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École Polytechnique Fédérale de Lausanne, Swiss Plasma Center, CH-1015 Lausanne, Switzerland

C. Zhu
Princeton Plasma Physics Laboratory, PO Box 451, Princeton NJ 08543, USA

Z. S. Qu
Mathematical Sciences Institute, the Australian National University, Canberra ACT 2601, Australia

C. Nührenberg and S. Lazerson
Max-Planck-Institut für Plasmaphysik, 17491 Greifswald, Germany

C. B. Smiet
Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton NJ 08543, USA.

M. J. Hole
Mathematical Sciences Institute, the Australian National University, Canberra ACT 2601, Australia and

Australian Nuclear Science and Technology Organisation,
Locked Bag 2001, Kirrawee DC NSW 2232, Australia

(Dated: February 19, 2020)

The stepped-pressure equilibrium code (SPEC) [Hudson et al., Phys. Plasmas 19, 112502 (2012)]
is extended to enable free-boundary, multi-region relaxed magnetohydrodynamic (MRxMHD) equi-
librium calculations. The vacuum field surrounding the plasma inside an arbitrary ‘computational
boundary’, D, is computed, and the virtual casing principle is used iteratively to compute the nor-
mal field on D so that the equilibrium is consistent with an externally produced magnetic field.
Recent modifications to SPEC are described, such as the use of Chebyshev polynomials to describe
the radial dependence of the magnetic vector potential, and a variety of free-boundary verification
calculations are presented.

I. INTRODUCTION

Calculating the magnetohydrodynamic (MHD) equi-
librium in magnetically confined plasma experiments,
such as stellarators and tokamaks, is typically the start-
ing point for most analyses of plasma confinement. Equi-
librium calculations, and the associated linear and non-
linear stability analyses, are required for reconstruction
of existing experiments and for the design of future exper-
iments. Ignoring nonideal effects such as resistivity, vis-
cosity, etc., the simplest equation describing static MHD
equilibria is ∇p = j×B, called the ideal-force-balance
equation, where p is the plasma pressure, B is the mag-
netic field, and j = ∇×B/µ0 is the current density. The
magnetic field is produced by currents external and inter-
nal to the plasma, B = BC + BP , where BC is produced
externally, by current-carrying coils for example, and BP

is produced by plasma currents.

The solutions to the ideal-force-balance equation can
be complicated. For configurations without a continu-
ous symmetry, so-called three-dimensional (3D) config-
urations, the magnetic field will typically not possess
a smooth family of nested flux surfaces. 3D magnetic
fields are analogous to 1 1

2 -dimensional Hamiltonian sys-
tems [1], and such fields are generally non-integrable in a
dynamical systems context [2, 3]. Even though the mag-

netic field may be quite smooth, the phase space, i.e., the
properties of the magnetic fieldlines, is fractal, with in-
variant Kolmogorov-Arnold-Moser (KAM) surfaces [4, 5],
cantori [6–9] and magnetic islands infinitely interspersed
with the irregular trajectories of the ergodic “seas” [10]
associated with the unstable manifolds of periodic field-
lines.

The ideal-force-balance equation and ∇ · j = 0
lead to magnetic differential equations [11, 12] for
the pressure, B · ∇p = 0, and parallel current density,
B · ∇σ = −∇ ·

(
B×∇p/B2

)
, where we have written

j = σB + B×∇p/B2. The consequence of having non-
integrable magnetic fields and ensuring that B · ∇p = 0,
for example, are pressure profiles that were famously de-
scribed by Grad as being “pathological” [13].

If the magnetic field is constrained to be integrable,
i.e., constrained to possess a nested family of flux sur-
faces, which can be enforced by writing B = ∇ ×
[ψ∇θ − χ(ψ)∇ζ] where 2πψ and 2πχ are the toroidal and
poloidal fluxes, then both integrable and non-integrable
singular current densities may arise at a dense set of “res-
onances” where the the rotational transform, ι- ≡ ∂χ/∂ψ,
is rational [14], and where the word “integrable” is used
in a quadrature sense. An expanded discussion of the
complexities of 3D MHD equilibrium calculations and
existing theoretical and numerical approaches is given
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earlier [15].

To eliminate the mathematical pathologies, building
upon “sharp-boundary” models [16, 17], Bruno & Lau-
rence [18] introduced the stepped-pressure equilibrium
model, for which discontinuities in the pressure and mag-
netic field are allowed. Theorems reminiscent of the
KAM theorem [4, 5] were presented guaranteeing the ex-
istence of well-defined solutions provided certain condi-
tions are satisfied, namely that the discontinuities should
coincide with surfaces with strongly irrational rotational
transform. The stepped-pressure solutions do not impose
topological constraints at the rational surfaces, and non-
integrable (in a quadrature sense) singular current den-
sities do not arise, and the pressure profile is not frac-
tal. Even though the magnetic field and pressure are
not everywhere differentiable, they are integrable (again,
quadrature sense).

Dewar et al. introduced the multi-region relaxed mag-
netohydrodynamic (MRxMHD) energy principle [19–21],
which is a unification of the ideal MHD energy princi-
ple introduced by Kruskal & Kulsrud [22] and Taylor
relaxation [23, 24]. Extrema of the MRxMHD energy
principle are stepped-pressure equilibria. The plasma is
divided into a number of sub-regions that are separated
by so-called “ideal” interfaces. The magnetic field is as-
sumed to undergo Taylor relaxation in each region and
satisfies the Beltrami equation ∇ × B = µB where µ is
constant. In each region, the magnetic field is constrained
to remain tangential to each interface, and the pressure is
constant. Across the interfaces the thermal pressure may
jump, but the sum of thermal and magnetic pressure is
continuous.

Mills et al. [25] considered a generalisation to
MRxMHD to allow alternate relaxed and ideal MHD re-
gions and studied the stability. The high-n stability of
the ideal interfaces was studied by Barmaz et al. [26].
Dennis et al. presented generalizations of MRxMHD
that include flow [27] and pressure anisotropy [28], and
Lingam et al. [29] presented a model of multi-region re-
laxed Hall MHD. The static model was extended to a
dynamical model by Dewar et al. [30]. A generalization
that accommodates everywhere continuous and differen-
tiable magnetic fields and allows for magnetic islands and
chaos has been described by Hudson & Kraus [31], and
the resistive stability of this class of equilibria has been
studied by Wright et al. [32].

The stepped-pressure equilibrium code (SPEC) [15] is
based on the MRxMHD energy principle. SPEC was
used by Dennis et al. [33] to investigate the formation
of the single-helical and double-helical states in a re-
versed field pinch, and by Loizu et al. [34] to compute the
pressure-driven 1/x and the δ-function singular current-
densities in ideal-MHD equilibria with resonantly per-
turbed boundaries (this required taking the “ideal limit”,
in which MRxMHD reduces to ideal MHD [35]). A lin-
earized version of SPEC and the full nonlinear version
were verified against analytic calculations of resonant-
magnetic-perturbation penetration in cylindrical geome-
try by Loizu et al. [36, 37]. Fixed-boundary vacuum cal-
culations in strongly shaped stellarator geometries were
verified [38] against a Biot-Savart code. SPEC was used

to study the equilibrium β-limits in classical stellarators
[39], the linear stability and nonlinear saturation of the
tearing mode [40, 41], and flow relaxation in reversed-
field-pinch sawtooth events [42].

This paper describes the extension of SPEC from a
fixed-boundary code to a free-boundary code. Many
aspects of free-boundary SPEC are identical to fixed-
boundary SPEC, and we will assume that the reader
is familiar with our earlier paper [15]. To clarify ter-
minology: fixed-boundary equilibrium codes determine
the equilibrium magnetic field consistent with the given
plasma boundary and the given plasma profiles. Free-
boundary calculations are required to determine the po-
sition of the plasma boundary, and the equilibrium mag-
netic field, given the externally applied magnetic field
and the plasma profiles. Free-boundary 3D MHD cal-
culations in stellarator geometry have been performed
using the VMEC [43], PIES [44], NIMROD [45], HINT-2
[46], SIESTA [47] and BIEST [48] codes, and the M3D-
C1 code [49] is being extended to accommodate stel-
larator geometries. (The GVEC code, which similar to
VMEC but accommodates discontinuities, is presently
under construction [50].)

The outline of this paper is as follows. First, for com-
pleteness, a brief description of MRxMHD and SPEC
is presented. The numerical discretization employed
by SPEC and various recent code modifications are de-
scribed. These include: using Chebyshev polynomials
to represent the radial dependence of the Fourier har-
monics of the vector potential; the inclusion of the non-
“stellarator-symmetric” terms in the representation of
the geometry and the magnetic vector potential, so that
equilibria with arbitrary geometries can be computed;
the augmentation of the fixed-boundary calculation with
a vacuum field, which is calculated in a additional re-
gion outside the plasma boundary and inside an arbi-
trary “computational boundary”; the implementation of
a virtual-casing method for calculating the magnetic field
produced by the plasma currents at a location external
to the plasma; and a description of a Picard scheme to
determine the self-consistent value of the differential flux
on the computational boundary. Some example verifica-
tion calculations are then presented.

II. FREE-BOUNDARY MRXMHD

The classic MHD energy functional [22] is given by

W ≡
∫
V

(
p

γ − 1
+
B2

2

)
dv, (1)

where V is the plasma volume enclosed by the plasma
boundary, ∂V, to which the magnetic field is tangential.
The pressure, p, and current density, j, are re-scaled by
the constant µ0 and should be interpreted as µ0p and µ0j,
and similarly for W . Restricting attention to so-called
ideal variations in the pressure, extremizing solutions sat-
isfy the ideal force-balance condition, ∇p = j×B [22].

Ideal variations constrain the topology of structures
traced out by the magnetic fieldlines. MRxMHD allows
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for a less-restrictive class of variations and for the mag-
netic field to “tear”, and so magnetic islands and chaotic
fieldlines can emerge. Some constraints are included to
avoid globally relaxed solutions.

The “relaxed” aspect of MRxMHD follows Taylor re-
laxation [23], namely that weakly resistive plasmas will
dynamically evolve to minimize the energy but the mag-
netic helicity,

K ≡
∫
V
A ·B dv, (2)

is conserved [24, 51], where A is a magnetic potential,
B = ∇×A. The magnetic helicity is not gauge invariant
if the volume of integration is not simply connected [52];
however, the choice of gauge does not alter the physics.
(The gauge constraints used in SPEC are described ear-
lier [15].) Taylor states are constructed mathematically
by finding the minimum of W subject to the constraint
K = Ko, i.e., by finding extrema of F ≡W−µ(K−Ko)/2
where µ is the “helicity multiplier”, and the factor of −1/2
is introduced for convenience. Allowing for variations in
A that preserve the toroidal flux and the boundary con-
dition B · n = 0 where n is normal but are otherwise
arbitrary, and with the only constraint on the pressure
being pV γ = P , where V is the volume of V and P is an
“adiabatic” constant, magnetic fields that extremize F
satisfy ∇×B = µB and p = P/V γ .

The “multi-region” component of MRxMHD is to par-
tition the plasma into a finite number, NV , of sub-
regions, Vv, separated by nested interfaces, Iv, for v =
1, . . . , NV with INV

= ∂V. The magnetic field is con-
strained to satisfy B·n = 0 on each side of each interface,
and the fluxes in each region are constrained.

For fixed-boundary calculations, only the internal in-
terfaces, Iv for v = 1, . . . , NV − 1, are allowed to change.
These can move but “ideal constraints” are enforced, by
which we mean that the geometry of the interfaces and
the magnetic field move together so the interfaces remain
flux surfaces and the enclosed fluxes are conserved. The
interfaces constitute barriers that frustrate global relax-
ation.

The MRxMHD energy principle is to minimize the
plasma energy subject to the constraints of conserved
helicity in each of the Vv. The energy functional is

F =

NV∑
v=1

[Wv − µv (Kv −Ko,v) /2] , (3)

where Wv and Kv are the energy and helicity integrals
as given in Eqn. 1 and Eqn. 2 but restricted to the v-
th volume. The magnetic field in each Vv is constrained
to remain tangential to the Iv, but within each volume
the topology of the field is unconstrained. (In the limit
Nv →∞ of infinitely many ideal interfaces, the topology
is constrained everywhere [35].)

The Euler-Lagrange equations [15] for extremizing
states are: in each Vv the magnetic field is a linear force-
free field, ∇×Bv = µvBv; and across each of the Iv the
total pressure is continuous, [[p + B2/2]] = 0. To avoid
a problem of small-divisors, the rotational transforms on

the interfaces are generally required to be strongly irra-
tional [18, 53]. Extremizing solutions are the stepped-
pressure states of Bruno & Laurence.

In each Vv, given the geometry of the adjacent inter-
faces, there are three parameters that define the solution
for the magnetic field: the enclosed toroidal and poloidal
fluxes, ∆ψt,v and ∆ψp,v, and the helicity, Ko,v. The
toroidal and poloidal fluxes are given by poloidal and
toroidal loop integrals of the vector potential. (In the in-
nermost toroidal volume, only the enclosed toroidal flux
and helicity are defined.)

As typical for Lagrange multipliers, the helicity multi-
pliers, µv, must be adjusted to enforce the helicity con-
straints. Alternatively, it is sometimes desirable to con-
strain µv, which is related to the parallel current-density,
µv = jv ·Bv/B

2
v . In this case the helicity will only be

known a posteriori. It is also sometimes desirable to al-
low the value of Ko,v and µv, and either one or both
of ∆ψt,v and ∆ψp,v to vary in order to obtain solutions
with, for example, prescribed rotational transform on the
interfaces, or to constrain the currents passing through
certain surfaces.

A. Extension to free-boundary

To extend the fixed-boundary calculation to a free-
boundary, an additional region that lies outside the
plasma boundary is included, in which the vacuum mag-
netic field is calculated. Vacuum fields satisfy ∇×B = 0
and so are of course a special class of Beltrami fields; we
just set µ = 0. The existing numerical architecture can
be employed to calculate the vacuum field.

Before proceeding, we momentarily digress to explain a
numerical detail that might interest some readers. SPEC
writes the magnetic field as the curl of the magnetic vec-
tor potential, B = ∇ × A. It is of course possible in
the vacuum region to employ the scalar potential, i.e. to
write B = ∇Φ, where Φ = I θ +Gφ+ Φ̃(s, θ, φ), where
I and G are the net toroidal plasma and linking cur-
rents, and where Φ̃(s, θ, φ) is a single-valued function of
position. This offers the advantage that both the vac-
uum condition, ∇ × B = 0, and I and G can be satis-
fied/specified exactly regardless of numerical resolution.
There is the additional advantage that the scalar po-
tential is described using a single function of position,
namely Φ̃, whereas the magnetic vector potential is de-
scribed by two, namely Aθ and Aφ (assuming that gauge
freedom is used to remove the third component of the
vector potential, As). However, both the condition that
∇·B = 0 and the boundary condition B ·n = 0 at the in-
terfaces become subject to “numerical-resolution” error.
For these reasons, we use the magnetic vector potential
to describe the vacuum field.

The inner boundary of the additional vacuum region
coincides with the plasma boundary, on which the con-
straint B · n = 0 is enforced. The outer boundary, D,
hereafter called the “computational boundary”, is arbi-
trary except that, for expediency, it must lie between the
plasma boundary and the external current-carrying coils.

The normal magnetic field on D is generally not zero,
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and the enclosed toroidal and poloidal fluxes, ∆ψt and
∆ψp, in the vacuum region are not well-defined physical
quantities. The relevant physical quantities are instead
the total toroidal plasma current, I, and the total cur-
rent linking the toroidal plasma volume, G. As will be
described in the following, ∆ψt and ∆ψp in the vacuum
region can be iteratively adjusted to enforce constraints
on I and G.

Given the geometry of D, e.g. x(θ, φ), where θ is an
arbitrary poloidal angle and φ is the geometric cylin-
drical angle, the magnetic flux through an infinitesimal
area element of D is D dθ dφ ≡ B · xθ × xφ dθ dφ, where
xθ ≡ ∂x/∂θ and xφ ≡ ∂x/∂φ. The differential flux has
two components, Dn = DC +Dn

P . The first part, DC , is
that produced externally (by either a given or assumed
set of current carrying coils, for example, or permanent
magnets [54]). This article shall primarily consider the
case that the free-boundary equilibrium for a given ex-
ternal field is required, and DC is required as input. The
second part, Dn

P , is produced by the plasma currents and
is a priori unknown. (Except for the special case of vac-
uum fields when we know that Dn

P = 0.) If DC is given,
then the self-consistent value of Dn

P must be computed
iteratively. The superscript n is used to label iterations.

The value of Dn on D must be provided as a bound-
ary condition in order to solve for the magnetic field in
the vacuum region. To initialize the free-boundary cal-
culation a reasonable initial guess is required. Choosing
D0
P = −DC , for example, will initially force a flux sur-

face in the vacuum region to coincide with D. Other
constructions of the initial guess for DP are described in
Sec. IV.

The geometry of the interfaces, Iv for v = 1, . . . , NV ,
which for free-boundary calculation includes the plasma
boundary, are adjusted iteratively to achieve force bal-
ance, [[p+B2/2]] = 0, across each of the Iv. The geom-
etry of the computational boundary, D, and the external
differential flux, DC , need not change during the calcu-
lation.

After force-balance is achieved for the provided Dn,
the virtual casing principle is used to compute the Dn+1

P
that is consistent with the computed equilibrium. This,
generally, will differ from Dn

P = Dn −DC , and the vac-
uum field must be recomputed, and to re-establish force
balance across the plasma boundary the geometry of the
interfaces must be recomputed.

III. NUMERICAL IMPLEMENTATION

Following the convention used in the VMEC code, all
even doubly periodic functions, e.g. R(θ, φ), are written

R(θ, φ) ≡
∑
i

Ri cos(αi)

≡
N∑
n=0

R0,n cos(−nNPφ)

+

M∑
m=1

N∑
n=−N

Rm,n cos(mθ − nNPφ), (4)

where for brevity we write αi ≡ miθ − niφ, the Fourier
resolutions are M and N , and NP is the field periodicity,
which below is frequently omitted for brevity. Similarly
for odd functions. The notation “fi” is used to indicate
the (mi, ni) Fourier harmonic of the function f(θ, φ).

The equilibrium calculation is initialized by providing a
reasonable initial guess for the geometry of the interfaces,

xv(θ, φ) ≡ Rv(θ, φ) r̂ + Zv(θ, φ) k̂, (5)

where r̂ ≡ cosφ î+ sinφ ĵ is the unit radial vector, and
Rv ≡

∑
i

(
Rcv,i cosαi +Rsv,i sinαi

)
, and similarly for Zv,

where the superscripts “c” and “s” merely indicate the
cosine and sine harmonics. The v-th volume is bounded
by xv−1 and xv. SPEC can operate in Cartesian “slab”
[34], cylindrical [36, 37] and toroidal [15] geometry; but,
for brevity, the following will restrict attention to the
toroidal case. SPEC also allows for non-stellarator-
symmetric geometry [55]; but, again for brevity, the fol-
lowing shall display only the stellarator-symmetric terms.
Stellarator symmetry [55] means that the Rv(θ, φ) can be
written as a cosine series and Zv(θ, φ) as sine, and the “c”
and “s” superscripts shall be omitted when this causes
no confusion.

Given the Iv for v = 1, . . . , NV and INV +1 ≡
D, a continuous toroidal coordinate framework is con-
structed by interpolation. In the annular volumes, Vv
for v = 2, . . . , NV + 1, which are bounded by Iv−1 and
Iv, the toroidal coordinates are defined by x(s, θ, φ) ≡
1
2 (1− s) xv−1(θ, φ) + 1

2 (1 + s) xv(θ, φ), where the “lo-
cal” radial coordinate, s, varies from s = −1 to s = +1.
A global radial coordinate is not required because the
magnetic field in each region is computed in parallel.

In the innermost simple-torus volume, V1, which is
bounded by I1 ≡ x1(θ, φ), the coordinates are con-
structed by first choosing the “geometric center” of I1,

R0(φ) ≡
∮
R1(θ, φ) dl

/∮
dl , (6)

Z0(φ) ≡
∮
Z1(θ, φ) dl

/∮
dl , (7)

to be the coordinate axis, where dl/dθ ≡√
∂θR1(θ, φ)2 + ∂θZ1(θ, φ)2. The coordinate axis

so defined depends only on the geometry of the inner-
most interface (and thus the block tri-diagonal structure
of the force-gradient matrix is preserved). There is no
assumed relationship between the coordinate axis and
the magnetic axis. Introducing s̄ ≡ (s + 1)/2 so that
s̄ ∈ [0, 1], the coordinates in the innermost volume are
defined by the following “regularized” interpolation,

R1,i(s) = R0,i + (R1,i −R0,i)fi, (8)

where fi = s̄ for mi = 0, and fi = s̄mi/2 for m 6= 0; and
similarly for the Z1,i(s). Such a construction encour-
ages, but does not guarantee, that the coordinate sur-
faces will not intersect. The effective minor radius scales
like r ∼ √s.

A Fourier-Chebyshev representation is used for the
vector potential, Av, in each volume. An appropriate
gauge [15] allows A = Aθ∇θ+Aφ∇φ, where the volume
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index v has been suppressed for clarity. The components
of the vector potential are written

Aθ(s, θ, φ) =
∑
i

L∑
l=0

Aθ,i,l Tl(s) cosαi, (9)

where L describes the Chebyshev resolution in a given
region, and similarly for Aφ(s, θ, φ). Additional odd
(i.e., sine) harmonics are included for the non-stellarator-
symmetric case. The Chebyshev polynomials, Tl(s),
are determined using recurrence relations: T0(s) = 1,
T1(s) = s, and Tl(s) = 2 s Tl−1(s)− Tl−2(s). To accom-
modate the coordinate singularity that arises at the
coordinate axis, in the innermost toroidal region this
representation is augmented with “radial regularization
factors”, so that Tl(s) cosαi becomes s̄mi/2Tl(s) cosαi.
(This regularization causes an ill-conditioning problem,
which is discussed later in this article.)

Coordinate surfaces coincide with the Iv andD, and by
design this makes it easy to enforce the constraints that
B · xθ × xφ = 0 on the Iv and B · xθ × xφ = Dn on D.
Elsewhere in the relaxed volumes there is no relationship
between the coordinates and the magnetic field, which at
this stage of the calculation is yet to be determined.

The boundary condition that B · xθ × xφ = 0 at
the inner boundary of each region and the remain-
ing gauge freedom is constrained by requiring that
Aθ(−1, θ, φ) = 0 and Aφ(−1, θ, φ) = 0. (An expanded
description of the boundary conditions and gauge con-
straints is described earlier [15].) The condition that
B · xθ × xφ = Dn at the outer boundary requires that
∂θAφ(+1, θ, φ)− ∂φAθ(+1, θ, φ) = Dn. This condition,
and the constraints on the enclosed toroidal and poloidal
fluxes, ∆ψt,v and ∆ψp,v, and the helicities, Ko,v, in each
region are enforced using Lagrange multipliers.

To compute the Beltrami fields in each volume we
can ignore the pressure, which only impacts the con-
straint of force balance, [[p+B2/2]] = 0, across the in-
terfaces. Assuming the geometry of the interfaces and
ψ ≡ {∆ψt,v,∆ψp,v,Ko,v, D

n
i } are given, where Dn

i are
the Fourier harmonics (odd, in the case of stellarator
symmetry) of the differential flux on the outer boundary,
the degrees-of-freedom in the constrained energy func-
tional in each volume are the coefficients of the Fourier-
Chebyshev representation for the vector potential and
the Lagrange multipliers. (To obtain a uniform treat-
ment for all volumes, we have allowed for a non-zero Dn

i

on the outer boundary of each volume; in practice, how-
ever, it is only on D that the Dn

i can be non-zero.)

Writing a ≡ {Aθ,i,l, Aφ,i,l, ai, bi, c1, d1, ei} to represent
the degrees-of-freedom in the vector potential and the
Lagrange multipliers — except for the helicity multiplier,
µ, which is treated separately — and dropping the “v”
subscript for notational clarity, the constrained energy

functional in each volume is

F(a, µ,ψ)

=
1

2

∫
V

B ·B dv

− µ

2

[∫
V

A ·B dv −Ko

]
+ ai

[∑
l

Aθ,i,lTl(−1)

]

+ bi

[∑
l

Aφ,i,lTl(−1)

]

+ c1

[∑
l

Aθ,1,lTl(+1)−∆ψt

]

+ d1

[∑
l

Aφ,1,lTl(+1)−∆ψp

]

+ ei

[∑
l

(−miAφ,i,l − niAθ,i,l)Tl(+1)−Dn
i

]
,(10)

where the ai and bi are Lagrange multipliers used to en-
force the combined gauge and boundary conditions on
the inner boundary, c1 and d1 are Lagrange multipliers
used to enforce the enclosed flux constraints, and the ei
are Lagrange multipliers used to enforce the boundary
condition for each Fourier harmonic of B · xθ × xφ = Dn

on the outer boundary; and summation over i is assumed.
(Note: ai should not be confused with the i-th element
of the vector a.)

The energy functional is written as

F = 1
2aT · A · a− 1

2µ (aT · B · a−Ko) + aT · C · b, (11)

where A, B and C are matrices and b contains the bound-
ary conditions, namely {∆ψt,∆ψp, Dn

i }. The matrices
A, B and C are constructed by inserting the representa-
tion for the vector potential given in Eqn. 9 into Eqn. 10
and computing the appropriate volume integrals of the
products of the Chebyshev polynomials, their derivatives,
and various trigonometric terms. The matrix A depends
on the coordinate metrics and Jacobian, and thus on the
geometry of the adjacent interfaces, and so needs to be
re-calculated if the interface geometry changes. The ma-
trices B and C do not depend on the interface geometry.

The required volume integrals are computed using a
mixed “Fourier-Gaussian” quadrature method:∫ +1

−1

∫ 2π

0

∫ 2π

0

f(s, θ, φ) dφ dθ ds

≈ 4π2
P∑
p=0

ωp f1(sp), (12)

where a fast Fourier transform (FFT) provides
f =

∑
i fi cosαi, and the ωp and sp are the weights and

abscissae for a Gaussian integration of resolution P . The
required resolution of the Gaussian integration, P , is re-
lated to the Chebyshev resolution, L.

The extremizing magnetic fields consistent the pro-
vided constraints are determined by solving ∇a,µF = 0.
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If the parallel current in each region, µ = j · B/B2,
rather than the helicity were constrained, then µ may
be treated as a prescribed parameter rather than as an
independent degree of freedom (and it is to accommodate
this desideratum that µ is treated separately). In the
vacuum region, for example, we must set µ = 0. F then
becomes quadratic in a and ∇aF = 0 reduces to a set of
linear equations,

(A− µB) · a = −C · b. (13)

Generally, however, to be consistent with the method of
Lagrange multipliers, µ must be treated as an indepen-
dent degree-of-freedom that is to be adjusted in order to
enforce the helicity constraint. Nonlinear iterative meth-
ods, like the Newton method or the Sequential Quadratic
Programing (SQP) method, can be used to find extrema
of Eqn. 11. Once the A, B and C are computed, only
matrix-vector products are required.

After the magnetic fields in each region are determined,
it is possible to calculate the rotational transform on the
interfaces and the enclosed plasma currents. Depending
on the solution that one seeks (that is, depending on
whether the helicity profile, the current profile, or the
rotational-transform profile is prescribed), these may be
used to constrain the calculation.

A straight fieldline angle, θs, may be
constructed on flux surfaces by writing
θs ≡ θ + λ, where λ =

∑
i λi sinαi, (only sine terms

are required for stellarator symmetry), and by insisting
that

B · ∇θs
B · ∇φ = θ̇(1 + λθ) + λφ = ι-, (14)

where θ̇ ≡ Bθ/Bφ and λ ≡ (ι-, λ2, λ3, . . . )
T is to be deter-

mined, and λθ ≡ ∂θλ and λφ ≡ ∂φλ. This becomes

∂sAθ ι- + ∂sAφ λθ − ∂sAθ λφ = −∂sAφ. (15)

Given the vector potential, equating Fourier coefficients
gives a set of linear equations for λ, which includes ι-.

There is a quirk associated with rational-rotational-
transform surfaces: the transformation to the straight
fieldline angle is not unique (the resonant harmonics are
not constrained); nevertheless, the rotational transform
is still well-defined. On the rational surfaces, the set of
linear equations defined by Eqn. 15 can be solved using
singular-value decomposition.

Given that sheet currents on the “ideal” interfaces are
both mathematically admissible and physically meaning-
ful in the context of ideal MHD [36], the transforma-
tion to the straight fieldline angle may take different
values on either side of the interface. The rotational
transform on the “inner” side of Iv is determined by
the tangential field in Vv, and that on the “outer” side
by the tangential field in Vv+1. For an a priori spec-
ification of {∆ψt,v,∆ψp,v,Ko,v} in each subregion, or
{∆ψt,v,∆ψp,v, µv} if the helicity-multiplier is to be con-
strained, the rotational transform on the interfaces can
only be determined a posteriori. The calculation of the
Beltrami field in each region is independent of the calcu-
lation in any other region (except that the boundaries of

adjacent regions must coincide), and generally the rota-
tional transform is not continuous across the interfaces.

To constrain the rotational transform on each side of
each Iv, and keeping the constraint of conserved enclosed
toroidal flux in each region, it is generally required to it-
erate on ∆ψp,v and either Ko,v or µv. A similar argument
holds for the enclosed currents.

The total current passing through a given surface is
determined by a surface integral of the current-density,∫

S
j · ds =

∮
∂S

B · dl . (16)

The total toroidal plasma current, including any sheet
currents that may lie on the plasma boundary, is obtained
by taking a “poloidal loop”, dl ≡ eθ dθ, lying on the
inner surface of the vacuum region (i.e., on the immediate
outside of the plasma boundary), to obtain

I =

∫ 2π

0

(−∂sAφ gθθ + ∂sAθ gθφ) /
√
g dθ. (17)

The linking current through the torus is obtained by tak-
ing a “toroidal loop”, dl ≡ eφ dφ, on the plasma bound-
ary to obtain

G =

∫ 2π

0

(−∂sAφ gθφ + ∂sAθ gφφ) /
√
g dφ. (18)

To obtain prescribed values for I and G, the values of
∆ψt,v and ∆ψp,v in the vacuum region must be adjusted.

Having computed the Beltrami fields in each vol-
ume consistent with the desired constraints (on either
the helicities, parallel currents or the rotational trans-
forms) and with the appropriate toroidal plasma and
coil linking currents, it is then required to iteratively
adjust the geometry of the Iv to satisfy force balance,
[[p+B2/2]] = 0, across the interfaces. For this, a variety
of methods can be used. The present “default” method
in SPEC is to use a multi-dimensional Newton method
to iteratively determine the geometry of the Iv. Matrix-
perturbation calculations can be used to determine how
the Beltrami field in each sub-region changes as the ge-
ometry of the adjacent interfaces change, and this can be
used to compute the “force-gradient”, namely the deriva-
tive of [[B2]] with respect to the interface geometry. (A
suitable eigenvalue analysis of the force-gradient matrix
can infer linear stability of the computed equilibrium.)
Additional “spectral constraints” are included to con-
strain the tangential degrees-of-freedom in the poloidal
parameterization [15, 56, 57].

There is an additional step that is required to obtain
free-boundary equilibria consistent with supplied exter-
nal magnetic fields: to determine the self-consistent dif-
ferential flux at D produced by the plasma currents. For
this, the virtual-casing principle [58–60] is used.

Given the tangential field on the plasma boundary,

Bs = Bθeθ +Bφeφ, (19)

the virtual-casing principle shows that the magnetic field
at a point, x̄, outside the plasma – for this application
in particular, namely a point on D – that is produced by
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internal plasma currents is equivalent to the field gener-
ated by the surface current, j = n × Bs, on the plasma
boundary, where n is the outward unit normal. The field
created by this surface current is given by

B(x̄) = − 1

4π

∫
S

(Bs × ds)× r̂

r2
, (20)

where S is the plasma boundary, and ds ≡ eθ×eφ dθ dφ.
After the geometry of the interfaces have been adjusted

to satisfy force balance for a given Dn = Dn
P +DC , the

differential flux at D produced by the plasma currents
consistent with the constructed state, DP,vc, can be de-
termined by taking the dot product of the field produced
by Eqn. 20 and eθ × eφ on D.

Generally, DP,vc will not be the same as Dn
P = Dn −

DC supplied as a boundary condition to compute the vac-
uum field to begin with. We note parenthetically that the
equilibrium calculation can terminate at this point if the
externally provided field can be recomputed to provide
DC = Dn − DP,vc. If DC is not allowed to change, a
practical method for determining the self-consistent Dn

P
is enabled using Picard iterations defined as follows: the
normal field used for the next “free-boundary iteration”
is given by

Dn+1
P = λDn

P + (1− λ)DP,vc, (21)

where λ is a blending parameter included for numerical
stability (which is not related to the transformation to the
straight fieldline angle). These iterations are converged
when |DP,vc −Dn

P | is less than a user-provided tolerance.
To summarize the required input information: A

specific fixed-boundary SPEC equilibrium is described
by the plasma boundary ∂V, the number of sub-
regions NV , the pressure, the enclosed toroidal and
poloidal fluxes, and the helicity in each subregion,
{pv,∆ψt,v,∆ψp,v,Ko,v}. Alternatively, the helicity mul-
tiplier itself may be given directly, so that the equilibrium
is described by {pv,∆ψt,v,∆ψp,v, µv}. It is also possi-
ble to define the equilibrium by providing the rotational
transform on the inner and outer side of each interface,
so that the equilibrium is defined by {pv,∆ψt,v, ι-−v , ι-+v }.
This will generally require an iteration over both ∆ψp,v
and µv for a given ∆ψt,v. The total toroidal flux is

Ψ ≡∑NV

v=1 ∆ψt,v. To define and compute a specific free-
boundary equilibrium, it is required to also provide: (i)
a computational boundary, D, that lies outside the ex-
pected location of the plasma boundary (and inside the
external coils, if external coils are assumed to provide
the external field, BC), (ii) the Fourier harmonics of the
differential flux at D, DC,i ≡ (BC · xθ × xφ)i, that is pro-
duced externally; and (iii) the total toroidal plasma and
coil linking currents, I and G.

IV. VERIFICATION CALCULATIONS

Non-axisymmetric configurations offer the significant
advantage of having rotational transform with no plasma
currents [61, 62] and constitute excellent opportunities
for verification calculations.

We present 3 “vacuum” verification calculations. The
first shows that |∇ × B| → 0 as the numerical resolu-
tion is increased, the second that SPEC reproduces an
analytic solution, and the third that SPEC reproduces
the field as computed using the Biot-Savart law given an
external current distribution. Each of these calculations
tests different aspects of the algorithm.

For vacuum fields, we must set the pressure, the he-
licity multipliers, the total toroidal plasma current all
to be zero, i.e., pv = 0, µv = 0 and I = 0. The Bel-
trami fields in each region are parameterized by ∆ψt,v
and ∆ψp,v. The differential magnetic flux at D produced
by the plasma currents is (of course) zero for vacuum
fields, i.e., DP = 0, and consequently the virtual casing
calculation of DP,vc and the Picard scheme for calculat-
ing the self-consistent value of DP are not required.

Following the vacuum verification calculations, various
calculations are performed that test the veracity of the
virtual casing calculation and the Picard scheme for com-
puting the self-consistent value of DP for equilibria with
non-zero plasma currents.

For all free-boundary SPEC calculations, the only in-
formation required from the external magnetic field is (i)
the differential flux that is produced externally, DC , on
a suitable computational boundary, D, and (ii) the total
linking current, G = µ0IC , where IC is the total amount
of current passing through the torus hole.

A. “Self”-verification in vacuum.

The simplest vacuum calculation is to choose there to
be only one plasma volume, NV = 1. We consider a set
of coils that produces a stellarator symmetric, vacuum
magnetic field with a rotating elliptical structure with
5 field periods, as shown in Fig. 1. The computational
boundary, D, is chosen to be a torus with circular cross-
section, R = R0 +a cos θ and Z = −a sin θ, with R0 = 10
and a = 1.58. Using the Biot-Savart law, we compute
the differential magnetic flux, DC , produced by the coils
on the computational boundary, D.

In this NV = 1 calculation, the value of the toroidal
flux in the plasma region, ∆ψt,1, which is also the to-
tal toroidal flux, Ψ, is somewhat arbitrary. Choosing a
larger value of Ψ only enlarges the plasma region and
does not change the solution for the magnetic field; how-
ever, the value of Ψ should not be chosen so large that
the plasma boundary lies outside D or in a region of
islands and chaos. In the latter case, a solution with-
out sheet currents cannot be found. (The existence of a
flux surface with enclosed toroidal flux Ψ for a prescribed
magnetic field is related to the KAM theorem.) Here we
choose Ψ = 0.17Ψ0, where Ψ0 is the toroidal flux passing
through the surface defined by D at the toroidal angle
φ = 0.

SPEC finds an equilibrium by adjusting the geometry
of the single interface ≡ plasma boundary until force im-
balance is very small, [[B2]] ∼ 10−15. We define three
components of the “vacuum” error,

Eα ≡ V −1
∫
V
|(∇×B) · ∇α| dv, (22)
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for α ∈ {s, θ, φ}, and show in Fig. 2 that these decrease
as the numerical Fourier resolution is increased in both
the plasma, v = 1, and the vacuum, v = 2, region. The
Chebyshev resolution was kept high enough, L = 8, to
ensure a constant decrease of the error with Fourier res-
olution.

FIG. 1: Coil configuration used to produce input to SPEC for
the self-verification case. A vertical wire produces the main
toroidal magnetic field. The remaining field is produced by
two helical windings with opposite currents. Shown are also
the computational boundary used in SPEC (outer surface)
and the magnitude of the magnetic field on an inner surface.
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FIG. 2: Es (crosses), Eθ (circles) and Eφ (stars) as defined
in Eqn. 22 as a function of Fourier resolution M = N , in the
plasma, v = 1 (solid lines), and vacuum, v = 2 (dashed lines),
regions.

B. Verification with analytical solution

Dommaschk potentials [63] can be used to construct a
suitable analytical solution for a stellarator-like vacuum
field. We choose a set of Dommaschk potentials that gen-
erate an ` = 2 classical stellarator vacuum field (this con-
struction is described in the Appendix) with regions of
magnetic surfaces, magnetic islands, and magnetic field-
line chaos.

The computational boundary, D, in SPEC is chosen to
be circular, with R = 1 + 0.2 cos(θ) and Z = −0.2 sin(θ),

see Fig. 3. The Fourier harmonics, DC,i, of the differen-
tial flux produced at D and the total linking current, G,
are obtained from the analytical solution. We again com-
pute an equilibrium with a single plasma region, NV = 1,
and choose Ψ = 0.01Ψ0, where Ψ0 is the toroidal flux
passing through the surface defined by D at the toroidal
angle φ = 0. Fig. 4 shows Poincaré plots obtained from
the magnetic field produced by SPEC, BS , and by the
Dommaschk potentials, BD, which are indistinguishable
on the scale of the figure. The rotational transform pro-
files for both fields are shown in Fig. 5.

A quantitative measure of the difference between the
two solutions is, for example, the relative difference in
the magnitude of B at each point in space,

E ≡ |BS −BD|/BD (23)

where BS is the amplitude of the field from SPEC and
BD is the amplitude of the field from the Dommaschk
solution. Fig. 6 shows that both the maximum value and
volume-average of E decrease as the Fourier resolution is
increased (for fixed Chebyshev resolution of L = 8).

Further increasing the Fourier and Chebyshev reso-
lutions results in ill-posed matrices in the innermost
toroidal region, which contains the coordinate singular-
ity. This is a known issue [64] for the class of radial basis
function that were used to enforce regularity at the ori-
gin: the s̄m/2 factor included to ensure analyticity of the
vector potential at the origin approaches zero almost ev-
erywhere for s̄ ≤ 1 as m increases. Better radial basis
functions are available, namely Zernike polynomials, and
these will be implemented in future work.

FIG. 3: Computational boundary (outer surface) used for the
comparison of SPEC against the Dommaschk analytical solu-
tion. The amplitude of the magnetic field from the analytical
solution is shown on an inner surface.

C. Comparison to Biot-Savart

Vacuum magnetic fields can also be calculated using
the Biot-Savart law,

B(x̄) =
1

4π

∫
j(x)× r

r3
dv, (24)

given the current density, j(x), where r ≡ x̄ − x. The
FOCUS code [65] is used to construct a suitable set of
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FIG. 4: Poincaré plot of the magnetic field lines for the SPEC
solution (black) and the analytical solution (green). The
plasma boundary is also shown (thick black line).
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FIG. 5: Rotational transform profile for the SPEC solution
(black circles) and the analytical solution (red crosses).

external currents that produce a vacuum field with a sig-
nificant volume of flux surfaces and with significant ro-
tational transform. (By “suitable”, we mean suitable for
the verification calculation, and for this we want to re-
duce the ripple associated with the finite number of coils;
so, we construct a coil set with 256 coils. This coil set is
unlikely to be suitable from an engineering perspective.)
The configuration is shown in Fig. 7. A non-stellarator-
symmetric “target surface” is provided as input to FO-
CUS. This will test the non-stellarator-symmetric capa-
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FIG. 6: Average (dashed) and maximum (solid) errors as de-
fined by Eqn. 23 between the SPEC solution and the analyt-
ical solution in the v = 1 (stars) and v = 2 (circles) SPEC
volumes, as a function of the Fourier resolution in SPEC.

bility in SPEC. Neither the target surface provided to
FOCUS nor the coil geometry are required for the SPEC
calculation.

FIG. 7: Configuration for the Biot-Savart verification calcu-
lation. To produce the external field, 256 modular coils were
used to reduce ripple; for clarity only 32 are shown. The
outer surface is the computational boundary, the color indi-
cates DC , and the inner surface is the plasma boundary, and
the color indicates |B|.

The chosen computational boundary is slightly larger
than the target surface provided to FOCUS, and it is
not a flux surface of the vacuum field computed using
Biot-Savart, and so DC 6= 0.

For this calculation, we partition the plasma into two
regions, i.e., NV = 2. This is sufficient to test the numer-
ical calculation in the innermost, simple-torus region, V1,
the toroidal annular region(s), Vv for v = 2, . . . , NV , and
the vacuum region, Vv for v = NV +1. The calculation in
V1 is distinct because of the inclusion of the regulariza-
tion factors, and the calculation in the vacuum region is
distinct because of the non-zero differential flux allowed
at the outer boundary. Adding additional regions merely
adds additional annular regions and does not exercise ad-
ditional capability of the algorithm.

For thisNV > 1 calculation, to ensure that there are no
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FIG. 8: Poincaré plots of the SPEC (upper) and the Biot-
Savart (lower) magnetic fields using the coils shown in Fig. 7,
integrated from the same starting positions. The outermost
dark blue ellipse is the computational boundary, the dashed
red ellipse is the plasma boundary, and the green dash-dotted
ellipse is the internal interface.

currents in the calculation, it is not sufficient to set I = 0,
pv = 0, µv = 0, I = 0, and DP = 0. Doing so does ensure
that there is no net toroidal plasma current, no force-free
currents in the plasma volumes, no pressure-driven sheet
currents, and no contribution to the differential flux at
D produced by plasma currents; but, this does not en-
sure that there are no force-free sheet currents on each
interface. Force-free sheet currents can produce disconti-
nuities in the rotational transform. The existence of any
plasma currents means that the computed magnetic field
is not a vacuum magnetic field.

The net toroidal sheet current, Iv, on an interface, Iv,
is computed by considering an infinitesimally thin cross-
sectional surface on, for example, the φ = 0 plane with
inner boundary just inside Iv and outer boundary just
outside and is given by

Iv ≡
∫ 2π

0

(
B+ −B−

)
· eθ dθ, (25)

where B+ is the tangential field immediately outside Iv
in region Vv+1 and B− is the tangential field immediately
inside Iv in region Vv. To recover the vacuum solution,
these must all be zero.

Because there is only one poloidal flux profile (and
one rotational-transform profile) that is consistent with a
given toroidal flux profile for a given vacuum field, gener-
ally an iterative search for the appropriate value of ∆ψp,v
for the given ∆ψt,v is required to ensure that Iv = 0. To
clarify: in this NV = 2 calculation, ∆ψp,2 is adjusted to
ensure that I1 = 0, and the values of ∆ψt,3 and ∆ψp,3,

namely the toroidal and poloidal “fluxes” in the vacuum
region, are adjusted to ensure I = 0 and to obtain the
prescribed linking current, G. Then, it is guaranteed that
I2 = 0.

A comparison of the Poincaré plots associated with
the vacuum magnetic field calculated by SPEC, BS , and
that calculated using the Biot-Savart law given the coil
geometries and currents, BC , is shown in Fig. 8. On this
scale, the Poincaré plots are identical. Fig. 9 shows the
quantitative error,

E ≡ V −1
∫
V
|BS −BC | dv, (26)

plotted against Fourier resolution.

FIG. 9: Error between the SPEC magnetic field and the Biot-
Savart field as defined in Eqn. 26 plotted against Fourier res-
olution.

This error reliably decreases as the numerical resolu-
tion is increased, at least up to the point where the error
becomes dominated by the Chebyshev resolution. The
radial (Chebyshev) resolution is L = 8 in each region.

D. Verification of the virtual casing calculation

For the above vacuum calculations, it was not required
to calculate the differential flux at D produced by the
plasma currents. The vacuum solution was sought, so
it was appropriate and expedient to assume DP = 0.
Generally, DP 6= 0, and DP must be computed at each
free-boundary iteration using the virtual-casing principle.
To separately verify that the virtual-casing algorithm in
SPEC is correctly implemented, we describe an example
calculation.

We consider a circular wire at fixed R = R0 = 6
and Z = 0 carrying a current IW . The differential
flux, DP , produced by this wire on a given computa-
tional boundary, D, can be calculated analytically, and
we choose an elliptical computational boundary given by
R = 6 + 3 cos(θ) and Z = −4 sin(θ). The arrangement is
illustrated in Fig. 10.

SPEC can be used to approximate the magnetic field
produced by this circular wire. We choose NV = 1,
the pressure to be p = 0, and the plasma boundary to
be a circular cross-section, axisymmetric torus, namely
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R = R0 + a cos(θ) and Z = −a sin(θ), were the value of
the minor radius, a, can in principle be made arbitrarily
small in order to approach the “wire limit”. Since only
the virtual casing calculation is to be tested, the geom-
etry of the plasma boundary is not adjusted to satisfy
force balance.

FIG. 10: Configuration considered for the “wire model”.
Shown are the computational boundary (outer surface), an
example of plasma boundary for a = 0.5 (red inner surface),
and the circular current-carrying wire (black).

The total toroidal flux is chosen as Ψ = (a/a0)2Ψ0,
with Ψ0 the toroidal flux passing through the surface
defined by D at the toroidal angle φ = 0, and a0 = 3.
The exact value is not important but the scaling with a2

ensures that toroidal magnetic field does not diverge as
we take the limit a → 0. The toroidal plasma current
is set equal to that of the wire by choosing I = IW and
µΨ = IW . In the limit a→ 0, SPEC should produce the
same magnetic field as the circular wire. We define the
relative errors in the different poloidal harmonics of DP

between the analytical wire model, DW
P,m, and the SPEC

calculation, DS
P,m, namely

Em ≡ |DS
P,m −DW

P,m|/DW
P,m . (27)

Fig. 11 shows how these errors decrease with decreasing
plasma size, as expected. The numerical resolution pa-
rameters used in SPEC are M = 10, N = 0 and L = 8,
and the results in Fig. 11 do not change with increasing
resolution.

Additional verification calculations, which will not be
described here for sake of brevity, of the virtual casing
calculation were performed against the DIAGNO code
[66].

E. Verification of a free-boundary equilibrium
against analytical theory

A verification of a tokamak-like free-boundary equilib-
rium against analytical theory is possible by extending
the circular-wire model described above. This “plasma
wire” cannot be in equilibrium unless a suitable verti-
cal field, BV , is externally applied. For BV = 0 the
plasma column would expand in the R direction (due to
the so-called hoop force). For a large-aspect-ratio toka-
mak plasma with circular cross-section, the required BV
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FIG. 11: Relative errors Em as defined in Eqn. 27 for m = 1
(circles), m = 2 (squares), m = 3 (stars), and m = 4 (crosses).
The ratio Ψ0/Ψ scales as 1/a2.

to maintain a plasma of size a carrying a toroidal current
I in equilibrium and centered at R = R0 is given [67] by

BV =
µ0I

4πR0

(
βp +

li − 3

2
+ ln

8R0

a

)
, (28)

where li ≡ 2

∫ a

0

B2
θ r dr/a2B2

θ (a) is the normalized

internal plasma inductance per unit length and here
βp = 0 since we are considering zero plasma pres-
sure. By taking the large-aspect-ratio limit of the Bel-
trami equation, the poloidal field is given analytically
by Bθ(r) = Bθ(a)J1(µr)/J1(µa), with Jn the Bessel
function of the first kind, and the inductance is li =
1− J0(µa) J2(µa)/J2

1 (µa). Given the plasma current, I,
and the enclosed toroidal flux, Ψ, which determines µ via
µΨ = I, we can therefore write the required vertical field
as a function of R0 and a, i.e., BV = BV (R0, a). SPEC
is run to compute free-boundary equilibria with different
values of externally imposed BV to verify that the dif-
ferent equilibrium plasma positions and sizes, namely R0

and a, satisfy Eqn. 28. In order to prescribe BV in the
SPEC calculations we analytically evaluate the Fourier
harmonics DC,i of the differential flux produced by this
field on D.

Fig. 12 shows the comparison between the value of BV
used in SPEC and the value predicted by Eqn. 28. The
agreement is as expected. The analytical theory is based
on an expansion in the inverse aspect ratio, ε = a/R0,
and thus an error of the order of ε2 is expected. BV
is scanned over a large range of values and the plasma
column significantly moves and changes size as BV is
varied.

F. VMEC-SPEC verification

Our final verification calculation is between the free-
boundary SPEC code and the free-boundary VMEC
code. An appropriate free-boundary VMEC equilibrium
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FIG. 12: Comparison between predicted (y-axis) and ob-
tained (x-axis) vertical field required to center a circular
plasma of size a with major radius R. The dashed line indi-
cates perfect agreement, namely y = x, and the yellow band
shows the amplitude of a relative error of order ε2. The po-
sition and size of the plasma is shown for the two extreme
values of the vertical field, with the elliptical computational
boundary in blue.

[43] and coil set is constructed by first choosing an ax-
isymmetric fixed-boundary VMEC equilibrium, in this
case the Solovev equilibrium [68], then computing the
normal field on the plasma boundary produced by plasma
currents using the BNORM [69] code, and then using FO-
CUS to compute a set of external current-carrying coils
that provides the appropriate vacuum field (so that the
total normal field on the plasma boundary is zero, as best
as possible). Instead of a using a finite set of modular
coils, which would result in a non-zero amount of non-
axisymmetric ripple, an infinite vertical current filament
was placed in the center, as shown in Fig. 13.

A high-resolution free-boundary VMEC calculation is
performed (including the poloidal Fourier harmonics m ∈
{0, 1, . . . , 31} and with 2048 radial surfaces) using a high-
resolution “mgrid” file (NR = 801, NZ = 801). The pres-
sure profile supplied to VMEC is p(ψ) = 1− ψ, and the
rotational transform profile is ι-(ψ) = 0.49− 0.3ψ, where
ψ is the normalized toroidal flux, and the total enclosed
toroidal flux is 1.0Wb.

The pressure profile supplied to SPEC is a stepped ap-
proximation to the VMEC pressure profile. Note that be-
cause the pressure profile in SPEC is necessarily discon-
tinuous, whereas the pressure profile used in the VMEC
calculation is continuous and differentiable, there is nec-
essarily a difference in the computed equilibria. This
difference should reduce as the number of interfaces is
increased, provided that the Fourier resolution is suffi-
ciently large.

The SPEC inputs are constructed by first choosing
the number of plasma volumes, NV = 2, 4, . . . , 128.
The enclosed toroidal flux in each region, ∆ψt,v for
v = 1, . . . , NV , is chosen so that the ‘effective minor
radius’ is equally spaced, i.e., ψt,v = Ψ

√
v/NV , where

ψt,v = ψt,v−1 + ∆ψt,v and ψt,0 = 0. The SPEC calcula-

tion includes the poloidal modes m ∈ {0, 1, . . . , 32}. The
required Chebyshev resolution depends on NV . For the
calculation with NV = 2, we choose L1 = 4, L2 = 12
and L3 = 20. As NV increases, the Chebyshev resolu-
tion in each volume can be allowed to decrease, and for
the NV = 128 calculation we choose Lv = 2, 4, 4, . . . , 20.
The stepped-pressure profile, namely the pv, supplied to
SPEC is chosen so that

pv ∆ψt,v =

∫ ψt,v

ψt,v−1

p(ψ)dψ, (29)

and the (continuous) rotational transform on each inter-
face is ι-v ≡ ι-(ψt,v).

For D we choose a circular cross-section axisymmetric
toroidal surface of major radius R0 = 3.999m and mi-
nor radius r = 1.8m. The initial geometry of the SPEC
interfaces is that of nested, circular cross section, axisym-
metric tori.

The initial guess for the normal field on D produced
by the plasma currents is constructed as follows. First
we compute a fixed-boundary SPEC equilibrium consis-
tent with the boundary extracted from the free-boundary
VMEC equilibrium. Then, we use the virtual casing
method implemented in SPEC using the tangential mag-
netic field on the inner side of the plasma boundary. This
is a good approximation and is sufficient to initialize the
free-boundary SPEC calculation; but, as described ear-
lier, to ensure that the virtual casing integral incorpo-
rates sheet currents that might lie of the plasma bound-
ary, the correct tangential field to use in the virtual casing
integral is that immediately outside the plasma bound-
ary. The Picard-blend parameter is λ = 0.4. As we in-
crease the number of volumes, the free-boundary SPEC
calculation is initialized with the lower resolution con-
verged equilibrium; for example, the NV = 16 calcu-
lation is initialized using the NV = 8 solution, and the
Picard-blend parameter can decrease (as the initial guess
improves). An example Poincaré plot showing the flux
surfaces are shown in Fig. 14.

The error between the VMEC and SPEC equilibria is
computed as

E ≡
NV∑
v=1

∮
|xS,v(θ, 0)− xV (ψt,v, θ̄, 0)|dl, (30)

where xS,v(θ, φ) is the geometry of the v-th interface, i.e.,
Iv, and xV (ψt,v, θ̄, φ) is the geometry of the correspond-
ing VMEC surface, and dl is the infinitesimal arc-length.
(Note that in computing this quantity it is required to
accommodate the fact that VMEC and SPEC use differ-
ent poloidal parameterizations.) This error, and a sim-
ilar error computed on only the midpoint interface, i.e.,
with the lower and upper summation limits in Eqn. 30
replaced by v = NV /2 to v = NV , are shown in Fig. 15.
The latter construction avoids the region near the mag-
netic axis, which seems to be limiting the decrease of the
error as NV increases.
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FIG. 13: The current-carrying coils used for the free-
boundary VMEC-SPEC verification calculation. To avoid
toroidal ripple, the toroidal field is provided by a vertical fil-
ament. The SPEC interfaces are also shown. The colors on
the outermost surface indicate |BC |.
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FIG. 14: Poincaré plot for free-boundary VMEC-SPEC veri-
fication showing the NV = 8 SPEC calculation. The compu-
tational boundary, D, is shown as the outer, circular surface.
The SPEC interfaces are shown as solid lines, the correspond-
ing VMEC surfaces as thick dashed lines, and a Poincaré plot
of the SPEC magnetic field is shown with gray dots. (In
the vacuum region, the fieldlines leave the domain and these
fieldlines are not shown.) The arrows on the computational
boundary indicate the differential flux from the coils, DC .

V. COMMENTS

An immediate physics application for free-boundary
SPEC is to explicitly calculate the effect of resonant mag-
netic perturbations [70] on the unstable manifold [71]
surrounding the plasma. We will use SPEC to under-
stand sawteeth-like relaxation events in W7-X, and in
equilibrium reconstruction and stellarator optimization
calcuations.

In the development of SPEC thus far, we have given
priority to functionality and accuracy. Now that the free-

FIG. 15: Error as defined in Eqn. 30 between the SPEC mag-
netic field and the VMEC field. The dashed line has slope
= −2. When the region near the magnetic axis is excluded
from the calculation, the error seems to decrease more favor-
ably (open squares).

boundary, non-stellarator-symmetric capability in SPEC
has been verified, our code development efforts will shift
to, for example, making the numerical calculation more
efficient (by exploiting symmetries in the metric coeffi-
cients, for example) and more robust (by implementing
additional numerical algorithms for finding minima of the
energy functional).

There are also various weaknesses in SPEC that will
be addressed. In a future paper we will describe the
use of Zernike polynomials in the innermost volume [64].
The presently implemented coordinate interpolation in
the innermost volume can cause problems: if the plasma
boundary is strongly shaped and only one plasma volume
is used, the geometric center of the innermost interface
is not guaranteed to be a suitable coordinate axis. In
future, we intend to revise the toroidal angle parameter-
ization (and the spectral condensation constraints) for
numerical efficiency and so that arbitrary knotted equi-
libria [72] can be computed.

It will be interesting to study particle orbits across
the MRxMHD interfaces, and their motion in stochastic
fields and across magnetic islands. In future work we will
report the coupling of SPEC equilibrium to the VENUS
code [73] so that this topic may be explored. Given that
MRxMHD has astrophysical relevance, a longer term de-
velopment goal of SPEC is to change the periodic bound-
ary conditions to line-tied boundary conditions, and to
investigate MRxMHD phenomena in solar-flares, for ex-
ample.
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1. Appendix: Stellarator vacuum fields from
Dommaschk potentials

A vacuum magnetic field is given by its scalar poten-
tial, B = ∇Φ, with ∇2Φ = 0. Following Dommaschk’s
paper [63], we write

Φ = φ+
∑
m,l

Φm,l(R,φ, Z), (31)
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with (R,φ, Z) cylindrical coordinates and the Φm,l sepa-
rate solutions of the Laplace equation, ∇2Φm,l = 0. In a
stellarator with a single magnetic axis and NP field pe-
riods, the value of m in Eqn. 31 is an integer multiple of
NP , and l = 0, 1, 2, . . .

The classical, ` = 2, 5-period stellarator used for the
verification calculation is “DOM25B”, and is given by
m = 5, A1

5,2 = A2
5,2 = −1.489 in Ref.[74], namely,

Φm,l = A1
m,lDm,l sin(mφ) +A2

m,lNm,l−1 cos(mφ).(32)

The functions Dm,l and Nm,l−1 in Eqn. 32 can be gener-
ated recursively. Using Eqn. 32, we have

Dm,2 = CDm,0
Z2

2
+ CDm,1 (33)

Nm,1 = CNm,0 Z (34)

with

CDm,0 = (Rm +R−m)/2, (35)

CNm,0 = (Rm −R−m)/(2m), (36)

CDm,1 = [c1R
m+2 + c2R

m + c3R
−m+2 + c4R

−m]

/ [8m(m2 − 1)], (37)

where c1 = −m(m− 1), c2 = (m+ 1)(m− 2),
c3 = m(m+ 1), and c4 = −(m+ 2)(m− 1). The
result of tracing field lines in the vacuum field for
DOM25B is shown in Fig. 4 and Fig. 5, showing respec-
tively the Poincaré plot and the rotational transform
profile. The field-line tracer used is the GOURDON
code [75].


