallel

to the Fay identities for genus-one Z-integrals, one can apply Fay identities to rewrite

eq. (4.9) as ∫
γ123450

dz2 · · · dz5 KNτ
01...5 Ω12(η234) Ω23(η3) Ω24(η4) Ω05(η5)

=

∫
γ123450

dz2 · · · dz5 KNτ
01...5 Ω12(η234)Ω23(η34)Ω34(η4)Ω05(η5)

+

∫
γ123450

dz2 · · · dz5 KNτ
01...5 Ω12(η234)Ω24(η34)Ω43(η3)Ω05(η5)

= Zτ0,5((1, 2, 3, 4), (0, 5)) + Zτ0,5((1, 2, 4, 3), (0, 5)) , (4.11)

which is based on the following application of the graphical Fay identity (2.32):

1

2

η234

3
η3

4
η4

0

5

η5 =

1

2

η234

3

η34

4

η4

0

5

η5 +

1

2

η234

4

η34

3

η3

0

5

η5 . (4.12)

4.2 z0-derivative of Zτ0,n

Here, we will rewrite the differential equation of subsection 3.3 in the language of integrals

Zτ0,n, which will be the main players in section 5. The genus-one Selberg integrals (3.32)

with an auxiliary point used in ref. [3] can be obtained by the methods described in ap-

pendix D.1.

Starting from the basis choice for the n-point integrals Zτ0,n in eq. (4.3), we will now

demonstrate that the z0-derivatives ∂0Z
τ
0,n((1, A), (0, B)), where we denote ∂0 = ∂z0 , are

expressible in terms of the basis integrals Zτ0,n. In the n!-component vector notation of

eq. (4.3), we will derive a differential equation of the form

∂0 Zτ0,n = Xτ
0,n Zτ0,n , (4.13)

where the entries of the n!×n! matrix Xτ
0,n are linear in sij , comprise first derivatives in

the ηj and will be explicitly determined at any n. Moreover, the sole z0- and τ -dependence
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of Xτ
0,n occurs via f

(k)
01 = f (k)(z01|τ), i.e. one can uniquely identify z0- and τ -independent

n!×n! matrices r0,n(xk) that cast (4.13) into the form

∂0 Zτ0,n =
∞∑
k=0

f
(k)
01 r0,n(xk) Zτ0,n . (4.14)

Hence, the main result of this section to be derived below is that the n!-component vector

Zτ0,n of augmented Zτ -integrals satisfies an elliptic KZB equation in the auxiliary punc-

ture z0.

4.2.1 Deriving the n-point formula

The first step in calculating ∂0 Zτ0,n is to use ∂zif
(1)
ij = −∂zjf

(1)
ij and integration by parts

such that all the partial derivatives only act on the Koba-Nielsen factor, followed by an

application of eq. (3.16) with an extra point z0

∂ziKNτ
012...n = −

n∑
j=0
j 6=i

sijf
(1)
ij KNτ

012...n . (4.15)

Using the notation A = (a1, a2, . . . , ap) and B = (b1, b2, . . . , bq) for the disjoint sequences

with A ∪B = {2, 3, . . . , n} and additionally denoting a0 = 1, b0 = 0, this amounts to

∂0Z
τ
0,n((1, A), (0, B)) =

∫
γ12...n0

n∏
i=2

dzi

 q∑
j=0

∂bjKNτ
01...n

ϕτ (1, A)ϕτ (0, B)

=

∫
γ12...n0

n∏
i=2

dzi KNτ
01...n

p∑
k=0

q∑
j=0

(
sak,bjf

(1)
ak,bj

ϕτ (1, A)ϕτ (0, B)
)
.

(4.16)

The second step of the calculation consists of rewriting the term in parenthesis using the

Fay identity (2.24) and the chain identities (A.6) to (A.14). The rewriting process is

cumbersome, but can be cast into an elegant form using a couple of additional notations

and tools. The complete derivation can be found in appendix B and the result is the

following: for a sequence C = (c1, c2, . . . , cm), a sum of η-variables is denoted by

ηC =

m∑
i=1

ηci , (4.17)

then, the η-variables

η0 = −ηB , η1 = −ηA (4.18)

are assigned to the unintegrated punctures z0 and z1 = 1. Thus, defining the decomposition

of a sequence C into subsequences Cij

C = (c1, . . . , ci−1, ci, ci+1 . . . , cj−1︸ ︷︷ ︸
Ci,j=Cij

, cj , cj+1 . . . , cm) , (4.19)

– 28 –



J
H
E
P
1
2
(
2
0
2
0
)
0
3
6

with

Cji = ∅ for j ≥ i , C1,m+1 = C , C̃ij = (cj−1, cj−2, . . . , ci) , (4.20)

where a tilde denotes the reversal of a sequence, the following closed formula can be derived

as shown in appendix B.2:

∂0Z
τ
0,n((1, A), (0, B))

= −

s(1,A),(0,B)f
(1)
01 +

p∑
k=1

sak,(0,B)∂ηak −
q∑
j=1

s(1,A),bj∂ηbj

Zτ0,n((1, A), (0, B))

+

p∑
k=1

q∑
j=1

sak,bj

k∑
i=1

j∑
l=1

(−1)k+j−i−lΩ01(ηBl,q+1
)

Zτ0,n

((
1, A1i (ak, (Ãi,k Ak+1,p+1) (bj , B̃l,j Bj+1,q+1))

)
, (0, B1l)

)
+

p∑
k=1

q∑
j=1

sak,bj

k∑
i=1

j∑
l=1

(−1)k+j−i−lΩ01(−ηAi,p+1)

Zτ0,n

(
(1, A1i) ,

(
0, B1l (bj , (B̃l,j Bj+1,q+1) (ak, Ãi,k Ak+1,p+1))

))
+

q∑
j=1

s1,bj

j∑
l=1

(−1)j−lΩ01(ηBl,q+1
)Zτ0,n

((
1, A (bj , B̃l,j Bj+1,q+1)

)
, (0, B1l)

)

+

p∑
k=1

sak,0

k∑
i=1

(−1)k−iΩ01(−ηAi,p+1)Zτ0,n

(
(1, A1i) ,

(
0, B (ak, Ãi,k Ak+1,p+1)

))
.

(4.21)

Moreover, s(1,A),(0,B), sak,(0,B) and s(1,A),bj denote sums of Mandelstam invariants according

to the following general definition for sequences P = (p1, p2, . . . , pl) and Q = (q1, q2, . . . , qm)

sP,Q =

l∑
i=1

m∑
j=1

spiqj . (4.22)

Upon writing the partial differential equation (4.21) for the vector of integrals Zτ0,n in

matrix form, we arrive at the central result (4.13) previewed above. The entries of the

matrix Xτ
0,n are determined by the linear combinations in eq. (4.21), and expanding the

Kronecker-Eisenstein series therein in terms of the functions f
(k)
01 , we arrive at the elliptic

KZB equation (4.14) satisfied by the n!-component vector Zτ0,n of augmented Zτ -integrals.

This generalizes the KZB-type eq. (3.35) for the genus-one Selberg integrals to their gen-

erating series Zτ0,n.

The matrices r0,n(xk) in eq. (4.14) are independent of z0 and τ , and one can see from

eq. (4.21) that they are linear in the Mandelstam variables sij and of homogeneity degree

k−1 in the variables ηj . The matrix r0,n(x0) additionally involves first derivatives in ηj
that are counted as homogeneity degree −1.
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4.2.2 Alternative form in terms of the S-map

The z0-derivative in eq. (4.21) can be compactly rewritten using the so-called S-map de-

fined by

ϕτ (S[a1a2 . . . ap, b1b2 . . . bq]) =

p∑
i=1

q∑
j=1

(−1)i−j+p−1saibj

× ϕτ
(
(a1a2 . . . ai−1 apap−1 . . . ai+1), ai, bj , (bj−1bj−2 . . . b1 bj+1bj+2 . . . bq)

)
. (4.23)

The S-map (4.23) has been firstly studied in ref. [82] to rewrite BCJ relations [38] and can

therefore be used to bring integration-by-parts relations among disk integrals (2.7) into

the form

Ztree
n (a1, . . . , an|S[P,Q], n) = 0 (4.24)

with arbitrary disjoint sequences P,Q such that P ∪ Q = {1, 2, . . . , n−1}. In a genus-

one context, the S-map featured in the n-point proposal for the τ -derivatives of Zτ -

integrals (2.26) in ref. [1],

2πi∂τZ
τ
n(In|1, 2, . . . , n)

=

(
1

2

n∑
i=2

s1i∂
2
ηi +

1

2

n∑
2≤i<j

sij
(
∂ηi−∂ηj

)2 − 2 ζ2 s12...n

)
Zτn(In|1, 2, . . . , n)

−
n∑
i=2

℘(ηi+ηi+1+ . . .+ηn|τ)Zτn(In|S[12 . . . i−1, i(i+1) . . . n]) (4.25)

which was rigorously derived in ref. [80].

As will be derived in appendix B.3, an alternative form of eq. (4.21) is given by the

following formula,

∂0Z
τ
0,n((1, A), (0, B))

= −

s(1,A),(0,B)f
(1)
01 +

p∑
k=1

sak,(0,B)∂ηak −
q∑
j=1

s(1,A),bj∂ηbj

Zτ0,n((1, A), (0, B))

+

q∑
l=1

Ω01(ηBl,q+1
)Zτ0,n

(
(0, B1l), (S[(1, A), Bl,q+1])

)
+

p∑
l=1

Ω01(−ηAl,p+1
)Zτ0,n

(
(1, A1l), (S[(0, B), Al,p+1])

)
, (4.26)

where e.g. (recall that b0 = 0)

ϕτ (S[(0, B), Al,p+1]) =

p∑
k=l

q∑
j=0

(−1)q−j+k−lsak,bjϕ
τ (B0j B̃j+1,q+1, bj , ak, Ãlk Ak+1,p+1) .

(4.27)

The individual terms in the shuffle ϕτ (B0j . . .) do not necessarily have the label

0 in the first entry of the chain and thereby involve integrands outside the basis of
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Zτ0,n((1, A), (0, B)) in eq. (4.6). Hence, it remains to apply combinations of Fay identi-

ties in the Kleiss-Kuijf form [83, 84]

Zτ0,n
(
(P, 1, Q), (0, B)

)
= (−1)|P |Zτ0,n

(
(1, P̃ Q), (0, B)

)
,

Zτ0,n
(
(1, A), (P, 0, Q)

)
= (−1)|P |Zτ0,n

(
(1, A), (0, P̃ Q)

)
(4.28)

in order to manifest the n! entries of Zτ0,n on the right-hand side of eq. (4.26), where |P |
denotes the number of labels in P . The combination of eqs. (4.28) and (4.26) encodes

all-multiplicity expressions for the matrix Xτ
0,n in eq. (4.13).

4.2.3 Two-point example

The simplest example can be found at two points, where the basis vector (4.3) of augmented

Zτ -integrals is given by

Zτ0,2 =

∫ z0

0
dz2 KNτ

012

(
Ω12(η)

Ω02(η)

)
=

(
Zτ0,2(1, 2)

Zτ0,2(0, 2)

)
. (4.29)

The partial differential equation (4.13) follows from the closed formula (4.21) or its refor-

mulation in section 4.2.2. Both approaches yield

∂0 Zτ0,2 =

(
−(s01 + s02)f

(1)
01 − s02∂η s02Ω01(−η)

s12Ω01(η) −(s01 + s12)f
(1)
01 − s12∂η

)
Zτ0,2 (4.30)

and expose the matrix Xτ
0,2 in the notation of eq. (4.13). The expansion Xτ

0,2 =∑∞
k=0 f

(k)
01 r0,2(xk) leads to the elliptic KZB equation (4.14), where the matrices r0,2(xk)

are given by

r0,2(x0) =

(
−s02∂η −s02/η

s12/η s12∂η

)
,

r0,2(x1) =

(
−(s01 + s02) s02

s12 −(s01 + s12)

)
,

r0,2(xk) = ηk−1

(
0 (−1)k−1s02

s12 0

)
, k ≥ 2 . (4.31)

4.2.4 Three-point example

The three-point basis vector (4.3)

Zτ0,3 =

∫ z0

0
dz3

∫ z3

0
dz2 KNτ

0123



Ω12(η23)Ω23(η3)

Ω13(η23)Ω32(η2)

Ω12(η2)Ω03(η3)

Ω13(η3)Ω02(η2)

Ω03(η23)Ω32(η2)

Ω02(η23)Ω23(η3)


=



Zτ0,3(1, 2, 3)

Zτ0,3(1, 3, 2)

Zτ0,3((1, 2), (0, 3))

Zτ0,3((1, 3), (0, 2))

Zτ0,3(0, 3, 2)

Zτ0,3(0, 2, 3)


(4.32)
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obeys the following differential equation according to eqs. (4.21) and (4.26),

∂0 Z
τ
0,3 =


diag



−s02∂η2−s03∂η3−s0,123f
(1)
01

−s02∂η2−s03∂η3−s0,123f
(1)
01

−(s02+s23)∂η2+(s13+s23)∂η3−s03,12f
(1)
01

−(s03+s23)∂η3+(s12+s23)∂η2−s02,13f
(1)
01

s12∂η2+s13∂η3−s1,023f
(1)
01

s12∂η2+s13∂η3−s1,023f
(1)
01


(4.33)

+



0 0 −s03Ω10(η3) 0 s03Ω10(η23) −s02Ω10(η23)

0 0 0 −s02Ω10(η2) −s03Ω10(η23) s02Ω10(η23)

(s13+s23)Ω01(η3) s31Ω01(η3) 0 0 − (s02+s23) Ω10(η2) −s02Ω10(η2)

s21Ω01(η2) (s12+s23)Ω01(η2) 0 0 −s03Ω10(η3) − (s03+s23) Ω10(η3)

−s12Ω01(η23) s13Ω01(η23) s12Ω01(η2) 0 0 0

s12Ω01(η23) −s13Ω01(η23) 0 s13Ω01(η3) 0 0




Zτ0,3

see eq. (4.22) for the sP,Q notation in the first line. By matching with the general form (4.14)

of the elliptic KZB equation, one can read off the following 6 × 6 matrices r0,3(xk):

r0,3(x0) = diag



−s02∂η2−s03∂η3
−s02∂η2−s03∂η3

−(s02+s23)∂η2+(s13+s23)∂η3
−(s03+s23)∂η3+(s12+s23)∂η2

s12∂η2+s13∂η3
s12∂η2+s13∂η3


+



0 0 − s03
η3

0 s03
η23

− s02
η23

0 0 0 − s02
η2
− s03
η23

s02
η23

s13+s23
η3

s13
η3

0 0 − s02+s23
η2

− s02
η2

s12
η2

s12+s23
η2

0 0 − s03
η3
− s03+s23

η3

− s12
η23

s13
η23

s12
η2

0 0 0

s12
η23

− s13
η23

0 s13
η3

0 0


, (4.34)

r0,3(x1) =



−s0,123 0 s03 0 −s03 s02
0 −s0,123 0 s02 s03 −s02

s13+s23 s13 −s03,12 0 s02+s23 s02
s12 s12+s23 0 −s02,13 s03 s03+s23
−s12 s13 s12 0 −s023,1 0

s12 −s13 0 s13 0 −s023,1


, (4.35)

r0,3(xk) =



0 0 s03(−η3)k−1 0 −s03(−η23)k−1 s02(−η23)k−1

0 0 0 s02(−η2)k−1 s03(−η23)k−1 −s02(−η23)k−1

(s13+s23)ηk−1
3 s13η

k−1
3 0 0 (s02+s23)(−η2)k−1 s02(−η2)k−1

s12η
k−1
2 (s12+s23)ηk−1

2 0 0 s03(−η3)k−1 (s03+s23)(−η3)k−1

−s12ηk−1
23 s13η

k−1
23 s12η

k−1
2 0 0 0

s12η
k−1
23 −s13ηk−1

23 0 s13η
k−1
3 0 0


,

(4.36)

where k ≥ 2.

4.3 τ-derivative of Zτ0,n

As we will show in this section, the n! basis Zτ0,n in eq. (4.3) also closes under τ -derivatives.

Similar to the homogeneous first-order equation (4.13) in z0, the τ -derivative of Zτ0,n will
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be cast into the form

2πi∂τ Zτ0,n = (Dτ
0,n +Bτ

0,n) Zτ0,n , (4.37)

where the explicit form of the n!×n! matrices Dτ
0,n, B

τ
0,n will be determined below. We

have grouped the matrices according to the τ - and z0-dependence which is solely carried

by f
(k)
01 and Eisenstein series Gk,

Dτ
0,n = −r0,n(ε0) +

∞∑
k=4

(1−k) Gk r0,n(εk) ,

Bτ
0,n =

∞∑
k=2

(k−1)f
(k)
01 r0,n(bk) , (4.38)

where the entries of Dτ
0,n, B

τ
0,n and therefore all the r0,n(bk), r0,n(εk) are again linear in sij .

By construction, the n!×n! matrices r0,n(bk), r0,n(εk) no longer depend on z0 and τ . The

appearance of f
(k)
01 in the differential equation in τ is shared by the operator eq. (4.14)

in the z0 derivative, and we will see from two perspectives that the accompanying n!×n!

matrices are related by

r0,n(bk) = r0,n(xk−1) , k ≥ 2 . (4.39)

Note that the additional zero in the subscript distinguishes the n!×n! matrices r0,n(εk) in

eq. (4.38) from the (n−1)!×(n−1)! matrices rn(εk) in the differential equation (3.19) of the

Zτ -integrals without augmentation.

4.3.1 Deriving the n-point formula

The evaluation of the τ -derivative 2πi∂τZ
τ
0,n((1, A), (0, B)) with A = (a1, a2, . . . , ap) and

B = (b1, b2, . . . , bq) follows the same steps as the z0-derivative in section 4.2. While the

details are shown in appendix C, we give an overview in the following paragraphs.

First, the mixed heat equation (2.25) and integration by parts can be used to find an

expression where all the derivatives only act on the Koba-Nielsen factor. Then, for the

zj-derivatives eq. (4.15) and for the τ -derivative the equation

2πi∂τKNτ
012...n = −

∑
0≤i<j≤n

sij(f
(2)
ij + 2ζ2)KNτ

012...n (4.40)

can be applied, which leads to the expression

2πi∂τZ
τ
0,n((1, A), (0, B))

= −
∫
γ12...n0

dz2 . . . dzn KNτ
01...n

(
2 ζ2 s01...nϕ

τ (1, A)ϕτ (0, B)

+

p∑
k=1

k−1∑
j=0

sak,aj

(
f (1)
ak,aj

(
∂ηak − θj≥1∂ηaj

)
+ f (2)

ak,aj

)
ϕτ (1, A)ϕτ (0, B)

+

q∑
k=1

k−1∑
j=0

sbk,bj

(
f

(1)
bk,bj

(
∂ηbk − θj≥1∂ηbj

)
+ f

(2)
bk,bj

)
ϕτ (1, A)ϕτ (0, B)

+

p∑
k=0

q∑
j=0

sak,bj

(
f

(1)
ak,bj

(
θk≥1∂ηak − θj≥1∂ηbj

)
− f (2)

bj ,ak

)
ϕτ (1, A)ϕτ (0, B)

)
, (4.41)
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where the step function θj≥1 is taken to be 1 for j ≥ 1 and zero for j = 0. From

this equation similar identities as for the z0-derivative, mainly based on the Fay iden-

tity of Kronecker-Eisenstein series, lead to the following expression involving the S-map in

eqs. (4.27) and (4.28)

2πi∂τZ
τ
0,n((1, A), (0, B))

=

(
1

2

n∑
j=2

(s0j+s1j)∂
2
ηj +

1

2

∑
2≤i<j≤n

sij(∂ηi−∂ηj )2 − 2ζ2s01...n − s(1,A),(0,B)f
(2)
01

)
× Zτ0,n((1, A), (0, B))

+

q∑
l=1

(
Ω+

01(ηBl,q+1
)Zτ0,n

(
(0, B1l), (S[(1, A), Bl,q+1])

)
− ℘(ηBl,p+1

)Zτ0,n
(
(1, A), (S[(0, B1,l), Bl,q+1])

))
+

p∑
l=1

(
Ω−01(−ηAl,p+1)Zτ0,n

(
(1, A1l), (S[(0, B), Al,p+1])

)
− ℘(ηAl,p+1

)Zτ0,n
(
(0, B), (S[(1, A1,l), Al,p+1])

))
, (4.42)

where

Ω±01(±ξ) = ±∂ξΩ01(±ξ) . (4.43)

When all the S-maps in eq. (4.42) are expanded in terms of Zτ0,n((1, P ), (0, Q)), the

result takes the closed form

2πi∂τZ
τ
0,n((1, A), (0, B))

=

(
1

2

n∑
j=2

(s0j+s1j)∂
2
ηj +

1

2

∑
2≤i<j≤n

sij(∂ηi−∂ηj )2 − 2ζ2s01...n − s(1,A),(0,B)f
(2)
01

)
× Zτ0,n((1, A), (0, B))

−
q∑

k=1

k−1∑
j=0

sbk,bj

k∑
l=j+1

℘(ηBl,q+1
)(−1)k−l

× Zτ0,n
(

(1, A),
(

0, B1,j , bj , Bj,l (bk, B̃l,k Bk+1,q+1)
))

−
p∑

k=1

k−1∑
j=0

sak,aj

k∑
l=j+1

℘(ηAl,p+1
)(−1)k−l

× Zτ0,n
((

1, A1,j , aj , Aj,l (ak, Ãl,k Ak+1,p+1)
)
, (0, B)

)
+

p∑
k=1

q∑
j=1

sak,bj

k∑
i=1

j∑
l=1

(−1)k+j−i−lΩ+
01(ηBl,q+1

)

× Zτ0,n
((

1, A1i (ak, (Ãi,k Ak+1,p+1) (bj , B̃l,j Bj+1,q+1))
)
, (0, B1l)

)
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+

p∑
k=1

q∑
j=1

sak,bj

k∑
i=1

j∑
l=1

(−1)k+j−i−lΩ−01(−ηAi,p+1)

× Zτ0,n
(

(1, A1i) ,
(

0, B1l (bj , (B̃l,j Bj+1,q+1) (ak, Ãi,k Ak+1,p+1))
))

+

q∑
j=1

s1,bj

j∑
l=1

(−1)j−lΩ+
01(ηBl,q+1

)Zτ0,n

((
1, A (bj , B̃l,j Bj+1,q+1)

)
, (0, B1l)

)

+

p∑
k=1

sak,0

k∑
i=1

(−1)k−iΩ−01(−ηAi,p+1)Zτ0,n

(
(1, A1i) ,

(
0, B (ak, Ãi,k Ak+1,p+1)

))
.

(4.44)

Note that the all-multiplicity formulæ (4.42) and (4.44) for τ -derivatives strongly resem-

ble eqs. (4.26) and (4.21) for z0-derivatives, respectively. The only differences concern

the diagonal term (the coefficients of Zτ0,n((1, A), (0, B)) on the right-hand sides), the ηj-

derivatives Ω+
01(ηBl,q+1

), Ω−01(−ηAl,p+1) instead of Ω01(ηBl,q+1
), Ω01(−ηAl,p+1), respectively,

and the additional appearance of Weierstraß ℘-functions in the τ -derivatives.

The closed formula (4.44) or (4.42) along with eq. (4.28) lead to the matrix equa-

tion (4.37) for the basis vector eq. (4.3), i.e. determine the entries of the n!×n! matrices

Dτ
0,n, B

τ
0,n. With the expansion of the Kronecker-Eisenstein series and ℘-functions in the

τ -derivatives in terms of f
(k)
01 and Gk, we can read off the explicit form of the matrices

r0,n(bk) and r0,n(εk) defined by eq. (4.38),

2πi∂τ Zτ0,n =

(
−r0,n(ε0) +

∞∑
k=4

(1−k) Gk r0,n(εk) +

∞∑
k=2

(k−1)f
(k)
01 r0,n(bk)

)
Zτ0,n . (4.45)

The r0,n(bk) and r0,n(εk) are all linear in sij and independent of z0 and τ . Moreover, their

instances at k ≥ 2 are both homogeneous polynomials of degree k−2 in the ηj , whereas

r0,n(ε0) is a combination of 2ζ2s012...n, η
−2
j and ∂2

ηj . As previewed in eq. (4.39), one can

confirm from eq. (4.44) or eq. (4.42) that all the r0,n(bk) with k ≥ 2 agree with the operators

r0,n(xk−1) in the z0-derivative eq. (4.14). An alternative derivation of eq. (4.39) will be

given in section 4.4.

4.3.2 Two-point example

According to eqs. (4.42) and (4.44), the τ -derivative of the n = 2 example eq. (4.29) is

given by

2πi∂τ Zτ0,2 =

(
1

2
(s02 + s12)∂2

η − 2ζ2s012

)
Zτ0,2

+

(
−s12℘(η)− (s01 + s02)f

(2)
01 −s02∂ηΩ01(−η)

s12∂ηΩ01(η) −s02℘(η)− (s01 + s12)f
(2)
01

)
Zτ0,2 . (4.46)
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Upon comparison with (4.45), one can read off the r0,2(εk) matrices

r0,2(ε0) =
1

η2

(
s12 s02

s12 s02

)
+

(
2ζ2s012 −

1

2
(s02 + s12)∂2

η

)
12×2 ,

r0,2(εk) = ηk−2

(
s12 0

0 s02

)
, k ≥ 4 , (4.47)

and r0,2(bk) matrices

r0,2(b2) =

(
−(s01 + s02) s02

s12 −(s01 + s12)

)
= r0,2(x1) ,

r0,2(bk) = ηk−2

(
0 (−1)k−2s02

s12 0

)
= r0,2(xk−1) , k ≥ 3 , (4.48)

in agreement with the r0,2(xk−1) in eq. (4.31).

4.3.3 Three-point example

For the six-component vector Zτ0,3 in eq. (4.32), the τ -derivative resulting from eqs. (4.42)

and (4.44) is spelt out in appendix C.3. The r0,3(·) matrices obtained by matching

eq. (C.22) with eq. (4.45) are given by

r0,3(ε0) =

(
2ζ2s0123 −

1

2
(s02+s12)∂2

η2 −
1

2
(s03+s13)∂2

η3 −
1

2
s23(∂η2−∂η3)2

)
16×6

+



s12
η223

+ s13+s23
η23

s13
η23
− s13

η223

s03
η23

0 − s03
η223

s02
η223

s12
η22
− s12

η223

s13
η223

+ s12+s23
η22

0 s02
η22

s03
η223

− s02
η223

(s13+s23)
η23

s13
η23

s12
η22

+ s03
η23

0 (s02+s23)
η22

s02
η22

s12
η22

(s12+s23)
η22

0 s13
η23

+ s02
η22

s03
η23

(s03+s23)
η23

− s12
η223

s13
η223

s12
η22

0 s03
η223

+ (s02+s23)
η22

s02
η22
− s02

η223
s12
η223

− s13
η223

0 s13
η23

s03
η23
− s03

η223

s02
η223

+ (s03+s23)
η23


,

(4.49)

r0,3(εk) = diag

{(
s12η

k−2
23 + (s13+s23)ηk−2

3 s13η
k−2
3 − s13η

k−2
23

s12η
k−2
2 − s12η

k−2
23 s13η

k−2
23 + (s12+s23)ηk−2

2

)
,(

s12η
k−2
2 + s03η

k−2
3 0

0 s13η
k−2
3 + s02η

k−2
2

)
,(

s03η
k−2
23 + (s02+s23)ηk−2

2 s02η
k−2
2 − s02η

k−2
23

s03η
k−2
3 − s03η

k−2
23 s02η

k−2
23 + (s03+s23)ηk−2

3

)}
, k ≥ 4 , (4.50)

as well as the r0,3(xk−1) in eqs. (4.35) and (4.36),

r0,3(bk) = r0,3(xk−1) , k ≥ 2 . (4.51)
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4.4 Elliptic KZB system on the twice-punctured torus

In the previous subsections, the two partial differential equations (4.14) and (4.45) satisfied

by the vector Zτ0,n defined in eq. (4.3) have been identified. Together, they form the system

of differential equations

∂z0 Zτ0,n =

∞∑
k=0

f
(k)
01 r0,n(xk) Zτ0,n ,

2πi∂τ Zτ0,n =

(
−r0,n(ε0) +

∞∑
k=4

(1−k) Gk r0,n(εk) +

∞∑
k=2

(k−1)f
(k)
01 r0,n(bk)

)
Zτ0,n , (4.52)

which is an elliptic KZB system on the moduli space of the twice-punctured torus, with

(fixed) puncture z1 = 0 and (variable) puncture z0 [68]. While we have considered the

two differential equations separately so far, in this section properties of the corresponding

matrices r0,n(xk), r0,n(bk) and r0,n(εk) are determined employing the interplay of both

differential equations. In order to investigate these commutation relations, an unspecified

system is considered, which has the same structure

∂z0Iτ0 =
∞∑
k=0

f
(k)
01 xkI

τ
0 ,

2πi∂τIτ0 =

{
−ε0 +

∞∑
k=4

(1−k)Gkεk +

∞∑
k=2

(k−1)f
(k)
01 bk

}
Iτ0 , (4.53)

where unspecified representations of braid matrices xk, derivations εk and further genera-

tors bk act on an abstract solution Iτ0 . The commutativity of the mixed second derivatives

(Schwarz integrability condition)

∂z0
(
2πi∂τIτ0

)
=

∞∑
k=2

∂z0f
(k)
01 (k−1)bkIτ0

+

{
−ε0 +

∞∑
k=4

(1−k)Gkεk +

∞∑
k=2

f
(k)
01 (k−1)bk

} ∞∑
`=0

f
(`)
01 x`I

τ
0 ,

2πi∂τ
(
∂z0Iτ0

)
=

∞∑
k=0

2πi∂τf
(k)
01 xkI

τ
0

+

∞∑
`=0

f
(`)
01 x`

{
−ε0 +

∞∑
k=4

(1−k)Gkεk +

∞∑
k=2

f
(k)
01 (k−1)bk

}
Iτ0 (4.54)

imposes various constraints on the xk, εk, bk which will serve as cross-checks for the n!×n!

representations r0,n(·) encoded in eqs. (4.26) and (4.42). By the components 2πi∂τf
(k)
01 =

k∂z0f
(k+1)
01 of the mixed heat equation (2.25) for real z01, the commutator

[2πi∂τ , ∂z0 ]Iτ0 =
∞∑
k=2

(k−1)∂z0f
(k)
01 (xk−1 − bk)Iτ0

+
∞∑
`=0

f
(`)
01

{
−[x`, ε0] +

∞∑
k=4

(1−k)Gk[x`, εk] +
∞∑
k=2

(k−1)f
(k)
01 [x`, bk]

}
Iτ0

(4.55)
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has to vanish. In particular, the first line of eq. (4.55) has to vanish separately,

bk = xk−1 , k ≥ 2 , (4.56)

since the derivatives ∂z0f
(k+1)
01 can be rewritten as [80]17

∂z0f
(n)
01 = −f (1)

01 f
(n)
01 + (n+1)f

(n+1)
01 − Ĝ2f

(n−1)
01 −

n+1∑
k=4

Gkf
(n+1−k)
01 , n ≥ 1 (4.57)

and generate terms ∼ Ĝ2 = G2− π
Im τ that do not occur in the second line of eq. (4.55). By

repeating these arguments for the KZB system (4.52) obeyed by the n!-component vector

Zτ0,n in eq. (4.3), we arrive at eq. (4.39) independent of the explicit form of r0,n(bk) and

r0,n(xk) obtained in sections 4.2 and 4.3.

Hence, the leftover integrability constraints after imposing eq. (4.56) are

0 =
∞∑
k=2

(k−1)f
(k)
01 [x0, xk−1]−

∞∑
`=0

f
(`)
01 [x`, ε0] +

∞∑
`=0

f
(`)
01

∞∑
k=4

(1−k) Gk[x`, εk]

+

∞∑
1≤a<b

(bf
(a)
01 f

(b+1)
01 − af (a+1)

01 f
(b)
01 )[xa, xb] . (4.58)

In order to infer relations among the commutators, the products f
(a)
01 f

(b+1)
01 and f

(a+1)
01 f

(b)
01

in the second line have to be rewritten in terms of the combinations Gkf
(`)
01 or f

(k+`)
01 in the

first line. The required identities valid for a+b ≥ 2 are generated by the ξ- and η-expansion

of eq. (3.17),

bf
(a)
01 f

(b+1)
01 − af (a+1)

01 f
(b)
01

=
(b−a)(a+b+1)!

(a+1)!(b+1)!
f

(a+b+1)
01 − (−1)b(a+b) Ga+b+1 +aGa+1 θa≥3f

(b)
01 − bGb+1 θb≥3f

(a)
01

+

a∑
k=4

(
a+b−k
b−1

)
(k−1) Gk f

(a+b+1−k)
01 −

b∑
k=4

(
a+b−k
a−1

)
(k−1) Gk f

(a+b+1−k)
01 . (4.59)

Since the step functions θc≥3 in the second line are taken to be 1 for c ≥ 3 and zero for

c ≤ 2, the aforementioned Ĝ2 does not occur in eq. (4.58) or eq. (4.59). After rewriting the

second line of eq. (4.58) via eq. (4.59), the coefficients of Gkf
(`)
01 and f

(k+`)
01 have to vanish

17The simplest examples of eq. (4.57) are

∂z0f
(1)
01 = −f (1)

01 f
(1)
01 + 2f

(2)
01 − Ĝ2 , ∂z0f

(2)
01 = −f (1)

01 f
(2)
01 + 3f

(3)
01 − Ĝ2f

(1)
01 ,

while the simplest examples of eq. (4.59) below are

2f
(1)
01 f

(3)
01 − f

(2)
01 f

(2)
01 = 2f

(4)
01 − 3G4 , 3f

(1)
01 f

(4)
01 − f

(2)
01 f

(3)
01 = 5f

(5)
01 − 3f

(1)
01 G4 .
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separately, and one can read off identities like

[x0, ε0] = 0 , [x0, ε4] = −[x1, x2] ,

[x1, ε0] = 0 , [x1, ε4] = −[x1, x3] ,

[x2, ε0] = [x0, x1] , [x2, ε4] = −[x1, x4]− [x2, x3] ,

[x3, ε0] = 2[x0, x2] , [x0, ε6] = −[x1, x4] + [x2, x3] , (4.60)

[x4, ε0] = 3[x0, x3] + 2[x1, x2] , [x1, ε6] = −[x1, x5] ,

[x5, ε0] = 4[x0, x4] + 5[x1, x3] , [x2, ε6] = −[x1, x6]− [x2, x5] ,

[x6, ε0] = 5[x0, x5] + 9[x1, x4] + 5[x2, x3] , [x0, ε8] = −[x1, x6] + [x2, x5]− [x3, x4] ,

and more generally (with ` ≥ 1 and k ≥ 4)

[x`, ε0] =

b`/2c−1∑
j=0

(
`

j

)
(`−1−2j)

(j+1)
[xj , x`−1−j ]

[x0, εk] =

k/2−1∑
j=1

(−1)j [xj , xk−1−j ] (4.61)

[x`, εk] = −
`−1∑
j=0

(
`−1

j

)
[xj+1, xk+`−j−2] .

By iterating the first relation, the adjoint action adε0(·) = [ε0, ·] turns out to be nilpotent

when acting on x`,

ad`ε0(x`) = 0 , ` ≥ 1 , (4.62)

for instance [ε0, [ε0, x2]] = 0. This follows from the fact that eq. (4.61) relates [x`, ε0] to

[xa, xb] with a+b = `−1, so the kth adjoint action adkε0(x`) yields nested commutators of

xa1 , xa2 , . . . , xak+1
with

∑k+1
j=1 aj = `−k. After k = `−1 steps, only x0 and x1 are left

in the nested commutators which are both annihilated by the `th application of adε0 , see

eq. (4.60).

By repeating the above arguments for the KZB system (4.52) obeyed by the n!-

component vector Zτ0,n in eq. (4.3), the commutator relations (4.61) are found to be pre-

served under xk → r0,n(xk) and εk → r0,n(εk), for instance [r0,n(x0), r0,n(ε0)] = 0 and

(` ≥ 1, k ≥ 4)

[r0,n(x`), r0,n(εk)] = −
`−1∑
j=0

(
`−1

j

)
[r0,n(xj+1), r0,n(xk+`−j−2)] . (4.63)

As a consistency check of the results for ∂z0 Zτ0,n and ∂τ Zτ0,n, we have confirmed validity

of the above relations for [r0,n(x`), r0,n(εk)] for numerous configurations of (n, `, k).

The nilpotency property (4.62) is known to also hold for Tsunogai’s derivations [77],

adk−1
ε0 (εk) = 0 . (4.64)

The Zτ -integrals (3.13) without augmentation introduce conjectural (n−1)!×(n−1)! matrix

representations rn(εk) through their differential equations (3.19) which have been tested
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to preserve eq. (4.64) for a wide range of k and n [1]. For the analogous n!×n! matrices

r0,n(εk) seen in the KZB system (4.52) of the augmented Zτ0,n, we conjecture that they

furnish another representation of the derivation algebra. This conjecture not only applies

to eq. (4.64),

conjecture : adk−1
r0,n(ε0)

(
r0,n(εk)

)
= 0 , (4.65)

but also to the additional depth-two relations in the derivation algebra besides

eq. (4.64) [20, 78, 79] such as

0 = [ε10, ε4]− 3[ε8, ε6] ,

0 = 2[ε14, ε4]− 7[ε12, ε6] + 11[ε10, ε8] . (4.66)

Given that the Schwarz integrability condition (4.55) does not allow to derive constraints for

commutators [εk, ε`], we have supported our conjecture through numerous successful case-

by-case tests using the representations r0,n(εk) only. However, the depth-three relations in

the derivation algebra starting from

0 = 80[ε12, [ε4, ε0]] + 16[ε4, [ε12, ε0]]− 250[ε10, [ε6, ε0]]

− 125[ε6, [ε10, ε0]] + 280[ε8, [ε8, ε0]]− 462[ε4, [ε4, ε8]]− 1725[ε6, [ε6, ε4]] (4.67)

do not seem to carry over to the r0,n(εk), e.g. eq. (4.67) with εk → r0,n(εk) is already

violated at n = 2. Instead, eq. (4.67) and some of its higher-weight analogues [20, 79] have

been checked to hold upon assigning

εk →

{
r0,n(ε0) : k = 0 ,

r0,n(εk) + r0,n(xk−1) : k ≥ 4 .
(4.68)

The deformation in the second line resonates with the additional appearance of bk = xk−1

in the augmented differential eq. (4.52) with respect to τ compared to the non-augmented

one in eq. (3.18). As we will see in eq. (5.69), the combination r0,n(εk) + r0,n(xk−1) in

eq. (4.68) appears naturally when relating the representations r0,n(εk) and rn(εk) of the

derivations. Note that depth-two relations such as eq. (4.66) were tested to hold for both

assignments eq. (4.68) and εk → r0,n(εk).

4.5 Total differential of Zτ0,n integrals

In summary of the differential equations in sections 4.2, 4.3 and as a way of manifesting

the Schwarz integrability conditions, we will now spell out the total differential of the Zτ0,n-

integrals (4.6), to bring the differential of Zτ0,n into the form (3.3). After eliminating the

r0,n(bk), the total differential d = dz0∂z0 + dτ∂τ following from the KZB system (4.52)

takes the form

dZτ0,n =

{
dz0 r0,n(x0)− dτ

2πi
r0,n(ε0)− dτ

2πi

∞∑
k=4

(k−1) Gk r0,n(εk) +
∞∑
k=1

ψ
(k)
01 r0,n(xk)

}
Zτ0,n ,

(4.69)
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where the characteristic combinations

ψ
(k)
01 = dz0 f

(k)
01 +

k dτ

2πi
f

(k+1)
01 (4.70)

in the last term of eq. (4.69) agree with the closed one-forms ω
(k)
ij in eq. (3.15) of [85] since

z0, z1 ∈ R. The same one-forms ψ
(k)
01 in eq. (4.70) appear when the z0- and τ -deriva-

tives (4.26) and (4.42) are combined to the following explicit form of the total differential:

dZτ0,n((1, 2, 3, . . . , p), (0, n, n−1, . . . , p+1))

=

{
dz0

[ n∑
j=p+1

sj,123...p∂ηj −
p∑
j=2

sj,0n(n−1)...p+1∂ηj

]

+
dτ

2πi

[
1

2

n∑
j=2

(s0j+s1j)∂
2
ηj +

1

2

n∑
2≤i<j

sij(∂ηi−∂ηj )2 − 2ζ2s012...n

]

− s12...p,0n(n−1)...(p+1)ψ
(1)
01

}
Zτ0,n((1, 2, 3, . . . , p), (0, n, n−1, . . . , p+1))

+

p∑
j=2

{(
− dz0

ηj(j+1)...p
− dτ

2πiη2
j(j+1)...p

+

∞∑
k=1

(−ηj(j+1)...p)
k−1ψ

(k)
01

)
× Zτ0,n((1, 2, . . . , j−1), (S[0n(n−1) . . . (p+1), j(j+1) . . . p]))

− dτ

2πi
℘(ηj(j+1)...p)Z

τ
0,n((0, n, n−1, . . . , p+1), (S[12 . . . (j−1), j(j+1) . . . p]))

}
+

n∑
j=p+1

{(
dz0

ηj(j−1)...p+1
− dτ

2πiη2
j(j−1)...p+1

+

∞∑
k=1

(ηj(j−1)...p+1)k−1ψ
(k)
01

)
× Zτ0,n((0, n, . . . , j+1), (S[12 . . . p, j(j−1) . . . p+1]))

− dτ

2πi
℘(ηj(j−1)...p+1)Zτ0,n((1, 2, . . . , p), (S[0n . . . j+1, j(j−1) . . . p+1]))

}
. (4.71)

In the third and sixth line from below, we have used that

Ω±01(η)
dτ

2πi
+ Ω01(±η)dz0 = ±dz0

η
− dτ

2πiη2
+

∞∑
k=1

(±η)k−1ψ
(k)
01 . (4.72)

The fact that the f
(k 6=0)
01 on the right-hand side of eq. (4.71) combine to ψ

(k)
01 manifests

the equality of the operators r0,n(bk) and r0,n(xk−1) in the KZB system (4.52). Based on

the total differential eq. (4.69), the formalism of [85] can be used to obtain the coaction

of the augmented Zτ -integrals, also see section 7.2 of [1] for the coaction of plain Zτ -

integrals (2.26).

5 Identification and translation

While z0- and τ -derivatives of the integrals Zτ0,n have been discussed in full generality in

the previous section, let us now compare the two resulting approaches by investigating
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their boundary conditions, limits and solutions, respectively. As a guiding principle, we

will explore how the representations rn and rE
0,n of the algebra generators18 εk and xk in

eqs. (3.19) and (3.35), respectively, are related to each other and to the representations

r0,n(εk) in eqs. (4.14) and (4.37) above.

5.1 Overview

Boundary values Cτ
0,n and Cτ

1,n of Zτ0,n for the limits z0 → 0 and z0 → 1, respectively,

are particularly important since they allow for an explicit expansion of the integrals Zτn in

α′ using the elliptic KZB associator. Simultaneously, it is those boundary values, which

finally allow to find the link between the matrices rn(εk), r
E
0,n(xk), r0,n(εk) and r0,n(xk).

Due to the poles of f
(1)
01 at z0 = 0 and z0 = 1 in the differential equation (4.14), these

limits are singular. The regularization leading to the corresponding non-vanishing finite

values will be derived and related to the genus-zero and genus-one Z-integrals Ztree
n and

Zτn, respectively, in this section.

The boundary values Cτ
0,n and Cτ

1,n to be considered here are the finite-length cousins

of the infinitely long boundary vectors CE
0,n and CE

1,n in eq. (3.36) for the genus-one Selberg

integrals. The main results to be derived below are the expressions

Cτ
0,n = −es012...nω(1,0|τ)UBCJ

n Ztree
n+2 , (5.1)

Pn Cτ
1,n = es01ω(1,0|τ)Zτn (5.2)

in terms of bases of genus-zero integrals Ztree
n+2 in eq. (2.9) and genus-one integrals Zτn in

eq. (2.26). The entries of the n!× (n−1)! matrices UBCJ
n and (n−1)!× n! matrices Pn are

rational functions of the sij with 0≤i<j≤n and will be defined in the discussions around

eqs. (5.15) and (5.42), respectively.

Based on the associator relation

Cτ
1,n = r0,n (Φτ (xk)) Cτ

0,n (5.3)

adapted to the n!×n! matrices r0,n(xk) constructed in section 4.2, eqs. (5.1) and (5.2)

connect the genus-one integrals Zτn with their genus-zero counterparts Ztree
n+2,

Zτn = −e(s012...n−s01)ω(1,0|τ)Pn r0,n (Φτ (xk))U
BCJ
n Ztree

n+2 . (5.4)

Using the expansion of the elliptic KZB associator [81],

r0,n (Φτ (xk)) =
∑
w≥0

∑
k1,...,kw≥0

r0,n(xk1 . . . xkw)ω(kw, . . . , k1|τ) , (5.5)

each term in the expansion of the genus-one integrals in α′ and ηj can be obtained via

elementary operations. Eq. (5.4) is the generating-function reformulation of the method

in [3], where the matrices r0,n(xk) are now finite dimensional.

The application of the formalism to integrals Zτn with kinematic poles (i.e. factors of

f
(1)
ij in the integrand) have not been investigated in ref. [3]. However, when doing so using

the method of ref. [3], the matrices Pn allow to project on the desired configuration-space

integrals in the same way as they do in the language using generating functions in the

current paper.

18Sometimes these generators are referred to as letters and their respective entirety as alphabets.
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5.2 Lower boundary value Cτ
0,n in the z0-language

In this subsection, we will derive the expression (5.1) for the lower boundary value Cτ
0,n

which is defined as the regularized limit

Cτ
0,n = lim

z0→0
(−2πiz0)−r0,n(x1) Zτ0,n . (5.6)

The vector Zτ0,n has been introduced in eq. (4.3), and r0,n(x1) is the representation of the

letter x1 appearing in the KZB equation (4.14) along with the singular f
(1)
01 . Here we are

going to derive the main mechanism necessary for evaluating eq. (5.6).

5.2.1 Recovering Parke-Taylor integrals

Let us start by examining the limiting behaviour of the Koba-Nielsen factor: following

the reasoning of ref. [3] and using eq. (2.22), we find by the change of variables zi = z0xi
and recalling that 0 < zi < z0 for 1 ≤ i ≤ n, that the Koba-Nielsen factor degenerates as

follows in the limit z0 → 0:

KNτ
012...n = (−2πiz0)−s012...nes012...nω(1,0|τ)

∏
1≤i<j≤n

x
−sij
ji

n∏
k=2

(1−xk)−s0k +O(z−s012...n+1
0 )

= (−2πiz0)−s012...nes012...nω(1,0|τ)KNtree
12...n+2 +O(z−s012...n+1

0 ) . (5.7)

We have identified

xn+1 = x0 = 1 , sj,n+1 = s0j (5.8)

and KNtree
12...n+2 is the (n+2)-point tree-level Koba-Nielsen factor (2.6) with the fixed vari-

ables

(x1, xn+1, xn+2) = (0, 1,∞) . (5.9)

The asymptotics of the functions f (k)(z|τ) with z approaching zero from the positive

real line

f (k)(z|τ) =

{
1
z +O(z) if k = 1 ,

O(1) otherwise ,
(5.10)

determine the asymptotic behaviour of the Kronecker-Eisenstein series for z → 0

Ω(z, η|τ) =
1

z
+O(1) . (5.11)

Using this equation, the integrand in the augmented genus-one Z-integrals in eq. (4.6)

without the Koba-Nielsen factor degenerates to the tree-level integrand

lim
z0→0

n∏
k=2

dzk ϕ
τ (1, A)ϕτ (0, B) =

n∏
k=2

dxk

[
1

(−xa1)

p∏
t=2

1

xat−1,at

] [
1

1−xb1

q∏
r=2

1

xbr−1,br

]
,

(5.12)
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where the limit is performed at fixed xi in zi = z0xi, and A = (a1, a2, . . . , ap), B =

(b1, b2, . . . , bq) are again disjoint sequences without repetitions such that A ∪ B =

{2, 3, . . . , n}. Note that only the contribution from the simple poles of the Kronecker-

Eisenstein series in eq. (5.11) survives the change of variables dzi = z0 dxi followed by the

limit z0 → 0 in the product eq. (5.12).

Combining eqs. (5.7) and (5.12), we find that the asymptotic behaviour of the aug-

mented Zτ -integrals eq. (4.6) yields genus-zero integrals (2.7) of Parke-Taylor type,

lim
z0→0

(−2πiz0)s012...nZτ0,n((1, A), (0, B))

= −(−1)|B|es012...nω(1,0|τ)Ztree
n+2(In+2|1, A, n+2, B̃, n+1) , (5.13)

with the identification eq. (5.8) of Mandelstam invariants and |B| = q denoting the number

of labels in B. The integrals Ztree
n+2 have been identified by matching eq. (5.12) with their

expression (2.9) in the SL2-frame eq. (5.9). In particular, eq. (5.13) at B = ∅ specializes to

lim
z0→0

(−2πiz0)s012...nZτ0,n(1, A) = −es012...nω(1,0|τ)Ztree
n+2(In+2|1, A, n+2, n+1) , (5.14)

for A = (a2, a3, . . . , an) a permutation of (2, 3, . . . , n). Therefore, the first (n−1)! entries

of the vector Zτ0,n degenerate to the BCJ basis Ztree
n+2 = Ztree

n+2(In+2|1, σ, n+2, n+1), σ ∈
P(2, 3, . . . , n) of (n+2)-point genus-zero integrals at fixed integration domain In+2,

cf. eq. (2.8). The remaining Parke-Taylor orderings in eq. (5.13) descending

from Zτ0,n((1, A), (0, B)) at B 6= ∅ can be reduced to the (n−1)! basis integrals

Ztree
n+2(In+2|1, A, n+2, n+1) in eq. (5.14) via BCJ relations [38]. Their unique decompo-

sition into an (n−1)! BCJ basis defines the entries of the following n!×(n−1)! matrix UBCJ
n

indexed by permutations ρ ∈ Sn−1:

Ztree
n+2(In+2|1, ρ(2, 3, . . . , n), n+2, n+1)

−Ztree
n+2(In+2|1, ρ(2, 3, . . . , n−1), n+2, ρ(n), n+1)

Ztree
n+2(In+2|1, ρ(2, 3, . . . , n−2), n+2, ρ(n−1, n), n+1)

. . .

(−1)nZtree
n+2(In+2|1, ρ(2), n+2, ρ(3, . . . , n), n+1)

−(−1)nZtree
n+2(In+2|1, n+2, ρ(2, 3, . . . , n), n+1)


= UBCJ

n Ztree
n+2 . (5.15)

Given the order of the Zτ0,n((1, A), (0, B)) integrals in the Zτ0,n-vector eq. (4.3), the degen-

eration (5.13) and the BCJ basis decomposition (5.15) yield

lim
z0→0

(−2πiz0)s012...n Zτ0,n = −es012...nω(1,0|τ)

(
Ztree
n+2

∗

)
= −es012...nω(1,0|τ)UBCJ

n Ztree
n+2 . (5.16)

In the second step, we have used that the upper block of size (n−1)!×(n−1)! in UBCJ
n is

the identity matrix.
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5.2.2 The maximal r0,n(x1) eigenvalue

In order to derive our earlier claim eq. (5.1) for the lower boundary value, we will show

how the finite value limz0→0(−2πiz0)s01...n Zτ0,n in eq. (5.16) emerges from the regularized

boundary value Cτ
0,n in eq. (5.6). The key observation to be demonstrated below is that

the matrix r0,n(x1) in the exponent of eq. (5.6) can be set to its eigenvalue −s012...n when

acting on the z0 → 0 asymptotics of Zτ0,n. With the asymptotic result (5.16), the task is

therefore to show that

(−2πiz0)−r0,n(x1)UBCJ
n = (−2πiz0)s012...nUBCJ

n , (5.17)

which will turn out to be independent on the BCJ basis vector Ztree
n+2 that UBCJ

n acts on.

Our proof of eq. (5.17) is based on the continuity of (2πiz0)s012...n2πi∂τ Zτ0,n at z0 = 0

due to the absence of singular terms in eq. (4.45). We can therefore equate the two orders

of performing the limit z0 → 0 and the τ -derivative.

• On the one hand, eq. (5.16) can be differentiated with respect to τ after taking the

z0 → 0 limit, which only acts via 2πi∂τω(1, 0|τ) = G2−2ζ2 and yields

2πi∂τ lim
z0→0

(−2πiz0)s012...n Zτ0,n = s012...n (G2−2ζ2) es012...nω(1,0|τ)UBCJ
n Ztree

n+2 . (5.18)

• On the other hand, exchanging the limit and the partial derivative in eq. (5.18) leads

— according to eq. (4.45) — to the identity

lim
z0→0

(−2πiz0)s012...n2πi∂τ Zτ0,n

=

(
−r0,n(ε0)−G2 r0,n(x1) +

∞∑
k=4

(1−k) Gk (r0,n(εk) + r0,n(xk−1))

)
× es012...nω(1,0|τ)UBCJ

n Ztree
n+2 , (5.19)

where we have used that r0,n(bk) = r0,n(xk−1) (cf. eq. (4.56)) and that for k ≥ 2 (and

z0 ∈ R in case of k = 2)

lim
z0→0

f
(k)
01 = −Gk . (5.20)

Since the derivative (2πiz0)s012...n2πi∂τ Zτ0,n is continuous at z0 = 0, eqs. (5.18) and (5.19)

have to agree. Comparing the coefficients of Gk in the two equations leads to the eigenvalue

equations:

r0,n(x1)UBCJ
n = −s01...nU

BCJ
n ,

r0,n(ε0)UBCJ
n = 2ζ2s01...nU

BCJ
n , (5.21)

(r0,n(εk) + r0,n(xk−1))UBCJ
n = 0 , k ≥ 4 .

These equations imply that the columns of UBCJ
n are eigenvectors of r0,n(x1) and r0,n(ε0)

for the eigenvalues −s012...n and 2ζ2s012...n, respectively. This proves the lemma (5.17) and

ultimately the main claim (5.1) of this subsection. Moreover, we see that the representa-

tions r0,n(ε0) and r0,n(x1) as well as r0,n(εk) and r0,n(xk−1) for k = 4, 6, . . . acting on UBCJ
n

and thus, on the lower boundary value, are equivalent up to constant factors.
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5.2.3 Two-point example

Let us approve the above findings on the two-point example Zτ0,2 from eq. (4.29). The finite

part at z0 = 0 according to eq. (5.13) and s23 = s02 is given by

lim
z0→0

(−2πiz0)s012 Zτ0,2 = es012ω(1,0|τ)

(
−Ztree

4 (I4|1, 2, 4, 3)

Ztree
4 (I4|1, 4, 2, 3)

)
(5.22)

= es012ω(1,0|τ)

(
1
s12

− 1
s02

)
Γ(1−s12)Γ(1−s02)

Γ(1−s12−s02)

which can be rewritten using the following BCJ matrix in eq. (5.16)

lim
z0→0

(−2πiz0)s012 Zτ0,2 = −es012ω(1,0|τ)UBCJ
2 Ztree

4 (I4|1, 2, 4, 3) , UBCJ
2 =

(
1

− s12
s02

)
. (5.23)

The eigenvalue equations (5.21) can immediately be checked using the explicit form of the

r0,2(·) in eqs. (4.31) and (4.47). In particular,

r0,2(x1)UBCJ
2 = −s012U

BCJ
2 (5.24)

together with eq. (5.23) lead to

Cτ
0,2 = lim

z0→0
(−2πiz0)−r0,2(x1) Zτ0,2

= −es012ω(1,0|τ)UBCJ
2 Ztree

4 (I4|1, 2, 4, 3)

= es012ω(1,0|τ)

(
1
s12

− 1
s02

)
Γ(1−s12)Γ(1−s02)

Γ(1−s12−s02)
. (5.25)

Note that the other two eigenvalue equations of (5.21) are also straightforwardly checked

via eqs. (4.31) and (4.47).

5.2.4 Three-point example

At three points, the explicit form of Zτ0,3 can be found in eq. (4.32), and its finite part at

z0 = 0 is determined as follows by eq. (5.13):

lim
z0→0

(−2πiz0)s0123 Zτ0,3 = es0123ω(1,0|τ)



−Ztree
5 (I5|1, 2, 3, 5, 4)

−Ztree
5 (I5|1, 3, 2, 5, 4)

Ztree
5 (I5|1, 2, 5, 3, 4)

Ztree
5 (I5|1, 3, 5, 2, 4)

−Ztree
5 (I5|1, 5, 2, 3, 4)

−Ztree
5 (I5|1, 5, 3, 2, 4)


. (5.26)
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BCJ relations among five-point disk integrals give rise to the following matrix UBCJ
3 in

eq. (5.15),

UBCJ
3 =



1 0

0 1

− (s13+s23)
s03

− s13
s03

− s12
s02

− (s12+s23)
s02

s12(s03+s13+s23)
s03s023

(s12−s03)s13
s03s023

s12(s13−s02)
s02s023

s13(s02+s12+s23)
s02s023


, (5.27)

which can be checked to obey the eigenvalue equations (5.21) using the expressions for

r0,3(·) from sections 4.2.4 and 4.3.3. By eqs. (5.15) and (5.26), we arrive at

Cτ
0,3 = lim

z0→0
(−2πiz0)−r0,3(x1) Zτ0,3

= −es0123ω(1,0|τ)UBCJ
3

(
Ztree

5 (I5|1, 2, 3, 5, 4)

Ztree
5 (I5|1, 3, 2, 5, 4)

)
. (5.28)

5.3 Upper boundary value Cτ
1,n in the z0-language

In order to derive the claim (5.2) for the upper boundary value Cτ
1,n, one will have to

evaluate

Cτ
1,n = lim

z0→1
(−2πi(1−z0))−r0,n(x1) Zτ0,n . (5.29)

Similar to the procedure in the last subsection, we will evaluate the limit z0 → 1 separately

for the Koba-Nielsen part and the remainder of the integrand, before commenting on the

action of the matrix representation r0,n in the exponent of the regulating factor.

5.3.1 Recovering genus-one integrands

Following the same steps as in ref. [3], the Koba-Nielsen factor degenerates for z0 → 1

along the unit interval as follows:

KN012...n = (−2πi(1−z0))−s01es01ω(1,0|τ)KNτ
12...n|s̃ij +O((1−z0)−s01+1) , (5.30)

where

KNτ
12...n|s̃ij =

∏
1≤i<j≤n

e−s̃ijG
τ
ij (5.31)

is the n-point Koba-Nielsen factor with shifted Mandelstam invariants s̃ij with i < j

given by

s̃ij =

{
s1j + s0j if i = 1 ,

sij otherwise .
(5.32)
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The Kronecker-Eisenstein chains in the integrand of Zτ0,n((1, A), (0, B)) are regular for

z0 → 1 since 0 6∈ A and 1 6∈ B, and, using the periodicity (2.19) of the Kronecker-Eisenstein

series and the shuffle identity (A.8), given by

lim
z0→1

ϕτ (1, A)ϕτ (0, B) = ϕτ (1, A B) . (5.33)

In addition to the higher-order terms in eq. (5.30), there is another subtlety in taking

the limit limz0→1 Z
τ
0,n((1, A), (0, B)): as discussed in appendix E, further subleading terms

will appear at certain orders in (1−z0)−s01+∆ for some ∆ composed of further sij with

Re(∆) > 0. They originate from the difference between the integration domain
∫ z0

0 en-

tering the definition of Zτ0,n((1, A), (0, B)) and the larger integration domain
∫ 1

0 of the

integrals Zτn. On the one hand, the interval (z0, 1) distinguishing the integration domains

of Zτ0,n((1, A), (0, B)) and Zτn becomes arbitrarily small as z0 → 1. On the other hand, the

poles of ϕτ (1, A)ϕτ (0, B) lead to n−1 subleading contributions to the integral over (z0, 1)

due to the merging of k+2 punctures z0 < zn−k+1 < · · · < zn < 1 ∼= z1 for 0 < k < n

as z0 → 1. Still, these subleading contributions scale as (−2πi(1−z0))−s01 (n−k+1)...n , where

according to eq. (2.3) the exponent has a real part larger than −Re(s01). For the boundary

value Cτ
1,n in (5.29), these finite terms only pose a problem in an eigenspace of −r0,n(x1)

where the associated eigenvalue has a real part larger than −Re(s01). By multiplication

with (−2πi(1−z0))s01 and taking the limit z0 → 1, the lowest order contribution can be

isolated. The corresponding non-vanishing value is determined by combining eqs. (5.30)

and (5.33):

lim
z0→1

(−2πi(1−z0))s01Zτ0,n((1, A), (0, B)) = es01ω(1,0|τ)Zτn(In|1, (A B))|s̃ij . (5.34)

The right-hand side involves the genus-one integrals (2.26) with the shifted Mandelstam

variables s̃ij from eq. (5.32) in the Koba-Nielsen factor. The special cases of eq. (5.34) with

B = ∅ yield a particularly simple form for the first (n−1)! components of,

lim
z0→1

(−2πi(1−z0))s01 Zτ0,n = es01ω(1,0|τ)

(
Zτn |s̃ij
∗

)
, (5.35)

where Zτn defined in eq. (3.13) comprises (n−1)! basis integrals Zτn(In|1, A). Also the

remaining components of eq. (5.34) fall into this basis: evaluating the shuffles on the right-

hand side of eq. (5.34) defines a n!× (n−1)! matrix Un with entries in {0, 1}

Zτn
(
In|1, ρ(2, 3, . . . , n))

Zτn
(
In|1, [ρ(2, 3, . . . , n−1) ρ(n)]

)
Zτn
(
In|1, [ρ(2, 3, . . . , n−2) ρ(n−1, n)]

)
. . .

Zτn
(
In|1, [ρ(2) ρ(n, . . . , 3)]

)
Zτn
(
In|1, ρ(n, . . . , 3, 2)

)


= Un Zτn (5.36)

such that

lim
z0→1

(−2πi(1−z0))s01 Zτ0,n = es01ω(1,0|τ)Un Zτn |s̃ij . (5.37)
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Note that the shuffle decomposition (5.36) of genus-one integrals in the context of the

boundary value Cτ
1,n is the analogue of the BCJ decomposition (5.15) relevant for the

genus-zero integrals in Cτ
0,n. In particular, both n!×(n−1)! matrices UBCJ

n and Un feature

a unit matrix within their upper (n−1)!× (n−1)! block.

5.3.2 The minimal r0,n(x1) eigenvalue

What remains to be discussed here is the regulating factor: similar to the previous subsec-

tion, it turns out that the finite value in eq. (5.37) emerges from the regularized boundary

value Cτ
1,n. However, recovering the genus-one Zτ -integrals is more subtle than the tree-

level integrals from Cτ
0,n, since the validity of eq. (5.34), i.e. the absence of rest terms, relies

on the exponent s01 of the regulating factor (−2πi(1−z0))s01 and would generally fail if

there were further contributions sij . Therefore, one has to make sure that the dominating

eigenvalue of r0,n(x1) in Cτ
1,n, cf. eq. (5.29), is −s01, i.e. the eigenvalue with the minimal

real part as opposed to the eigenvalue −s012...n with maximal real part in the calcula-

tion (5.17). This can be achieved by employing a projection to the eigenspace of −s01 as

follows: interchanging limit and τ -derivative of (−2πi(1−z0))s01 Zτ0,n using the continuity

of the latter leads again on the one hand according to eqs. (3.18) and (5.35) to

2πi∂τ lim
z0→1

(−2πi(1−z0))s01 Zτ0,n

= 2πi∂τe
s01ω(1,0|τ)Un Zτn |s̃ij (5.38)

= es01ω(1,0|τ)Un

(
−
(
rn(ε0)|s̃ij + 2ζ2s01

)
+ s01 G2 +

∞∑
k=4

(1−k) Gk rn(εk)|s̃ij

)
Zτn |s̃ij .

On the other hand, we find similar to the calculation in eq. (5.19)

lim
z0→1

(−2πi(1−z0))s012πi∂τ Zτ0,n (5.39)

= es01ω(1,0|τ)

(
−r0,n(ε0)−G2 r0,n(x1) +

∞∑
k=4

(1−k) Gk (r0,n(εk) + r0,n(xk−1))

)
Un Zτn |s̃ij ,

such that comparing the coefficients of Gk leads to the matrix equations

r0,n(x1)Un = −s01Un ,

r0,n(ε0)Un = Un
(
rn(ε0)|s̃ij + 2ζ2s01

)
, (5.40)

(r0,n(εk) + r0,n(xk−1))Un = Un rn(εk)|s̃ij , k ≥ 4 .

While the second and third equations show the action of the representations r0,n(εk),

r0,n(xk) and rn(εk) on the vector space spanned by the columns of Un , which will be

discussed in more detail in subsection 5.4.3, we shall next elaborate on the first one.

5.3.3 Projecting to the r0,n(x1) eigenspace of the minimal eigenvalue

The first eigenvalue equation (5.40) determines the first (n−1)! column vectors of the n!×n!

basis transformation Un diagonalizing the matrix r0,n(x1):

r0,n(x1) = Un diag(−s01, . . . ,−s01︸ ︷︷ ︸
(n−1)!

, . . . ,−s01...n, . . . ,−s01...n︸ ︷︷ ︸
(n−1)!

)U−1
n , (5.41)
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with

Un =
(
Un . . . UBCJ

n

)
, U−1

n =

(
Pn
...

)
, (5.42)

where the last (n−1)! column vectors of Un are determined by the first eigenvalue equation

in eq. (5.21). The (n−1)! × n! matrix Pn defined by eq. (5.42) is composed of the dual

vectors of Un , such that

Pn Un = 1(n−1)! . (5.43)

This equation and the eigenvalue decomposition (5.41) imply that the matrix Pn acts

on the regularizing factor (−2πi(1−z0))−r0,n(x1) in Cτ
1,n by projecting to the eigenspace

associated with the eigenvalue −s01,

Pn (−2πi(1−z0))−r0,n(x1) = (−2πi(1−z0))s01Pn . (5.44)

Combining this with eq. (5.35) shows that the boundary value Cτ
1,n can be projected to

the (n−1)!-vector Zτn of genus-one Z-integrals by left-multiplication with Pn :

Pn Cτ
1,n = lim

z0→1
(−2πi(1−z0))s01Pn Zτ0,n

= es01ω(1,0|τ) Zτn |s̃ij , (5.45)

which finishes the proof of eq. (5.2).

5.3.4 Two-point example

Let us explicitly determine the upper boundary value Cτ
1,2 and the associated matrices

U2 , P2 for the two-point example. The finite part in eq. (5.35) for Zτ0,2 is given by

lim
z0→1

(−2πi(1−z0))s01 Zτ0,2 = lim
z0→1

es01ω(1,0|τ)

∫ z0

0
dz2 e

−s02Gτ02−s12Gτ12

(
Ω12(η)

Ω02(η)

)
(1 +O(1−z0))

= es01ω(1,0|τ)

∫ 1

0
dz2 e

−(s02+s12)Gτ12

(
Ω12(η)

Ω12(η)

)
= es01ω(1,0|τ)U2 Zτ2 |s̃ij (5.46)

where s̃12 = s02 + s12, and the symmetry Ω(1−z2, η|τ) = Ω(−z2, η|τ) determines

U2 =

(
1

1

)
. (5.47)

The integral Zτ2 = Zτ2 (I2|1, 2) is given by the two-point, genus-one integral

Zτ2 =

∫ 1

0
dz2 e

−s12Gτ12Ω12(η) . (5.48)
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The three eigenvalue equations (5.40) can be easily verified using the expressions (3.28) for

the scalar derivations r2(εk)|s̃ij as well as eqs. (4.31) and (4.47) for r0,2(xk) and r0,2(εk),

respectively. In particular, we have

r0,2(x1)U2 = −s01U2 (5.49)

and can diagonalize r0,2(x1) via

r0,2(x1) =

(
−(s01 + s02) s02

s12 −(s01 + s12)

)

=

(
1 1

1 − s12
s02

)
︸ ︷︷ ︸

U2

(
−s01 0

0 −s012

)
1

s02 + s12

(
s12 s02

s02 −s02

)
︸ ︷︷ ︸

U−1
2

, (5.50)

By isolating the first row of U−1
2 as prescribed by eq. (5.42), one can read off

P2 =
1

s02 + s12

(
s12 s02

)
(5.51)

and, hence,

P2 Cτ
1,2 = lim

z0→1
(−2πi(1−z0))s01P2 Zτ0,2

= es01ω(1,0|τ)P2 U2 Zτ2 |s̃ij
= es01ω(1,0|τ) Zτ2 |s̃ij . (5.52)

5.3.5 Three-point example

In the three-point case n = 3, the eigenvalue decomposition (5.41) leads to the matrix

U3 =



1 0 − s02
s12

0 1 0

0 1 0 − s03
s13

0 1

1 1 − s02
s12

1 − (s13+s23)
s03

− s13
s03

1 1 1 − s03
s13

− s12
s02

− (s12+s23)
s02

0 1 0 1 s12(s03+s13+s23)
s03s023

(s12−s03)s13
s03s023

1 0 1 0 s12(s13−s02)
s02s023

s13(s02+s12+s23)
s02s023


(5.53)

of eigenvectors of r0,3(x1), written out in eq. (4.35). The first two columns of U3 correspond

to the eigenvalue −s01 and furnish the matrix U3 such that

lim
z0→1

(−2πi(1−z0))s01 Zτ0,3 = es01ω(1,0|τ)U3 Zτ3 |s̃ij , (5.54)

while the last two columns reproduce the matrix UBCJ
3 in eq. (5.27) and are the eigenvectors

to −s0123. The projection P3 given by the first two rows of U−1
3 takes the form

P3 =
1

(s02+s03+s12+s13+s23)

 s12(s02+s12+s13+s23)
(s02+s12) − s02s13

(s02+s12) . . .

− s03s12
(s03+s13)

s13(s03+s12+s13+s23)
(s03+s13) . . .

(5.55)

. . . s03s12
(s02+s12)

s02s13
(s02+s12) − s03s12

(s02+s12)
s02(s02+s03+s12+s23)

(s02+s12)

. . . s03s12
(s03+s13)

s02s13
(s03+s13)

s03(s02+s03+s13+s23)
(s03+s13) − s02s13

(s03+s13)

 .
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5.4 Applying the languages: two solution strategies for Cτ
1,n

The system of differential equations (4.52) for Zτ0,n contains the fundamental equation (3.18)

for Zτn as well as the elliptic KZB equation (3.35) for SE
n (z0|τ). As a consequence, both

corresponding solution strategies can be applied to calculate the integrals Zτn appearing in

the regularized boundary value Cτ
1,n given in eq. (5.45). The corresponding calculations

presented in the following two subsections are applications of the methods developed in

refs. [1, 3] and reviewed in subsection 3.2 and subsection 3.3 which builds upon the analysis

of Cτ
0,n,C

τ
1,n in the previous subsections.

5.4.1 The elliptic KZB associator

Having the elliptic KZB equation (4.14) at hand, analogously to the discussion in sub-

section 3.3 the regularized boundary values identified in eqs. (5.17) and (5.45) are related

according to the associator equation (5.3) by the elliptic KZB associator Φτ defined in

eq. (3.38). Applying the projection Pn from eq. (5.42) and rearranging factors leads to the

associator equation for the genus-one Z-integrals

Zτn |s̃ij = −e(s012...n−s01)ω(1,0|τ)Pn r0,n (Φτ (xk))U
BCJ
n Ztree

n+2 . (5.56)

The associator equation (5.56) is the backbone in calculating the α′-expansions of Zτn from

differential equations in z0. It relates the n-point, genus-one integrals Zτn containing the

planar, one-loop configuration-space integrals with (arbitrary) Mandelstam variables s̃ij
for 1≤i<j≤n to the (n+2)-point, tree-level Z-integrals Ztree

n+2: the elliptic KZB associator

can be represented by the generating series of eMZVs with the letters being the matrices

rτ0,n(xk) appearing in the elliptic KZB equation of Zτ0,n [81]

r0,n (Φτ (xk)) =
∑
w≥0

∑
k1,...,kw≥0

r0,n(xk1 . . . xkw)ω(kw, . . . , k1|τ) . (5.57)

The matrices rτ0,n(xk) are proportional to sij and therefore to α′ (cf. eq. (2.1)), such that

eq. (5.57) is simply the α′-expansion of Φτ . When plugged into the associator equa-

tion (5.56), it yields the α′-expansion of the genus-one integrals Zτn from the α′-expansion

of the genus-zero integrals Ztree
n+2. To obtain the α′-expansion of Zτn up to the order oτα,max,

words rτ0,n(xk1 . . . xkw) up to the maximal word length 0 ≤ w ≤ wmax with

wmax = oτα,max − otree
α,min (5.58)

have to be included, where

otree
α,min = 1− n (5.59)

is the minimal order in α′ of Ztree
n+2. However, the actual genus-one configuration-space

integrals appearing in one-loop open-string amplitudes are the coefficients of the η-variables

from the integrals Zτn. Since the matrices rτ0,n(xki) are homogeneous in these variables of

degree ki−1 ≥ −1, a configuration-space integral which is given by an η-degree k ≥ 1−n
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coefficient of Zτn receives at most non-trivial contributions from words rτ0,n(xk1 . . . xkw) with

word length 0 ≤ w ≤ wmax satisfying

w = (k1 + · · ·+ kw)− k . (5.60)

To summarize, in order to calculate the α′-expansion of an n-point, genus-one configuration-

space integral appearing as an η-coefficient19 of degree k of Zτn up to the order oτα,max, only

the finitely many words rτ0,n(xk1 . . . xkw) with

0 ≤ w ≤ oτα,max + n− 1 , w = (k1 + · · ·+ kw)− k (5.61)

contribute to the corresponding η-coefficients of the elliptic KZB associator (5.57) and, thus,

have to be included in the associator eq. (5.56). Upon rewriting the eMZVs in eq. (5.57)

in terms of iterated Eisenstein integrals [20], we have checked eq. (5.56) to reproduce the

α′-expansion generated by eq. (3.23) for a wide range of orders in α′ and ηj .

Note that the results of eq. (5.56) for the integrals Zτn |s̃ij relevant to one-loop open-

string amplitudes no longer depend on s01, which is why the conditions (2.3) on its real

part do not pose any restrictions on the physical applications.

5.4.2 Two-point example

Let us investigate the two-point working example. From eqs. (3.25) and (5.23), the tree-

level integrals are known to be given by

UBCJ
2 Ztree

4 =

(
− 1
s12
1
s02

)
Γ(1−s12)Γ(1−s02)

Γ(1−s12−s02)
, (5.62)

while the matrices r0,2(xk) are spelled out in eq. (4.31). The projection P2 is given in

eq. (5.51), such that upon combining these quantities the associator eq. (5.56) for the

two-point integral Zτ2 in eq. (5.48) takes the form

Zτ2
∣∣
s̃12

= e(s02+s12)ω(1,0|τ) 1

s02+s12

(
s12 s02

)
r0,2 (Φτ (xk))

(
1
s12

− 1
s02

)
Γ(1−s12)Γ(1−s02)

Γ(1−s12−s02)
.

(5.63)

Let us extract the configuration-space integral for the two-point, one-loop integral

Iτ2 =

∫ 1

0
dz2 e

−(s02+s12)Gτ12 = Zτ2
∣∣
s̃12

∣∣
η−1 (5.64)

on the left-hand side of eq. (5.63) and calculate its α′-expansion up to order oτα,max = 2.

Since according to eq. (5.62) the minimal order of the tree-level integral is oτα,min = −1,

words rτ0,n(xk1 . . . xkw) with word length 0 ≤ w ≤ 3 have to be considered. However, the

19See ref. [1] for details on the extraction of the appropriate η-coefficient from a Z-integral Zτn.

– 53 –



J
H
E
P
1
2
(
2
0
2
0
)
0
3
6

condition (5.61) only selects the words which are explicitly written down in the following

to contribute non-trivially:

r0,2 (Φτ (xk)) = r0,2(x0)ω(0|τ) + r0,2([x1, x0])ω(0, 1|τ)

+ r0,2 (x2x0x0 + x0x0x2)ω(0, 0, 2|τ) + r0,2(x0x2x0)ω(0, 2, 0|τ)

+ r0,2 (x1x1x0 + x0x1x1)ω(0, 1, 1|τ) + r0,2(x1x0x1)ω(1, 0, 1|τ) +O(η0, s4
ij)

= r0,2(x0) + r0,2([x1, x0])ω(0, 1|τ)

+ r0,2 ([x0, [x0, x2]])ω(0, 0, 2|τ)− r0,2(x0x2x0)ζ2

+ r0,2 ([x1, [x1, x0]])

(
5

12
ζ2 +

1

2
ω(0, 1|τ)2 +

1

2
ω(0, 0, 2|τ)

)
+O(η0, s4

ij) . (5.65)

Therefore, denoting the words written down above and the corresponding higher-order

terms O(s4
ij) which give the order η−1 of the elliptic KZB associator by r0,2 (Φτ (xk)) |η−1 ,

we obtain the equation for the configuration-space integral

Iτ2 = e(s02+s12)ω(1,0|τ) 1

s02 + s12

(
s12 s02

)
r0,2 (Φτ (xk)) |η−1

(
1
s12

− 1
s02

)
Γ(1−s12)Γ(1−s02)

Γ(1−s12−s02)

= 1 +
1

4
(s02+s12)2

(
ζ2 − 12γ(4, 0|q)

)
+O(s3

ij) (5.66)

in agreement with eq. (2.39) and [1].

5.4.3 Two organization schemes for α′-expansions

The other expansion method for the genus-one Z-integrals Zτn put forward in ref. [1] is

reviewed in subsection 3.2 and consists of solving the differential eq. (3.18) in τ by Picard

iteration. The resulting α′-expansion (3.23) is organized in terms of iterated Eisenstein

integrals and (n−1)!×(n−1)! matrix representations rn(εk) and furnishes an alternative to

the expanded form of eq. (5.56) in terms of eMZVs and n! × n! matrix representations

r0,n(xk). The equivalence of eqs. (3.23) and (5.56), i.e.

∞∑
`=0

∑
k1,k2,...,k`
=0,4,6,8,...

(∏̀
j=1

(kj−1)

)
γ(k1, k2, . . . , k`|q)rn(εk` . . . εk2εk1)Zi∞n

∣∣
s̃ij

= −e(s012...n−s01)ω(1,0|τ)
∞∑
w=0

∑
k1,...,kw≥0

ω(k1, k2, . . . , kw|τ) (5.67)

× Pn r0,n(xkw . . . xk2xk1)UBCJ
n Ztree

n+2 ,

is not obvious from the first glance at these types of series but guaranteed by the arguments

in refs. [1, 3] and the previous sections. The initial value Zi∞n on the left-hand side is related

to Ztree
n+2 on the right-hand side by an sij- and ηj dependent (n−1)!×(n−1)! matrix described

in ref. [1], see eq. (3.24) for the two-point example.

The discussion of the previous subsections yields a streamlined way of showing directly

that both sides of eq. (5.67) obey the same differential equation in τ . The differential
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eq. (3.18) (with s̃ij in the place of sij) holds for the left-hand side by construction, and the

analogous equation for Pn Cτ
1,n = es01ω(1,0|τ) Zτn |s̃ij on the right-hand side can be inferred

from properties of the augmented Z-integrals: according to the calculation (5.39), this

differential equation for Pn Cτ
1,n can be written as

2πi∂τPn Cτ
1,n = lim

z0→1
(−2πi(1−z0))s01Pn 2πi∂τ Zτ0,n

= Pn

(
−r0,n(ε0)−G2 r0,n(x1) +

∞∑
k=4

(1−k) Gk (r0,n(εk) + r0,n(xk−1))

)
Un

× e−s01ω(1,0|τ) Zτn |s̃ij , (5.68)

where the identities (5.40) together with eq. (5.43) can be used to relate the matrix repre-

sentations of different sizes

Pn r0,n(x1)Un = −s011(n−1)!×(n−1)! ,

Pn r0,n(ε0)Un =
(
rn(ε0)|s̃ij + 2ζ2s01

)
, (5.69)

Pn (r0,n(εk) + r0,n(xk−1))Un = rn(εk)|s̃ij , k ≥ 4 .

As a consequence, eq. (5.45) can be simplified to

2πi∂τ
(
es01ω(1,0|τ) Zτn |s̃ij

)
= 2πi∂τPn Cτ

1,n (5.70)

=

(
−
(
rn(ε0)|s̃ij + 2 ζ2 s01

)
+ s01 G2 +

∞∑
k=4

(1−k) Gk rn(εk)|s̃ij

)
es01ω(1,0|τ) Zτn |s̃ij ,

which is equivalent to eq. (3.18) for the Mandelstam variables s̃ij defined in eq. (5.32) after

employing

2πi∂τω(1, 0|τ) = G2−2ζ2 . (5.71)

This concludes the direct proof that both sides of eq. (5.67) obey the same differential

equation in τ . A direct comparison of the respective initial values as τ → i∞ may be

challenging, but the consistency in this limit is guaranteed since both sides have been

derived in refs. [1, 3] and the previous sections. Note that the combination r0,n(εk) +

r0,n(xk−1) in the third line of eq. (5.69) also arises when adapting depth-three relations

eq. (4.67) in the derivation algebra to the twice punctured torus.

6 Conclusion

In refs. [1, 3] two different constructions for the α′-expansion of configuration-space integrals

in one-loop open-string amplitudes have been put forward. In both references the (elliptic)

multiple zeta values in the α′-expansions are derived from different types of differential

equations. Here we have connected these two approaches within a more general framework

and, in particular, shown that

• both approaches and the definitions therein can be traced back to one class of iterated

integrals, called augmented (genus-one) Z-integrals, a vector of n-point basis integrals
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Zτ0,n is defined in eq. (4.3). Besides the usual fixed puncture z1 = 0 on the torus

C/(Z+τZ) appearing in the definition of the genus-one Z-integrals of ref. [1], the

integrals Zτ0,n are augmented by a second unintegrated puncture z0 with z1 = 0 <

z0 < 1 as in ref. [3]. Thus — apart from Mandelstam invariants sij — the augmented

integrals depend on two parameters: the modular parameter τ of the torus and the

additional puncture z0.

• differentiation of Zτ0,n with respect to the two parameters τ and z0 leads to a ho-

mogeneous linear system of two partial differential equations — an elliptic KZB

system (4.52) on the twice-punctured torus

• the genus-one Selberg integrals from ref. [3] are linear combinations of the components

of the augmented Z-integrals Zτ0,n; they can be recovered according to the discussion

in appendix D.

• the genus-one Z-integrals from ref. [1] — and hence the configuration-space integrals

in n-point, planar, one-loop open-string amplitudes — are recovered as regularized

boundary values of the augmented integrals in Zτ0,n as z0 → 1. Correspondingly, the

two differential equations in the system (4.52) can be solved independently for the

string integrals in the limit of z0 → 1 via integration w.r.t. τ or z0. The respec-

tive initial values at τ → i∞ and z0 → 0 are reduced to (n+2)-point genus-zero

integrals whose α′-expansion in terms of multiple zeta values is known from several

all-multiplicity methods, see e.g. [12, 15, 36, 45]. As summarized in subsection 5.4,

this yields the two approaches in refs. [1, 3] to calculate the α′-expansion of one-

loop open-string amplitudes in terms of (elliptic) multiple zeta values and iterated

Eisenstein integrals.

• calculating the α′-expansion using the integrals Zτ0,n involves elementary operations

only: differentiation in formal expansion variables ηj and matrix algebra, with the

matrices being determined by the elliptic KZB system (4.52). The entries of the cor-

responding n!×n! matrix representation determine the coefficients in the α′-expansion

and are explicitly given for an arbitrary number of points n in eqs. (4.21) and (4.44).

• the (n−1)!×(n−1)! matrix representation in the differential equation in ref. [1] is

reproduced from the matrices appearing in the elliptic KZB system (4.52) according

to eq. (5.69).

• the operators appearing in an elliptic KZB system of the form (4.52) satisfy the

commutation relations (4.61) which serve as consistency checks for our explicit matrix

representations.

Our construction of particular integral representations Zτ0,n for the solution of an elliptic

KZB system on the twice-punctured curve leads to the question as how it may be em-

bedded into the existing Mathematics literature about similar systems. In particular, its

connection to ref. [68] and the representation of the algebra generators therein appearing

in the differential equations as nested commutators, should be clarified.
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A Kronecker-Eisenstein chain identities

In this appendix, we prove various identities used for chains (4.1) of Kronecker-Eisenstein

series in the proofs of the n-point formulæ for the z0- and τ -derivatives of the augmented

Z-integrals in appendix B and appendix C, respectively. Some of these identities involve

chains with shifts or replacements in certain η-variables. For a replacement of ηak by ξ (or

a shift by ξ − ηak , respectively), this will be denoted as follows,

ϕτ (a1, a2, . . . , ap)|ηak→ξ =

k∏
i=2

Ωai−1,ai(ηaiai+1...ap + ξ − ηak)

p∏
i=k+1

Ωai−1,ai(ηaiai+1...ap) ,

(A.1)

where we recall the shorthand Ωij(η) = Ω(zij , η|τ). Moreover, we generally assign an η-

variable to the first index of a chain ϕτ (a1, a2, . . . , ap) such that the overall sum vanishes, i.e.

ηa1 = −ηa2 − · · · − ηap , (A.2)

which is in agreement with eq. (4.18) for the chains ϕτ (1, A) and ϕτ (0, B).

Throughout this and the following section, we accompany the crucial identities by

the graphical notation for chains of Kronecker-Eisenstein series in order to facilitate the

readability of the proofs for the n-point z0- and τ -derivatives. Let us briefly recall the

corresponding definitions and conventions from subsection 2.2.2:

• A Kronecker-Eisenstein series Ωij(η) is represented by a directed edge with weight η

from vertex j to vertex i

Ωij(η) = i j
η

. (A.3)

• A chain of Kronecker-Eisenstein series ϕτ (A) labeled by the sequence A =

(a1, a2, . . . , ap) is represented by a chain of directed edges connecting the correspond-

ing vertices ai and ai+1. If the η-variable ηai...ap of the factor Ωai−1,ai(ηai...ap) is not

explicitly depicted as a weight of the edge and unless stated otherwise, it is deter-

mined by the vertices pointing to the vertex i through a chain of arrows: each vertex

j which has an edge pointing in the direction of i (possibly via further directed edges

pointing towards i) contributes a term ηj , such that the edge pointing away from i
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is given by the corresponding sum

ϕτ (A) =
a1

a2

ap

=

p∏
i=2 ai−1

ai

ηai...p =

p∏
i=2

Ωai−1,ai(ηaiai+1...ap) , (A.4)

where we use the convention ηaiai+1...ap = ηai,i+1...p for sums of η-variables associated

to a sequence (ai, ai+1, . . . , ap) in graphs. It should always be clear from the context

whether edges without weights refer to the genus-zero notation or the genus-one

notation where the weights are only implicit. In particular, in this and the next

section, we exclusively discuss the genus-one case.

• The same accumulation of the η-variables is used for directed tree graphs, if it is

not denoted explicitly: the weight of the edge pointing away from the vertex i is the

sum of all the η-variables associated to the edges pointing towards i via a chain of

Kronecker-Eisenstein series. For example

Ω12(η234)Ω23(η3)Ω24(η4) =

1

2

η234

3
η3

4
η4

=

1

2

3 4

. (A.5)

The following identities, which are proven in appendix A.1, are particularly useful:

for finite, disjoint sequences A = (a1, . . . , ap), B = (b1, . . . , bq), C = (c1, . . . , cm) and

D = (d1, . . . , dl) as well as distinct labels r, r0, r1 not contained in any of the sequences

A,B,C,D, we find

• the concatenation of two chains with shifted η-variables of the first chain

ϕτ (A, r)|ηr→ηr+ηBϕ
τ (r,B) = ϕτ (A, r,B) , (A.6)

i.e.

a1

a2

ηa23...p + ηr + ηB

ai−1

ai

ηai...p + ηr + ηB

ap

r

ηr + ηB

r

b1

b2

bq

=

a1

a2

ap

r

b1

b2

bq

(A.7)
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• the shuffle product of two chains ending at the same point r

ϕτ (r,A)ϕτ (r,B) = ϕτ (r,A B) , (A.8)

i.e.

r

a1

a2

ap

b1

b2

bq

=

r

a1

a2

ap

b1

b2

bq

(A.9)

• the shuffle product of two chains beginning at the same point r

ϕτ (C, r)|ηr→ηAϕ
τ (D, r)|ηr→ηr+ηB = ϕτ (C D, r)|ηr→ηr+ηA+ηB , (A.10)

where according to eq. (A.2) ηc1 = −ηA − ηc2,...,cm and ηd1 = −ηr − ηB − ηd2,...,dl , i.e.

r

cm

ηA

c2

c1

dl

ηB + ηr

d2

d1 =

r

cm

ηA

c2

c1

dl

ηB + ηr

d2

d1 (A.11)

• the reflection property

ϕτ (r, a1, . . . , ap) = (−1)pϕτ (ap, . . . , a1, r) , (A.12)

i.e.

r

a1

a2

ap

= (−1)p

r

a1

a2

ap

(A.13)

where again by our convention ηr = −ηA = −ηa1...ap .

• and the shifting of two labels r0 and r1 next to each other

ϕτ (r0, A, r1, B)

=

p+1∑
i=1

(−1)p+1−iϕτ (r0, a1, a2, . . . , ai−1)ϕτ (r0, r1, (ap, ap−1, . . . , ai) B) , (A.14)
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i.e.

r0

a1

ap

r1

b1

bq

=

p+1∑
i=1

(−1)p+1−i

r0

a1

ai−1

r1

ap

ai

b1

bq

. (A.15)

A.1 Shuffle and concatenation identities

The first identity is the concatenation (A.6) of two chains, where one has a shifted η-variable

ϕτ (A, r)|ηr→ηr+ηBϕ
τ (r,B) = ϕτ (A, r,B) . (A.16)

For A = ∅ or B = ∅, this relation is trivial due to eq. (4.2), while for A = (a1, . . . , ap), B =

(b1, . . . bq) 6= ∅, it follows from the definitions (4.1) and (A.6)

ϕτ (A, r)|ηr→ηr+ηBϕ
τ (r,B)

= Ωa1,a2(ηA + ηr + ηB, τ) . . .Ωap−1,ap(ηap + ηr + ηB, τ)Ωap,r(ηr + ηB, τ)

× Ωr,b1(ηB, τ)Ωb1,b2(ηb2,...,bq , τ) . . .Ωbq−1,bq(ηbq , τ)

= ϕτ (A, r,B) . (A.17)

The second identity is the shuffle relation (A.8), which can be proven by induction in

the length of the sequence A (and by the symmetry in A and B). Thus, let us assume

that A = ∅ or B = ∅, then it is trivially satisfied according to the definition (4.2), i.e.

ϕτ (r) = 1. For A = (a1) and B = (b1), we simply find the Fay identity (2.24) for the

Kronecker-Eisenstein series

ϕτ (r, a1)ϕτ (r, b1) = Ωr,a1(ηa1)Ωr,b1(ηb1)

= Ωr,a1(ηa1,b1)Ωa1,b1(ηb1) + Ωr,b1(ηa1,b1)Ωb1,a1(ηa1)

= ϕτ (r, a1, b1) + ϕτ (r, b1, a1)

= ϕτ (r, a1 b1) . (A.18)

Now, let us assume that it holds for (a2, . . . , ap) and B = (b1, . . . , bq), as well as for

A = (a1, . . . , ap) and (b2, . . . , bq) and use the Fay identity for the induction step to show

the identity for A and B

ϕτ (r,A)ϕτ (r,B) = ϕτ (A)ϕτ (B)ϕτ (r, a1)|ηa1→ηAϕ
τ (r, b1)|ηb1→ηB

= ϕτ (A)ϕτ (B) (ϕτ (r, a1, b1) + ϕτ (r, b1, a1)) |ηa1 ,ηb1→ηA,ηB
= ϕτ (a1, a2, . . . , ap)ϕ

τ (r, a1, B)|ηa1→ηA + ϕτ (r, b1, A)|ηb1→ηBϕ
τ (b1, b2, . . . , bq)

= ϕτ (r, a1)|ηa1→ηA+ηBϕ
τ (a1, a2, . . . , ap)ϕ

τ (a1, B)

+ ϕτ (r, b1)|ηb1→ηB+ηAϕ
τ (b1, b2, . . . , bq)ϕ

τ (b1, A)

= ϕτ (r, a1, (a2, . . . , ap) B) + ϕτ (r, b1, A (b2, . . . , bq))

= ϕτ (r,A B) , (A.19)

where we have used the concatenation property in the intermediate step.
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The next identity (A.10),

ϕτ (C, r)|ηr→ηAϕ
τ (D, r)|ηr→ηr+ηB

= ϕτ (C D, r)|ηr→ηr+ηA+ηB ,ηc1→−ηA−ηc2,...,cm ,ηd1→−ηr−ηB−ηd2,...,dl , (A.20)

is similar to the one before, but we have to be more careful with the shifts in the η-variables.

For C = ∅ or D = ∅, it is trivial. Thus, let C = (c1, . . . , cm) and D = (d1, . . . , dl) with

m, l 6= 0. For m = l = 1, it is simply the Fay identity. For m, l ≥ 2, we can iteratively

apply the Fay identity:

ϕτ (C, r)|ηr→ηAϕ
τ (D, r)|ηr→ηr+ηB

= ϕτ (c1, . . . , cm−1, cm, r)|ηr→ηAϕ
τ (d1, . . . , dl−1, dl, r)|ηr→ηr+ηB

= ϕτ (c1, . . . , cm−1, cm)|ηcm→ηcm+ηAϕ
τ (d1, . . . , dl, cm)|ηcm→ηr+ηBϕ

τ (cm, r)|ηr→ηr+ηA+ηB

+ ϕτ (c1, . . . , cm, dl)|ηdl→ηAϕ
τ (d1, . . . , dl−1, dl)|ηdl→ηdl+ηr+ηBϕ

τ (dl, r)|ηr→ηr+ηA+ηB

= ϕτ ((c1, . . . , cm−1) D, cm, r)|ηr→ηr+ηA+ηB

+ ϕτ (C (d1, . . . , dl−1), dl, r)|ηr→ηr+ηA+ηB

= ϕτ (C D, r)|ηr→ηr+ηA+ηB , (A.21)

where according to eq. (A.2), ηc1 = −ηA − ηc2,...,cm and ηd1 = −ηr − ηB − ηd2,...,dl
In a similar inductive proof of the reflection property (A.12),

ϕτ (r, a1, . . . , ap) = (−1)pϕτ (ap, . . . , a1, r) , (A.22)

with ηr = −ηA, the p = 1 case simply reduces to the antisymmetry property of the

Kronecker-Eisenstein series,

ϕτ (r, a1) = Ωr,a1(ηa1 , τ) = −Ωa1,r(−ηa1 , τ) = −ϕτ (a1, r) . (A.23)

The inductive step is done by concatenation

ϕτ (r, a1, . . . , ap−1, ap) = ϕτ (r, a1, . . . , ap−1)|ηap−1→ηap−1,ap
ϕτ (ap−1, ap)

= (−1)p−1ϕτ (ap−1, . . . , a1, r)|ηr=−ηa1,...,apϕ
τ (ap−1, ap)

= (−1)pϕτ (ap, ap−1)|ηap−1→−ηapϕ
τ (ap−1, . . . , a1, r)|ηr=−ηa1,...,ap

= (−1)pϕτ (ap, ap−1, . . . , a1, r)|ηr=−ηa1,...,ap . (A.24)

To finish, let us proof the identity (A.14),

ϕτ (r0, A, r1, B) =

p+1∑
i=1

(−1)p+1−iϕτ (r0, A1i)ϕ
τ (r0, r1, Ãi,p+1 B) , (A.25)

for A = (a1, a2, . . . , ap) and B = (b1, b2, . . . , bq), where we already make use of the notation

in eq. (4.19) for subsequences. It is trivially satisfied for A = ∅, thus, let us assume that
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it holds for A = (a1, . . . , ap) and show it for A0 = (a0, A) = (a0, a1, . . . , ap). We do this in

two steps. First, the following combinatorial identity is proven

p+1∑
i=1

(−1)i(a0, A1,i) Ãi,p+1 = −(Ã, a0) . (A.26)

It is trivially satisfied for A = ∅ and for A = (a1), it takes the form

(−1)(a0) (a1) + (a0, a1) = −(a1, a0) . (A.27)

The induction step can be obtained using the recursive definition of the shuffle product

p+1∑
i=1

(−1)i(a0, A1,i) Ãi,p+1 =

p+1∑
i=1

(−1)i(a0, (A1,i Ãi,p+1)) +

p∑
i=1

(−1)i(ap, (a0, A1,i Ãi,p))

= −(a0, Ã) +

p+1∑
i=2

(−1)i(a0, (A1,i Ãi,p+1))− (Ã, a0)

= −(a0, Ã)−
p+1∑
i=2

(−1)i−1(a0, (a1, A2,i Ãi,p+1))− (Ã, a0)

= −(a0, Ã) + (a0, Ã)− (Ã, a0)

= −(Ã, a0) . (A.28)

Second, we use concatenation and the induction step to write

ϕτ (r0, a0, A, r1, B)

= Ωr0,a0(ηa0 + ηA + ηr1 + ηB)ϕτ (a0, A, r1, B)

= Ωr0,a0(ηa0 + ηA + ηr1 + ηB)

p+1∑
i=1

(−1)p+1−iϕτ (a0, A1i)ϕ
τ (a0, r1, Ãi,p+1 B) (A.29)

and apply the Fay identity

Ωr0,a0(ηa0 + ηA + ηr1 + ηB)Ωa0,r1(ηai,...,ap + ηr1 + ηB)

= Ωr0,a0(ηa0,...,ai−1)Ωr0,r1(ηai,...,ap + ηr1 + ηB)

− Ωr0,r1(ηa0 + ηA + ηr1 + ηB)Ωr1,a0(ηai,...,ap + ηr1 + ηB) (A.30)

to obtain

ϕτ (r0, a0, A, r1, B)

= Ωr0,a0(ηa0 + ηA + ηr1 + ηB)

p+1∑
i=1

(−1)p+1−iϕτ (a0, A1i)ϕ
τ (a0, r1, Ãi,p+1 B)

=

p+1∑
i=1

(−1)p+1−iϕτ (r0, a0, A1i)ϕ
τ (r0, r1, Ãi,p+1 B)

− Ωr0,r1(ηa0 + ηA + ηr1 + ηB)

p+1∑
i=1

(−1)p+1−iϕτ (r1, a0, A1i)ϕ
τ (r1, Ãi,p+1 B)
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=

p+1∑
i=1

(−1)p+1−iϕτ (r0, a0, A1i)ϕ
τ (r0, r1, Ãi,p+1 B)

− Ωr0,r1(ηa0 + ηA + ηr1 + ηB)

p+1∑
i=1

(−1)p+1−iϕτ (r1, (a0, A1i) Ãi,p+1 B)

=

p+2∑
i=2

(−1)p+2−iϕτ (r0, A
0
1i)ϕ

τ (r0, r1, Ã
0
i,p+1 B)

+ (−1)p+1Ωr0,r1(ηa0 + ηA + ηr1 + ηB)ϕτ (r1, (Ã, a0) B)

=

p+2∑
i=1

(−1)p+2−iϕτ (r0, A
0
1i)ϕ

τ (r0, r1, Ã
0
i,p+2 B) , (A.31)

where we have used eq. (A.26) for the second equality from below. Thus, if the iden-

tity (A.14) holds for A, it also holds for the longer sequence A0 = (a0, A), as shown by the

calculation above, which proves its general validity by induction.

B Derivation of the n-point z0-derivative

In this section, we derive the n-point formula for the z0-derivative. The starting point is

eq. (4.16),

∂0Z
τ
0,n((1, A), (0, B)) =

p∑
k=0

q∑
j=0

∫
γ

n∏
i=2

dzi KNτ
01...n

(
sak,bjf

(1)
ak,bj

ϕτ (1, A)ϕτ (0, B)
)
, (B.1)

where A = (a1, . . . , ap) and B = (b1, . . . , bq) are disjoint sequences without repetitions such

that A ∪B = {2, 3, . . . , n}, and the proof is split into three parts. Moreover, we will write

γ in the place of γ12...n0 for the integration domain (4.5) throughout the appendices. First,

we derive some preliminary identities which will be useful to rewrite the term

f
(1)
ak,bj

ϕτ (1, A)ϕτ (0, B) =
(
Ωak,bj (ξ)ϕ

τ (1, A)ϕτ (0, B)
)
|ξ0 . (B.2)

Using these identities, we then give the proof of the closed formula (4.21).

Throughout this section, we accompany the crucial identities by the graphical notation

for chains of Kronecker-Eisenstein series in order to facilitate the readability of the proofs

for the n-point z0- and τ -derivatives.

B.1 Preliminary identities

Instead of only investigating the term (B.2) with the factor f
(1)
ak,bj

, we consider the corre-

sponding generating series and, thus, the product of chains

Ωak,bj (ξ)ϕ
τ (1, A)ϕτ (0, B) =

1

a1

ηA

a2

ηa23...p

ak

ap

0

b1

ηB

b2
ηb23...q

bj

bq

ξ

. (B.3)
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In particular, we will use the following identities: for k, j 6= 0, i.e. ak 6= 1 = a0 and

bj 6= 0 = b0,

Ω1,ak(ηa)Ωak,bj (ξ)Ω0,bj (ηb)

=
(
Ω1,ak(ηa − ξ)Ω1,bj (ξ)− Ωbj ,ak(ηa − ξ)Ω1,bj (ηa)

)
Ω0,bj (ηb)

= Ω1,ak(ηa − ξ)
(
Ω1,bj (ηb + ξ)Ω01(ηb) + Ω1,0(ξ)Ω0,bj (ηb + ξ)

)
− Ωbj ,ak(ηa − ξ)

(
Ω1,0(ηa)Ω0,bj (ηa + ηb) + Ω1,bj (ηa + ηb)Ω01(ηb)

)
=
(
Ω1,ak(ηa − ξ)Ω1,bj (ηb + ξ)− Ωbj ,ak(ηa − ξ)Ω1,bj (ηa + ηb)

)
Ω01(ηb)

+ Ω1,ak(ηa − ξ)Ω1,0(ξ)Ω0,bj (ηb + ξ)− Ωbj ,ak(ηa − ξ)Ω1,0(ηa)Ω0,bj (ηa + ηb)

= Ω1,ak(ηa + ηb)Ωak,bj (ηb + ξ)Ω01(ηb)

+ Ω1,ak(ηa − ξ)Ω1,0(ξ)Ω0,bj (ηb + ξ)− Ωbj ,ak(ηa − ξ)Ω1,0(ηa)Ω0,bj (ηa + ηb)

+ Ω1,ak(ηa − ξ)Ω1,0(ξ)Ω0,bj (ηb + ξ)− Ωbj ,ak(ηa − ξ)Ω1,0(ηa)Ω0,bj (ηa + ηb)

= Ω01(ηb)Ω1,ak(ηa + ηb)Ωak,bj (ηb + ξ) + Ω01(−ηa)Ω0,bj (ηa + ηb)Ωbj ,ak(ηa − ξ)
+ Ω1,0(ξ)Ω1,ak(ηa − ξ)Ω0,bj (ηb + ξ) , (B.4)

which can be depicted as

1

ak

ηa

0

bj

ηb

ξ

=

1

ak

ηabηab

0

bj

ηb

ξ

+

1

ak

0

bj

ηabηab
−ηa

ξ

+

1

ak

ηa

0

bj

ηb
ξ

, (B.5)

while for k 6= 0 and j = 0

Ω1,ak(ηa)Ωak,0(ξ) = Ω01(−ηa)Ω0,ak(ηa − ξ) + Ω1,0(ξ)Ω1,ak(ηa − ξ) , (B.6)

depicted by

1

ak

ηa

0

ξ

=
1

ak

0−ηa

ηa − ξ
+

1

ak

ηa − ξ
0

ξ

, (B.7)

and for k = 0 and j 6= 0

Ω1,bj (ξ)Ω0,bj (ηb) = Ω01(ηb)Ω1,bj (ηb + ξ) + Ω1,0(ξ)Ω0,bj (ηb + ξ) , (B.8)

i.e.

1 0

bj

ηb
ξ

=
1

bj

0
ηb

ηb + ξ
+

1 0

bj

ηb + ξ

ξ

. (B.9)

The procedure to rewrite the Ωak,bj in eq. (B.2) is the following: first, we move the indices

ak and bj in ϕτ (1, A)ϕτ (0, B) next to 1 and 0, respectively, by means of eq. (A.14), which

yields for k 6= 0

ϕτ (1, A) = ϕτ (1, A1,k, ak, Ak+1,p+1)

=

k∑
i=1

(−1)k−iϕτ (1, A1i)ϕ
τ (1, ak, Ãi,k Ak+1,p+1)

=
k∑
i=1

(−1)k−iϕτ (1, A1i)ϕ
τ (ak, Ãi,k Ak+1,p+1)Ω1,ak(ηAi,p+1) , (B.10)
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i.e.

1

a1

a2

ak

ap

=
k∑
i=1

(−1)k−i

1

a1

ai−1

ak

ak−1

ai

ak+1

ap

, (B.11)

and for j 6= 0

ϕτ (0, B) = ϕτ (0, B1,j , bj , Bj+1,q+1)

=

j∑
l=1

(−1)j−lϕτ (0, B1l)ϕ
τ (0, bj , B̃l,j Bj+1,q+1)

=

j∑
l=1

(−1)j−lϕτ (0, B1l)ϕ
τ (bj , B̃l,j Bj+1,q+1)Ω0,bj (ηBl,q+1

) , (B.12)

i.e.

0

b1

b2

bj

bq

=

j∑
l=1

(−1)j−l

0

b1

bl−1

bj

bj−1

bl

bj+1

bq

. (B.13)

As a consequence, for k, j 6= 0

Ωak,bj (ξ)ϕ
τ (1, A)ϕτ (0, B)

=
k∑
i=1

j∑
l=1

(−1)k+j−i−lϕτ (1, A1i)ϕ
τ (ak, Ãi,k Ak+1,p+1)ϕτ (0, B1l)ϕ

τ (bj , B̃l,j Bj+1,q+1)

Ω1,ak(ηAi,p+1)Ωak,bj (ξ)Ω0,bj (ηBl,q+1
) , (B.14)

i.e.

1

a1

ηA

a2

ηa23...p

ak

ap

0

b1

ηB

b2
ηb23...q

bj

bq

ξ

=

k∑
i=1

j∑
l=1

(−1)k+j−i−l

1

a1

ai−1

ak
ηai...p

ak−1

ai

ak+1

ap

0

b1

bl−1

bj

bj−1

bl

bj+1

bq

ξ
,

(B.15)
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for k 6= 0, j = 0

Ωak,0(ξ)ϕτ (1, A)ϕτ (0, B)

=
k∑
i=1

(−1)k−iϕτ (1, A1i)ϕ
τ (ak, Ãi,k Ak+1,p+1)ϕτ (0, B)Ω1,ak(ηAi,p+1)Ωak,0(ξ) (B.16)

i.e.

1

a1

ηA

a2

ηa23...p

ak

ap

0

b1

b2

bq

ξ
=

k∑
i=1

(−1)k−i

1

a1

ai−1

ak
ηai...p

ak−1

ai

ak+1

ap

0

b1

b2

bq

ξ

, (B.17)

and for k = 0, j 6= 0

Ωak,bj (ξ)ϕ
τ (1, A)ϕτ (0, B)

=

j∑
l=1

(−1)j−lϕτ (1, A)ϕτ (0, B1l)ϕ
τ (bj , B̃l,j Bj+1,q+1)Ω1,bj (ξ)Ω0,bj (ηBl,q+1

) , (B.18)

i.e.

1

a1

a2

ap

0

b1

ηB

b2
ηb23...q

bj

bq

ξ
=

j∑
l=1

(−1)j−l

1

a1

a2

ap

0

b1

bl−1

bj

bj−1

bl

bj+1

bq

ηbl...q+ξ

ηbl...q

. (B.19)

At this point, we can apply the identity (B.4) in (B.14), (B.6) in (B.16) and (B.8) in (B.18)

to the triangles or squares formed by the vertices 1, 0, ak and/or bj in the corresponding

graphs, which leads to two (for k = 0 or j = 0) or three distinct sums. For k, j 6= 0,
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we obtain

Ωak,bj (ξ)ϕ
τ (1, A)ϕτ (0, B)

=

k∑
i=1

j∑
l=1

(−1)k+j−i−lϕτ (1, A1i)ϕ
τ (ak, Ãi,k Ak+1,p+1)ϕτ (0, B1l)ϕ

τ (bj , B̃l,j Bj+1,q+1)

(
Ω01(ηBl,q+1

)Ω1,ak(ηAi,p+1 + ηBl,q+1
)Ωak,bj (ηBl,q+1

+ ξ)

+ Ω01(−ηAi,p+1)Ω0,bj (ηAi,p+1 + ηBl,q+1
)Ωbj ,ak(ηAi,p+1 − ξ)

+ Ω1,0(ξ)Ω1,ak(ηAi,p+1 − ξ)Ω0,bj (ηBl,q+1
+ ξ)

)
, (B.20)

i.e.

1

a1

ηA

a2

ηa23...p

ak

ap

0

b1

ηB

b2
ηb23...q

bj

bq

ξ

=

k∑
i=1

j∑
l=1

(−1)k+j−i−l

1

a1

ai−1

ak

ak−1

ai

ak+1

ap

×


1

ak

ηai...p+ηbl...q

0

bj

ηbl...q

ηbl...q+ξ

+

1

ak

0

bj

ηai...p+ηbl...q

−ηai...p

ηai...p−ξ

+

1

ak

ηai...p

0

bj

ηbl...q

ξ


0

b1

bl−1

bj

bj−1

bl

bj+1

bq

(B.21)

The last sum, with the factor Ω1,0(ξ)Ω1,ak(ηAi,p+1−ξ)Ω0,bj (ηBl,q+1
+ξ), can be rewritten in

terms of the original chains, using eqs. (B.10) and (B.12) in the reverse direction, leaving

a shift of ∓ξ in the variables ηak and ηbj , respectively,

k∑
i=1

j∑
l=1

(−1)k+j−i−lϕτ (1, A1i)ϕ
τ (ak, Ãi,k Ak+1,p+1)ϕτ (0, B1l)ϕ

τ (bj , B̃l,j Bj+1,q+1)

Ω1,0(ξ)Ω1,ak(ηAi,p+1 − ξ)Ω0,bj (ηBl,q+1
+ ξ)

= Ω1,0(ξ)ϕτ (1, A)|ηak→ηak−ξϕ
τ (0, B)|ηbj→ηbj+ξ . (B.22)

The remaining two sums in eq. (B.20) can either be written in terms of products of two

chains, the first starting at 1 and the second at 0. This will yield the closed formula for
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the derivatives of Zτ0,n. Or, they can be expressed in terms of the S-map. Both formulæ

are derived in the next two subsections.

To summarize, we have so far for k, j 6= 0 the identity

Ωak,bj (ξ)ϕ
τ (1, A)ϕτ (0, B) = Ω1,0(ξ)ϕτ (1, A)|ηak→ηak−ξϕ

τ (0, B)|ηbj→ηbj+ξ

+
k∑
i=1

j∑
l=1

(−1)k+j−i−lϕτ (1, A1i)ϕ
τ (ak, Ãi,k Ak+1,p+1)ϕτ (0, B1l)ϕ

τ (bj , B̃l,j Bj+1,q+1)(
Ω01(ηBl,q+1

)Ω1,ak(ηAi,p+1 + ηBl,q+1
)Ωak,bj (ηBl,q+1

+ ξ)

+ Ω01(−ηAi,p+1)Ω0,bj (ηAi,p+1 + ηBl,q+1
)Ωbj ,ak(ηAi,p+1 − ξ)

)
, (B.23)

i.e.

1

a1

ηA

a2

ηa23...p

ak

ap

0

b1

ηB

b2
ηb23...q

bj

bq

ξ

=

1

a1

ηA − ξ

ak−1

ak

ηak...p−ξ

ak+1

ηak+1...p

ap

0

b1

ηB + ξ

bj−1

bj

ηbj...q+ξ

bj+1

ηbj+1...q

bq

ξ

+

k∑
i=1

j∑
l=1

(−1)k+j−i−l

×

 1

a1

ai−1

ak
ηai...p+ηbl...q

ak−1

ai

ak+1

ap

0

b1

bl−1

bj

ηbl...q

bj−1

bl

bj+1

bq

ηbl...q+ξ +

1

a1

ai−1

ak

ak−1

ai

ak+1

ap

0

b1

bl−1

bj

−ηai...p

bj−1

bl

bj+1

bq

ηai...p−ξ

ηai...p+ηbl...q


, (B.24)

for k 6= 0, j = 0

Ωak,0(ξ)ϕτ (1, A)ϕτ (0, B) = Ω1,0(ξ)ϕτ (1, A)|ηak→ηak−ξϕ
τ (0, B)

+

k∑
i=1

(−1)k−iϕτ (1, A1i)ϕ
τ (ak, Ãi,k Ak+1,p+1)ϕτ (0, B)Ω01(−ηAi,p+1)Ω0,ak(ηAi,p+1 − ξ) ,

(B.25)
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i.e.

1

a1

ηA

a2

ηa23...p

ak

ap

0

b1

b2

bq

ξ
=

1

a1

ηA − ξ

ak−1

ak

ηak...p−ξ

ak+1

ηak+1...p

ap

0

b1

b2

bq

ξ

+

k∑
i=1

(−1)k−i

1

a1

ai−1

0
−ηai...p

ak

ηai...p−ξ

ak−1

ai

ak+1

ap

b1

b2

bq

,

(B.26)

and for k = 0, j 6= 0

Ω1,bj (ξ)ϕ
τ (1, A)ϕτ (0, B) = Ω1,0(ξ)ϕτ (1, A)ϕτ (0, B)|ηbj→ηbj+ξ

+

j∑
l=1

(−1)j−lϕτ (1, A)ϕτ (0, B1l)ϕ
τ (bj , B̃l,j Bj+1,q+1)Ω01(ηBl,q+1

)Ω1,bj (ηBl,q+1
+ ξ) .

(B.27)

i.e.

1

a1

a2

ap

0

b1

ηB

b2
ηb23...q

bj

bq

ξ
=

1

a1

a2

ap

0

b1

ηB + ξ

bj−1

bj

ηbj...q+ξ

bj+1

ηbj+1...q

bq

ξ

+

j∑
l=1

(−1)j−l

1

a1

a2

ap

0

b1

bl−1

bj

bj−1

bl

bj+1

bq

ηbl...q+ξ

ηbl...q

.

(B.28)

B.2 Closed formula

The closed-form expression (4.21) is obtained from eqs. (B.23) to (B.27) by multiple appli-

cations of the shuffle identity (A.8) and the concatenation (A.6).
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For k, j 6= 0, the first sum in eq. (B.23) is given by

k∑
i=1

j∑
l=1

(−1)k+j−i−lϕτ (1, A1i)ϕ
τ (ak, Ãi,k Ak+1,p+1)ϕτ (0, B1l)ϕ

τ (bj , B̃l,j Bj+1,q+1)

Ω01(ηBl,q+1
)Ω1,ak(ηAi,p+1 + ηBl,q+1

)Ωak,bj (ηBl,q+1
+ ξ)

=
k∑
i=1

j∑
l=1

(−1)k+j−i−lΩ01(ηBl,q+1
)ϕτ (0, B1l)ϕ

τ (1, A1i)

Ω1,ak(ηAi,p+1 + ηBl,q+1
)ϕτ (ak, Ãi,k Ak+1,p+1)ϕτ (ak, bj , B̃l,j Bj+1,q+1)|ηbj→ηbj+ξ

=

k∑
i=1

j∑
l=1

(−1)k+j−i−lΩ01(ηBl,q+1
)ϕτ (0, B1l)ϕ

τ (1, A1i)

ϕτ (1, ak, (Ãi,k Ak+1,p+1) (bj , B̃l,j Bj+1,q+1))|ηak→ηak−ξ,ηbj→ηbj+ξ

=
k∑
i=1

j∑
l=1

(−1)k+j−i−lΩ01(ηBl,q+1
)ϕτ (0, B1l)

ϕτ (1, A1i (ak, (Ãi,k Ak+1,p+1) (bj , B̃l,j Bj+1,q+1)))|ηak→ηak−ξ,ηbj→ηbj+ξ (B.29)

and similarly for the second sum

k∑
i=1

j∑
l=1

(−1)k+j−i−lϕτ (1, A1i)ϕ
τ (ak, Ãi,k Ak+1,p+1)ϕτ (0, B1l)ϕ

τ (bj , B̃l,j Bj+1,q+1)

+ Ω01(−ηAi,p+1)Ω0,bj (ηAi,p+1 + ηBl,q+1
)Ωbj ,ak(ηAi,p+1 − ξ)

=

k∑
i=1

j∑
l=1

(−1)k+j−i−lΩ01(−ηAi,p+1)ϕτ (1, A1i)

ϕτ (0, B1l (bj , (B̃l,j Bj+1,q+1) (ak, Ãi,k Ak+1,p+1)))|ηak→ηak−ξ,ηbj→ηbj+ξ . (B.30)

The sum in eq. (B.25) for k 6= 0, j = 0 can be rewritten as

k∑
i=1

(−1)k−iϕτ (1, A1i)ϕ
τ (ak, Ãi,k Ak+1,p+1)ϕτ (0, B)Ω01(−ηAi,p+1)Ω0,ak(ηAi,p+1 − ξ)

=
k∑
i=1

(−1)k−iΩ01(−ηAi,p+1)ϕτ (1, A1i)ϕ
τ (0, ak, Ãi,k Ak+1,p+1)|ηak→ηak−ξϕ

τ (0, B)

=
k∑
i=1

(−1)k−iΩ01(−ηAi,p+1)ϕτ (1, A1i)ϕ
τ (0, B (ak, Ãi,k Ak+1,p+1))|ηak→ηak−ξ (B.31)

and, similarly, the one in eq. (B.27) for k = 0, j 6= 0 as follows

j∑
l=1

(−1)j−lϕτ (1, A)ϕτ (0, B1l)ϕ
τ (bj , B̃l,j Bj+1,q+1)Ω01(ηBl,q+1

)Ω1,bj (ηBl,q+1
+ ξ)

=

j∑
l=1

(−1)j−lΩ01(ηBl,q+1
)ϕτ (0, B1l)ϕ

τ (1, A (bj , B̃l,j Bj+1,q+1))|ηbj→ηbj+ξ . (B.32)
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Plugging eqs. (B.29) and (B.30) into eq. (B.23), we can conclude that for k, j 6= 0

Ωak,bj (ξ)ϕ
τ (1, A)ϕτ (0, B) = Ω1,0(ξ)ϕτ (1, A)|ηak→ηak−ξϕ

τ (0, B)|ηbj→ηbj+ξ

+
k∑
i=1

j∑
l=1

(−1)k+j−i−lΩ01(ηBl,q+1
)ϕτ (0, B1l)

ϕτ (1, A1i (ak, (Ãi,k Ak+1,p+1) (bj , B̃l,j Bj+1,q+1)))|ηak→ηak−ξ,ηbj→ηbj+ξ

+
k∑
i=1

j∑
l=1

(−1)k+j−i−lΩ01(−ηAi,p+1)ϕτ (1, A1i)

ϕτ (0, B1l (bj , (B̃l,j Bj+1,q+1) (ak, Ãi,k Ak+1,p+1)))|ηak→ηak−ξ,ηbj→ηbj+ξ , (B.33)

the corresponding graphical equation is obtained from eq. (B.24) by simply folding back

any branch fork to a sum of single chains using the shuffle product, while all the η-variables

and the corresponding shifts ±ξ stay the same (and will not be depicted in the following

equation for notational simplicity)

1

a1

ηA

a2

ηa23...p

ak

ap

0

b1

ηB

b2
ηb23...q

bj

bq

ξ

=

1

a1

ηA − ξ

ak−1

ak

ηak...p−ξ

ak+1

ηak+1...p

ap

0

b1

ηB + ξ

bj−1

bj

ηbj...q+ξ

bj+1

ηbj+1...q

bq

ξ

+

k∑
i=1

j∑
l=1

(−1)k+j−i−l

×

 1

a1

ai−1

ak

ak−1

ai

ak+1

ap

0

b1

bl−1

bj

ηbl...q

bj−1

bl

bj+1

bq

+

1

a1

ai−1

ak

ak−1

ai

ak+1

ap

0

b1

bl−1

bj

−ηai...p

bj−1

bl

bj+1

bq

, (B.34)

and similarly using eq. (B.31) in eq. (B.25) yields for k 6= 0, j = 0

Ωak,0(ξ)ϕτ (1, A)ϕτ (0, B) = Ω1,0(ξ)ϕτ (1, A)|ηak→ηak−ξϕ
τ (0, B)

+

k∑
i=1

(−1)k−iΩ01(−ηAi,p+1)ϕτ (1, A1i)ϕ
τ (0, B (ak, Ãi,k Ak+1,p+1))|ηak→ηak−ξ , (B.35)

which is also obtained from the graphs in eq. (B.26) by folding back any branches to a
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single chain using the shuffle product

1

a1

ηA

a2

ηa23...p

ak

ap

0

b1

b2

bq

ξ
=

1

a1

ηA − ξ

ak−1

ak

ηak...p−ξ

ak+1

ηak+1...p

ap

0

b1

b2

bq

ξ

+
k∑
i=1

(−1)k−i

1

a1

ai−1

0
−ηai...p

ak

ηai...p−ξ

ak−1

ai

ak+1

ap

b1

b2

bq

,

(B.36)

and eq. (B.27) in eq. (B.32) for k = 0, j 6= 0

Ω1,bj (ξ)ϕ
τ (1, A)ϕτ (0, B) = Ω1,0(ξ)ϕτ (1, A)ϕτ (0, B)|ηbj→ηbj+ξ

+

j∑
l=1

(−1)j−lΩ01(ηBl,q+1
)ϕτ (0, B1l)ϕ

τ (1, A (bj , B̃l,j Bj+1,q+1))|ηbj→ηbj+ξ , (B.37)

i.e. eq. (B.28) folded back

1

a1

a2

ap

0

b1

ηB

b2
ηb23...q

bj

bq

ξ
=

1

a1

a2

ap

0

b1

ηB + ξ

bj−1

bj

ηbj...q+ξ

bj+1

ηbj+1...q

bq

ξ

+

j∑
l=1

(−1)j−l

1

a1

a2

ap

0

b1

bl−1

bj

bj−1

bl

bj+1

bq

ηbl...q+ξ

ηbl...q

.

(B.38)

The above formulæ (B.33) to (B.37) yield the closed expressions for the partial deriva-

tives of Zτ0,n((1, A), (0, B)), since they contain two chains beginning at zero and one. For

the z0-derivative, we can continue from eq. (B.1) using the fact that f
(1)
ak,bj

is the order zero

ξ0-term of Ωak,bj (ξ), see eq. (B.2). Thus, eqs. (B.33) to (B.37) can be applied to extract

the ξ0-term in

∂0Z
τ
0,n((1, A), (0, B)) =

p∑
k=0

q∑
j=0

sak,bj

∫
γ

n∏
i=2

dzi KNτ
01...n

(
Ωak,bj (ξ)ϕ

τ (1, A)ϕτ (0, B)
)
|ξ0 .

(B.39)
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The non-trivial extraction of the ξ0-term occurs in the term proportional to Ω1,0(ξ) in

eqs. (B.33) to (B.37), i.e. Ω1,0(ξ)ϕτ (1, A)ϕτ (0, B) with some shifts in the η-variables, and

can be treated using the expansion

Ω1,0(ξ) =
1

ξ
+ f

(1)
1,0 +O(ξ) (B.40)

in ξ of the single factors to project out differential operators from the chains. The extraction

in the remaining terms can be done by (expanding factors of the form Ωij(η+ ξ) around ξ

and) simply setting ξ = 0. For a single factor of the Kronecker-Eisenstein series, we find

for k 6= 0(
Ω1,0(ξ)Ωak−1,ak(ηak − ξ)

)
|ξ0

=

((
1

ξ
+ f

(1)
1,0 +O(ξ)

)(
Ωak−1,ak(ηak)− ξ∂ηakΩak−1,ak(ηak) +O(ξ)

))
|ξ0

= −
(
f

(1)
01 + ∂ηak

)
Ωak−1,ak(ηak) . (B.41)

For a whole product, i.e. a chain, this procedure exactly reproduces the product rule due

to the cross-terms and leads to(
Ω1,0(ξ)ϕτ (1, A)|ηak→ηak−ξϕ

τ (0, B)|ηbj→ηbj+ξ

)
|ξ0

= −
(
f

(1)
01 + ∂ηak − ∂ηbj

)
ϕτ (1, A)ϕτ (0, B) (B.42)

for k, j 6= 0. Putting everything together, one indeed arrives at the closed formula eq. (4.21)

for ∂0Z
τ
0,n((1, A), (0, B)).

B.3 S-map formula

Alternatively, the derivatives of Zτ0,n((1, A), (0, B)) can be expressed in terms of the S-map

as in eq. (4.26). For this purpose, we proceed from eq. (B.23) for k, j 6= 0 again using the

shuffle identity (A.8) and the reflection property (A.12), but slightly differently than in the

previous subsection: we want to keep a factor of Ωak,bj (ηBl,q+1
+ ξ) or Ωbj ,ak(ηAi,p+1 − ξ)

as a bridge between the chains of A and B. For the first sum in eq. (B.23), the calculation

amounts to

k∑
i=1

j∑
l=1

(−1)k+j−i−lϕτ (1, A1i)ϕ
τ (ak, Ãi,k Ak+1,p+1)ϕτ (0, B1l)ϕ

τ (bj , B̃l,j Bj+1,q+1)

Ω01(ηBl,q+1
)Ω1,ak(ηAi,p+1 + ηBl,q+1

)Ωak,bj (ηBl,q+1
+ ξ)

=

j∑
l=1

(−1)j−lΩ01(ηBl,q+1
)ϕτ (0, B1l)ϕ

τ (ak, bj , B̃l,j Bj+1,q+1)|ηbj→ηbj+ξ

ϕτ (1, A1,i)Ω1,ak(ηAi,p+1 + ηBl,q+1
)ϕτ (ak, Ãi,k)ϕ

τ (ak, Ak+1,p+1)

=

j∑
l=1

(−1)j−lΩ01(ηBl,q+1
)ϕτ (0, B1l)ϕ

τ (ak, bj , B̃l,j Bj+1,q+1)|ηbj→ηbj+ξ

ϕτ (1, A1,i)ϕ
τ (1, ak, Ãi,k)|ηak→ηAk,p+1

+ηBl,q+1
ϕτ (ak, Ak+1,p+1)
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=

j∑
l=1

(−1)j−lΩ01(ηBl,q+1
)ϕτ (0, B1l)ϕ

τ (ak, bj , B̃l,j Bj+1,q+1)|ηbj→ηbj+ξ

ϕτ (1, A1,k, ak)|ηak→ηAk,p+1
+ηBl,q+1

ϕτ (Ãk+1,p+1, ak)|ηak→−ηAk+1,p+1

=

j∑
l=1

(−1)p−k+j−lΩ01(ηBl,q+1
)ϕτ (0, B1l)ϕ

τ (ak, bj , B̃l,j Bj+1,q+1)|ηbj→ηbj+ξ

ϕτ ((1, A1,k) Ãk+1,p+1, ak)|ηak→ηak+ηBl,q+1

=

j∑
l=1

(−1)p−k+j−lΩ01(ηBl,q+1
)ϕτ (0, B1l)

ϕτ ((1, A1,k) Ãk+1,p+1, ak, bj , B̃l,j Bj+1,q+1)|ηak→ηak−ξ,ηbj→ηbj+ξ , (B.43)

where we applied the shuffle identity (A.8) and eq. (A.14) in the reverse direction in the

first and third equality, respectively. The same calculation leads to a similar result for the

second sum in eq. (B.23)

k∑
i=1

j∑
l=1

(−1)k+j−i−lϕτ (1, A1i)ϕ
τ (ak, Ãi,k Ak+1,p+1)ϕτ (0, B1l)ϕ

τ (bj , B̃l,j Bj+1,q+1)

Ω01(−ηAi,p+1)Ω0,bj (ηAi,p+1 + ηBl,q+1
)Ωbj ,ak(ηAi,p+1 − ξ)

=

k∑
i=1

(−1)q−j+k−iΩ01(−ηAi,p+1)ϕτ (1, A1i)

ϕτ ((0, B1,j) B̃j+1,q+1, bj , ak, Ãi,k Ak+1,p+1)|ηak→ηak−ξ,ηbj→ηbj+ξ . (B.44)

Similarly, we find for the sum in (B.25) for k 6= 0, j = 0

k∑
i=1

(−1)k−iϕτ (1, A1i)ϕ
τ (ak, Ãi,k Ak+1,p+1)ϕτ (0, B)Ω01(−ηAi,p+1)Ω0,ak(ηAi,p+1 − ξ)

=

k∑
i=1

(−1)q+k−iϕτ (B̃, 0, 1, A1i)|η0→η0+Ai,p+1ϕ
τ (0, ak, Ãi,k Ak+1,p+1)|ηak→ηak−ξ

=
k∑
i=1

(−1)q+k−iϕτ (0, 1, A1i)ϕ
τ (B̃, 0, ak, Ãi,k Ak+1,p+1)|ηak→ηak−ξ,η0→η0+ξ

=
k∑
i=1

(−1)q+k−iΩ01(−ηAi,p+1)ϕτ (1, A1i)

ϕτ (B̃, 0, ak, Ãi,k Ak+1,p+1)|ηak→ηak−ξ,η0→η0+ξ (B.45)

and for the sum in eq. (B.27) with k = 0, j 6= 0

j∑
l=1

(−1)j−lϕτ (1, A)ϕτ (0, B1l)ϕ
τ (bj , B̃l,j Bj+1,q+1)Ω01(ηBl,q+1

)Ω1,bj (ηBl,q+1
+ ξ)

=

j∑
l=1

(−1)p+j−lΩ01(ηBl,q+1
)ϕτ (0, B1l)ϕ

τ (Ã, 1, bj , B̃l,j Bj+1,q+1)|η1→η1−ξ,ηbj→ηbj+ξ .

(B.46)
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Thus, the identity (B.23), valid for k, j 6= 0 can be rewritten as follows

Ωak,bj (ξ)ϕ
τ (1, A)ϕτ (0, B) = Ω1,0(ξ)ϕτ (1, A)|ηak→ηak−ξϕ

τ (0, B)|ηbj→ηbj+ξ

+

j∑
l=1

(−1)p+1−k+j−lΩ01(ηBl,q+1
)ϕτ (0, B1l)

ϕτ ((1, A1,k) Ãk+1,p+1, ak, bj , B̃l,j Bj+1,q+1)|ηak→ηak−ξ,ηbj→ηbj+ξ

+

k∑
i=1

(−1)q+1−j+k−iΩ01(−ηAi,p+1)ϕτ (1, A1i)

ϕτ ((0, B1,j) B̃j+1,q+1, bj , ak, Ãi,k Ak+1,p+1)|ηak→ηak−ξ,ηbj→ηbj+ξ . (B.47)

Graphically this equation is obtained from eq. (B.24) by absorbing the sum over i into the

second term and the sum over j into the third term, to connect the vertices ai with ai−1

and bl with bl−1, respectively, leading to

1

a1

ηA

a2

ηa23...p

ak

ap

0

b1

ηB

b2
ηb23...q

bj

bq

ξ

=

1

a1

ηA − ξ

ak−1

ak

ηak...p−ξ

ak+1

ηak+1...p

ap

0

b1

ηB + ξ

bj−1

bj

ηbj...q+ξ

bj+1

ηbj+1...q

bq

ξ

+

j∑
l=1

(−1)p+1−k+j−l

1

a1

ak−1

ak

ak+1

ap

0

b1

bl−1

bj

ηbl...q

bj−1

bl

bj+1

bq

ηbl...q+ξ

+

k∑
i=1

(−1)q+1−j+k−i

1

a1

ai−1

ak

ak−1

ai

ak+1

ap

0

b1bj

−ηai...p

bj−1bj+1

bq

ηai...p−ξ . (B.48)
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Similarly, the identity (B.25) for k 6= 0, j = 0 is given by

Ωak,0(ξ)ϕτ (1, A)ϕτ (0, B) = Ω1,0(ξ)ϕτ (1, A)|ηak→ηak−ξϕ
τ (0, B)

+

k∑
i=1

(−1)q+k−iΩ01(−ηAi,p+1)ϕτ (1, A1i)ϕ
τ (B̃, 0, ak, Ãi,k Ak+1,p+1)|ηak→ηak−ξ,η0→η0+ξ ,

(B.49)

i.e. obtained from eq. (B.26) by reverting the chain ϕτ (0, B)

1

a1

ηA

a2

ηa23...p

ak

ap

0

b1

b2

bq

ξ
=

1

a1

ηA − ξ

ak−1

ak

ηak...p−ξ

ak+1

ηak+1...p

ap

0

b1

b2

bq

ξ

+
k∑
i=1

(−1)q+k−i

1

a1

ai−1

0
−ηai...p

ak

ηai...p−ξ

ak−1

ai

ak+1

ap

b1

b2

bq

,

(B.50)

and eq. (B.27) for k = 0, j 6= 0 by

Ω1,bj (ξ)ϕ
τ (1, A)ϕτ (0, B) = Ω1,0(ξ)ϕτ (1, A)ϕτ (0, B)|ηbj→ηbj+ξ

+

j∑
l=1

(−1)p+j−lΩ01(ηBl,q+1
)ϕτ (0, B1l)ϕ

τ (Ã, 1, bj , B̃l,j Bj+1,q+1)|η1→η1−ξ,ηbj→ηbj+ξ ,

(B.51)

i.e.

1

a1

a2

ap

0

b1

ηB

b2
ηb23...q

bj

bq

ξ
=

1

a1

a2

ap

0

b1

ηB + ξ

bj−1

bj

ηbj...q+ξ

bj+1

ηbj+1...q

bq

ξ

+

j∑
l=1

(−1)p+j−l

1

a1

a2

ap

0

b1

bl−1

bj

bj−1

bl

bj+1

bq

ηbl...q+ξ

ηbl...q

.

(B.52)

Note that these three identities indeed all have a factor of Ωak,bj , which is the backbone in

the formulation in terms of the S-map. This can be seen by summing these identities over
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all 0 ≤ k ≤ p and 0 ≤ j ≤ q
p∑

k=0

q∑
j=0

sak,bjΩak,bj (ξ)ϕ
τ (1, A)ϕτ (0, B)

=

p∑
k=0

q∑
j=0

sak,bjΩ1,0(ξ)ϕτ (1, A)|ηak→ηak−ξϕ
τ (0, B)|ηbj→ηbj+ξ

+

p∑
k=0

q∑
j=1

sak,bj

j∑
l=1

(−1)p−k+j−lΩ01(ηBl,q+1
)ϕτ (0, B1l)

ϕτ (A0,k Ãk+1,p+1, ak, bj , B̃l,j Bj+1,q+1)|ηak→ηak−ξ,ηbj→ηbj+ξ

+

p∑
k=1

q∑
j=0

sak,bj

k∑
i=1

(−1)q−j+k−iΩ01(−ηAi,p+1)ϕτ (1, A1i)

ϕτ (B0,j B̃j+1,q+1, bj , ak, Ãi,k Ak+1,p+1)|ηak→ηak−ξ,ηbj→ηbj+ξ

=

 p∑
k=0

q∑
j=0

sak,bjΩ1,0(ξ)ϕτ (1, A)ϕτ (0, B)

 |ηak→ηak−ξ,ηbj→ηbj+ξ

+

q∑
l=1

Ω01(ηBl,q+1
)ϕτ (0, B1l)

p∑
k=0

q∑
j=l

(−1)p−k+j−lsak,bj

ϕτ (A0,k Ãk+1,p+1, ak, bj , B̃l,j Bj+1,q+1)|ηak→ηak−ξ,ηbj→ηbj+ξ

+

p∑
i=1

Ω01(−ηAi,p+1)ϕτ (1, A1i)

p∑
k=i

q∑
j=0

(−1)q−j+k−isak,bj

ϕτ (B0,j B̃j+1,q+1, bj , ak, Ãi,k Ak+1,p+1)|ηak→ηak−ξ,ηbj→ηbj+ξ . (B.53)

Comparing with eq. (4.23), we see that the second and third sum explicitly involve the

definition of the S-map, except for the shift ∓ξ in the variables ηak and ηbj .

In order to obtain the S-map representation of the z0-derivative eq. (B.39) we sim-

ply need to extract the ξ0 part of eq. (B.53), where we immediately recover the S-map

formula (4.26).

C Derivation of the n-point τ -derivative

In this section, we determine the action of 2πi∂τ on the integrals Zτ0,n in eq. (4.6) to

derive the corresponding formulæ (4.42) and (4.44). The techniques in this appendix

generalize those in [1, 80], where the τ -derivatives of Zτ -integrals without augmentation

were studied.20 First, we recall that the τ -derivative of the Koba-Nielsen factor is given by

eq. (4.40). Second, the action (up to integration by parts) on a chain

ϕτ (C) =

m∏
i=2

Ωci−1,i(ηci...cm) , ηci...cm =

m∑
j=i

ηcj , (C.1)

20See in particular section 4 and appendix A of the first reference in ref. [1] as well as section 4 and

appendix E of ref. [80].
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with C = (c1, c2, . . . , cm) can be expressed using the mixed heat equation

2πi∂τΩij(η) = ∂i∂ηΩij(η) = −∂j∂ηΩij(η) (C.2)

for real zi, zj as follows:

2πi∂τϕ
τ (C)

=
m∑
i=2

m∏
j=2
j 6=i

Ωcj−1,cj (ηcj ...cm)2πi∂τΩci−1,ci(ηci...cm)

= −
m∑
i=2

m∏
j=2
j 6=i

Ωcj−1,cj (ηcj ...cm)∂ci∂ηci...cmΩci−1,ci(ηci...cm)

= −
m∑
i=2

(
∂ηci − θi≥3∂ηci−1

) m∏
j=2
j 6=i

Ωcj−1,cj (ηcj ...cm)∂ciΩci−1,ci(ηci...cm)

=

m∑
i=2

(
∂ηci − θi≥3∂ηci−1

) m∏
j=2
j 6=i+1

Ωcj−1,cj (ηcj ...cm)
(
∂ciΩci,ci+1(ηci...cm) + Ωci,ci+1(ηci...cm)∂ci

)

=

m∑
i=2

(
∂ηci−θi≥3∂ηci−1

) m∏
j=2
j 6=i+1

Ωcj−1,cj (ηcj ...cm)
(
−∂ci+1Ωci,ci+1(ηci...cm) + Ωci,ci+1(ηci...cm)∂ci

)

=
m∑
i=2

(
∂ηci − θi≥3∂ηci−1

) m∏
j=2

Ωcj−1,cj (ηcj ...cm)

(
m∑
k=i

∂ck

)

=

m∑
i=2

((
∂ηci − θi≥3∂ηci−1

)
ϕτ (C)

)( m∑
k=i

∂ck

)
. (C.3)

We again use a step function θj≥k which is taken to be 1 for j ≥ k and zero for j < k.

Therefore, denoting (1, A) = (a0, a1, . . . , ap) and (0, B) = (b0, b1, . . . , bq) we find

2πi∂τ (KNτ
01...nϕ

τ (1, A)ϕτ (0, B))

= −
∑

0≤i<j≤n
sij

(
f

(2)
ij + 2ζ2

)
KNτ

01...nϕ
τ (1, A)ϕτ (0, B)

+

p∑
i=1

(
p∑
k=i

∂akKNτ
01...n

)
ϕτ (0, B)

(
∂ηai − θi≥2∂ηai−1

)
ϕτ (1, A)

+

q∑
i=1

(
q∑
k=i

∂bkKNτ
01...n

)
ϕτ (1, A)

(
∂ηbi − θi≥2∂ηbi−1

)
ϕτ (0, B)

= −
∑

0≤i<j≤n
sij

(
f

(2)
ij + 2ζ2

)
KNτ

01...nϕ
τ (1, A)ϕτ (0, B)

−KNτ
01...n

p∑
i=1

 p∑
k=i

i−1∑
j=0

sak,ajf
(1)
ak,aj

+

p∑
k=i

q∑
j=0

sak,bjf
(1)
ak,bj


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× ϕτ (0, B)
(
∂ηai − θi≥2∂ηai−1

)
ϕτ (1, A)

−KNτ
01...n

q∑
i=1

 q∑
k=i

i−1∑
j=0

sbk,bjf
(1)
bk,bj

+

q∑
k=i

p∑
j=0

sbk,ajf
(1)
bk,aj


× ϕτ (1, A)

(
∂ηbi − θi≥2∂ηbi−1

)
ϕτ (0, B)

= −
∑

0≤i<j≤n
sij

(
f

(2)
ij + 2ζ2

)
KNτ

01...nϕ
τ (1, A)ϕτ (0, B)

−KNτ
01...n

 p∑
k=1

k−1∑
j=0

sak,ajf
(1)
ak,aj

k∑
i=j+1

+

p∑
k=1

q∑
j=0

sak,bjf
(1)
ak,bj

k∑
i=1


× ϕτ (0, B)

(
∂ηai − θi≥2∂ηai−1

)
ϕτ (1, A)

−KNτ
01...n

 q∑
k=1

k−1∑
j=0

sbk,bjf
(1)
bk,bj

k∑
i=j+1

+

q∑
k=1

p∑
j=0

sbk,ajf
(1)
bk,aj

k∑
i=1


× ϕτ (1, A)

(
∂ηbi − θi≥2∂ηbi−1

)
ϕτ (0, B)

= −
∑

0≤i<j≤n
sij

(
f

(2)
ij + 2ζ2

)
KNτ

01...nϕ
τ (1, A)ϕτ (0, B)

−KNτ
01...n

 p∑
k=1

k−1∑
j=0

sak,ajf
(1)
ak,aj

(
∂ηak − θj≥1∂ηaj

)ϕτ (1, A)ϕτ (0, B)

−KNτ
01...n

 q∑
k=1

k−1∑
j=0

sbk,bjf
(1)
bk,bj

(
∂ηbk − θj≥1∂ηbj

)ϕτ (1, A)ϕτ (0, B)

−KNτ
01...n

 p∑
k=0

q∑
j=0

sak,bjf
(1)
ak,bj

(
θk≥1∂ηak − θj≥1∂ηbj

)ϕτ (1, A)ϕτ (0, B)

= −s01...n2ζ2KNτ
01...nϕ

τ (1, A)ϕτ (0, B)

−KNτ
01...n

p∑
k=1

k−1∑
j=0

sak,aj

(
f (1)
ak,aj

(
∂ηak − θj≥1∂ηaj

)
+ f (2)

ak,aj

)
ϕτ (1, A)ϕτ (0, B)

−KNτ
01...n

q∑
k=1

k−1∑
j=0

sbk,bj

(
f

(1)
bk,bj

(
∂ηbk − θj≥1∂ηbj

)
+ f

(2)
bk,bj

)
ϕτ (1, A)ϕτ (0, B)

−KNτ
01...n

p∑
k=0

q∑
j=0

sak,bj

(
f

(1)
ak,bj

(
θk≥1∂ηak − θj≥1∂ηbj

)
− f (2)

ak,bj

)
ϕτ (1, A)ϕτ (0, B) ,

(C.4)

which implies eq. (4.41). As for eq. (B.1) in the calculation of the z0-derivative, this

equation is the starting point to determine the τ -derivative of Zτ0,n((1, A), (0, B)). In the

following two subsections, we give the corresponding formula in terms of the S-map and a

closed expression.
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C.1 S-map formula

Let us start with deriving the S-map formula, continuing from eq. (C.4) similar to the

calculation of the z0-derivative. In order to rewrite the last sum, the operator in front of

the product ϕτ (1, A)ϕτ (0, B) is expressed as follows

(
f

(1)
ak,bj

(
θk≥1∂ηak − θj≥1∂ηbj

)
− f (2)

bj ,ak

)
ϕτ (1, A)ϕτ (0, B)

=
(
θk≥1∂ηak − θj≥1∂ηbj − ∂ξ

)
Ωak,bj (ξ)ϕ

τ (1, A)ϕτ (0, B)
∣∣
ξ0
, (C.5)

such that eq. (B.53) can be used again. Due to the shifts ∓ξ in the variables ηak − ξ and

ηbj + ξ, the additional differential operator ∂ηak − ∂ηbj − ∂ξ acts only non-trivially on the

factor Ω01 in eq. (B.53). For the first sum in eq. (B.53), this amounts to projecting out a

second derivative in analogy to eq. (B.41), since for k 6= 0

(
∂ηak − ∂ηbj − ∂ξ

) (
Ω1,0(ξ)Ωak−1,ak(ηak − ξ)

) ∣∣∣
ξ0

=

(
− 1

ξ2
+ f

(2)
1,0 +O(ξ)

)
×
(

Ωak−1,ak(ηak)− ξ∂ηakΩak−1,ak(ηak) +
ξ2

2
∂2
ηak

Ωak−1,ak(ηak) +O(ξ)

) ∣∣∣∣
ξ0

=

(
f

(2)
01 −

1

2
∂2
ηak

)
Ωak−1,ak(ηak) , (C.6)

and more generally

(
θk≥1∂ηak − θj≥1∂ηbj − ∂ξ

)(
Ω1,0(ξ)ϕτ (1, A)|ηak→ηak−ξϕ

τ (0, B)|ηbj→ηbj+ξ

)∣∣∣
ξ0

=

(
f

(2)
01 −

1

2

(
θk≥1∂ηak − θj≥1∂ηbj

)2
)
ϕτ (1, A)ϕτ (0, B) . (C.7)

Thus, if we apply (θk≥1∂ηak − θj≥1∂ηbj − ∂ξ) on the first sum in eq. (B.53), its ξ0-part is

given by

 p∑
k=0

q∑
j=0

sak,bj

(
θk≥1∂ηak− θj≥1∂ηbj− ∂ξ

)
Ω1,0(ξ)ϕτ (1, A)ϕτ (0, B)|ηak→ηak−ξ,ηbj→ηbj+ξ

∣∣∣∣
ξ0

=

s(1,A),(0,B)f
(2)
01 −

1

2

p∑
k=0

q∑
j=0

sak,bj

(
θk≥1∂ηak − θj≥1∂ηbj

)2

ϕτ (1, A)ϕτ (0, B) , (C.8)
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such that the identity (B.53) implies

p∑
k=0

q∑
j=0

sak,bj

(
f

(1)
ak,bj

(
θk≥1∂ηak − θj≥1∂ηbj

)
− f (2)

bj ,ak

)
ϕτ (1, A)ϕτ (0, B)

=

1

2

p∑
k=0

q∑
j=0

sak,bj

(
θk≥1∂ηak − θj≥1∂ηbj

)2
− s(1,A),(0,B)f

(2)
01

ϕτ (1, A)ϕτ (0, B)

−
q∑
l=1

Ω+
01(ηBl,q+1

)ϕτ (0, B1l)ϕ
τ (S[(1, A), Bl,q+1])

−
p∑
i=1

Ω−01(−ηAi,p+1)ϕτ (1, A1i)ϕ
τ (S[(0, B), Al,q+1]) , (C.9)

where

Ω±01(±ξ) = ±∂ξΩ01(±ξ) . (C.10)

The second and third sum in eq. (C.4) can be calculated similarly. We find for example

p∑
k=1

k−1∑
j=0

sak,aj

(
f (1)
ak,aj

(
∂ηak − θj≥1∂ηaj

)
+ f (2)

ak,aj

)
ϕτ (1, A)ϕτ (0, B)

= ϕτ (0, B)

p∑
k=1

k−1∑
j=0

sak,aj

((
∂ηak − θj≥1∂ηaj + ∂ξ

)
Ωak,aj (ξ)ϕ

τ (1, A)
)∣∣∣
ξ0
, (C.11)

where using eq. (A.14) gives

Ωak,aj (ξ)ϕ
τ (1, A)

= Ωak,aj (ξ)ϕ
τ (A0,j+1)|ηj→ηAj,p+1

ϕτ (aj , Aj+1,k, ak, Ak+1,p+1)

= Ωak,aj (ξ)ϕ
τ (A0,j+1)|ηj→ηAj,p+1

k∑
l=j+1

(−1)k−lϕτ (aj , Aj+1,l)ϕ
τ (aj , ak, Ãl,k Ak+1,p+1)

= ϕτ (A0,j+1)|ηj→ηAj,p+1

k∑
l=j+1

(−1)k−lϕτ (aj , Aj+1,l)

× Ωak,aj (ξ)Ωaj ,ak(ηAl,p+1
)ϕτ (ak, Ãl,k Ak+1,p+1) . (C.12)

With the identity [18, 19]

(∂η + ∂ξ)Ωk,j(ξ)Ωj,k(η) = (℘(η)− ℘(ξ)) Ωj,k(η − ξ) (C.13)

and extracting its ξ0 contribution

((∂η + ∂ξ)Ωk,j(ξ)Ωj,k(η)) |ξ0 =

(
℘(η)− 1

2
∂2
η

)
Ωj,k(η) (C.14)
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we can continue to find((
∂ηak − θj≥1∂ηaj + ∂ξ

)
Ωak,aj (ξ)ϕ

τ (1, A)
)
Big|ξ0

= ϕτ (A0,j+1)|ηj→ηAj,p+1

k∑
l=j+1

(−1)k−lϕτ (aj , Aj+1,l)((
∂ηak + ∂ξ

)
Ωak,aj (ξ)Ωaj ,ak(ηAl,p+1

)
)∣∣∣
ξ0
ϕτ (ak, Ãl,k Ak+1,p+1)

= ϕτ (A0,j+1)|ηj→ηAj,p+1

k∑
l=j+1

(−1)k−lϕτ (aj , Aj+1,l)(
℘(ηAl,p+1

)− 1

2
∂2
ηak

)
Ωaj ,ak(ηAl,p+1

)ϕτ (ak, Ãl,k Ak+1,p+1)

= −1

2

(
∂ηak − θj≥1∂ηaj

)2
ϕτ (1, A)

+

k∑
l=j+1

℘(ηAl,p+1
)(−1)k−lϕτ (A0,j+1)|ηj→ηAj,p+1

(−1)l−j−1ϕτ (Ãj+1,l, aj)|ηaj→−ηAj+1,l

ϕτ (aj , ak, Ãl,k Ak+1,p+1)

= −1

2

(
∂ηak − θj≥1∂ηaj

)2
ϕτ (1, A)

+

k∑
l=j+1

℘(ηAl,p+1
)(−1)k−j−1ϕτ (A0,j Ãj+1,l, aj , ak, Ãl,k Ak+1,p+1) , (C.15)

where we have used the reflection property (A.12) and again the identity (A.14) in the

reverse direction, to pull out the appropriate second derivative for the second last equality.

Thus, we finally obtain

((
∂ηak − θj≥1∂ηaj + ∂ξ

)
Ωak,aj (ξ)ϕ

τ (1, A)
)∣∣∣
ξ0

= −1

2

(
∂ηak − θj≥1∂ηaj

)2
ϕτ (1, A)

+

k∑
l=j+1

℘(ηAl,p+1
)(−1)k−j−1ϕτ (A0,j Ãj+1,l, aj , ak, Ãl,k Ak+1,p+1) . (C.16)

Therefore, plugging the above identity into the sum (C.11) yields

p∑
k=1

k−1∑
j=0

sak,aj

(
f (1)
ak,aj

(
∂ηak − θj≥1∂ηaj

)
+ f (2)

ak,aj

)
ϕτ (1, A)ϕτ (0, B)

= −
p∑

k=1

k−1∑
j=0

1

2

(
∂ηak − θj≥1∂ηaj

)2
sak,ajϕ

τ (1, A)ϕτ (0, B)

+

p∑
k=1

k−1∑
j=0

sak,aj

k∑
l=j+1

℘(ηAl,p+1
)(−1)k−j−1ϕτ (A0,j Ãj+1,l, aj , ak, Ãl,k Ak+1,p+1)ϕτ (0, B)
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= −
p∑

k=1

k−1∑
j=0

1

2

(
∂ηak − θj≥1∂ηaj

)2
sak,ajϕ

τ (1, A)ϕτ (0, B)

+

p∑
l=1

℘(ηAl,p+1
)ϕτ (0, B)ϕτ (S[(1, A1,l), Al,p+1]) . (C.17)

Analogously, the third term in the sum in eq. (C.4) is

q∑
k=1

k−1∑
j=0

sbk,bj

(
f

(1)
bk,bj

(
∂ηbk − θj≥1∂ηbj

)
+ f

(2)
bk,bj

)
ϕτ (1, A)ϕτ (0, B)

= −
q∑

k=1

k−1∑
j=0

1

2

(
∂ηbk − θj≥1∂ηbj

)2
sbk,bjϕ

τ (1, A)ϕτ (0, B)

+

q∑
l=1

℘(ηBl,p+1
)ϕτ (1, A)ϕτ (S[(0, B1,l), Bl,p+1]) , (C.18)

which was the last term missing, such that the whole eq. (C.4) is expressed in terms of

the S-map leading to eq. (4.42). This formula is similar to the S-map formula (4.26) for

the z0-derivative: the differences are the diagonal terms, i.e. the first sum proportional

to Zτ0,n((1, A), (0, B)), the derivatives Ω+
01(ηBl,q+1

), Ω−01(−ηAl,p+1) instead of Ω01(ηBl,q+1
),

Ω01(−ηAl,p+1), respectively, and the appearance of the terms including the Weierstraß ℘-

function.

C.2 Closed formula

Similarly, we obtain a closed formula for the τ -derivative continuing from eq. (C.4). The

last sum can be rewritten using the results in eqs. (B.33) to (B.37) from the z0-derivative

p∑
k=0

q∑
j=0

sak,bj

(
f

(1)
ak,bj

(
θk≥1∂ηak − θj≥1∂ηbj

)
− f (2)

ak,bj

)
ϕτ (1, A)ϕτ (0, B)

=

p∑
k=0

q∑
j=0

sak,bj

(
θk≥1∂ηak − θj≥1∂ηbj − ∂ξ

)
Ωak,bj (ξ)ϕ

τ (1, A)ϕτ (0, B)|ξ0

=

1

2

p∑
k=0

q∑
j=0

sak,bj

(
θk≥1∂ηak − θj≥1∂ηbj

)2
− s(1,A),(0,B)f

(2)
01

ϕτ (1, A)ϕτ (0, B)

−
p∑

k=0

q∑
j=0

sak,bj

k∑
i=1

j∑
l=1

(−1)k+j−i−lΩ+
01(ηBl,q+1

)ϕτ (0, B1l)

× ϕτ (1, A1i (ak, (Ãi,k Ak+1,p+1) (bj , B̃l,j Bj+1,q+1)))

−
p∑

k=0

q∑
j=0

sak,bj

k∑
i=1

j∑
l=1

(−1)k+j−i−lΩ−01(−ηAi,p+1)ϕτ (1, A1i)

× ϕτ (0, B1l (bj , (B̃l,j Bj+1,q+1) (ak, Ãi,k Ak+1,p+1))) . (C.19)
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The second sum can be expressed from eq. (C.12) using a similar calculation as in eq. (C.15)

as follows:

((
∂ηak − θj≥1∂ηaj + ∂ξ

)
Ωak,aj (ξ)ϕ

τ (1, A)
)∣∣∣
ξ0

= ϕτ (A0,j+1)|ηj→ηAj,p+1

k∑
l=j+1

(−1)k−lϕτ (Aj,l)((
∂ηak + ∂ξ

)
Ωak,aj (ξ)Ωaj ,ak(ηAl,p+1

)
)∣∣∣
ξ0
ϕτ (ak, Ãl,k Ak+1,p+1)

= ϕτ (A0,j+1)|ηj→ηAj,p+1

k∑
l=j+1

(−1)k−lϕτ (Aj,l)(
℘(ηAl,p+1

)− 1

2
∂2
ηak

)
Ωaj ,ak(ηAl,p+1

)ϕτ (ak, Ãl,k Ak+1,p+1)

= −1

2

(
∂ηak − θj≥1∂ηaj

)2
ϕτ (1, A)

+
k∑

l=j+1

℘(ηAl,p+1
)(−1)k−lϕτ (A0,j+1)|ηaj→ηAj,p+1

ϕτ (aj , Aj+1,l (ak, Ãl,k Ak+1,p+1))

= −1

2

(
∂ηak − θj≥1∂ηaj

)2
ϕτ (1, A)

+

k∑
l=j+1

℘(ηAl,p+1
)(−1)k−lϕτ (1, A1,j , aj , Aj+1,l (ak, Ãl,k Ak+1,p+1)) , (C.20)

while the third sum in eq. (C.4) is given by

((
∂ηbk − θj≥1∂ηbj + ∂ξ

)
Ωbk,bj (ξ)ϕ

τ (0, B)
)∣∣∣
ξ0

= −1

2

(
∂ηbk − θj≥1∂ηbj

)2
ϕτ (0, B)

+

k∑
l=j+1

℘(ηBl,q+1
)(−1)k−lϕτ (0, B1,j , bj , Bj+1,l (bk, B̃l,k Bk+1,q+1)) . (C.21)

Altogether, this leads to the closed expression of the τ -derivative as given in eq. (4.44).

Note that as for the S-map formula, the only difference compared to the closed

z0-derivative (4.21) are the diagonal terms (first sum), the derivatives Ω+
01(ηBl,q+1

),

Ω−01(−ηAl,p+1) instead of Ω01(ηBl,q+1
), Ω01(−ηAl,p+1), respectively, and the appearance of

the terms including the Weierstraß ℘-function (the second and third sum).

C.3 Three-point example

This appendix complements the discussion of the three-point τ -derivative in section 4.3.3

by expressing ∂τ Zτ0,3 in terms of Weierstraß ℘-functions and Kronecker-Eisenstein series.
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The τ -derivative following from eqs. (4.42) and (4.44) is given by

2πi∂τ Zτ0,3 =

(
1

2
(s02 + s12)∂2

η2 +
1

2
(s03 + s13)∂2

η3 +
1

2
s23(∂η2−∂η3)2 − 2ζ2s0123

)
Zτ0,3

− diag
(
s0,123, s0,123, s03,12, s02,13, s023,1, s023,1

)
f

(2)
01 Zτ0,3 +

dτ11 d
τ
12 d

τ
13

dτ21 d
τ
22 d

τ
23

dτ31 d
τ
32 d

τ
33

Zτ0,3 ,

(C.22)

where dτij denote 2×2 blocks: while the diagonal blocks depend on η2, η3 via Weierstraß

functions,

dτ11 =

(
−s12℘(η23)− (s13+s23)℘(η3) s13

[
℘(η23)− ℘(η3)

]
s12

[
℘(η23)− ℘(η2)

]
−s13℘(η23)− (s12+s23)℘(η2)

)
,

dτ22 =

(
−s12℘(η2)− s03℘(η3) 0

0 −s13℘(η3)− s02℘(η2)

)
, (C.23)

dτ33 =

(
−s03℘(η23)− (s02+s23)℘(η2) s02

[
℘(η23)− ℘(η2)

]
s03

[
℘(η23)− ℘(η3)

]
−s02℘(η23)− (s03+s23)℘(η3)

)
,

the off-diagonal ones involve the derivatives (4.43) of the Kronecker-Eisenstein series

dτ12 =

(
s03Ω−01(−η3) 0

0 s02Ω−01(−η2)

)
,

dτ13 = Ω−01(−η23)

(
−s03 s02

s03 −s02

)
,

dτ21 =

(
(s13+s23)Ω+

01(η3) s13Ω+
01(η3)

s12Ω+
01(η2) (s12+s23)Ω+

01(η2)

)
, (C.24)

dτ23 =

(
(s02+s23)Ω−01(−η2) s02Ω−01(−η2)

s03Ω−01(−η3) (s03+s23)Ω−01(−η3)

)
,

dτ31 = Ω+
01(η23)

(
−s12 s13

s12 −s13

)
,

dτ32 =

(
s12Ω+

01(η2) 0

0 s13Ω+
01(η3)

)
.

Based on (C.22) and the η-expansions of (C.23) and (C.24), one arrives at the expressions

for r0,3(εk) and r0,3(bk) given in section 4.3.3.

D Recovering genus-one Selberg integrals

In this appendix, we relate the language used in section 4 to the genus-one Selberg inte-

grals (3.32) employed in ref. [3].
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D.1 Recovering genus-one Selberg integrals

Let us begin with defining the generating series of genus-one Selberg integrals with expan-

sion variables ξ`:

T τ0,n

[
ξ2 ξ3 ... ξn
i2 i3 ... in

]
=

∫
0<z2<z3<...<zn<z0

dz2 · · · dzn KNτ
012...n Ωi22(ξ2)Ωi33(ξ3) . . .Ωinn(ξn)

= es01...nω(1,0|τ)
∑

k2,...,kn≥0

(−1)k2+···+knξk2−1
2 . . . ξkn−1

n SE
n

[
kn, ..., k2
in, ..., i2

]
(z0) ,

(D.1)

where the i` satisfy the admissibility condition (3.33), i.e. i` ∈ {0, 1, `+1, `+2, . . . , n}. The

integrals T τ0,n are related to the augmented Z-integrals Zτ0,n by Fay identities.

This connection can be understood from the graphical approach in section 4.1 since

the integrand Ωi22(ξ2) . . .Ωinn(ξn) of eq. (D.1) with admissible i` agrees precisely with the

one in eq. (4.8). Once the ξ` are identified as suitable linear combinations of η2, η3, . . . , ηn
to be denoted by ηC`(~i), one can use Fay identities to expand

T τ0,n

[
ηC2(

~i) ηC3(
~i) ... ηCn(~i)

i2 i3 ... in

]
=
∑
A,B

m
~i
A,B Z

τ
0,n((1, A), (0, B)) (D.2)

with coefficients m
~i
A,B ∈ Z, and the sum runs over all disjoint sequences A = (a1, a2, . . . , ap)

and B = (b1, b2, . . . , bq) such that A∪B = {2, 3, . . . , n}. The linear combinations ξ` = ηC`(~i)
are fixed from the discussion in section 4.1.1: the labels ~i = (i2, i3, . . . , in) of the integrand

Ωi22(ξ2) . . .Ωinn(ξn) in eq. (D.1) define a graph which in turn identifies ξ` = ηC`(~i) with

a linear combination of η2, η3, . . . , ηn through the weights of its edges as explained below

eq. (4.8).

In the same way as the Zτ0,n((1, A), (0, B)) are gathered in the n!-component vector

Zτ0,n in eq. (4.3), we introduce an n!-component vector of admissible integrals eq. (D.1),

Tτ
0,n =

(
T τ0,n

[
ηC2(

~i) ηC3(
~i) ... ηCn(~i)

i2 i3 ... in

])
for i` ∈ {0, 1, `+1, `+2, . . . , n} . (D.3)

In this setting, eq. (D.2) defines an n!×n! transformation matrix Mn with integer entries,

Tτ
0,n = Mn Zτ0,n . (D.4)

This basis transformation relates the component integrals of the augmented Z-integrals to

the genus-one Selberg integrals by means of eq. (D.1).

D.1.1 Two-point example

Let us illustrate the above definitions and the calculation of the transformation matrix Mn

on the two- and three-point examples. In the two-point case, the two integrals are

T τ0,n

[
ξ2
i2

]
=

∫ z0

0
dz2 KNτ

012Ωi22(ξ2) (D.5)
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whose ξ2-variable is identified with η2 for both of i2 = 0, 1. The two vector components

then trivially agree with Zτ0,2(1, 2) and Zτ0,2(0, 2), respectively,

Tτ
0,2 =

T τ0,2
[
ξ2
1

]
T τ0,2

[
ξ2
0

]
 =

(
1 0

0 1

)
Zτ0,2 . (D.6)

D.1.2 Three-point example

In the case of n = 3, the generating series eq. (D.1) specializes to

T τ0,3

[
ξ2 ξ3
i2 i3

]
=

∫ z0

0
dz3 Ωi33(ξ3)

∫ z3

0
dz2 Ωi22(ξ2)KNτ

0123 , (D.7)

and features six components (i2, i3) ∈ {0, 1, 3} × {0, 1} compatible with the admissi-

bility condition. Those with (i2, i3) ∈ {(3, 1), (3, 0), (0, 1), (1, 0)} immediately yield the

Kronecker-Eisenstein series seen in a component of the Zτ0,3-vector eq. (4.32) which settles

the respective identifications of ξ2, ξ3 with the ηj-variables:

T τ0,3

[
η2 η2,3
3 1

]
= Zτ0,3(1, 3, 2) ,

T τ0,3

[
η2 η2,3
3 0

]
= Zτ0,3(0, 3, 2) ,

T τ0,3

[
η2 η3
0 1

]
= Zτ0,3((1, 3), (0, 2)) ,

T τ0,3

[
η2 η3
1 0

]
= Zτ0,3((1, 2), (0, 3)) . (D.8)

The remaining entries of eq. (D.7) with (i2, i3) = (1, 1) and (i2, i3) = (0, 0) yield Kronecker-

Eisenstein series Ω12(ξ2)Ω13(ξ3) and Ω02(ξ2)Ω03(ξ3), respectively. Their expansion in terms

of entries of Zτ0,3((1, A), (0, B)) via Fay relations uniquely selects ξ2 = η2 and ξ3 = η3,

T τ0,3

[
η2 η3
1 1

]
= Zτ0,3(1, 2, 3) + Zτ0,3(1, 3, 2) (D.9)

T τ0,3

[
η2 η3
0 0

]
= Zτ0,3(0, 2, 3) + Zτ0,3(0, 3, 2) , (D.10)

such that the full basis transformation is given by

Tτ
0,3 =



T τ0,3

[
η2 η3
1 1

]
T τ0,3

[
η2 η2,3
3 1

]
T τ0,3

[
η2 η3
1 0

]
T τ0,3

[
η2 η3
0 1

]
T τ0,3

[
η2 η2,3
3 0

]
T τ0,3

[
η2 η3
0 0

]


=



1 1 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 1 1


Zτ0,3 . (D.11)
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D.2 Recovering the representation of xn,w

In ref. [3], it was shown that the differential equation of the vector of all admissible genus-

one Selberg integrals (3.32) of a certain weight w = k2 + k3 + · · ·+ kn, i.e.

SE
n,w(z0|τ) =

(
SE
n

[
kn, ..., k2
in, ..., i2

]
(z0)

)
for

{
k2 + k3 + · · ·+ kn = w

i` ∈ {0, 1, `+1, `+2, . . . , n}
(D.12)

satisfies a differential equation of the form

∂0 SE
n,w(z0|τ) =

w+1∑
k=0

f
(k)
01 r

E
0,n(xk,w) SE

n,w+1−k(z0|τ) , (D.13)

where the matrices rE
0,n(xk,w) are linear in the Mandelstam variables and play a crucial

role in the associator construction proposed therein. These matrices are the finite, non-

vanishing blocks of the matrices rE
0,n(xk) in eq. (3.35). In this subsection, we show how

these matrices can be related to the matrices r0,n(xk) in the KZB equation (4.14).

The basis transformation (D.4) along with eq. (4.14) imply that the vector of integrals

Tτ
0,n satisfies the KZB equation

∂0T
τ
0,n =

∞∑
k=0

f
(k)
01 Mnr0,n(xk)M

−1
n Tτ

0,n . (D.14)

On the one hand, according to the definition (D.1) the vector Tτ
0,n can be expressed as a

linear combination of vectors SE
w(z0|τ) as follows

Tτ
0,n = es01...nω(1,0|τ)

∑
k2,...,kn≥0

(−1)k2+···+knξk2−1
2 . . . ξkn−1

n

×
(

SE
n

[
kn, ..., k2
in, ..., i2

]
(z0)

)
for i` ∈ {0, 1, `+1, `+2, . . . , n}

= es01...nω(1,0|τ)
∞∑
w=0

(−1)wMn,w SE
n,w(z0|τ) , (D.15)

where Mn,w is a matrix of homogeneous degree w+1−n in the variables ξ. The entries

of Mn,w are engineered to reproduce the linear combination of the length-n! vector of

admissible genus-one Selberg integrals in the first line of eq. (D.15) for a certain sequence

(k2, . . . , kn):

Mn,w SE
n,w(z0|τ) =

∑
k2,...,kn≥0
k2+···+kn=w

ξk2−1
2 . . . ξkn−1

n

(
SE
n

[
kn, ..., k2
in, ..., i2

]
(z0)

)
(D.16)

for i` ∈ {0, 1, `+1, `+2, . . . , n} .

Thus, we obtain

∂0T
τ
0,n = es01...nω(1,0|τ)

∞∑
k=0

∞∑
w=0

(−1)wf
(k)
01 Mnr

E
0,n(xk)M

−1
n Mn,w SE

n,w(z0|τ) . (D.17)
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On the other hand, the derivative ∂0T
τ
0,n can also be calculated using eq. (D.13), which

leads to

∂0T
τ
0,n= es01...nω(1,0|τ)

∞∑
w=0

(−1)wMn,w∂0 SE
n,w(z0|τ)

= es01...nω(1,0|τ)
∞∑
w=0

(−1)wMn,w

w+1∑
k=0

f
(k)
01 r

E
0,n(xk,w) SE

n,w+1−k(z0|τ) (D.18)

= es01...nω(1,0|τ)
∞∑
k=0

∑
w≥max(0,k−1)

(−1)wf
(k)
01 Mn,wr

E
0,n(xk,w) SE

n,w+1−k(z0|τ)

= es01...nω(1,0|τ)
∞∑
k=0

∞∑
v=0

(−1)v+k−1f
(k)
01 (1− δv,0δk,0)Mn,v+k−1r

E
0,n(xk,v+k−1) SE

n,v(z0|τ) ,

where we have used the change of variables v = w+1−k. Comparing this with eq. (D.17)

and using the independence of f
(k)
01 and SE

n,w(z0|τ) for different k and w, respectively, we

can conclude that for any k,w ≥ 0

Mnr0,n(xk)M
−1
n Mn,w = (−1)k−1(1− δw,0δk,0)Mn,w+k−1r

E
0,n(xk,w+k−1) . (D.19)

This equation expresses the relation between the matrices r0,n(xk) from section 4.2 and

the submatrices rE
0,n(xk,w) of rE

0,n(xk) appearing in the KZB equation in ref. [3].

D.2.1 Two-point example

Let us illustrate and check the formula (D.19) for the two-point example and the block-

matrices given in eqs. (3.42) and (3.43). The latter encode the matrices rE
0,n(xk,w) for

k = 0, 1 at weight w = 0

rE
0,2(x0,0) = −s12 , rE

0,2(x1,0) = −s01 , (D.20)

for k = 0, 1, 2 at weight w = 1

rE
0,2(x0,1) =

(
s02 s02

)
, rE

0,2(x1,1) = −s012 , rE
0,2(x2,1) = s02 (D.21)

and for k = 1, 2 at weight w = 2

rE
0,2(x1,2) =

(
−(s01 + s02) s02

s12 −(s01 + s12)

)
, rE

0,2(x2,2) =

(
−s12

−s12

)
. (D.22)

Moreover, comparing the first four entries of the two-point vector SE
2 (z0) in eq. (3.41) with

the defining eq. (D.12) of its constant-weight subvectors SE
n,w(z0|τ), we find that

SE
2,0(z0|τ) = SE

2

[
0
1

]
(z0) , SE

2,1(z0|τ) = SE
2

[
1
1

]
(z0) , SE

2,2(z0|τ) =

SE
2

[
2
1

]
(z0)

SE
2

[
2
0

]
(z0)

 . (D.23)
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According to eq. (D.16), for n = 2 the matrices M2,w are defined by the equation

M2,w SE
2,w(z0|τ) = ξw−1

SE
n

[
w
1

]
(z0)

SE
n

[
w
0

]
(z0)

 (D.24)

and, thus, for w = 0, 1, 2 they are given by

M2,0 = η−1

(
1

1

)
, M2,1 =

(
1

− s12
s02

)
, M2,2 = η

(
1 0

0 1

)
. (D.25)

Now, we have all we need to check eq. (D.19) for some configurations of k and w. We

begin with (k,w) = (0, 0) and r0,2(xk) (for k = 0, 1, 2) from eq. (4.31), which leads to the

equation

r0,2(x0)M2,0 =

(
0

0

)
⇔

(
−s02∂η −s02/η

s12/η s12∂η

)
η−1

(
1

1

)
=

(
0

0

)
, (D.26)

which is indeed satisfied since (∂η + η−1)η−1 = 0. For (k,w) = (0, 1) the right-hand side of

eq. (D.19) is not vanishing and the full equation takes the form

r0,2(x0)M2,1 = −M2,0r
E
0,2(x0,0)⇔

(
−s02∂η −s02/η

s12/η s12∂η

)(
1

− s12
s02

)
= η−1

(
1

1

)
s12 , (D.27)

while for (k,w) = (0, 2)

r0,2(x0)M2,2 = −M2,1r
E
0,2(x0,1)⇔

(
−s02∂η −s02/η

s12/η s12∂η

)
η

(
1 0

0 1

)
=

(
−1
s12
s02

)(
s02 s02

)
.

(D.28)

The lowest-weight configurations for k = 1 are (k,w) = (1, 0) leading to

r0,2(x1)M2,0 = M2,0r
E
0,2(x1,0)⇔

(
−(s01+s02) s02

s12 −(s01+s12)

)
η−1

(
1

1

)
= −η−1

(
1

1

)
s01 ,

(D.29)

and (k,w) = (1, 1) such that

r0,2(x1)M2,1 = M2,1r
E
0,2(x1,1)⇔

(
−(s01+s02) s02

s12 −(s01+s12)

)(
1

− s12
s02

)
= −

(
1

− s12
s02

)
s012 .

(D.30)

Finally, (k,w) = (1, 2) yields the equation

r0,2(x1)M2,2 = M2,2r
E
0,2(x1,2) (D.31)

which holds by r0,2(x1) = rE
0,2(x1,2) and M2,2 = η12×2.
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For k = 2, we can check the following two configurations with the explicit examples

given above: the weight-zero case (k,w) = (2, 0)

r0,2(x2)M2,0 = −M2,1r
E
0,2(x2,1)⇔ η

(
0 −s02

s12 0

)
η−1

(
1

1

)
= −

(
1

− s12
s02

)
s02 (D.32)

and weight one (k,w) = (2, 1)

r0,2(x2)M2,1 = −M2,2r
E
0,2(x2,2)⇔ η

(
0 −s02

s12 0

)(
1

− s12
s02

)
= −η

(
1 0

0 1

)(
−s12

−s12

)
. (D.33)

Thus, we have explicitly approved eq. (D.19) for the lowest-weight configurations involving

the objects (D.20) to (D.22) and (D.25) at two points.

E Subleading terms in Cτ
1,n

In this section, we address the claim above eq. (5.34). We argue that subleading terms

appear in the limit z0 → 1 of Zτ0,n((1, A), (0, B)) and estimate their order in 1−z0 by first

giving the two-point example and afterwards generalizing to n points.

E.1 Two-point example

As seen in eq. (5.30), the integrand of

Zτ0,2(1, 2) =

∫ z0

0
dz2 e

−s01Gτ01−s02Gτ02−s12Gτ12Ω12(η) (E.1)

has a leading singularity of order (1−z0)−s01 as z0 → 1:

e−s01G
τ
01−s02Gτ02−s12Gτ12Ω12(η)

= (−2πi(1−z0))−s01es01ω(1,0|τ)e−s̃12G
τ
12Ω12(η) +O((1−z0)−s01+1) . (E.2)

This singularity appears due to the merging of the punctures z0 → 1 ∼= 0 = z1. However,

in order to calculate the limit z0 → 1 of the integral, we can not simply set z0 = 1 in

eq. (E.1), which can be deduced using the following integral decomposition

Zτ0,2(1, 2) =

∫ 1

0
dz2 e

−s01Gτ01−s02Gτ02−s12Gτ12Ω12(η)−
∫ 1

z0

dz2 e
−s01Gτ01−s02Gτ02−s12Gτ12Ω12(η) . (E.3)

Thus, taking z0 → 1 involves a subleading term given by the latter integral above, where

the three punctures z0 < z2 < 1 ∼= z1 merge. Similar to the estimate (5.7) for the lower

boundary value, this leads to a term of order (1−z0)−s012 ,∫ 1

z0

dz2 e
−s01Gτ01−s02Gτ02−s12Gτ12Ω12(η) = O((−2πi(1−z0))−s012) , (E.4)

as can for instance be checked through a change of variables 1−z2 = x2(1−z0) with x2 ∈
(0, 1). Altogether, we find the estimate that for z0 → 1

Zτ0,2(1, 2) = (−2πi(1−z0))−s01es01ω(1,0|τ)Zτ2 |s̃12 +O((1−z0)−s01+1, (1−z0)−s012) . (E.5)
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Therefore, if we follow the assumption (2.3), which implies Re(s012) < Re(s01) < 0, one

can extract the finite value

lim
z0→1

(−2πi(1−z0))s01Zτ0,2(1, 2) = es01ω(1,0|τ)Zτ2 |s̃12 , (E.6)

which reproduces the first component of eq. (5.46).

E.2 n-point generalization

The above argument can be applied to the n-point case by generalizing eq. (E.3) to the

decomposition of the integration domain of the Zτ integrals without augmentations

{z2, z3, . . . , zn ∈ R | 0 = z1<z2<z3<. . .<zn<1} = γ12...n0 ∪
( n−1⋃
k=1

γ12...k,0,k+1...n

)
(E.7)

with the following generalization of the integration domain γ12...n0 in eq. (4.5):

γ12...k,0,k+1...n = {z2, z3, . . . , zn ∈ R | 0 = z1<z2<z3 < . . . < zk < z0 < zk+1<. . .<zn<1} .
(E.8)

These domains γ12...k,0,k+1...n with k = 1, 2, . . . , n−1 cause the z0 → 1 limit of Zτ0,n to

deviate from the non-augmented Zτn at arguments s̃ij in eq. (5.32), see e.g. the second term

in eq. (E.3) at n = 2. The scaling behaviour of γ12...k,0,k+1...n integrals in the limit z0 → 1

can be conveniently extracted by substituting z0 = 1−w0 and zj = 1−wj for j = k+1, . . . , n

followed by the rescaling wj = w0xj , see eq. (E.4) for the two-point result. For a generic

function F of z2, z3, . . . , zn in the integrand, this amounts to parametrizing the merging

of n−k+2 consecutive punctures z0 < zk+1 < · · · < zn < 1 ∼= z1 in the limit z0 → 1 or

w0 → 0 via∫
γ12...k,0,k+1...n

dz2 . . . dzn F (z2, . . . , zn) =

∫
0<z2<...<zk<z0

dz2 . . . dzk

∫
z0<zk+1<...<zn<1

dzk+1 . . . dzn F (z2, . . . , zn)

(E.9)

= wn−k0

∫
0<z2<...<zk<z0

dz2 . . . dzk

∫
0<xn<...<xk+1<1

dxk+1 . . . dxn F (z2, . . . , zk, 1−xk+1w0, . . . , 1−xnw0) .

The integrands F relevant to Zτ0,n involve the augmented Koba-Nielsen factor which scales

as w
−s01(k+1)...n

0 = (1−z0)−s01(k+1)...n in this limit. This can be seen by repeating the analysis

of the z0 → 0 limit in eq. (5.7) with w0 = 1−z0 in the place of z0 and employing the

arguments seen on the right-hand side of eq. (E.9). Then, as for the two-point example, the

condition (2.3), such that Re(s01(k+1)...n) < Re(s01) < 0, ensures that eq. (E.9) vanishes

for k = 1, 2, . . . , n−1 if the z0 → 1 limit is taken in presence of the regulating factor

(−2πi(1−z0))s01 in front of Zτ0,n((1, A), (0, B)) in eq. (5.34). Hence, the w
−s01(k+1)...n

0 scaling

of the Koba-Nielsen factor entering the F in eq. (E.9) implies our claim (5.34) for the

regularized limit defining Cτ
1,n.
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E.3 Further comments on subleading terms

Note that the additional scaling ∼ wn−k0 in eq. (E.9) by integer powers does not affect the

derivation of eq. (5.34) based on the scaling of the Koba-Nielsen factor: the prefactor wn−k0

is either compensated by the Ωij in some of the vector components of Zτ0,n((1, A), (0, B)), or

it may suppress the contribution of γ12...k,0,k+1...n to eq. (E.7) in other vector components.

At n = 3 points, for instance, the integrand of Zτ0,3 in eq. (4.32) involves Kronecker-

Eisenstein series with the following scaling as z0 → 1 in the domains γ1023 and γ1203

of eq. (E.8):

∫
γ1023

dz2 dz3 KNτ
0123



Ω12(η23)Ω23(η3)

Ω13(η23)Ω32(η2)

Ω12(η2)Ω03(η3)

Ω13(η3)Ω02(η2)

Ω03(η23)Ω32(η2)

Ω02(η23)Ω23(η3)


z0→1−→ w2

0

∫
0<x3<x2<1

dx2 dx3 KNτ
0123



(w2
0x2x32)−1

(w2
0x3x23)−1

(w2
0x2(x3−1))−1

(w2
0x3(x2−1))−1

(w2
0x23(x3−1))−1

(w2
0x32(x2−1))−1


(E.10)

∫
γ1203

dz2 dz3 KNτ
0123



Ω12(η23)Ω23(η3)

Ω13(η23)Ω32(η2)

Ω12(η2)Ω03(η3)

Ω13(η3)Ω02(η2)

Ω03(η23)Ω32(η2)

Ω02(η23)Ω23(η3)


z0→1−→ w0

∫ z0

0
dz2

∫ 1

0
dx3 KNτ

0123



Ω12(η23)Ω23(η3)

(w0x3)−1Ω32(η2)

(w0(x3−1))−1Ω12(η2)

(w0x3)−1Ω02(η2)

(w0(x3−1))−1Ω32(η2)

Ω02(η23)Ω23(η3)


In the first case of γ1023, i.e. eq. (E.9) at k = 1, the Kronecker-Eisenstein series in all the

six vector entries have a singular term that scales as w−2
0 and compensates the prefactor

from wn−k0 . In the second case of γ1203, i.e. eq. (E.9) at k = 2, only the middle four

vector components feature a Kronecker-Eisenstein series with most singular term w−1
0 .

Accordingly, the first and last vector entry are suppressed by one additional power of w0

as w0 → 0.

Still, this example illustrates that the analysis of vector entries with additional sup-

pression by powers of w0 does not play any role for the above conclusion: all components

of eq. (E.9) vanish when the limit w0 → 0 is performed in presence of the regulating factor

(−2πi(1−z0))s01 .
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