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ABSTRACT: Climate data records (CDRs) of essential climate variables (ECVs) as defined by the 
Global Climate Observing System (GCOS) derived from satellite instruments help to characterize 
the main components of the Earth system, to identify the state and evolution of its processes, and 
to constrain the budgets of key cycles of water, carbon, and energy. The Climate Change Initiative 
(CCI) of the European Space Agency (ESA) coordinates the derivation of CDRs for 21 GCOS ECVs. 
The combined use of multiple ECVs for Earth system science applications requires consistency 
between and across their respective CDRs. As a comprehensive definition for multi-ECV consis-
tency is missing so far, this study proposes defining consistency on three levels: 1) consistency in 
format and metadata to facilitate their synergetic use (technical level); 2) consistency in assump-
tions and auxiliary datasets to minimize incompatibilities among datasets (retrieval level); and 3) 
consistency between combined or multiple CDRs within their estimated uncertainties or physical 
constraints (scientific level). Analyzing consistency between CDRs of multiple quantities is a chal-
lenging task and requires coordination between different observational communities, which is 
facilitated by the CCI program. The interdependencies of the satellite-based CDRs derived within 
the CCI program are analyzed to identify where consistency considerations are most important. 
The study also summarizes measures taken in CCI to ensure consistency on the technical level, 
and develops a concept for assessing consistency on the retrieval and scientific levels in the light 
of underlying physical knowledge. Finally, this study presents the current status of consistency 
between the CCI CDRs and future efforts needed to further improve it.
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The Intergovernmental Panel on Climate Change (IPCC 2014) Fifth Assessment Report 
(AR5) and the three special reports of the AR6 cycle state that mankind and the biosphere 
face great threats due to the rapidly changing climate (IPCC 2013, 2018, 2019a,b). To 

support political decisions on climate change mitigation and adaptation, and to quantify 
the implications for economic and noneconomic loss and damage, the United Nations 
Framework Convention on Climate Change (UNFCCC) requires systematic monitoring of 
the global climate system (e.g., Doherty et al. 2009; UNFCCC Art. 4 and Art. 5, 1992; Paris 
Agreement 7.7c, Adaptation). In particular, systematic monitoring is important in assessing 
progress on the aims of the Paris Agreement (e.g., for the global stocktake). The main tools 
at hand to determine the extent and impacts of climate change on local to global scales and 
understand its causes are a combination of global and regional climate and Earth system 
models, reanalysis data, and systematic observations. The latter are indispensable for all 
Earth system domains (atmospheric, terrestrial, and oceanic) to increase the understanding 
of and quantify processes, budgets, and reservoirs within the global Earth cycles (carbon, 
energy, and water).

To promote systematic climate monitoring, the World Meteorological Organization 
(WMO), Intergovernmental Oceanographic Commission (IOC), United Nations Environ-
ment Programme (UNEP), and International Science Council (ISC), established in 1992 the 
Global Climate Observing System (GCOS). GCOS aims at sustained “provision of reliable 
physical, chemical, and biochemical observations and data records for the total climate 
system—across the atmospheric, oceanic, and terrestrial domains, including hydrological 
and carbon cycles and the cryosphere” (GCOS 2016). GCOS defined a set of currently 
54 “essential climate variables” (ECVs) (Bojinski et al. 2014) that must be observed in a 
sustained and consistent manner to enable detection of climate trends and provide data 
suitable for climate model evaluation and climate change attribution.
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Complementary to relatively sparse airborne and ground-based measurements and inven-
tory data, satellite observations are of ever-growing importance for evaluating, initializing, 
and parameterizing Earth system processes represented in models. This growing importance 
is due to the increasing satellite global coverage and resolution (in space and time), their im-
proved calibration accuracy, and the increasing diversity of relevant observables provided 
by advances in satellite sensor technologies. Satellite observations can provide a significant 
contribution for 21 out of the 54 GCOS ECVs. Some of these are exclusively derived from satel-
lite measurements (e.g., the Earth radiation budget), whereas for others dedicated spaceborne 
sensors provide better coverage but lower accuracy or resolution than in situ measurements 
(e.g., aboveground biomass, column atmospheric concentration of CO2 and CH4).

Studies of the Earth system require combined analysis of datasets of many variables. 
Since these are derived from different sources (satellite, ground, air, and model based) and 
processing systems, one underlying precondition of any such analysis is that the datasets are 
consistent. However, despite the importance of consistency, many open questions remain, 
ranging from a clear definition of consistency for multiple quantities to systematically assess-
ing consistency between the many data records used.

Possible reasons for inconsistencies include the use of different auxiliary datasets, sim-
plifications in corrections and retrieval algorithms, calibration uncertainties, and differ-
ences in sampling and gridding. For example, a time series of a single variable built from 
data records obtained from different sensors may exhibit “jumps” where they are merged 
with each other, which may hinder any trend analysis. Another example is assigning dif-
ferent land cover classes (e.g., glacier, water, rock, or vegetation) to the same pixel by using 
different glacier masks, which may lead to highly variable budget calculations of related 
exchange processes.

Consistency as an issue in creating satellite-based data records was first met by operational 
entities like NOAA, EUMETSAT, or NASA within their near-real-time (NRT) processing chains 
across different satellite missions. This includes aspects such as common input datasets, grid-
ding methodology, cloud and land/sea masking, aerosol and water vapor corrections, and 
the land-cover map used. The measures taken are typically documented in algorithm theo-
retical basis documents [e.g., consistent Ozone Monitoring Instrument (OMI)–MODIS cloud 
products; Siddans 2016; or merged Tropospheric Monitoring Instrument (TROPOMI)–VIIRS 
cloud product; NASA 2014]. However, the need for consistency across different variables, 
domains, and processing systems is inherent in climate studies and thus much broader than 
in the often independent NRT applications.

Over the past 10 years, space agencies (including ESA, EUMETSAT, NASA, and NOAA) 
have emphasized the generation and delivery of satellite-based CDRs. Hollmann et al. (2013) 
describe the efforts of ESA through its Climate Change Initiative (CCI). CCI leverages and 
harvests the long-term satellite archives available from European and other satellites, and 
enhances or expands these records with observations from other space agencies to obtain 
global coverage. In addition, CCI is extending its newly established CDRs with the most recent 
satellite instruments to guarantee continuation into the future using operational missions (e.g., 
Sentinel). During its first six years (2011–17), CCI implemented 14 projects, each targeting 
one (or two) ECVs; in 2018, CCI was expanded to include nine additional ECVs, as shown in 
Fig. 1. It should be noted that most of the ECVs consist of several quantities, so-called products 
(detailed information on the products of each CCI ECV for which CDRs have been processed 
in CCI is available at http://cci.esa.int). Of course, products within a particular ECV have to be 
consistent. A particular element within the CCI program is independent analysis of the qual-
ity of its CDRs and particularly their consistency (between different ECVs and products) in a 
climate modeling context by the CCI Climate Model User Group (CMUG) and several budget 
closure study projects.
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Together with the Copernicus Climate Change Service (C3S) and contributions from 
EUMETSAT through its Satellite Application Facilities (SAFs) such as the Climate Monitoring 
SAF (Schulz et al. 2009), the NOAA Climate Data Record program (www.ncdc.noaa.gov/cdr; 
Bates et al. 2016), and the NASA Measures program (https://earthdata.nasa.gov/measures), 
about 1,000 different satellite-based CDRs for GCOS ECV products and further variables are 
available or will become available in the near future. An overview of these CDRs is given in 
the ECV inventory (https://climatemonitoring.info/ecvinventory), recently established by the joint 
Committee on Earth Observation Satellites (CEOS)–Coordination Group for Meteorological 
Satellite (CGMS) Working Group on Climate, which conducts regular gap analysis to define 
future satellite development needs (WGClimate 2018).

This study introduces a concept developed in CCI to define and assess consistency between 
multiple satellite-based ECV products. It is shown that such an assessment allows remaining 
inconsistencies to be identified and quantified in the light of given CDR uncertainties and 
relevant physical principles. A key application of assessing and ensuring consistency is in 
closure studies where multiple CDRs are used together. A selection of topics for such closure 
studies is briefly discussed in this paper to illustrate the concept.

The second section discusses different kinds of inconsistencies and develops a definition of 
consistency, followed by a brief analysis of ECVs covered by CDRs from CCI and consistency 
needs in Earth system monitoring in the third section. The fourth section develops a concept 
for assessing the different levels of consistency and illustrates it with examples from different 
ECV products in CCI. The fifth section presents a discussion of the main findings and identi-
fies remaining consistency gaps.

Consistency in Earth system monitoring
While “consistency” (e.g., between two datasets) is a concept frequently referred to in the 
observation community, there is, to our knowledge, no comprehensive definition specific to 

Fig. 1. Temporal coverage of CDRs for ECVs analyzed by CCI. Filled bars indicate CDRs available in 2019, 
and outlined bars indicate CDRs that are planned within the ongoing phase of the CCI program.
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observation datasets of different variables. This may reflect the complexity of relations between 
the large set of ECVs. This study proposes such a comprehensive definition and an assessment 
concept for consistency. The focus is on consistency between datasets of different variables, 
as needed for climate studies, but also single-variable cases are included.

According to the common definition of the word “consistency” (Oxford Dictionary), it is 
“the quality of always behaving in the same way or of having the same opinions or standards; 
the quality of being consistent, i.e., 1/in agreement with something; not contradicting some-
thing, 2/happening in the same way and continuing for a period of time, 3/consistent with 
something in agreement with something, not contradicting something, 4/having different 
parts that all agree with each other.” In the observation scientific community, consistency 
is usually understood as “agreement,” “compatibility,” or “no contradiction.” When consid-
ering CDRs, “consistency” goes beyond “agreement” and rather refers to “compatibility.” 
First, agreement per se can only be tested between datasets of the same variable. A mature 
terminology and a comprehensive set of mathematical tools for this purpose exists, which 
forms the basis of most calibration, validation, and model evaluation activities. Second, there 
can even be cases where two datasets of the same variable agree (their bias is smaller than 
their combined uncertainties) but are inconsistent (e.g., if only one of two datasets shows a 
distinct diurnal or seasonal cycle). In contrast, regionally averaged time series of one variable 
can disagree (have regional biases larger than the combined uncertainties), but be consistent 
in their temporal behavior, as shown for multisensor aerosol optical depth (AOD) records 
(Sogacheva et al. 2020).

In a physical sense, consistency can be understood as fulfilling a conservation balance 
equation (of mass or energy) or exhibiting a correlation in time or space between two data 
records as expected by a physical theory. In CDR production, also simple category inconsis-
tencies occur (e.g., for one pixel land cover assigns bare soil, while biomass gives a nonzero 
carbon mass to it).

Immler et al. (2010) defined consistency between measurements of the GCOS Reference 
Upper Air Network (GRUAN) as “when the independent measurements agree to within their 
individual uncertainties,” which requires knowledge of their (combined) uncertainties. This 
definition applies to different measurements of the same variable, but in the wider context 
of Earth system monitoring, a definition of consistency across multiple ECVs is also needed.

Several kinds of inconsistency between different data records of the same quantity or of 
different quantities can be recognized:

•	 inconsistencies due to differences in auxiliary datasets;
•	 temporal inhomogeneities in time series (e.g., due to calibration biases, degradation  

in data obtained from a sequence of different input data records, or sampling dif-
ferences in terms of measurement time, frequency, or geographical coverage during 
gridding);

•	 spatial inhomogeneities due to combining fields from different datasets (e.g., with different 
observing geometry or different sampling, e.g., all-sky vs clear-sky sampling).

Many of these inconsistencies are linked to the statistical properties of the raw data used 
to create a CDR, when for practical reasons simplifications and aggregations cannot be 
avoided.

To cover the wide range of aspects of consistency, it is convenient to structure it on three 
complementary levels:

1)	 Consistency on the technical level: Harmonized data format and metadata description to 
ease acquisition and combined usage of multiple CDRs
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2)	 Consistency on the retrieval level: Use of the same auxiliary datasets in retrievals to mini-
mize contradictions in outputs linked to common information (e.g., a water mask)

3)	 Consistency on the scientific level: Compatibility of the relevant characteristics of two 
or more CDRs (e.g., patterns, variability, and trends) with a reference (represented by a 
physical equation, a model, or a fiducial reference) within their combined uncertainties

While consistency on a technical level is easy to define and needs limited scientific insight, 
it is often a resource-consuming barrier hindering data use. Thus, the Earth observation 
community has focused on this area in recent years (e.g., by adopting common metadata 
standards). In particular, the CCI program has adopted existing solutions (and when need-
ed developed new ones) that facilitate combined satellite-based CDR use. This includes 
a harmonized data format (netCDF, with a few exceptions where a different standard is 
needed for a particular community, e.g., shapefiles for glaciers) and a common metadata 
convention (CCI data standards; ESA 2019), which follow the climate and forecast (CF) 
convention (http://cfconventions.org). It covers additional cross-ECV standardized metadata 
attributes, using common vocabularies for index terms and harmonized variable names, 
as well as a harmonized/interoperable data access portal with common catalogue and 
data services to simplify multiquantity data search and download within the CCI portfolio 
(http://cci.esa.int/data). This common vocabulary also helps to reduce inconsistent nomen-
clature, such as labeling slightly different variables as the same retrieved quantity (e.g., 
due to wavelength dependencies of retrieved information). Furthermore, the underlying 
documentation of algorithms and datasets in CCI has been harmonized to some extent, 
as in other initiatives such as the SAF network or NOAA CDR program. This information 
helps users to quickly understand each dataset and its strengths, weaknesses, and limi-
tations. A good example of the benefit of such harmonized climate data records on the 
technical level is given by the CCI toolbox (https://climatetoolbox.io), which can be used 
for harmonized data preprocessing, analysis and visualization of the multiple CDRs in 
a standardized way.

On the retrieval level, consistency aims at using the same (or a similar) observation strategy 
(same or similar satellite sensors, frequencies, etc.), and similar auxiliary datasets for the 
same variable in different retrieval algorithms. Those auxiliary datasets are either categori-
cal datasets, so-called masks, or continuous datasets of physical variables. Typical masks 
used in many retrieval algorithms include, for example, a particular land cover (vegetated 
areas), land–water, sea ice, snow cover, and glacier masks, since many retrieval algorithms 
behave differently over different surface types. Other masks commonly needed across many 
variables are cloud masks, since many retrievals in the visible to thermal spectral range need 
to avoid contamination by clouds. Frequently used continuous auxiliary data fields include 
meteorological fields (e.g., from reanalysis) and climatologies of atmospheric variables (e.g., 
water vapor, aerosols, ozone) to conduct atmospheric corrections of visible bands used to 
retrieve land and ocean ECVs.

There is no sharp boundary between retrieval and scientific consistency. Ultimately, scien-
tific consistency deals with the compatibility in CDR properties relevant for climate processes. 
All data records of a single ECV product, if obtained from different sources, need to be con-
sistent within their uncertainties and within sampling differences. One aspect is consistency 
across borders in space (horizontally and vertically) and in time. Most importantly, systematic 
biases between datasets need to be avoided as they may lead to errors when evaluating model 
performance (e.g., Waugh and Eyring 2008). This applies to different combinations such as 
one variable based on multiple sensors, one sensor but using multiple algorithms, or com-
bined satellite, model and in situ data. Finally, when several datasets of different variables 
are included in a physical model or budget equation, multivariable consistency needs to 
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distinguish uncertainties of calculated closure budgets due to propagated input uncertainties 
from real physical process imbalances or net effects.

Consistency needs for CCI Earth system climate data records
In this section, linkages on the retrieval and scientific level between the different CCI ECVs 
(Fig. 1) are analyzed. This analysis remains at the high level of the GCOS ECVs while it is well 
understood that most ECVs consist of several different quantities, or so-called products (e.g., 
the glacier ECV in CCI consists of the three products: glacier outlines, elevation change, and 
velocity). In most of the analysis in this study the primary product of an ECV is considered 
(e.g., aerosol optical depth for aerosol properties) and the most common methodology used to 
retrieve it. This means that, for using a specific CDR of one ECV, there may be a need to assess 
in more detail its linkages if, for example, a new retrieval technique in another spectral range is 
considered or if another product of this ECV is assessed. Detailed information on the products 
of each CCI ECV for which CDRs have been processed is available online (at http://cci.esa.int).

As a first step, the needs for consistency between ECVs on the retrieval level are assessed. 
Retrievals of Earth system variables from satellite observations aim to produce high quality 
CDRs by constraining the (often underdetermined) inversion equations as good as possible. 
Typically, the measurements are chosen to have high sensitivity to the target variable, but 
they are usually subject to perturbations from other variables. In such cases, the inversion 
needs to either coretrieve these additional variables or use auxiliary datasets to describe their 
spatiotemporal distributions. Moreover, different retrieval algorithms are often optimal for 
use over different surface types as their reflectance or spectral characteristics are highly vari-
able (e.g., over dark water or over bright land). The use of different approaches for obtaining 
the same variable in different retrieval algorithms is one possible source of inconsistency 
between CDRs.

After processing, all CDRs have to pass validation against external reference datasets (e.g., 
from ground-based stations) to quantify their accuracy. Furthermore, CCI insists for CDRs to 
be accompanied by proper uncertainty characterization (using error propagation or uncer-
tainty characterization during validation) within their data files (Merchant et al. 2017), so 
that uncertainties can be assessed when using the datasets. However, since reference data 
can have temporal or spatial representativeness issues and different validation methods also 
have their inconsistencies, unexplored uncertainties may remain (for the retrieved values 
themselves and for the estimated uncertainties). Validation and error propagation implicitly 
quantify inconsistencies from using imperfect auxiliary datasets and retrieval simplifications 
to within uncertainties. However, proof of consistency needs to explicitly test together the 
CDRs considered.

The part of Table 1 that is above the diagonal summarizes links between ECVs generated 
and analyzed by CCI with regard to their retrieval consistency. A need for retrieval consistency 
is identified where either one or both retrievals rely on consistent coretrieved or auxiliary 
variables of the other ECV (links only within CCI are considered, but there are other products, 
algorithms, or sensors for which these may not apply).

The part of Table 1 below the diagonal summarizes the need for consistency on the scientific 
level based on our knowledge of how two variables are linked by Earth system processes or 
cycles in more detail. For this, the relevance of CCI ECVs for the energy, water and carbon cycles 
is briefly recalled. Figure 2 lists available or upcoming ECVs for which ESA CCI generates CDRs 
that contribute to the characterization of these three main cycles. For simplicity, each ECV 
is only attributed to the cycle in which it plays the most important role. Practically all ECVs 
contribute to the energy cycle, either directly through radiation interaction or through mass-
attached energy transport in the water or carbon cycle. Studies of subelements of these main 
cycles may also be relevant (e.g., physical processes such as emission, transport, deposition, 
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or radiation interactions, and chemical transformations; also regional limitations, such as 
ice-free conditions) that may only require consistency among a reduced set of ECVs. Some 
further details on the CCI CDRs for the three cycles are provided in the following.

Carbon cycle. CCI CDRs help quantifying the dynamics of the amount of carbon stored in 
the atmosphere, oceans, and terrestrial biosphere and the fluxes between these reservoirs 
[see overview about the carbon cycle in Le Quéré et al. (2018)]. CO2 in the atmosphere is a 
key measure of the anthropogenic perturbation to the carbon cycle. The air–sea CO2 flux is 
strongly affected by sea surface temperature (SST) and ocean photosynthetic activity (moni-
tored using ocean-color observations). The CCI CDRs also help constraining carbon fluxes 

Table 1. Links between ECVs on the retrieval (above the shaded diagonal) and scientific (below the shaded diagonal) level, 
which need to be consistent if used together. Weak linkages are indicated in parentheses. Cycles are indicated with the 
following acronyms: C = carbon cycle; W = water cycle; E = energy cycle. Processes are indicated with the following acronyms: 
r = radiation interaction; d = deposition; e = emission/evaporation; t = transport; c = chemical transformation; mtf = melting/
thawing/freezing; i = ecosystem interaction; a = air land/sea fluxes of carbon and water; m = mask.
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Ocean color d e C r d Cd m T × × ×

Sea ice r d Wr M i × × × (×)

Sea level W W W W W W W W (×) ×

SST Er Er r r Er E mtf EWt Er m E (×) ×

Sea state i m ×

Sea surface  
salinity

C ea mtf mtf mtf mtf
CW

i
W

mtf
WE Wa a
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from the land biosphere (e.g., Reuter et al. 2017) in-
cluding land-use change and biomass-burning emis-
sions, together with direct estimates of aboveground 
biomass and burned area (Chuvieco et al. 2019). 
Other CCI CDRs of importance to the carbon cycle 
are snow cover (which affects the duration and 
start of photosynthetic processes in boreal forests; 
Pulliainen et al. 2017), similar to the impact of sea 
ice on marine photosynthesis in high latitudes, 
soil moisture (which affects land–atmosphere CO2 
fluxes), permafrost (which contains frozen carbon 
stores with about twice the mass of atmospheric 
carbon), and sea surface salinity, which, together 
with SST, determines CO2 solubility, with important 
impacts in rainy regions and serves as a proxy for 
seawater alkalinity (Vinogradova et al. 2019).

Water cycle. CCI helps quantifying the global water 
cycle over land and ocean (see overview in, e.g., 
Levizzani and Cattani 2019) by providing CDRs 
related to the reservoirs within the water cycle 
(lake levels, sea level, sea ice, ice sheets, glaciers, 
soil moisture, and snow), atmospheric water vapor 
content (water vapor), and clouds. From these, processes such as precipitation and runoff 
that transfer water between the various reservoirs may be inferred. CCI delivers additional 
relevant parameters such as sea surface salinity (related to precipitation, evaporation, and 
runoff), SST and land surface temperature (LST) (determining evaporation), land cover, and 
biomass (both linked to evapotranspiration).

Energy cycle. CCI also helps constraining the global energy cycle (for an overview, see 
Allan 2012) by providing CDRs for SST and LST, land, and sea ice, as well as snow cover, 
sea level (which is affected among others by the ocean heat content and land ice melt), sea 
state, clouds, water vapor, ozone, greenhouse gases, and aerosols that help determine the 
vertical temperature structure of the atmosphere. Finally, the biosphere (biomass) may also 
be considered a part of the energy cycle since it converts solar energy into chemically stored 
energy (organic matter). In the oceans, a significant portion of the organic matter sinks out of 
the surface layers, exporting the energy to the deep ocean (with the photosynthesis activity 
being observed indirectly through ocean color).

Concept for assessing consistency on different levels
Due to the complexity of different consistency aspects, no single method can be used for 
assessing consistency of CDRs on various levels. Therefore, a concept employing a range of 
appropriate methods was developed in CCI, which is summarized here and then illustrated 
with short examples.

Overview: Methods to assess consistency. All methods for assessing consistency contain sev-
eral key elements. First, any method needs to be based on physical background knowledge to 
understand the relevance of any disagreement or incompatibility. Such background knowledge 
can be a simple principle (e.g., if the land cover is bare soil and the biomass product provides 
a high biomass value, there is an obvious inconsistency) or knowledge of the sensitivity of a 

Fig. 2. The ECVs covered by ESA CCI CDRs, ordered 
according to the key Earth system cycle (energy, 
carbon, water) they help characterize. The cycles 
are interlinked, and most water and carbon cycle 
ECVs are also relevant to the energy cycle, since 
energy is stored and transported in water and 
matter, at least on transient time scales.
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target variable toward an auxiliary dataset, or a more complex physical equation or “model.” 
Second, any assessment needs to select an appropriate characteristic (patterns, time series, 
masks) tailored toward the relevant process (or cycle) and choose a suitable mathematical tool 
(metric). Finally, this metric needs to be evaluated against the relevant physical background 
knowledge while the threshold on the chosen metric for judging consistency depends on the 
considered process or cycle and the datasets. To make any assessment of consistency objec-
tive, a study needs to specify the threshold used. This is shown for the following examples 
for various metrics.

In essence, consistency then means that several datasets have been evaluated against the 
underlying physical background knowledge and were found “fit for purpose” for a specific 
application domain. This leads to cases where seemingly small values of a chosen metric 
(compared to its uncertainty) can mean inconsistency, while in other cases apparently large 
deviations mean consistency, as will be shown in the examples of this section. Table 2 lists a 
variety of related basic principles and methods to assess consistency on different levels used 
in the following examples.

Methods to assess retrieval level consistency. As a principle, retrieval level inconsistencies 
become significant if the difference of the auxiliary data used in two independent processing 
systems multiplied by the sensitivity of the target variable to the respective auxiliary vari-
able is larger than the target uncertainty. This means that testing retrieval level consistency 
needs to assess auxiliary dataset differences in the light of target variable sensitivities or 
incompatibilities.

Consistency of categorical auxiliary datasets (masks). A first approach to assess consis-
tency of masks used in independent retrievals lies in visual inspection of combined maps 
of datasets, as for example, of surface temperature composed from four independent CDRs 
for land surface (LST), sea surface (SST), ice surface (IST), and lake surface water (LSWT) 
temperatures against required pixel-level agreement of the masks. In CCI the four retrievals 
use a common land–sea mask (and sea ice mask), but apply different cloud mask algorithms 
optimized over land, sea ice, and water surfaces. As shown in Fig. 3, the reader can visually 

Table 2. Summary of assessment methods for consistency on different levels and types.

Consistency type Required background knowledge Assessment method

Retrieval level

Categorical auxiliary data (masks) Incompatible mask classes Visual: Combined images

Contingency matrix

Class combination maps

Continuous auxiliary data Target variable sensitivity to auxiliary variable Visual: Homogeneity

Difference maps

Statistical comparison

Scientific level

Self-consistency (single quantity) Behavior of one quantity Visual: Features as expected

Known record features Quantitative variability 

Known map features Trend analysis 

Physical equation

Mutual consistency (multiple quantities) Linkage between quantities Difference maps

Physical model Trend comparisons 

Understood Earth system phenomena Correlations and other measures of covariability
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confirm the absence of any obvious scatter near the 
land–sea borders, which indicates that the land–sea 
masks used in the different processing systems are 
consistent. Additionally, the application of different 
optimal cloud masking in the retrievals for LST and 
SST has led to obvious discontinuities in the sam-
pling with temperature observations at the land–sea 
border, which may be judged as second-order incon-
sistencies. Such visual inspection of a set of typical 
scenes can be employed for most ECVs to get an 
understanding of their physical consistency within 
one variable across borders of the same mask used in 
different retrievals. Additionally, Fig. 3 shows a case 
where a contrast in the values in the ECVs between 
neighboring pixels (surface temperature of ocean 
and water) does not mean inconsistency, but reflects 
physical differences arising from the different heat 
capacities of water and land.

The retrieval of many ECVs needs a cloud mask 
to avoid cloud contamination. Also cloud proper-
ties need a cloud mask to ensure that a pixel truly 
represents cloud (Poulsen et al. 2012). When, for 
example, aerosol and cloud property retrievals for 
the same sensor are implemented as separate algorithms (as is usually the case), individual 
pixels need to be analyzed either as cloud or as aerosol; analysis of the same pixel as aerosol 
and as cloud under the wrong assumption (cloud-free or aerosol-free) could severely degrade 
the retrievals and must be minimized (e.g., Sogacheva et al. 2017; Li et al. 2009). To assess 
if this principle is fulfilled, independent AATSR cloud masks used in the aerosol and cloud 
products were analyzed for four 
days in September 2008 (cover-
ing difficult scenes with high 
aerosol loads or complicated 
mixtures of aerosol and clouds). 
Figure 4 shows a map of differ-
ent combinations of cloud/no 
cloud assignment by the two 
cloud masks and a contingency 
matrix of those class combina-
tions. The matrix shows, that 
while 21% of observations are 
not used for aerosol or cloud 
retrievals at all (losing sam-
pling coverage but not leading 
to inconsistency), only 0.3% of 
them were found to violate the 
physical principle (i.e., no pixel 
must be double analyzed as 
clouds and as aerosols). Even 
if a very stringent threshold for 
this fraction of 1% is set (since 

Fig. 3. Gaps in surface temperature fields (LST and 
SST from SLSTR on Sentinel-3A at 1038 UTC 5 Aug 
2018) due to masked clouds (gray), showing the ab-
sence of scatter at land–sea borders and sampling 
discontinuities across some land–sea boundaries 
due to different cloud-clearing approaches be-
tween LST and SST processing.

Fig. 4. Consistency overview between Aerosol_cci (Swansea University) 
and Cloud_cci (FAME-C) AATSR cloud masks for observations of four 
selected days in September 2008. “No cloud /no cloud” and “cloud /
cloud” situations are solely analyzed as aerosol or clouds in Aerosol_cci 
and Cloud_cci, respectively. “No cloud/cloud” situations are wrongly 
analyzed as aerosols and clouds, while “cloud/no cloud” situations are 
not analyzed at all.

D
ow

nloaded from
 http://journals.am

etsoc.org/bam
s/article-pdf/101/11/E1948/5018395/bam

sd190127.pdf by M
AX-PLAN

C
K-IN

ST FU
ER

 BIO
G

EO
C

H
EM

IE user on 18 N
ovem

ber 2020



A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y N OV E M B E R  2 0 2 0 E1959

cloud mask errors lead to very large AOD errors) the two cloud masks are fully consistent. 
The map also shows that the inconsistent cases (yellow pixels) occur only over land but in all 
climate zones. Together with the underlying physical principle one can use such a contingency 
matrix/mapping of class combinations to assess the contingency of masks and to understand 
where/when inconsistencies mostly occur and need to be corrected.

Another typical aspect of multiquantity spatial consistency is the agreement of locations 
between the outlines of physically related quantities (different products within one ECV, be-
tween different ECVs). For example, glacier outlines are derived from high-resolution satellite 
imagery or aerial photography using semiautomated mapping techniques or manual on-screen 
digitization (Paul et al. 2015). Due to their higher spatial resolution, the location of glaciers 
can be used for land cover as an independent validation source for its “permanent ice and 
snow” classes. Furthermore, glacier maps serve as an important auxiliary dataset for clouds 
and LST (to choose the correct retrieval algorithm), and lakes as a reciprocal mask (these can 
only occur in places not covered by glaciers) for sea ice, ice sheets and permafrost. Again, 
contingency matrices between glacier or lake location and the other variables can be used 
to assess consistency in the light of the expected compatible combinations; the threshold for 
the acceptable fraction of inconsistent pixels needs to be set depending on the potential harm 
of misclassifications. A limitation for the assessment of categorical auxiliary datasets lies in 
the fact that mixed cases often exist, in particular for coarser spatial resolutions.

Consistency of continuous auxiliary datasets of the same quantity. Often the retrieval of 
a land/ocean CDR is affected by perturbations in the measured bands due to atmospheric 
absorption or scattering, so an atmospheric correction needs to be applied. Examples of neces-
sary atmospheric corrections include visible or thermal retrievals impacted by aerosol, water 
vapor, ozone, or other trace gases (e.g., Popp 1995). A first step in algorithm development 
would be to assess the sensitivities of the measured reflectances to the various absorbing trace 
gases and to aerosol particles (e.g., Holzer-Popp et al. 2002). This provides the basis for decid-
ing which corrections can be neglected or made with a simple parameterization and which 
need more precise corrections using an auxiliary dataset of distributions of the responsible 
agents influencing the signal. When the auxiliary datasets come from the same sensor as the 
target CDR, accurate spatiotemporal matching (pixel collocation) would be possible. However, 
in cases where the auxiliary data come from different sensors, it may be necessary to deal with 
spatial and temporal mismatches, introducing a requirement for assessment of the associated 
additional uncertainties. Figure 5 shows a gridded 
map of differences of aerosol optical depth between 
the by-products of the ocean-color atmospheric cor-
rection of Medium Resolution Imaging Spectrometer 
(MERIS) data (processed using a NASA algorithm) 
and the corresponding CCI aerosol ECV product 
from Advanced Along Track Scanning Radiometer 
(AATSR), both for 865 nm (both sensors were on 
board the same platform Envisat and thus exhibit 
zero time difference). The global average difference 
of AOD between both products of 0.03 is acceptable 
for the purpose of aerosol corrections, but the vari-
ability is larger for the aerosol ECV product than for 
the ocean-color product (0.10 ± 0.11 vs 0.13 ± 0.04, 
respectively), which has higher AOD values over the 
open ocean, but lower ones closer to land. Given 
the importance of AOD in ocean-color atmospheric 

Fig. 5. Mean AOD differences at 865 nm between 
ocean-color MERIS atmospheric correction by-
product and aerosol ECV product from AATSR in 
May 2003 when both instruments retrieve AOD.
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correction (IOCCG 2010), the aerosol-corrected ocean-color ECV can be regarded as consis-
tent with the aerosol ECV in its global average, but not regionally. These results merit further 
investigations to identify the sources of the discrepancies and to assess the potential to im-
prove the MERIS ocean-color atmospheric correction algorithm by using concurrent auxiliary 
information on AOD from the main ECV aerosol product obtained from AATSR.

Methods to assess scientific consistency. Scientific consistency includes self-consistency 
within one quantity (when independently retrieved pieces are integrated into a longer time 
series or a larger map) and mutual consistency between different quantities (different products 
of one ECV or multiple ECV CDRs) as a consequence of all types of retrieval inconsistencies, 
limitations of the retrieval algorithms or sensor calibrations, as well as sampling differences 
between aggregated datasets.

Self-consistency of a single quantity. One major problem of satellite-based CDRs is that sat-
ellite instruments typically survive in orbit only for a limited time, so that a long-term record 
needs to be constructed from combining data from a time series of similar sensors. Plotting 
regional or global data records of the related parts of a time series often allows visual inspec-
tion of their consistency, where “jumps” or “breakpoints” are obvious against background 
knowledge of any known or absent true discontinuities. As example, column-averaged dry-air 
mole fractions (“vertical columns” XCO2) of carbon dioxide (Buchwitz et al. 2015) from the 
greenhouse gas (GHG) ECV are selected. Those CDRs serve as input data for inverse modeling 
schemes to improve the knowledge on natural and anthropogenic sources and sinks (e.g., 
Reuter et al. 2017). In creating a multisensor CDR covering a longer time period, a merging 
algorithm (EMMA; Reuter et al. 2013, 2020) corrects potential remaining offsets of individual 
datasets to avoid jumps in the merged time series. In EMMA, the ensemble members have 
been bias corrected and brought 
to common a priori CO2 pro-
files before being combined 
to obtain the merged prod-
uct. Figure 6 shows in the top 
panel the resulting multisen-
sor, multialgorithm monthly 
mean XCO2 merged record for 
2003–18 for northern mid-
latitudes (30°–60°N) with the 
known nearly linear increase 
in time and seasonal cycle and 
no remaining biases, while in 
the bottom panel differences 
between individual ensemble 
members and the merged prod-
uct before the corrections are 
shown to be larger than the 
required XCO2 uncertainties 
of 0.5 ppm. In this case, this 
threshold for the target uncer-
tainties of the gap-corrected 
merged dataset is defined by 
the user requirement for the ap-
plication of XCO2 trend analysis.

Fig. 6. (top) Time series of monthly mean northern midlatitude XCO2 
(red thick line) based on merging individual XCO2 ensemble members 
(black lines) from GOSAT (since 2009) and OCO-2 (since 2014). The time 
series (2003–18) begins with one XCO2 product from SCIAMACHY/Envisat. 
(bottom) XCO2 difference between ensemble members (black lines) and 
the multisensor/multialgorithm merged product (red line in top panel). 
For details, see Reuter et al. (2020).
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Similarly, spatial inconsistencies in one variable can often be assessed visually by looking 
at maps combined from independent pieces (different sensors, different overpass times of the 
same sensor with different observing geometries, different algorithms). In this case, inconsisten-
cies are visible as artificial border lines or gradients that are larger than the noise in the image. 
Again, physical understanding is needed to decide whether a discontinuity at a physical border 
is real or erroneous (e.g., surface temperature often shows true differences between land and 
sea as shown in Fig. 3, while a dust plume should be continuous). Another example for spatial 
inconsistencies revealed by data overlay are glacier outlines derived from satellite images that 
have been orthorectified with different digital elevation models (DEMs). In steep and/or high 
topography geolocation shifts of several pixels (about 30–90 m) can occur, making any change 
assessment (trend analysis) or joint use of sensors nearly impossible (Kääb et al. 2016).

Another way of testing the consistency of independently retrieved CDRs for one variable 
is by comparing estimates of a derived quantity such as their trend with a physical equa-
tion. For example, within the GEWEX Water Vapor Assessment (G-VAP; see http://gewex-vap.
org/ for details), intercomparisons of total-column water vapor (TCWV) trend estimates from 
different CDRs were made and it was concluded that the trend estimates are generally sig-
nificantly different. It was then shown that several data records disagree with the physical 
expectation from the Clausius–Clapeyron equation using data over the global ice-free ocean 
(Schröder et al. 2016, 2019). After homogenization, a new analysis was applied to the trend 
estimates and associated results are shown in Fig. 7. While the diversity in original trend 
estimates (−0.15 to +0.12 kg m−2 yr−1) is several times higher than individual uncertainties, 
it is largely reduced after homogenization (−0.02 to +0.04 kg m−2 yr−1), but still slightly larger 
than the individual trend uncertainties (up to ± 0.01 kg m−2 yr−1). As a consequence, after 
homogenization there was a significant increase in the fraction of datasets that can be seen 
as consistent as indicated by agreement of trends within twice their combined uncertainties.

Mutual consistency between different quantities. In testing multiple quantity consistency, the 
role of the underlying background knowledge becomes stronger since the physical processes 
connecting different ECVs need to be taken into account. One method to test the consistency of 
two ECVs is by looking at their correlations. For example, in the lower stratosphere, the strong 
physical dependency of lower-stratospheric water vapor on tropical tropopause temperatures 
can be exploited to test the consistency between climate data records of temperature and 
stratospheric water vapor as highlighted by Hegglin et al. (2014). This study proposed a new 
merging method that uses a chemistry–climate model as a transfer function between differ-
ent satellite instrument records 
to create a CDR. The methodol-
ogy allows the bias between 
instruments to be determined 
throughout the instrument’s 
lifetime and not only for the 
overlap period (when old instru-
ments may show first signs of 
degradation), hence improving 
characterization of systematic 
differences (or biases) between 
datasets. By using the correla-
tion between the newly merged 
stratospheric water vapor record 
and the zonal mean tempera-
ture from ERA-Interim, visual 

Fig. 7. Trend estimates computed after (green) and before (black) 
homogenization for all long-term TCWV data records available from the 
G-VAP data archive (Schröder et al. 2018). Trend estimates are sorted in 
ascending order without homogenization. The gray horizontal line marks 
a trend of 0 kg m−2 yr−1 (updated from Schröder et al. 2019).
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inspection indicated that the new merging method led to physically more consistent results 
than the traditional one based on bias correction of instruments during overlap periods. 
Figure 8 shows the visually well correlated time series of a prototype version of the strato-
spheric water vapor CDR merged using the new methodology in comparison with zonal mean 
temperatures at 100 hPa from ERA5 in the tropical region (left panel). We set the threshold 
for correlations to accept consistency with medium (high) confidence to 0.5 (0.7) since the 
covariability of time series of two different variables may also be influenced by other processes 
that reduce the correlation. In this case (right panel), a correlation of 0.58 suggests that the 
two variables are physically consistent with medium confidence; if only assessing the last 
15 years (not shown) with better data quality, the correlation increases to 0.69 (consistency 
with high confidence).

Alternatively, differences of multiyear trend maps of one variable can be used to assess 
the consistency of two different ECV CDRs. The example here is the intercomparison be-
tween wave height (measured by satellite altimetry) and sea ice concentrations assessed in 
Stopa et al. (2016). Daily sea ice concentrations produced from the Special Sensor Microwave 
Imager (SSM/I) by Institut Français de Recherche pour l’Exploitation de la Mer (IFREMER) 
(Ezraty et al. 2007) are used to define open ocean versus sea ice conditions with a 15% 
concentration threshold at 12.5 km resolution within the Arctic Ocean. For the period 
1992–2014, the SSM/I ice concentrations are used along with wind vectors from the Climate 
Forecast System Reanalysis to reproduce the wave field through the numerical wave model, 
WAVEWATCH3 (WW3; Tolman et al. 2014), which includes wave–ice interaction through 
an under-ice parameterization of wave dissipation. Figure 9 shows a comparison of the 
trends of the significant wave height (Hs) directly measured with altimetry (denoted ALT; 
Queffeulou and Croizé-Fillon 2016) and from the collocated model data from WW3 (denoted 
WW3 CoLoc) in which SSM/I ice concentrations have been used. Qualitatively, the regional 
patterns match between the two datasets, despite stronger trends in the altimeters (of up 
to 1 cm yr−1). At present the confidence interval for trends in wave heights is not known. 
Therefore the quantitative discrepancies between modeled and measured trends here could 
be due to both systematic time-varying biases in the wave height ECV, which are expected 
to be only a function of time and sensor, or to a trend error in the surface wind reanalysis 
used to drive the wave model. However, the wind trends are also constrained by sea level 
pressure data and sea ice drift (e.g., Spreen et al. 2011). In the future, a wider range of 
ECVs, combined with in situ data and models, may be used for a quantitative refinement 
of sea-state trends.

Fig. 8. (left) Covariation between a prototype version of the stratospheric water vapor CDR H2O (pro-
duced within the Water_Vapour_cci) and ERA5 monthly zonal mean temperatures T at 100 hPa. (right) 
Correlation between the two datasets.
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An example of testing the (anti-) correlation of multiple regional ECV CDRs as pre-
dicted by physical theory, is the use of the El Niño–Southern Oscillation (ENSO) index 
for ECV anomalies in the tropical Pacific Ocean Niño-3.4 region (5°S–5°N, 170°–120°W). 
This natural phenomenon is an ideal candidate for investigating multiple ECV consis-
tency due to its relatively short time scale, large amplitude, and multiple ECVs affected 
by it. This first attempt focuses on the main ENSO signatures at large scale. Physical or 
biological processes leading to spatiotemporal lags of a few months or a few degrees 
longitude between some variables have been neglected. This could be refined in future 
studies. ENSO variability is compared in several ocean (SST, SL, SSS, Chlor_a), atmosphere 
(CFChigh, TCWV, AOD550), and land (SM, burned area/fire) ECV products—see Table A1 
for the acronyms, more detailed information on the datasets and their correlations. All 
variables were interpolated to a common 1° × 1° grid, deseasonalized by removing the 
corresponding monthly mean value and normalized by dividing by the standard deviations 
for their respective available time period. Figure 10 shows the index variability across 
the tropical Pacific Ocean for the ECVs in time–longitude anomaly cross sections. The 
ocean and most atmosphere ECV time series show consistent spatiotemporal covariability, 
as expected. Whereas SST and SL have their largest variability in the Niño-3.4 region, 
CFChigh and TCWV variability peak farther west (~180°), except for the strong El Niño 
years 1982/83, 1997/98, and 2015/16. Moreover, SSS and Chlor_a are anticorrelated with 
SST, as expected from a reduced upwelling. For ECVs affected indirectly by El Niño from 
dry conditions and wildfires over Indonesia (fire, aerosol, and soil moisture), the highest 
correlations occur in their Indonesian time series (10°S–10°N, 100°–150°E). For certain 
El Niño-3.4 years, e.g., 1997, 2007, and 2015, there are clear indicators of covariability 
of them and SST (Fig. 10g). Here again the use of a correlation threshold of 0.5 (0.7) for 
medium (high) confidence on consistency is adopted. In conclusion, by quantifying 
(anti-) correlations between these nine independently derived satellite ECVs versus the 
scientific understanding of the ENSO phenomenon, a medium (high) confidence in their 
consistency can be shown for eight (four) of them.

Fig. 9. Trends of monthly averaged significant wave height (Hs) datasets (cm yr−1) with the Mann–Kendall 
test (thatched areas) from (left) satellite altimetry (ALT), and (right) collocated model WW3 hindcast 
(CoLoc).
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State of consistency assessments for CCI ECVs. Several examples of closure/budget studies 
of partial Earth system cycles demonstrate the usefulness of CCI (and several other) CDRs 
that are consistent at all three levels. For example, closure of the carbon budget is still an 
outstanding scientific challenge (Le Quéré et al. 2018) that is impacted by CDR inconsistencies. 

Fig. 10. Zonal month–longitude cross sections (averaged between 5°S and 5°N) for 150°E–280°E normal-
ized indices of (a) sea surface temperature (SST), (b) sea level height (SL), (c) sea surface salinity (SSS), (d) 
chlorophyll-a (Chlor_a), (e) high-level cloud fraction (CFChigh), and (f) total-column water vapor (TCWV). 
All ECVs are plotted for their respective full-year availability. The black lines in the Hovmöller plots show 
the Niño-3.4 box. (g) Time series of Niño-3.4 SST and Indonesia soil moisture (SM), burned area (Fire), 
and aerosol optical depth at 550 nm (AOD550). Information on the used datasets is provided in Table A1 
in the appendix.
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Different CCI products provide direct and indirect constraints on carbon fluxes that help to 
improve the consistency of carbon budgets. For example, CCI greenhouse gas products are 
used to inform atmospheric inversions. Top-down inversion results can be complemented 
by other ECVs to attribute diagnosed fluxes to different components such as biomass carbon 
changes (biomass CCI product), fire emissions (CCI products on burned area and fire size), 
and land-use change emissions (land-cover CCI products).

Another example is the regional closure of the water budget. Based on multiple satellite 
ECVs it has been demonstrated that the water budget can be closed within less than 10% 
uncertainty at a continental annual time scale, while, at monthly time scales, its residuals 
and uncertainty estimates are larger (about 20%; Rodell et al. 2015). These uncertainties 
in the water budget closure can be reduced by introducing additional constraints, e.g., by 
using multiple CDRs with different uncertainties of a single quantity or by additionally forc-
ing closure of the atmosphere and ocean terms. Uncertainties in existing CDRs need to be 
further reduced and new CDRs of other key variables (most importantly, river discharge and 
irrigation water use) need to be included or developed to reach the 5% closure error targeted 
by GCOS (GCOS 2016).

The global mean sea level budget closure has also been assessed within the CCI program 
by comparing the sum of changes in ocean thermal expansion, land ice melt, and liquid water 
storage on continents with the total observed sea level change. The latter can be estimated 
globally from satellite altimetry with an accuracy of about 10% on different time scales (e.g., 
WCRP sea level budget group, 2018). These observations enable closure of the trend in sea 
level budget with an uncertainty of ±0.3 mm yr−1 over the last 25 years. The sea level bud-
get involves additional variables from the global water budget (through land ice and liquid 
water components) and from the global energy budget (through thermal expansion directly 
related to global ocean heat content; Meyssignac et al. 2017) and thus connects the energy 
and water budgets. At regional scale, uncertainties in the observed components of the sea 
level budget are considerably larger (few tens of percent) and need to be further reduced to 
reach the regional GCOS target.

Finally, an assessment of the current state of affairs regarding consistency between the 
CDRs of the CCI program was made based on the combined scientific expertise of the CCI 
community; it is not meant to be exhaustive but intended as initial guidance for the use of 
multiple ECV CDRs or for defining priorities in further consistency analysis. Table 3 provides 
for each pair of CDRs the consistency status as either “no evident need to consider consistency,” 
“further studies needed,” “consistency explicitly ensured by shared processing or coretriev-
ing,” or “studies already performed,” referenced to Table A2 with the underlying publication 
or technical report (characterized as “theoretical,” “exemplary/partial,” or “comprehensive”). 
As can be seen from Table 3, quite some work remains to be done where the definition and 
concept presented in this paper can be applied and further refined.

Summary and conclusions
Climate data records of essential climate variables derived from satellite instruments provide 
essential information to monitor the state of the Earth system and its changing climate. A 
key requirement for these CDRs to be useful for Earth system science applications is that the 
CDRs are internally and mutually consistent. The ESA CCI program provides a set of CDRs 
for 21 GCOS ECVs in a common framework, and from the outset has invested heavily in 
establishing their consistency, as presented in this study. To our knowledge, no comprehen-
sive definition of CDR consistency exists. Therefore, a three-level definition of consistency 
applicable to single- and multiple-variable cases is proposed and a concept for assessing if 
two or more CDRs are consistent with each other and possibly with reference data are pre-
sented. On the technical level, straightforward data access and usage, including availability 
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Table 3. Consistency analysis status between pairs of CCI ECVs: intrinsically assured (*), study needed (×), study 
done (c = comprehensive; e = exemplary; t = theoretical)—empty fields indicate that no study is needed, this link 
cannot be studied (e.g., due to resolution), or the link is considered weak. Numbered references for conducted 
studies are provided in the appendix (Table A2).
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e10 * × × × × e26 × × × t11 ×

Clouds * × × × × × × × × × e24 × × ×

GHGs * e19 × × × t1 × × ×

Ozone × × × × × × ×

Water vapor × × × t2 × × × × ×

Fire e14 e23 e23 × × t16, 17 t3 e13 e27 e15 × e28 e18

Ice sheets × × c21, 22 × × × × e20 ×

Land cover × * × × t4 × × c25

Soil moisture × × × t5 × × * * * * *

Glaciers Common data format × × e6 × * * e20

HR land cover Common data access portal × t7, 8 × c 25

LST Common metadata standards e4 × × × × ×

Permafrost Common documentation standards e4 t9 × × ×

Snow
Common visualization and analysis tools  
(partly) also adopted by C3s Climate Data Store

× ×

Biomass

Lakes e20 *

Ocean color × * × ×

Sea ice × * × ×

Sea level × ×

SST ×

Sea state ×

SSS

of comprehensive documentation and product user guides, are needed. On the retrieval level, 
one needs to limit contradictions in the use of auxiliary datasets (masks or continuous fields) 
of the same variables in separate processing chains. On the scientific level, consistency of 
multiple ECV CDRs means judging their relevant correlations, patterns, periodicity, trends, 
etc. (as appropriate for a given variable, process, or cycle) in the light of underlying physical 
background knowledge (e.g., by jointly confronting them with a model). Through this link with 
background knowledge, “consistency” as defined in this study goes beyond “agreement” and 
relies rather on “compatibility.” Finding inconsistencies in one or more ECV dataset(s) (i.e., 
patterns whose disagreements exceed underlying uncertainties, contradict physical principles 
or a well-founded model) often indicates errors in a dataset or model whose resolution can 
lead to new scientific understanding.

This study also provides an overview of the technical consistency of CCI CDRs (common 
format and metadata standards, common data portal, harmonized documentation, common 
uncertainty reporting). An open issue in this regard is harmonization across programs and 
communities. Here, the CCI program has made an important step by adopting the netCDF 
format, with the CF and ACDD conventions (the de facto standard in the modeling community) 
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for its gridded satellite data records. The Climate Data Store (CDS) of the Copernicus Climate 
Change Service (C3S) is also based largely on CCI standards. Such common standards are a 
prerequisite for the use of automated data services for accessing multiple data sources with little 
manual interaction, hence facilitating use of the data in scientific studies across multiple ECVs.

The discussion of a concept for assessing consistency and related methods on the retrieval 
and scientific level shows how consistency with regard to different categorical and continuous 
auxiliary datasets can be tested and how the assessment of single-variable self-consistency 
and multiple quantity mutual consistency can be conducted. In all these methods a basic 
understanding of “the truth” needs to be employed. A relevant characteristic of an ECV and 
an appropriate metric (e.g., bias, correlation, contingency matrix) for its evaluation need to 
be chosen. A tabular summary of different methods to assess consistency is given in Table 2. 
For each of the different metrics, a threshold needs to be defined to judge on consistency of 
two datasets. This may well differ from commonly applied thresholds for validation purposes 
since also other processes than consistency may affect the datasets. We suggest as a minimum 
requirement that each consistency study states the applied thresholds, as is done for the ex-
amples in this paper. Whereas the methods used to assess consistency rely on well-established 
tools for calibration and validation, placing them into the systematic context with relevance 
to consistency as done here, can serve as a practical guideline to consistency assessment. A 
brief high-level analysis of the interdependencies of CCI ECVs at the retrieval and scientific 
levels (Table 1) is provided to understand where consistency is needed and thus needs to be 
checked. Finally, a high-level assessment of the current state of affairs regarding consistency 
assessment between the CDRs of the CCI program (Table 3) is compiled to outline possible 
further research needs.

When discussing consistency, datasets from sources other than satellite data (e.g., Earth 
system models) are often required to comprehensively study an Earth system cycle, and their 
uncertainties also need to be considered, together with uncertainties in simplified or esti-
mated budget equations. It is well understood that establishing consistency between two or 
more variables requires targeted analysis. Within and outside CCI much effort has been spent 
on quantifying the sensitivities and dependencies of the retrieved quantities. However, a lot 
more remains to be done in this area.

Acknowledgments. This study is based on ongoing work of, altogether, 30 projects of the ESA Climate 
Change Initiative (23 ECV projects, the Climate Model User Group project, cross-cutting outreach 
components on portal, toolbox, visualization; CCI data standards and system engineering working 
group). We are grateful to ESA for creating the CCI program, which has strengthened the consistency 
of the many research communities related to developing, processing, qualifying, and using satellite 
CDRs. We are grateful to the several hundred scientists building the CCI community for making a 
consistent Earth observation based data repository real. The “operational” part of the CCI program 
has been transferred to the Copernicus Climate Change Service [C3S, (re-) processing to extend the 
CDRs, associated quality control, user support]. We are also thankful for many other datasets from 
outside CCI and C3S that help cover all relevant ECVs: GOSAT level 1 data from JAXA, GOSAT level 2 
data from NIES and NASA, OCO-2 level 1 and level 2 data from NASA, HOAPS data from EUMETSAT CM 
SAF, water vapor records from the G-VAP data archive, CAMS and ERA5 data from ECMWF/Copernicus 
Atmosphere and Climate Change Services, SSM/I daily sea ice concentrations from IFREMER, and 
wind vectors from the Climate Forecast System Reanalysis.

Appendix: Underlying sources
This appendix provides the underlying sources for the multiple regional CDR correlation 
test (shown in Fig. 10: datasets used) and the consistency analysis status (shown in Table 3: 
publications and technical reports).
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Table A1. Information on the datasets used for Fig. 10: versions, DOIs, and references. The correlations between the SST Niño-3.4 
region (averaged from 5°S to 5°N and from 190° to 240°E) time series and the other ECVS’s Niño-3.4 time series (and for SM, BA, 
and AOD time series with Indonesia (averaged from 10°S to 10°N and from 100° to 150°E) are given in the right column.

ECV Dataset version, time period used, DOI, references Correlation of Niño-3.4 SST with

SST Sea surface temperature Niño-3.4 SST: 1.00

ESA SST CCI ATSR and/or AVHRR product version v2.1, 1982–2016

DOI: —

Merchant et al. (2019)

SL Sea level height Niño-3.4 SL: 0.87

SL_cci data v2.0

1993–2015

DOI: https://doi.org/10.5270/esa-sea_level_cci-1993_2015-v_2.0-201612

Legeais et al. (2018); Quartly et al. (2017)

SSS Sea surface salinity Niño-3.4 SSS: −0.63

SEASURFACESALINITY_CCI_DATA v1.8

2010–18

DOI: https://doi.org/10.5285/9ef0ebf847564c2eabe62cac4899ec41

Boutin et al. (2019)

Chlor_a Chlorophyll-a Niño-3.4 Chlor_a: −0.68

CCI Chlor_a v3.1 (4km_GEO_PML)

1998–2017

DOI: —

Sathyendranath et al. (2012)

CFChigh High-level cloud fraction Niño-3.4 CFChigh: 0.82

Cloud_cci AVHRR-PMv3

1982–2016

DOI: —

Stengel et al. (2019)

TCWV Total-column water vapor Niño-3.4 TCWV: 0.84

HOAPS 4

1988–2015

DOI: https://doi.org/10.5676/EUM_SAF_CM/HOAPS/V002

Andersson et al. (2017), data from 2015 as beta version of HOAPS 4

AOD550 Aerosol optical depth at 550 nm Indonesia AOD550: 0.52

CCI ATSR-2/AATSR Swansea v4.1

1997–2011

https://esgf-node.llnl.gov/search/obs4mips/obs4mips.SU.ATSR2-AATSR.od550aer.mon.v20160922 |  
eridanus.eoc.dlr.de

Bevan et al. (2012); North et al. (1999); Popp et al. (2016)

Fire Burned area Indonesia fire: 0.49

FireCCI51

2001–17

DOI: https://doi.org/10.5285/3628cb2fdba443588155e15dee8e5352

Lizundia-Loiola et al. (2020)

SM Soil moisture Indonesia SM: −0.57

ESA CCI SM merged v04.5

1991–2018

DOI: —

Dorigo et al. (2017); Gruber et al. (2019)
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Table A2. Snapshot of publications or technical reports (available from ESA CCI program) until the submission of this 
manuscript behind entries on done consistency studies in Table 3.

1) �Chadburn, S. E., and Coauthors, 2017: Carbon stocks and fluxes in the high latitudes: Using site-level data to evaluate Earth system models. 
Biogeosciences, 14, 5143–5169, https://doi.org/10.5194/bg-14-5143-2017.

2) �Reuter, M., and Coauthors, 2017: How much CO2 is taken up by the European terrestrial biosphere? Bull. Amer. Meteor. Soc., 98, 665–671, 
https://doi.org/10.1175/BAMS-D-15-00310.1.

3) �Carolyn, M., and Coauthors, 2018: Wildfire as a major driver of recent permafrost thaw in boreal peatlands. Nat. Commun., 9, 3041,  
https://doi.org/10.1038/41467-018-05457-1.

4) �Westermann, S., M. Peter, M. Langer, G. Schwamborn, L. Schirrmeister, B. Etzelmüller, and J. Boike, 2017: Transient modeling of the ground 
thermal conditions using satellite data in the Lena River delta, Siberia. Cryosphere, 11, 1441–1463, https://doi.org/10.5194/tc-11-1441-2017.

5) �Dafflon, B., R. Oktem, J. Peterson, C. Ulrich, A. P. Tran, V. Romanovsky, and S. S. Hubbard, 2017: Coincident aboveground and belowground 
autonomous monitoring to quantify covariability in permafrost, soil, and vegetation properties in Arctic tundra. J. Geophys. Res. Biogeosci., 
122, 1321–1342, https://doi.org/10.1002/2016JG003724.

6) �Daiyrov M., C. Narama, T. Yamanokuchi, T. Tadono, A. Kääb, and J. Ukita, 2018: Regional geomorphological conditions related to recent 
changes of glacial lakes in the Issyk-Kul basin, northern Tien Shan. Geosciences, 8, 99, https://doi.org/10.3390/geosciences8030099.

7) �Cable, W. L., V. E. Romanovsky, and M. T. Jorgenson, 2016: Scaling-up permafrost thermal measurements in western Alaska using an ecotype 
approach. Cryosphere, 10, 2517–2532, https://doi.org/10.5194/tc-10-2517-2016.

8) �Zhang, N., T. Yasunari, and T. Ohta, 2011: Dynamics of the larch taiga–permafrost coupled system in Siberia under climate change. Environ. 
Res. Lett., 6, 024003, https://doi.org/10.1088/1748-9326/6/2/024003.

9) �Nitze, I., G. Grosse, B. M. Jones, V. E. Romanovsky, and J. Boike, 2018: Remote sensing quantifies widespread abundance of permafrost 
region disturbances across the Arctic and subarctic. Nat. Commun., 9, 5423, https://doi.org/10.1038/s41467-018-07663-3.

10) �Klüser, L., and S. Stapelberg, Aerosol_cci Cloud_cci cloud mask consistency report v1.1. DLR/DWD/ESA. (Briefly summarized in the third 
example of the “Concept for assessing consistency on different levels” section in this paper.)

11) Stebel, K., and Coauthors, 2017: Aerosol_cci2 technical note on consistency v1.0. DLR/ESA.

12) �Adolf, C., and Coauthors, 2018: The sedimentary and remote sensing reflection of biomass burning in Europe. Global Ecol. Biogeogr., 27, 
199–212, https://doi.org/10.1111/geb.12682.

13) �Cape, J., M. Coyle, and P. Dumitrean, 2012: The atmospheric lifetime of black carbon. Atmos. Environ., 59, 256–263, https://doi.org/10.1016 
/j.atmosenv.2012.05.030.

14) �Eichler, A., W. Tinner, S. Brütsch, S. Olivier, T. Papina, and M. Schwikowski, 2011: An ice-core based history of Siberian forest fires since AD 
1250. Quat. Sci. Rev., 30, 1027–1034, https://doi.org/10.1016/j.quascirev.2011.02.007.

15) �Marlon, J. R., and Coauthors, 2016: Reconstructions of biomass burning from sediment-charcoal records to improve data–model compari-
sons. Biogeosciences, 13, 3225–3244, https://doi.org/10.5194/bg-13-3225-2016.

16) �Pechony, O., and D. T. Shindell, 2010: Driving forces of global wildfires over the past millennium and the forthcoming century. Proc. Natl. 
Acad. Sci. USA, 107, 19 167–19 170, https://doi.org/10.1073/pnas.1003669107.

17) �Chuvieco, E., and Coauthors, 2019: Historical background and current developments for mapping burned area from satellite Earth observa-
tion. Remote Sens. Environ., 225, 45–64, https://doi.org/10.1016/j.rse.2019.02.013.

18) �Chen, Y., D. C Morton, N. Andela, L. Giglio, and J. T. Randerson, 2016: How much global burned area can be forecast on seasonal time 
scales using sea surface temperatures? Environ. Res. Lett., 11, 045001, https://doi.org/10.1088/1748-9326/11/4/045001.

19) �Heymann, J., and Coauthors, 2017: CO2 emission of Indonesian fires in 2015 estimated from satellite-derived atmospheric CO2 concentra-
tions. Geophys. Res. Lett., 44, 1537–1544, https://doi.org/10.1002/2016gl072042.

20) Cazenave, A., 2018: Global sea level budget 1993-present. Earth Syst. Sci. Data, 10, 1551–1590, https://doi.org/10.5194/essd-10-1551-2018.

21) �Rastner, P., T. Bolch, N. Mölg, H. Machguth, R. Le Bris and F. Paul, 2012: The first complete inventory of the local glaciers and ice caps on 
Greenland. Cryosphere, 6, 1483–1495, https://doi.org/10.5194/tc-6-1483-2012.

22) �Huber, J., A. Cook, F. Paul, and M. Zemp, 2017: A complete glacier inventory of the Antarctic Peninsula based on Landsat 7 images from 
2000 to 2002 and other preexisting data sets. Earth Syst. Sci. Data, 9, 115–131, https://doi.org/10.5194/essd-9-115-2017.

23) �Forkel, M., W. Dorigo, G. Lasslop, I. Teubner, E. Chuvieco, and K. Thonicke, 2017: A data-driven approach to identify controls on global fire 
activity from satellite and climate observations (SOFIA V1). Geosci. Model Dev., 10, 4443–4476, https://doi.org/10.5194/gmd-10-4443-2017.

24) �Brockmann, C., P. Michael, D. Olaf, and R. Ana, 2013: Multi-sensor cloud screening and validation: IdePix and PixBox. Proc. 2013 European 
Space Agency Living Planet Symp., Edinburgh, United Kingdom, ESA, 9–13, www.livingplanet2013.org/abstracts/850821.htm.

25) �Pekel, J.-F., A. Cottam, N. Gorelick, and A. S. Belward, 2016: High-resolution mapping of global surface water and its long-term changes. 
Nature, 540, 418–422, https://doi.org/10.1038/nature20584.

26) �Klingmüller, K., A. Pozzer, S. Metzger, G. Stenchikov and J. Lelieveld, 2016: Aerosol optical depth trend over the Middle East. Atmos. Chem. 
Phys., 16, 5063–5073, https://doi.org/10.5194/acp-16-5063-2016.

27) �Frolking, S., M. W. Palace, D. B. Clark, J. Q. Chambers, H. H. Shugart, and G. C. Hurtt, 2009: Forest disturbance and recovery: A 
general review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure. J. Geophys. 
Res., 114, G00E02, https://doi.org/10.1029/2008jg000911.

28) Law, K. S., and A. Stohl, 2007: Arctic air pollution: Origins and impacts. Science, 315, 1537–1540, https://doi.org/10.1126/science.1137695.
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